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Abstract

We propose LazyLedger, a design for distributed
ledgers where the blockchain is optimised for solely
ordering and guaranteeing the availability of transac-
tion data. Responsibility for executing and validating
transactions is shifted to only the clients that have an
interest in specific transactions relating to blockchain
applications that they use. As the core function of the
consensus system of a distributed ledger is to order
transactions and ensure their availability, consensus
participants do not necessarily need to be concerned
with the contents of those transactions. This reduces
the problem of block verification to data availability
verification, which can be achieved probabilistically
with sub-linear complexity, without downloading the
whole block. The amount of resources required to
reach consensus can thus be minimised, as transac-
tion validity rules can be decoupled from consensus
rules. We also implement and evaluate several exam-
ple LazyLedger applications, and validate that the
workload of clients of specific applications does not
significantly increase when the workload of other ap-
plications that use the same chain increase.

1 Introduction

So far, blockchain-based distributed ledger platforms
such as Bitcoin [1] and Ethereum [2] have adopted
similar consensus design paradigms, where the valid-
ity of the blocks proposed by block producers is deter-
mined by (i) whether it is the block producer’s turn
to propose a block and (ii) whether the transactions
in the block are valid according to some state ma-
chine. Traditional consensus protocols such as Prac-
tical Byzantine Fault Tolerance [3] have also taken
a similar approach, where consensus nodes (replicas)
process transactions according to a state machine.

The scalability issues that have plagued decen-
tralised blockchains [4] can be attributed to the
fact that in order to run a node that validates the
blockchain, the node must download, process and
validate every transaction included in the chain. As
a result, various scalability efforts have emerged in-
cluding on-chain scaling via sharding [5, 6], which
aims to split the state of the blockchain into multi-
ple shards so that transactions can be processed by
different consensus groups in parallel, and off-chain
scaling via state channels [7, 8], which takes the ap-
proach of moving transactions off-chain and using the
blockchain as a settlement layer.

However, it is also worth exploring alternative
blockchain design paradigms that may be suitable for
different types of applications, where nodes that need
to validate the blockchain in order to determine the
correct chain do not need to validate the contents of
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the blocks. Instead, the end-users of applications that
store information on the blockchain can be concerned
with the validation of such contents. This would re-
move the bottleneck where nodes need to validate
everyone else’s transactions, and reducing the prob-
lem of validating the blockchain to simply verifying
that the contents of the block are available (the data
availability problem [9]), so that end-users can mean-
ingfully access the information needed to apply state
transitions on their applications. In such a paradigm,
the blockchain is used solely for ordering and making
available messages, rather than executing and verify-
ing the state machine transitions of transactions. Be-
cause messages for applications are executed by end-
users off-chain, the logic of these applications does
not need to be defined on-chain, and thus application
logic can be written in any programming language or
environment, and changing the logic does not require
a hard-fork of the chain.

A result of reducing blockchain validation to the
data availability problem is that one can fully achieve
consensus on new messages without downloading the
entire set of messages, using probabilistic data avail-
ability verification techniques [9], as consensus par-
ticipants do not need to process the contents of mes-
sages.

Philosophically, LazyLedger can be thought of as
a system of ‘virtual’ sidechains [10] that live on the
same chain, in the sense that transactions associated
with each application only need to be processed by
users of those applications, similar to the fact that
only users of a specific sidechain need to process
transactions of that sidechain. However, because all
applications in LazyLedger share the same chain, the
availability of the data of all their transactions are
equally and uniformly guaranteed by the same con-
sensus group, unlike in traditional sidechains where
each sidechain may have a different (smaller) consen-
sus group.

In this paper, we make the following contributions:

• We design a blockchain, LazyLedger, where con-
sensus and transaction validity is decoupled,
and describe two alternative block validity rules
which just ensure that block data is available.
One is a simple rule where nodes simply down-

load the blocks themselves, and the other is
probabilistic but more efficient as nodes do not
need to download entire blocks.

• We build an application-layer on top of our pro-
posed blockchain, where end-user clients can ef-
ficiently query the network for data relating only
to their applications, and only need to execute
transactions related to their applications.

• We implement and evaluate several example
LazyLedger applications; including a currency,
a name registrar and a petitions system.

Outline: Section 2 presents a background of the
technical concepts LazyLedger relies on; Section 3
presents the LazyLedger threat model, node types,
and blockchain model; Section 4 presents the block
validity rules of the LazyLedger blockchain; Section 5
presents the LazyLedger application model and how
applications can be built on top of its blockchain;
Section 6 presents an evaluation of a prototype of
LazyLedger and some example applications; Sec-
tion 8 presents a comparison with related work; and
Section 9 concludes.

2 Background

2.1 Blockchains

The data structure of a blockchain consists of a chain
of blocks. Each block contains two components: a
header and a list of transactions. In addition to other
metadata, the header stores at minimum the hash of
the previous block (thus enabling the chain property),
and the root of the Merkle tree that consists of all
transactions in the block.

