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ABSTRACT 

 

An appealing feature of blockchain technology is smart contracts. A smart contract is 

executable code that runs on top of the blockchain to facilitate, execute and enforce an 

agreement between untrusted parties without the involvement of a trusted third party. In this 

paper, we conduct a systematic mapping study to collect all research that is relevant to smart 

contracts from a technical perspective. The aim of doing so is to identify current research topics 

and open challenges for future studies in smart contract research. We extract 24 papers from 

different scientific databases. The results show that about two thirds of the papers focus on 

identifying and tackling smart contract issues. Four key issues are identified, namely, codifying, 

security, privacy and performance issues. The rest of the papers focuses on smart contract 

applications or other smart contract related topics. Research gaps that need to be addressed in 

future studies are provided. 
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1. INTRODUCTION 

Transactions between parties in current systems are usually conducted in a centralised form, 

which requires the involvement of a trusted third party (e.g., a bank). However, this could result 

in security issues (e.g., single point of failure) and high transaction fees. Blockchain technology 

has emerged to tackle these issues by allowing untrusted entities to interact with each other in a 

distributed manner without the involvement of a trusted third party. Blockchain is a distributed 

database that records all transactions that have ever occurred in a network. Blockchain was 

originally introduced for Bitcoin (a peer-to-peer digital payment system), but then evolved to be 

used for developing a wide range of decentralised applications. An appealing application that can 

be deployed on top of blockchain is smart contracts. 

A smart contract is executable code that runs on the blockchain to facilitate, execute and enforce 

the terms of an agreement between untrusted parties. It can be thought of as a system that releases 

digital assets to all or some of the involved parties once the pre-defined rules have been met [1]. 

Compared to traditional contracts, smart contracts do not rely on a trusted third party to operate, 

resulting in low transaction costs. There are different blockchain platforms that can be utilised to 

develop smart contracts, but Ethereum is the most common one. This is because Ethereum’s 

language supports Turing-completeness feature that allows creating more advanced and 
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customised contracts. Smart contracts can be applied to different applications (e.g., smart 

properties, e-commerce and music rights management). 

The main aim of this study is to identify the research topics that have been carried out about 

blockchain-based smart contracts and current challenges that need to be addressed in future 

studies. To achieve this aim, we selected a systematic mapping study as the methodology for our 

study. We followed the systematic mapping process presented in [2] to search for relevant papers 

in scientific databases and to produce a map of current smart contract research. The produced 

map could help researchers identify gaps for future studies. The focus of our study is to only 

explore smart contract studies from a technical point of view. 

The structure of this paper is as follows. Section 2 discusses background information about 

blockchain and smart contracts technologies. It also discusses several smart contract platforms 

and potential applications. Section 3 describes the research methodology adopted for our study. 

Section 4 presents the results of searching and screening for relevant papers and the results of 

classifying smart contract topics.  Section 5 discusses the results and answers the research 

questions of the study. Section 6 concludes the paper. 

2. BACKGROUND 

This section presents general background information about blockchain and smart contracts 

technologies. It also discusses some blockchain platforms that support the development of smart 

contracts. Finally, it provides some potential use cases for smart contracts. 

2.1. Blockchain Technology 

A blockchain is a distributed database that records all transactions that have ever occurred in the 

blockchain network. This database is replicated and shared among the network’s participants. The 

main feature of blockchain is that it allows untrusted participants to communicate and send 

transactions between each other in a secure way without the need of a trusted third party. 

Blockchain is an ordered list of blocks, where each block is identified by its cryptographic hash. 

Each block references the block that came before it, resulting in a chain of blocks. Each block 

consists of a set of transactions. Once a block is created and appended to the blockchain, the 

transactions in that block cannot be changed or reverted. This is to ensure the integrity of the 

transactions and to prevent double-spending problem.  

Cryptocurrencies have emerged as the first generation of blockchain technology. 

Cryptocurrencies are basically digital currencies that are based on cryptographic techniques and 

peer-to-peer network. The first and most popular example of cryptocurrencies is Bitcoin. Bitcoin 

[3] is an electronic payment system that allows two untrusted parties to transact digital money 

with each other in a secure manner without going through a middleman (e.g., a bank). 

