
BVP: Byzantine Vertical Paxos

Ittai Abraham Dahlia Malkhi

May 28, 2016

Abstract

In this paper we introduce Byzantine Vertical Paxos. BVP is a framework whose goal is to
provide a method to produce high throughput Byzantine fault tolerant state machine replication
that is tailored for a permissioned blockchain environment. We present the framework and show
its manifestation in several models: synchronous, asynchronous, and asynchronous while assuming
servers have access to a Trusted Platform Module (TPM).

1 Introduction

BitCoin’s blockchain demonstrated how to share information securely among a wide peer-to-peer network,
ordering blocks in a totally ordered sequence, and guaranteeing that information is immutable. An
alternative approach is being considered today by many serious institutions such as financial organizations
and banks. The approach relies on Byzantine agreement among a federated network of participants,
jointly storing an agreed sequence of such blocks.

In this paper, we consider the challenge of driving a serious, industrial-grade infrastructure for Byzan-
tine agreement and state machine replication. We focus on two aspects, elasticity (dynamic reconfigura-
tion) and throughput. We introduce Byzantine Vertical Paxos (BVP), a family of protocols designed to
address both goals.

BVP is built of the foundations of Vertical Paxos (VP) [LMZ09], which separates a solution into two
modes. The first mode is a simple steady state protocol, and the second is a reconfiguration protocol.
Often, the steady state protocol is just primary-backup or its generalization to multiple nodes via Chain
Replication (CR) [vRS04] or Two Phase Commit (2PC). The second mode is a Paxos based reconfigu-
ration engine. The advantage of VP is that the steady state can be optimized for high throughput and
the heavy lifting on Paxos is used only when reconfiguration is needed.

Here we introduce BVP, a Byzantine variant of VP. As in VP, in BVP the steady state mode can
be simple and highly optimized despite the Byzantine settings. In some settings, as we will see below, a
non-faulty leader can provide safe progress with as few as f + 1 replicas. A separate consensus engine is
used for reconfiguration.

Previously, a VP-oriented approach was used in an asynchronous Byzantine setting as follows. The
Byzantine Chain Replication (BCR) protocol of van Renesse et al. [RHS12] implements state-machine-
replication using 2f + 1 replicas for steady-state, and using a separate 3f + 1 consensus engine for
reconfiguration management. Zyzzyva [KAD+10], while not providing the full elasticity that we aim for,
separates between an optimistic, steady-state mode, and a recovery mode. Its optimistic faultless mode
requires unanimity among an entire set of 3f + 1 replicas, and exhibits 3 message delays. Zyzzyva falls
back for recovery to using (2f + 1)-of-(3f + 1) replicas, and exhibits 5 message delays.

Our work considers BVP in its full generality, extending these works into several new, practical
settings. First, for all settings, including the classical asynchronous Byzantine settings, our approach
provides a full-fledged reconfiguration mechanism.

Additionally, in many realistic settings the network is synchronous. In this case, our steady-state
solution requires only f + 1 replicas, and 2f + 1 replicas for reconfiguration. In fact, we don’t really
require the system to be synchronous in steady state, only to have some out-of-band synchronous control
channel for reconfiguration purposes. Yet other settings may have secure hardware devices such as TPMs.
Again we provide an f + 1 steady-state solution here.

In all of these settings, the core of the VP-oriented technique is to “wedge” a replicated state-machine
and capture its “closing state”. For every consensus decision, this requires the wedging coordinator to

1



access one non-Byzantine replica participating in the decision. For example, in Zyzzyva this is done by
wedging 2f + 1 out of 3f + 1 replicas. In a synchronous settings, the coordinator waits for a known
latency bound. And so on.