Blockchain networks implement a consensus al-
gorithm [11] to determine which chain should be
favoured in the event of a fork, e.g., if proof-of-work
[1] is used, then the chain with the most accumu-
lated work is favoured. They also have a set of trans-
action validity rules that dictate which transactions
are valid, and thus blocks that contain invalid trans-
actions will never be favoured by the consensus algo-
rthim and should in fact always be rejected.
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Full nodes (also known as ‘fully validating nodes’)
are nodes which download both the block headers
as well as the list of transactions, verifying that all
transactions are valid according to some transaction
validity rules. This is necessary in order to know
which blocks have been accepted by the consensus
algorithm.

There are also ‘light’ clients which only download
block headers, and assume that the list of transac-
tions are valid according to the transaction validity
rules. These nodes verify blocks against the consen-
sus rules, but not the transaction validity rules, and
thus assume that the consensus is honest in that they
only included valid transactions. They therefore do
not fully execute the consensus algorithm to know
which blocks are accepted, and may end up in a sit-
uation where they accept blocks that contain invalid
transactions, that full nodes have rejected.

2.2 Sampling-Based Data Availability

The ‘data availability problem’ asks how a client–
such as a light client–that only downloads block head-
ers, but not the corresponding block data (e.g., list of
transactions), can satisfy itself that the block data is
not being withheld by the producer of the block (e.g.,
a miner), and that the full data is indeed available to
the network.

Al-Bassam et al. [9] propose a solution to this prob-
lem based on erasure coding and random sampling.
The solution was proposed in the context of state
transition fraud proofs, however it is of independent
interest. We summarise the scheme here.

Erasure codes are error-correcting codes [12] that
can transform a message consisting of k shares (i.e.,
pieces) into a bigger extended message of n shares,
such that the original message can be recovered by
any subset k′ of the n shares. The ratio k′

n (the code
rate) depends on the erasure code used and its pa-
rameters. For example, Reed-Solomon erasure codes
[13] can support k′ = n

2 , which means that only half
of the erasure coded data is needed to recover the
original data.

To allow clients to be sure that block data is avail-
able, block headers contain a commitment to the root
of the Merkle tree of the erasure coded version of the

data. In order for an adversarial block producer to
withhold any part of the block, they must withhold
at least k′ out of n shares of the block (e.g., with
standard Reed-Solomon coding this would be at least
50% of the block). Clients can then sample multiple
random shares from the block, and if it does not re-
ceive a response for one of its samples because it is
unavailable, then it considers the whole block to be
unavailable, and does not accept the block. If an
adversarial block producer has withheld k′ out of n
shares, then there is a high probability that the client
will sample an unavailable piece and reject the block.

However because the block producer may incor-
rectly compute the erasure code or the Merkle tree,
thus making the block data unrecoverable, it is nec-
essary to allow clients to receive ‘fraud proofs’ from
full nodes to alert them that the erasure code is incor-
rect, causing the client to download the block data,
recompute the erasure code and verify that it does
not match the Merkle root.

To prevent clients from needing to download the
entire block data (which would defeat the goal of data
availability proofs being more efficient than down-
loading the whole data yourself), two-dimensional
erasure coding is used, which limits these fraud proofs
to a specific axis as only one row or column needs to
be downloaded to prove that the erasure code is incor-
rectly computed, thus the fraud proof size would be
approximately O(

√
n) (without Merkle proofs) for a

block with n shares. However this also requires clients
who want data availability guarantees to download a
Merkle root for the shares in each row and column as
part of the block header, rather than a single Merkle
root for the entire data, thus the number of Merkle
roots that need to be downloaded increases from 1 to
2
√
n, as there are

√
n rows and

√
n columns.

Importantly, that for this scheme to provide any
guarantees, there must be a minimum number of
clients in the network that are making enough sam-
ples to force the block producer to release more than
k′ shares to satisfy all of those samples, as if less than
k′ shares are released, the block data may not be re-
coverable from those shares. This is because clients
gossip downloaded samples to ‘full’ nodes that re-
quest it, so that they can recover the full block with
enough shares, similar to a peer-to-peer file-sharing
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network.

3 Model

3.1 Threat Model and Nodes

We consider the following types of nodes in
LazyLedger:

• Consensus nodes. These are nodes which par-
ticipate in the consensus set, to decide which
blocks should be added to the chain.

• Storage nodes. These are nodes which store a
copy of all of the data in the blockchain and its
blocks.

• Client nodes. These are effectively the end-
users of the blockchain system. They partici-
pate in applications or use cases that use the
blockchain, and receive transaction data or mes-
sages from storage nodes relevant to their appli-
cations.

These nodes are all connected to each other in a
peer-to-peer network, e.g., all node types may have
some connections with any other node type and the
topology of the network is non-hierarchical. However,
client nodes may wish to ensure that they are con-
nected to at least one storage node if they wish to
utilise their services.