Transactions that occurred in the network are verified by special nodes (called miners). Verifying 

a transaction means checking the sender and the content of the transaction. Miners generate a new 

block of transactions after solving a mathematical puzzle (called Proof of Work) and then 

propagate that block to the network. Other nodes in the network can validate the correctness of 

the generated block and only build upon it if it was generated correctly. However, Bitcoin has 

limited programming capabilities to support complex transactions. Bitcoin, thus, does not support 

the creation of complex distributed applications on top of it. 

Other blockchains such as Ethereum have emerged as the second generation of blockchain to 

allow building complex distributed applications beyond the cryptocurrencies. Smart contracts, 

which will be discussed in the following section, are considered as the main element of this 

generation [4]. Ethereum blockchain is the most popular blockchain for developing smart 

contracts. Ethereum is a public blockchain with a built-in Turing-complete language to allow 

writing any smart contract and decentralised application. 
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There are two types of blockchain, namely, public and private blockchain [5]. In a public 

blockchain, any anonymous user can join the network, read the content of the blockchain, send a 

new transaction or verify the correctness of the blocks. Examples of public blockchains are 

Bitcoin, NXT and Ethereum. In a private blockchain, only users with permissions can join the 

network, write or send transactions to the blockchain. A company or a group of companies are 

usually responsible for giving users such permissions prior to joining the network. Examples of 

private blockchains are Everledger, Ripple and Eris. 

2.2. Smart Contracts 

A smart contract is executable code that runs on the blockchain to facilitate, execute and enforce 

the terms of an agreement. The main aim of a smart contract is to automatically execute the terms 

of an agreement once the specified conditions are met. Thus, smart contracts promise low 

transaction fees compared to traditional systems that require a trusted third party to enforce and 

execute the terms of an agreement. The idea of smart contracts came from Szabo in 1994 [6]. 

However, the idea did not see the light till the emergence of blockchain technology. A smart 

contract can be thought of as a system that releases digital assets to all or some of the involved 

parties once arbitrary pre-defined rules have been met [1]. For instance, Alice sends X currency 

units to Bob, if she receives Y currency units from Carl. 

Many different definitions of a smart contract have been discussed in the literature. In [7], the 

author classified all definitions into two categories, namely, smart contract code and smart legal 

contract. Smart contract code means “code that is stored, verified and executed on a blockchain” 

[7]. The capability of this smart contract depends entirely on the programming language used to 

express the contract and the features of the blockchain. Smart legal contract means code to 

complete or substitute legal contracts. The capability of this smart contract does not depend on 

the technology, but instead on legal, political and business institutions. The focus of this study 

will be on the first definition, which is smart contract code.  

 

Figure 1.  Smart contract system [8]. 

A smart contract has an account balance, a private storage and executable code. The contract’s 

state comprises the storage and the balance of the contract. The state is stored on the blockchain 

and it is updated each time the contract is invoked. Figure 1 depicts the smart contract system. 
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Each contract will be assigned to a unique address of 20 bytes.  Once the contract is deployed into 

the blockchain, the contract code cannot be changed. To run a contract, users can simply send a 

transaction to the contract’s address. This transaction will then be executed by every consensus 

node (called miners) in the network to reach a consensus on its output. The contract’s state will 

then be updated accordingly. The contract can, based on the transaction it receives, read/write to 

its private storage, store money into its account balance, send/receive messages or money from 

users/other contracts or even create new contracts. 

There are two types of smart contracts, namely, deterministic and non-deterministic smart 

contracts [9]. A deterministic smart contract is a smart contract that when it is run, it does not 

require any information from an external party (from outside the blockchain). A non-deterministic 

smart contract is a contract that depends on information (called oracles or data feeds) from an 

external party. For example, a contract that requires the current weather information to be run, 

which is not available on the blockchain. 

2.3. Platforms for Smart Contracts 

Smart contracts can be developed and deployed in different blockchain platforms (e.g., Ethereum, 

Bitcoin and NXT). Different platforms offer distinctive features for developing smart contracts. 

Some platforms support high-level programming languages to develop smart contracts. We will 

only focus on three public platforms in this section. 

• Bitcoin [3] is a public blockchain platform that can be used to process cryptocurrency 

transactions, but with a very limited compute capability. Bitcoin uses a stack-based 

bytecode scripting language. The ability of creating a smart contract with rich logic using 

Bitcoin scripting language is very limited [10]. In Bitcoin, a simple logic that requires 

multiple signatures to sign a single transaction before confirming the payment is possible. 