The following table summarizes the results we provide and compares against previously known ones.
Note that in BCR and all BVP variants, only f + 1 replicas need to store state; the rest of the replicas
may be utilized as active witnesses for agreement purposes only.

model steady state reconfiguration

msg delays msgs replicas full reconfig replicas

async (PBFT) 4 quadratic (2f + 1)-of-(3f + 1) yes (2f + 1)-of-(3f + 1)

async (Zyzzyva) 3 quadratic 3f + 1 no (2f + 1)-of-(3f + 1)

async (Zyzzyva+BVP) 3 quadratic 3f + 1 yes (2f + 1)-of-(3f + 1)

async (BCR) 2f + 2 linear 2f + 1 yes 3f + 1

sync (BVP) 4 quadratic f + 1 yes 2f + 1

sync (BVP) 3 quadratic 2f + 1 yes 2f + 1

async+TPM (BVP) 3 linear f + 1 yes 2f + 1

2 Wedging a Replicated State-Machine

State-Machine Replication (SMR) is the task of forming agreement on a sequence of state-machine
commands. Consensus on each command is formed independently of other commands. In steady state,
there is a fixed set of replicas and a fixed algorithm driving decisions, one after another.

A reconfiguration mechanism changes the steady-state mode of the system. For example, it can be
employed to replace a leader in a leader-based scheme. Although this is a minor change, conceptually
we think of it as a configuration change. Likewise, reconfiguration may be employed to change the entire
set of replicas.

The core mechanism employed for reconfiguration is a wedging scheme. A wedging coordinator obtains
validation from a wedge, which is a subset of the replicas. At the same time, the coordinator obtains the
latest state the wedge stores (including all the proposals it stores in every sequence position).

Then the coordinator drives a reconfiguration consensus decision. This consensus decision is imple-
mented by a separate Byzantine consensus engine called a reconfiguration engine.

Importantly, the reconfiguration consensus decision itself has two components, (i) next configuration,
and (ii) closing state. Whereas the first may be obvious, the second component deserves explanation.

When wedging starts, some consensus decisions may be only partially completed. This is inevitable
in a distributed system, and consequently, there is going to be uncertainty about the status of ongoing
decisions. For example, in a (2f + 1)-of-(3f + 1) scheme, a wedging coordinator collects information
from 2f + 1, leaving the remaining f unknown. If it hears that f + 1 (of the 2f + 1) voted for a certain
state-machine command, say command number 1, the only safe course for the coordinator is to adopt
the command into the closing state. Note that it is unknown whether the remaining f replicas ever vote
for this command, past or future. This uncertainty is inherent in all of the settings and schemes we
discuss below, and determining a safe closing-state is the heart and the core of correct wedging.

After the wedging procedure is complete and reconfiguration a consensus decision is reached, the
SMR implementation switches to a conceptually new system (although the configuration change itself
may be minimal, e.g., a leader change). The new system adopts as its starting state the closing state
of the current. For example, if the reconfiguration decision contains a decision on some state-machine
command number at slot number 1, then in the new system, command number 1 is already decided.

Below, we discuss different solutions for wedging and for the reconfiguration engine. The solutions
differ in their model assumptions, their wedges, and their implementation of the separate reconfiguration
engine.

2



2.1 Asynchronous Model

We start with a brief recap of the classic asynchronous Byzantine setting. In this model, PBFT [CL99]
gives 4 rounds and 2f + 1 for the steady state and Zyzzyva [KAD+10] uses 3 rounds in the optimistic
case but requires 3f + 1 replicas for the steady state. Using 3f + 1 for reconfiguration is also standard
in both cases.

2.2 Synchronous-Reconfiguration Model

In the synchronous model, we provide two options, a 4-round (4 message delays) solution with f + 1
replicas, and a 3-round (3 message delays) solution with 2f + 1 replicas.

4-Round: The first option is a steady-state mode with one (trivial) quorum of f + 1 replicas. We can
run a standard 4-round protocol:

round 1 Client sends to Primary
round 2 Primary signs and sends to all f + 1
round 3 all f + 1 send signed-echoes of the Primary’s message to each other
round 4 each of f + 1 sends a composite message containing all signed-echoes to Client

Client proceeds when all f + 1 composites arrive

closing state every composite containing f + 1 signed echoes

Note that we do not require a synchronous model for this interaction, only for reconfiguration.
Namely, if at any stage the delay gets too large we can run a reconfiguration. Each round incurs one
message delay, for a total of 4. The third round is an all-to-all exchange, and the fourth has linear size
messages, each incurring quadratic single-message complexity.

Reconfiguration is handled as follows. The wedging coordinator must contact all surviving, non-
faulty replicas in order to prevent Byzantine replicas from truncating the history of validated Primary
commands. The coordinator relies on a known bound on communication delays and waits for it to expire.
This guarantees that any surviving, non-faulty replica responds to the coordinator. Every command for
which the wedging coordinator receives a composite message with f + 1 signed echoes is adopted in the
closing state.