We assume that honest nodes not under an eclipse
attack [14] and are thus connected to at least one
other honest node; that is, a node that will follow
the protocols described in Section 4 and relay mes-
sages. This implies that the network is not split, so
that there is always a network path between two hon-
est nodes. Additionally, there is at least one honest
storage node in the network.

We also assume that there is a maximum network
delay δ so that if an honest node can receive a mes-
sage from the network at time T , then any other hon-
est node can also do so at time T ′ ≤ T + δ.

3.2 Block Model

We assume a blockchain data structure that at min-
imum consists of a hash-based chain of block head-

ers H = (h0, h1, ...). Each block header hi contains
the root mRooti of a Merkle tree of a list of mes-
sages Mi = (m0

i ,m
1
i , ...), such that given a function

root(M) that returns the Merkle root of a list of mes-
sages M , then root(Mi) = mRooti. This is not an
ordinary Merkle tree, but an ordered Merkle tree we
refer to as a ‘namespaced’ Merkle tree which we de-
scribe in Section 5.2. A block header hi is considered
to be valid if given some boolean function

blockValid(h) ∈ {true, false}

then blockValid(hi) must return true.
If a block is valid, then it has the potential to

be included in the blockchain. We assume that the
blockchain has some consensus rules to decide which
valid blocks have consensus to be included in the
blockchain, and resolve forks. A block header hi is
considered to have consensus if given some boolean
function

inChain(h, {H0, H1, ...}) ∈ {true, false}

then inChain(hi, {H0, H1, ...}) must return true,
where each Hj is a distinct chain of block headers
and {H0, H1, ...} is the set of distinct chains observed
(there may be multiple in the event of a fork).

Note that computing inChain on hi can only re-
turn true if and only if blockValid(hi) returns true,
regardless of the forks to pick from. Apart from
this constraint, the specific consensus rules used by
inChain are arbitrary and are out of scope for the
design of LazyLedger. For example, inChain may use
proof-of-work or proof-of-stake with the longest chain
rule [1, 11].

3.3 Goals

With this threat model in mind, LazyLedger has the
following goals:

In the text below, ‘messages relevant to the appli-
cation’ means messages that are necessary to com-
pute the state of an application, and is discussed in
more depth in Section 5.1.1.

1. Availability-only block validity. The result
of blockValid(hi) should be true if the data be-
hind mRooti is available to the network. This
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consequently means that consensus nodes should
not need to execute messages in blocks.

2. Application message retrieval partition-
ing. Client nodes must be able to download
all of the messages relevant to the applications
they use from storage nodes, without needing
to downloading any messages for other applica-
tions.

3. Application message retrieval complete-
ness. When client nodes download messages rel-
evant to the applications they use from storage
nodes, they must be able to verify that the mes-
sages they received are the complete set of mes-
sages relevant to their applications, for specific
blocks, and that there are no omitted messages.

4. Application state sovereignty. Client nodes
must be able to execute all of the messages rele-
vant to the applications they use to compute the
state for their applications, without needing to
execute messages from other applications, unless
other specific applications are explicitly declared
as dependencies.

4 Block Validity Rule Design

The key idea of LazyLedger is that the result of
blockValid(hi) should only depend on whether the
data required to compute mRooti is available to the
network or not, rather on whether any of the mes-
sages in the block correspond to transactions that
satisfy the rules of some state machine (Goal 1 in
Section 3.3). This way, we can decouple transac-
tion validity rules from the consensus rules, as the
result of inChain does not depend on the contents of
the messages in the block Mi, when blockValid(hi) is
computed (recall inChain on hi can only return true
if and only if blockValid(hi) returns true).

We consider that checking the availability of the
data necessary to recompute mRooti is the bare min-
imum necessary requirement to have a useful func-
tioning blockchain. This is because, as we shall see in
Section 5, clients need to know the transactions that
have occurred in the blockchain in order to know the

state of applications on the blockchain and thus do
anything useful. If the data behind a block is un-
available, clients would not be able to compute the
state of their applications.

We provide definitions for data availability sound-
ness and agreement, adapted from [9] for the threat
model described in Section 3.

Definition 1 (Data Availability Soundness). If an
honest node accepts a block as available, then at least
one honest storage node has the full block data or will
have the full block data within some known maximum
delay k × δ where δ is the maximum network delay.

Definition 2 (Data Availability Agreement). If an
honest node accepts a block as available, then all other
honest nodes will accept that block as available within
some known maximum delay k × δ where δ is the
maximum network delay.

We offer two possible validity rules with different
trade-offs. Section 4.1 describes a simple validity rule
that satisfies Definition 1 and Definition 2 with 100%
probability, for an O(n) bandwidth cost where n is
the size of the block, because the node must down-
load the entire block data to confirm that it is avail-
able. Section 4.2 describes a probabilistic validity
rule that satisfies Definition 1 and Definition 2 with
a high but less than 100% probability, but with a
O(
√
n+log(

√
n)) bandwidth cost because the block’s

row and column Merkle roots and only a static num-
ber of samples and their logarithmically-sized Merkle
proofs from the block need to be downloaded. This
bandwidth cost is analysed further in Section 6.