However, writing contracts with complex logic is not possible due to the limitations of 

Bitcoin scripting language. Bitcoin scripting language, for example, neither supports 

loops nor withdrawal limits [1]. To implement a loop, the only possible way is by 

repeating the code many times, which is inefficient.  

• NXT is a public blockchain platform that includes built-in smart contracts as templates 

[10]. NXT only allows developing smart contracts using those templates. It does not, 

however, allow customized smart contracts due to the lack of Turing-completeness in its 

scripting language. 

• Ethereum [1,11] is a public blockchain platform that can support advanced and 

customized smart contracts with the help of Turing-complete programming language. 

Ethereum platform can support withdrawal limits, loops, financial contracts and gambling 

markets. The code of Ethereum smart contracts is written in a stack-based bytecode 

language and executed in Ethereum Virtual Machine (EVM). Several high-level 

languages (e.g., Solidity, Serpent and LLL) can be used to write Ethereum smart 

contracts. The code of those languages can then be compiled into EVM bytecodes to be 

run. Ethereum currently is the most common platform for developing smart contracts. 

2.4. Smart Contract Applications 

There are various possible applications where smart contracts can be applied to. Some of these 

applications are as follows: 

• Internet of Thing and smart property [12]: there are billions of nodes that are sharing data 

between each other through the Internet. A potential use case of blockchain-based smart 

contracts is to allow those nodes to share or access different digital properties without a 

trusted third party. There are various companies that investigate this use case. For 

example, Slock.it is a German company that utilises Ethereum-based smart contracts for 
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renting, selling or sharing anything (e.g, selling a car) without the involvement of a 

trusted third party. 

• Music rights management [13]: a potential use case is to record the ownership rights of a 

music in the blockchain. A smart contract can enforce the payment for music owners 

once a music is used for commercial purposes. It also ensures the payment is being 

distributed between the music's owners. Ujo is a company that investigates the use of 

blockchain-based smart contracts in the music industry. 

• E-commerce: a potential use case is to facilitate the trade between untrusted parties (e.g., 

seller and buyer) without a trusted third party. This would result in reduction of trading 

costs. Smart contracts can only release the payment to the seller once the buyer is 

satisfied with the product or service they received [14].  

There are other possible applications such as e-voting, mortgage payment, digital right 

management, motor insurance, distributed file storage, identity management and supply chain. 

 

3. RESEARCH METHODOLOGY 
 
We selected the systematic mapping study presented in [2] as the research methodology for our 

study to explore studies related to smart contracts. The results of this systematic mapping study 

would allow us to identify and map research areas related to smart contracts. In addition, it would 

allow us to identify research gaps that need to be considered for future studies. The process for 

the systematic mapping study falls into five steps as depicted in Figure 2. 

 

Figure 2.  Steps of the systematic mapping study [2]. 

Definition of research questions: 

This step is to identify the research questions the study is aiming to answer. For our study, we 

defined the following research questions: 

RQ1. What are the current research topics on smart contracts? 

RQ2. What are the current smart contract applications? 

RQ3. What are the research gaps that need to be addressed in future studies? 

Conducting the search: 

This step is to search and to find all scientific papers that are related to the research topic, which 

is smart contracts. For our study, we decided to select the term ‘smart contract’ as the main 

keyword to search for papers. We selected this term because we wanted to narrow down the focus 

of our study to only cover smart contract related works. After identifying the keyword for the 

searching process, we selected the scientific databases to conduct our search. We selected IEEE 

Explore, ACM Digital Library, ScienceDirect, Springer, Ebsco and Scopus. Our focus was to 

only include high quality papers published in conferences, journals, workshops, symposiums and 

books. 
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Screening for relevant papers: 

This step is to search for papers that are relevant to our research questions. We followed the same 

approach as in [15] to look for relevant papers. We first tried to exclude papers that were 

irrelevant to our study based on their titles. If we were unable to decide on a paper, we would go a 

step further by examining its abstract. We also used exclusion criteria to screen each paper. We 

excluded: (1) non-English papers, (2) papers without full text available, (3) papers that utilised 

smart contracts in fields other than computer science, (4) redundant papers and (5) articles, 

newsletters and grey literature. 

Key-wording using abstracts: 

This step is to classify all relevant papers using the key-wording technique described in [15]. We 

first read the abstract of each paper to identify the most important keywords and the main 

contribution. Those keywords were then used to classify papers into various categories. After 

classifying all papers, we read the papers and made changes to the classification when necessary. 