On a practical note, in our experience, it is possible to engineer systems to switch to synchronous
mode when needed, e.g., by employing during these periods certain networking infrastructure or a special
authority which has network priority. Alternatively, we could simply assume that a system has synchrony.

As for the consensus reconfiguration engine itself, it is well known that this can be done using 2f + 1
replicas in the synchronous model.

3-Round: The second option is a steady-state mode with one (trivial) quorum of 2f + 1 replicas, and
a a Zyzzyva-like 3-round protocol:

round 1 Client sends to Primary
round 2 Primary signs and sends to all 2f + 1
round 3 all 2f + 1 send signed-echoes of the Primary’s message to Client

Client proceeds when all 2f + 1 echoes arrive

closing state every command which has f + 1 signed echoes

Again note that we do not require synchronous model for this interaction. If at any stage the delay
gets too large we can run a synchronous reconfiguration protocol as follows. The wedging coordinator
waits for the known communication upper bound in order to hear from all surviving, non-faulty replicas.
Every command for which the wedging coordinator receives f + 1 signed echoes is adopted in the closing
state.

2.3 Asynchronous Model with a TPM

In this setting we assume servers are equipped with Trusted Platform Module. Formally we assume a
weak sequential broadcast (WScast), defined in [CMSK07, AAM10]. Roughly speaking, WScast is a

3



broadcast that ensures that (a) messages from a given sender are delivered by correct processes in the
same order; this is an ordering per-sender, similar to FIFO broadcast, and (b) if the sender is correct
then eventually all processes will receive all its messages.

We provide an SMR solution in this model with a steady state 3-round protocol, using f + 1 replicas,
and incurring a linear message complexity:

round 1 Client sends to Primary
round 2 Primary WScast to all f + 1
round 3 all f + 1 WScast echoes of the Primary’s message to Client

Client proceeds when f + 1 echoes arrive

closing state every command whose echo was (provably) WScast

Reconfiguration can be done in constant time using 2f + 1 nodes as in [AAM10]. The wedging
coordinator asks all replicas to prove the history of messages it has WScast, and waits for one valid
reply. Every command for which a valid reply indicate it was WScast is adopted in the closing state.

Note that there are several performance advantages of using a TPM. In steady state, we need only
f + 1 replicas, and at the same time, communication is linear in number of replicas (unlike the quadratic
number of messages in the standard models).

Another advantage of using secure hardware, which is left outside the scope of discussion here, is
the possibility to leverage “proof of elapsed time” to simplify and improve the efficiency of the leader
election part inside the reconfiguration service.

References

[AAM10] Ittai Abraham, Marcos K. Aguilera, and Dahlia Malkhi. Fast asynchronous consensus with
optimal resilience. In Proceedings of the 24th International Conference on Distributed Com-
puting, DISC’10, pages 4–19, Berlin, Heidelberg, 2010. Springer-Verlag.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages
173–186, Berkeley, CA, USA, 1999. USENIX Association.

[CMSK07] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. Attested append-
only memory: Making adversaries stick to their word. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 189–204, New York,
NY, USA, 2007. ACM.

[KAD+10] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: Speculative byzantine fault tolerance. ACM Trans. Comput. Syst., 27(4), January
2010.

[LMZ09] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-backup repli-
cation. In Proceedings of the 28th ACM Symposium on Principles of Distributed Computing,
PODC ’09, pages 312–313, New York, NY, USA, 2009. ACM.

[RHS12] Robbert Renesse, Chi Ho, and Nicolas Schiper. Byzantine chain replication. In Roberto
Baldoni, Paola Flocchini, and Ravindran Binoy, editors, Principles of Distributed Systems,
volume 7702 of Lecture Notes in Computer Science, pages 345–359. Springer Berlin Heidel-
berg, 2012.

[vRS04] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high through-
put and availability. In Proceedings of the 6th Conference on Symposium on Opearting Sys-
tems Design & Implementation - Volume 6, OSDI’04, pages 7–7, Berkeley, CA, USA, 2004.
USENIX Association.

4