4.1 Simplistic Validity Rule

In the Simplistic Validity Rule, blockValid(hi) returns
true if and only if upon receiving a block header hi
from the network, the node is also able to down-
load Mi from the network and authenticate that the
Merkle root of the downloaded Mi is mRooti, by
checking that root(Mi) = mRooti.

Upon blockValid(hi) returning true, the node must
distribute hi and Mi to the nodes it is connected to,
should the nodes request the data if they do not have
it. The node should thus store Mi for at least δ, the
maximum network delay.
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Theorem 1. The Simplistic Validity Rule satisfies
Definition 1 (Soundness).

Proof. If blockValid(hi) returns true on an honest
node, then the node will distribute Mi to the nodes it
is connected to, of at least one of which is honest, and
will also run blockValid(hi) and distribute Mi, and so
on. Thus a storage node will receive Mi within the
maximum network delay δ, which there exists at least
one of which is honest.

Theorem 2. The Simplistic Validity Rule satisfies
Definition 2 (Agreement).

Proof. If blockValid(hi) returns true on an honest
node, then the node will distribute Mi to the nodes it
is connected to, of at least one of which is honest, and
will also run blockValid(hi) and distribute Mi, and so
on. Thus all honest nodes will receive Mi within the
maximum network delay δ, and blockValid(hi) will
thus return true, causing them to accept hi as an
available block.

4.2 Probabilistic Validity Rule

For the Probabilistic Validity Rule, blockValid(hi)
utilises the probabilistic data availability scheme
based on random sampling the erasure coded version
of the block data Mi described by Al-Bassam et al.
[9] and summarised in Section 2.2. Proofs for Defini-
tion 1 and Definition 2 are provided in [9]. Unlike the
Simplistic Validity Rule, this scheme is probabilistic
in satisfying these definitions, however it is more ef-
ficient because only a part of the block data needs to
be downloaded to obtain high probability guarantees
that the data is available.

For examples if using the 2D Reed-Solomon coding
scheme with a 1

4 code rate described in [9] in a block
that has been divided into 4096 shares, only 15 sam-
ples corresponding to 0.4% of the block data needs to
be downloaded by a node to achieve a 99% guarantee
that the block data is available [9]. Further analysis
will be provided in Section 6.

The bandwidth cost of executing blockValid(hi) is
O(
√
n + log(

√
n)) where n is the size of the block,

because each node needs to download 2
√
n row and

column Merkle roots for the block’s 2D erasure coded

data, and a fixed number of share samples and their
corrosponding Merkle proofs authenticating them to
one of the block’s row or column roots (which are
logarithmic in size).

As mentioned in Section 2, this scheme only works
if there is a sufficient minimum number of nodes
in the network making a sufficient number of sam-
ple requests so that the network collectively samples
enough shares to be able to reconstruct the block,
thus the maximum block size and number of samples
each node makes should be set to reasonable values
such that this condition is met.

We note that this creates an interesting property:
in order to (securely) increase block size and thus the
throughput of the network, one can increase the num-
ber of nodes in the network. This is different to tradi-
tional blockchain systems such as Bitcoin [1], where
deploying more full nodes to the network does not
increase the on-chain throughput of the network. By
reducing block verification to data availability verifi-
cation, the blockchain has scalability properties more
similar to those of peer-to-peer file-sharing networks
[15], where adding more nodes to the network in-
creases the storage capacity of the network. See Ta-
ble 1 in [9] for example parameterisation and numbers
for the minimum nodes that are required for certain
block sizes.

Additionally, as also mentioned in Section 2, in
the (hopefully rare) case that the erasure code is in-
correctly generated, the size of the fraud proof for
this would be approximately O(

√
n), or O(

√
n +√

n log(
√
n)) including Merkle proofs (for example,

for a 1MB block with 225 byte shares, the size of a
fraud proof would be 26KB; see [9] for more figures).

5 Application-Layer Design

5.1 Application Model

Recall in Section 3 that LazyLedger has client nodes
which read and write messages in blocks relevant to
their application, and that the contents of blocks
have no validity rules, and thus any arbitrary mes-
sage can be included in a block. LazyLedger applica-
tions are akin to smart contracts, with the primary
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node

storage node

node

node

storage node

node

client node

query(hash(hi), nid)

Merkle proofs, index

Figure 1: Overview of interaction between client
nodes and storage nodes.

difference being that they are executed by end-user
clients rather than consensus participants. Thus, ap-
plication logic is defined and agreed upon entirely off-
chain by clients of that application, and may there-
fore be written in any programming language or en-
vironment.

A client can submit a message to be recorded on the
blockchain that specifies a transaction for a specific
application, which will then be read and parsed by
other clients of that applications, which may then
modify their copy of the state of that application.