Data extraction and mapping process: 

This process is to gather all the required information to address the research questions of this 

study. We gathered different data items from each paper. These data items embrace the main aims 

and contributions of papers. 

 

4. STUDY RESULTS 
 
This section discusses the results of the systematic mapping study that we conducted on smart 

contracts. We first discuss the results of searching and screening for relevant papers. Then, we 

discuss the results of the classification process. 

 

4.1 Searching and Screening Results 

Searching and screening for relevant papers are two steps of the systematic mapping study that 

we discussed in Section 3. The results of these steps are as follows. In the searching phase, we 

looked for all papers using the term ‘smart contract’ in different scientific databases. We gathered 

154 papers in total (as on 5 May 2017). In the screening phase, we first excluded irrelevant papers 

based on their titles and/or their abstracts (we excluded 109 irrelevant papers). There are two 

reasons why we had a high number of excluded papers. First, many papers were irrelevant to our 

study, since our focus was to explore smart contracts from a technical perspective. For instance, 

many papers discussed the topic from an economic or legal point of view. Another reason is that 

some excluded papers were about cryptocurrencies or blockchain in general, which do not 

contribute to our research questions. After that, 17 papers were removed as they were duplicates, 

resulting in 28 papers. Among the 28 papers, four papers were excluded as they only discuss 

general information about smart contract and how it works, without providing any useful 

contribution. Thus, we only selected 24 papers to conduct our systematic mapping study. Figure 3 

summaries the results of searching and screening for relevant papers. 
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Figure 3.  Searching and screening results. 

4.2 Classification Results 

 
By applying the Key-wording technique that we discussed in Section 3, we classified the papers 

into two categories, namely, smart contract issues and other smart contract related topics. We 

found about two thirds of the papers fall into smart contract issues category. We classified those 

issues into four categories, namely, codifying, security, privacy and performance issues. 

Codifying issues mean challenges that are related to the development of smart contracts. Security 

issues mean bugs or vulnerabilities that an adversary might utilise to launch an attack. Privacy 

issues mean issues related to disclosing contracts information to the public. Performance issues 

mean issues that affect the ability of blockchain systems to scale. Table 1 summaries the 

identified issues and the proposed solutions. For other smart contract related topics category, 

there are nine papers that developed smart contract applications or reported about other topics 

(e.g., the combination of smart contract and The Internet of Thing). 

 
Table 1.  Smart contract issues and the proposed solutions. 

Smart contract issues Proposed solutions 

Codifying 

issues 

Difficulty of writing correct smart 

contracts [8,16,17,18]. 

 

• Semi-automation of smart contracts 

creation [18]. 

• Use of formal verification methods 

[16,17]. 

• Education (e.g., online tutorials) [8]. 

Inability to modify or terminate 

smart contracts [19]. 
• A set of standards for 

modifying/terminating smart contracts 

[19]. 

Lack of support to identify under-

optimised smart contracts [20]. 
• Use of ‘GASPER’ tool [20]. 

Complexity of programming 

languages [21]. 
• Use of logic-based languages [21]. 

Security 

issues 

Transaction-ordering dependency 

vulnerability [22,23]. 
• Use of ‘SendIfReceived’ function [22]. 

• Use of a guard condition [23]. 

• Use of ‘OYENTE’ tool [23]. 

Timestamp dependency 

vulnerability [23]. 
• Use block number as a random seed 

instead of using timestamp [23]. 

• Use of ‘OYENTE’ tool [23]. 

 

Mishandled exception 

vulnerability [23]. 
• Check the returned value [23]. 

• Use of ‘OYENTE’ tool [23]. 

Re-entrancy vulnerability [23]. • Use of ‘OYENTE’ tool [23]. 
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Criminal smart contract activities 

[24]. 
• NA. 

Lack of trustworthy data feeds 

‘Oracles’ [25]. 
• Use of ‘Town Crier (TC)’ tool [25]. 

Privacy 

issues 

Lack of transactional privacy [26]. • Use of ‘Hawk’ tool [26]. 

• Use of encryption techniques [27]. 

Lack of data feeds privacy [25]. • Use of ‘Town Crier (TC)’ tool [25]. 

• Use of encryption techniques [25]. 

Performance 

issues 

Sequential execution of smart 

contracts [28]. 
• Parallel execution of smart contracts 

[28]. 