Applications are identified by their own ‘names-
pace’, and well-formed messages associated with a
specific application can be parsed to determine their
application namespace. We assume a function ns(m)
that takes as input a message m and returns its
namespace ID. Therefore if a client is a user of an
application with ID nid, it is interested in reading all
messages m in the ledger such that ns(m) = nid, in
order to determine the state of its application.

Because the consensus of the blockchain does not
require checking the validity of any transactions in-
cluded in the blockchain, the ledger may include
transactions that are considered invalid according to
the logic of certain applications. Therefore we define
a state transition function that LazyLedger applica-
tions should use that does not return an error. Given

an application with ID nid:

transitionnid(state, tx) = state′

transitionnid(state, tx) cannot return an error be-
cause if an adversarial actor includes an invalid tx
in a block, then the state of the application would
end up in a permanently erroneous state. Therefore
if tx is considered erroneous by the logic of the tran-
sition function, it should simply return the previous
state, state, as the new state.

Clients who use an application with ID nid should
agree with each other on the logic or code of
transitionnid. If for example, one client decides to use
different logic for transitionnid, then that client would
reach a different final state for that application than
everyone else, which in effect means that they would
be using a different application, but it would not ef-
fect anyone else.

Interestingly, this means that it is possible for users
of an application to decide to change the logic of
that application without requiring a hard-fork of the
blockchain that would effect other applications. How-
ever if immutability of the logic is important, the cre-
ator of the application may decide for example that
the namespace identifier of the application should be
the cryptographic hash of the application’s logic.

5.1.1 Cross-Application Calls

Some applications may want to call other applica-
tions (i.e., a cross-contract call). We consider two
scenarios in which an application may want to do
this: either as a pre-condition or a post-condition.
We consider a model where all cross-application calls
can be expressed as pre-conditions or post-conditions,
similar to e.g., the transaction model of Chainspace
[5].

Recall in Section 3.3 that Goal 4 of LazyLedger is
application state sovereignty, which means that users
of an application should not have to execute mes-
sages from other irrelevant applications. An applica-
tion can specify other applications as dependencies in
its logic, where knowledge of the state of the depen-
dency applications is necessary in order to compute
the state of the application. An application B is thus
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defined as ‘relevant’ to users of application A if is B is
a dependency of A, however if A is not a dependency
of B, then A is not relevant to the users of B. In
order to preserve the notion of state sovereignty, this
means third party applications cannot force other ap-
plications to take a dependency on the state of third
party applications.

In the case of a pre-condition, an application may
have a function that can only be executed if another
application that it depends on is in a certain state.
In such a case, in order to validate that these pre-
conditions are met, clients of an application must also
download and verify the state of the application’s de-
pendency applications; however the clients of the de-
pendency application do not need to download the
state of the applications which depend on it.

For example, consider a name registrar application
where clients can register names only if they send
money to a certain address in a different currency
application. The clients of the name registrar ap-
plication would have to also become clients of the
currency application, in order to verify that when a
name is registered, there is a corresponding transac-
tion that sends the funds to pay for the name to the
correct address.

In the case of a post-condition, an application may
want to modify the state of another application af-
ter a transaction. Post-conditions are only possible
if the application whose state is being modified has
explicitly set the application that is executing the
post-condition as a dependency application to the
post-condition application. This is because in or-
der to execute the post-condition, the clients of the
post-condition application would have to download
and verify the state of the application executing the
post-condition, to verify that it has the authority to
execute the post-condition. If any application was
allowed to execute a post-condition in any applica-
tion, then it would mean that clients would have to
download and verify other applications against their
will, thus violating Goal 4 in Section 3.3 (applica-
tion state sovereignty). Post-conditions may however
be executed indirectly through sidechain mechanisms
such as federated pegs [10], but this is out of scope
for this paper.

N6 = 0003, 09ac,
hash(N4|N5)

N4= 0003, 0003,
hash(N0|N1)

N5= 001f, 09ac,
hash(N2|N3)

N0 = 0003, 0003,
hash(M0)

N1 = 0003, 0003,
hash(M1)

N2 = 001f, 001f,
hash(M2)

N3 = 09ac, 09ac,
hash(M3)

M0=0003 f39a... M1=0003 a029... M2=001f 9013... M3=09ac 1fc8...

Figure 2: An example of a namespaced Merkle tree.

5.2 Storage Nodes and Namespaced
Merkle Tree

In order to satisfy Goal 2 in Section 3.3 (applica-
tion message retrieval partitioning) to allow client
nodes to be able to retrieve all the messages rele-
vant to the application namespaces they are inter-
ested in without having to download and parse the
entire blockchain themselves (e.g., if they use the
Probabilistic Validity Rule, or simply assume that
the consensus has a honest-majority that only accepts
available blocks), they may query storage nodes for
all of the messages in a particular application names-
pace for particular blocks. The storage node can then
return Merkle proofs the relevant messages being in-
cluded in the blocks.

In order to allow storage node to prove to clients
that they have returned the complete set of mes-
sages for a namespace included in a block’s Merkle
tree of messages (Goal 3 in Section 3.3, application
message retrieval completeness), we use a ‘names-
paced‘ Merkle tree described below, which is an or-
dered Merkle tree that uses a modified hash function
so that each node in the tree includes the range of
namespaces of the messages in all of the descendants
of each node. The leafs in the tree are ordered by the
namespace identifiers of the messages.

In a namespaced Merkle tree, each non-leaf node in
the tree contains the lowest and highest namespace
identifiers found in all the leaf nodes that are descen-
dants of the non-leaf node, in addition to the hash of
the concatenation of the children of the node. This
enables Merkle inclusion proofs to be created that
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prove to a verifier that all the elements of the tree for
a specific namespace have been included in a Merkle
inclusion proof.

The Merkle tree can be implemented using stan-
dard unmodified Merkle tree algorithms, but with a
modified hash algorithm that depends on an existing
hash function, that prefixes hashes with namespace
identifiers. Suppose hash(x) is a cryptographically
secure hash function such as SHA-256. We define
a wrapper function nsHash(x) that produces hashes
prefixed with namespace identifiers. A namespaced
hash has the format minNs||maxNs||hash(x), where
minNs is the lowest namespace identifier found in all
the children of the node that the hash represents, and
maxNs is the highest.

The value of minNs and maxNs in the output of
nsHash(x) depends on if the input x is a leaf or two
concatenated tree nodes, as illustrated by Figure 2.
If x is a leaf, then minNs = maxNs = ns(x), as the
hash contains only one leaf with a single namespace.

If x is two concatenated tree nodes, then x =
left||right where left = leftMinNs||leftMaxNs||hash(x)
and right = rightMinNs||rightMaxNs||hash(x).
Thus in the output of nsHash(x), minNs =
min(leftMinNs, rightMinNs) and maxNs =
max(leftMaxNs, rightMaxNs).

An adversarial consensus node may attempt to pro-
duce a block that contains a Merkle tree with children
that are not ordered correctly. To prevent this, we
can set a condition in nsHash such that there is no
valid hash when leftMaxNs ≥ rightMinNs, and thus
there would be no valid Merkle root for incorrectly
ordered children. Therefore blockValid(hi) would re-
turn false in the simplistic and probabilistic validity
rules as there is no possible Mi where root(Mi) =
mRooti. Additionally, recall that root(Mi) = mRooti
and thus blockValid(hi) would also return false if the
Merkle root of the tree is constructed incorrectly, e.g.,
if the minimum and maximum namespaces for a node
in the tree are incorrectly labelled.

Because only the hash function is being modified
in the Merkle tree, the Merkle tree is generated, and
Merkle proofs are verified using standard algorithms.
However, during Merkle proof verification, and extra
step is necessary in order to verify that the proofs
covers all of the messages for a specific namespace.

A client node can send a query query(hash(hi), nid)
to a storage node to request all of the messages in
block hi that have namespace ID nid. The storage
node replies with a list of Merkle proofs proofs =
(proof0, proof1, ..., proofn) and an index index that
specifies the index in the tree in which proof0 is lo-
cated. In addition to the client node verifying all the
proofs, the client node also verifies that the highest
namespace in all of the left siblings included in proof0
are smaller than nid, and the lowest namespace in all
of the right siblings included in proofn are larger than
nid.

If a block has no messages associated with nid, then
only one proof proof0 is returned which corresponds
to the child in the tree where the child to the left of
it is smaller than nid but the child to the right of it is
larger than nid. The actual message in the child does
not need to be included in the proof as the purpose
of the proof would just be to show that there are no
messages in the tree for nid.

Theorem 3. Assuming the Merkle tree is cor-
rectly constructed, an incomplete set of Merkle proofs
proofs = (proof0, proof1, ..., proofn) for a request for
the messages of nid can always be detected.

Proof. Let us assume that an adversary returns
an incomplete set of correct proofs proofs =
(proof0, proof1, ..., proofn) for nid, and index is the in-
dex in the tree that proof0 is located at.

If an omitted message for nid has an index lower
than index, then proof0 will contain a left sibling node
with a maximum namespace maxNs where maxNs >
nid, thus proving that there is an omitted message to
the left of the proof set.

If an omitted message for nid has an index higher
than index+n, then proofn will contain a right sibling
node with a minimum namespace minNs where nid >
minNs, thus proving that there is an omitted message
to the right of the proof set.

5.3 DoS-resistance

In the design of LazyLedger, consensus nodes are not
responsible for validating transactions, and thus an
adversarial client may submit many invalid trans-
actions for namespaces, forcing clients to download
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many invalid transactions. In a permissioned system,
consensus nodes can choose which clients can submit
transactions. However in a permissionless system,
there ought to be a way to prioritise transactions and
to make it expensive to conduct DoS attacks.

5.3.1 Transaction Fees

Consensus nodes can choose to prioritise transactions
that include transaction fees. However, any transac-
tion fee system should ideally not require client nodes
that read messages from the application namespaces
they are interested in, to also validate the applica-
tion that implements the currency that transaction
fees are paid in.

To achieve this, when a message is submitted to
consensus nodes for inclusion in a block, the submit-
ter of the message can also submit a ‘fee transaction’
for the currency application, and also attach to the
fee transaction the hash of the ‘child’ message that
the fee is paying for, such that the fee in this spe-
cial fee transaction can only be collected if the mes-
sage behind the specified hash is included in the same
block, according to the logic of the currency applica-
tion.

Client nodes of the original application whose mes-
sage that the fee is paying for do not need to vali-
date the fee transactions in the currency application;
only client nodes of the currency application (e.g., the
consensus nodes) do. Additionally, the client nodes
of the currency system application do not have to
download the child message itself to verify that it
has been included in the block and thus the fee has
been earned, but simply verify a Merkle proof that
the hash of the child message is included in the same
block.

We assume that fee transactions only specify one
dependency message for simplicity, but they may
specify multiple dependency messages.

There does not need to be a native currency to
the system, as consensus nodes can choose to accept
transaction fees in any currency application that they
choose to recognise.

5.3.2 Maximum Block Size

A maximum block size can be implemented without
requiring nodes to download the entire block’s data
to verify that it is below a certain size. Instead, each
message, and thus each leaf in the Merkle tree of
messages, may have a maximum size such that if a
message x is bigger than the allowed size, nsHash(x)
would return an error, so root(Mi) = mRooti and
thus blockValid(hi) would return false. If larger mes-
sage sizes are required, a message could be chunked
into multiple messages and parsed back into a single
message by clients.

6 Implementation and Perfor-
mance

We implemented a prototype of LazyLedger in 2,865
lines of Golang code. The code has been released as
a free and open-source project.1

As well as the core LazyLedger system, we also
implemented (and released) several example applica-
tions using LazyLedger. Each application’s state is
implemented as one or more key-value stores that can
be read from or modified. Applications include:

• A currency application where clients publish
messages that are transactions for the transfer
of funds between addresses that are elliptic curve
public keys. Transactions are signed by the pub-
lic keys of senders, and specify the amount of
funds to send and the recipient address. In the
key-value store, keys are public keys, and values
are the corresponding balance of each public key,
which is updated after each valid transaction.

• A name registration application where clients
can: (i) send a balance top-up transaction to
the registrar’s public key using a dependency
currency application, so that clients can pay for
name registrations using their balance with the
registrar; and (ii) send a registration transaction
to register a specified name to their public key,
which reduces the balance of the registrant, if

1https://github.com/musalbas/lazyledger-prototype
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their balance is sufficient. The registration ap-
plication has one key-value store representing the
in-app topped-up balance of each public key, and
another key-value store where each key repre-
sents a registered name and each value represents
the public key the name has been registered to.

• A dummy application for testing purposes which
adds arbitrary sized specified key-value pairs to
its key-value store.

We present an evaluation of LazyLedger’s perfor-
mance and scalability properties.

Figure 3 compares how much data needs to be
downloaded to execute the Simple Validity Rule and
the Probabilistic Validity Rule to verify data avail-
ability, for varying block sizes. As expected, there
is a linear relationship between block size and data
downloaded for the Simple Validity Rule, as this re-
quires downloading all of the block data to ensure
that it is available. However, we can see that the re-
lationship between block size and data downloaded
for the Probabilistic Validity Rule is sub-linear and
almost flat. This is because in order to execute the
Probabilistic Validity Rule, nodes download a fixed
number of samples and their corresponding Merkle
proofs whose sizes increase logarithmically with the
size of the block, as well as set of 2

√
n row and col-

umn Merkle roots for the block where n is the size of
the block.

Figure 4 compares the response size of queries for
a specific namespace to a storage node (“application
proofs”), for varying amounts of messages of differ-
ent namespaces (measured by total bytes) that are
not relevant to that query. We use currency appli-
cation messages as the relevant queried namespace
(although any other application could be used), fix-
ing the number of currency messages in the block to
10, but increasing the total size of dummy applica-
tion messages. We can observe that that for both
simple blocks and probabilistic blocks, the size of the
application proofs for the relevant application only
increases logarithmically, because although messages
that are not in the relevant namespace do not need
to be downloaded, the size of the Merkle proofs for
those messages increase logarithmically as the num-
ber of total messages in the block increases. The

size of the application proofs for probabilistic blocks
are smaller because a two-dimensional erasure code is
used, where each column and row gets its own Merkle
tree, and thus the Merkle proofs are smaller because
there are less items in each tree.

Figure 5 follows the same setup as Figure 4, how-
ever instead of comparing the size of the applications
proofs for the currency application, we compare the
size of the state that needs to be stored by users of
the relevant application (in this case, the currency ap-
plication). As expected, we observe that as the size
of the state of other applications increase, the size
of the state that needs to be stored for the currency
application remains static.

Figure 6 and Figure 7 illustrate how the size of ap-
plication proofs may vary for an application that has
a dependency application. In this case we use the
name registration application as an example, which
requires users to follow the state of a currency ap-
plication so that balance top-up transactions to the
registrar can be verified. In the two graphs, we setup
multiple instances of the name registration applica-
tion for multiple registrars, but the user is only in-
terested in following one of them. In Figure 6 we can
observe that as the number of top-up transactions for
the irrelevant name registration applications increase,
the size of the application proofs for the relevant
name registration application increases linearly, be-
cause the user must also download application proofs
for the currency application, which has transactions
being added to it by users of the other name registra-
tion applications. This extreme case where there are
only top-up transactions defeats any scalability gains
of LazyLedger, since all transactions require trans-
actions in dependency applications that other users
may follow.

However, Figure 7 shows the same but in the case
of name registration transactions instead of balance
top-up transactions. Here we see that irrelevant name
registration transactions do not linearly increase the
size of application proofs that need to be downloaded
for other users, because only users of the relevant
name registration application need to have knowledge
of the registered names, and no dependency applica-
tion is impacted.
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Figure 3: A graph showing how much data needs to
be downloaded to execute the block validity rule to
validate data availability versus the size of the block.
For the Probabilistic Validity Rule, 15 samples are
used.
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Figure 4: A graph showing the size of application
proofs in a block for a currency application with 10
transactions versus the total size of all of the other
transactions in the block.
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Figure 5: A graph showing the size of the state that
needs to be stored after a block versus the total size
the state of all apps in the block, for a currency app
and all other apps.
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Figure 6: A graph showing the size of application
proofs in a block for an instance of a registrar appli-
cation with 10 top-up transactions versus the number
of top-up transactions for other registrar application
instances in the block.
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Figure 7: A graph showing the size of application
proofs in a block for an instance of a registrar ap-
plication with 10 registration transactions versus the
number of registration transactions for other registrar
application instances in the block.

7 Discussion

Application Light Clients

One of the current limitations of LazyLedger is that
it is not obvious how to build light clients for ap-
plications, so that clients do not have to download
all of an application’s messages to learn the applica-
tion’s state. This is because application messages are
not validated by consensus nodes, thus clients cannot
assume that an honest majority has validated them.
This may be an interesting area of future work.

Hard Forking

One of the interesting aspects of the LazyLedger de-
sign is its consequences on blockchain governance, in
particular hard forks. Traditionally, hard forks have
been used in the past to change transaction proto-
col rules [16] or to reverse damage caused popular
by smart contracts being compromised, such as the
DAO hack [17].

However with LazyLedger, as there are no
transaction-specific protocol rules and blocks may

contain any arbitrary data, hard forks to change
transaction rules or change the state of the system
are not possible or necessary, as the interpretation
of transactions are left to the device of the end-user
clients rather than the consensus. Thus if users of a
specific application decide they want to change the
state of or ‘upgrade’ an application, they can do so
without the permission of the consensus or any on-
chain effects or changes, as long as other users imple-
ment the same upgrade. Users who do not implement
the upgrade will locally interpret the application to
have a different state - similar to the effect of a hard-
fork but without requiring one explicitly.

8 Related Work

The namespaced Merkle tree in LazyLedger is in-
spired by the ‘flagged’ Merkle tree concept by Crosby
and Wallach [18], where each node in the tree is has
a flag that represents the attributes that its leafs has.

Mastercoin (now OmniLayer) [19] is a blockchain
application system predating Ethereum [2], which
uses Bitcoin has a protocol layer for posting mes-
sages. This is similar to LazyLedger in the sense that
the blockchain can be used to post arbitrary messages
that are interpreted by clients, however in Mastercoin
all nodes must download all Mastercoin messages as
the Bitcoin base layer does not support efficient data
availability schemes such as the Probabilistic Validity
Rule. Additionally, as Mastercoin uses Bitcoin as the
base layer, it does not support queries for complete
sets of messages by specific applications by clients.
Finally, Mastercoin has a set of hardcoded applica-
tions, and does not support arbitrary applications.
In contrast, LazyLedger examines what an ideal new
blockchain would look like for use as a base layer in a
system where the base layer is only for posting mes-
sages and data availability.

9 Conclusion

We have presented and evaluated LazyLedger, a
unique blockchain design paradigm where the base
layer is only used a mechanism to guarantee the avail-
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ability of on-chain messages, and transactions are in-
terpreted and executed by end-users. We have shown
that by reducing block verification to data availability
verification, blocks can be verified in sub-linear time.
Additionally, using the notion of application state
sovereignty, we have shown that multiple sovereign
applications can use the same chain for data avail-
ability, with only limited impact to the workload of
each other’s users.
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