 

Codifying issues 

 
From the literature, we found four issues that might face developers during writing smart 

contracts, namely, the difficulty of writing correct contracts, the inability to modify or terminate 

contracts, the lack of support to identify under-optimised contracts and the complexity of 

programming languages. 

 

The first one is the difficulty of writing correct smart contracts [8,16,1718]. Correctness of smart 

contracts in this context means contracts that are functioning as intended by their developers. The 

reason why it is important to have correct smart contracts is because those contracts have valuable 

currency units [8,16]. Thus, if a smart contract was not executed as intended, some of its currency 

units would disappear. An example that illustrates this is the Distributed Autonomous 

Organisation (DAO) attack, which led to over 60 million US dollars being moved into an 

adversary account [23]. 

 

In an attempt to tackle this issue, three solutions were identified from the literature. The first 

solution is to semi-automate the creation of smart contracts [18] to ease the process of writing 

smart contracts. Semi-automation means the translation of human-readable contract 

representations to smart contract rules. The second solution is to provide developers with 

guidelines to aid them write correct contracts. Delmolino et al. [8], released online materials (e.g., 

a tutorial) to help developers write correct smart contracts. The last solution is the adoption of 

formal verification techniques to detect unintended behaviours of smart contracts [16,17]. This 

can help developers recognise those behaviours before posting their contracts to the blockchain. 

Bhargavan et al. [16] utilised formal methods to analyse and verify the correctness of smart 

contracts, while Bigi et al. [17] went a step further by combining formal methods with game 

theory techniques to validate smart contracts. 

 

The second issue is the inability to modify or terminate smart contracts [19]. Due to the 

immutability feature of blockchain, smart contracts cannot be changed or terminated after 

deploying it into the blockchain. This is different from legal law which allows the rules to be 

modified or terminated. In an attempt to tackle this issue, Marino et al. [19] presented a set of 

standards to allow smart contracts to be changed or terminated. Such standards are taken from 

legal contracts and then defined to fit in the context of smart contracts. Those standards were then 

applied to Ethereum-based smart contracts to prove their success. For details about those 

standards and how can be applied to Ethereum-based smart contracts, we refer the reader to [19]. 

 

The third one is the lack of support to identify under-optimised smart contracts [20]. To run a 

smart contract, each computational or storage operation in the contract costs some money. An 

under-optimised smart contract is a contract that contains unnecessary or expensive operations. 

Such operations result in a high cost at the user's side. In an attempt to tackle this issue, Chen et 

al. [20] identified seven programming patterns (e.g., unnecessary and expensive operations in a 

loop) in smart contracts which lead to unnecessary extra costs. They also proposed ways to 
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enhance the optimisation of those patterns to reduce the overall cost of executing smart contracts. 

They proposed and developed a tool called ‘GASPER' to detect contracts that suffer from those 

patterns. They used the tool to examine current Ethereum smart contracts and found most of them 

suffer from such patterns. 

 

The last issue is the complexity of smart contract programming languages [21]. Current smart 

contracts are based on procedural languages such as Solidity. In a procedural language, the code 

is executed as a sequence of steps. Thus, programmers must specify what should be done and 

how to do it. This makes the task of writing smart contracts in those languages cumbersome and 

error prone [21]. In an attempt to tackle this issue, Idelberger et al. [21] proposed to utilise logic-

based languages instead of procedural languages. In logic-based languages, programmers do not 

necessarily have to specify the sequence of steps for a contract. This will ease the complexity of 

writing smart contracts. However, algorithms for logic-based languages are expensive and 

inefficient. 

 

Security issues 

 

From the literature, we found six security issues, namely, transaction-ordering dependency, 

timestamp dependency, mishandled exception, criminal activities, re-entrancy and untrustworthy 

data feeds. In addition to these issues, Atzei et al. [29] surveyed several vulnerabilities in 

Ethereum smart contracts. 

 

The first issue is transaction-ordering dependency [22,23]. This problem occurs when two 

dependent transactions that invoke the same contract are included in one block. The order of 

executing transactions relies on the miner. However, an adversary can successfully launch an 

attack if those transitions were not executed in the right order.  For example, assume there is a 

puzzle contract that incentives the user who solves the puzzle. A malicious owner is listening to 

the solutions provided by the users. Once a user submitted a correct solution to the puzzle (Tu), 

the malicious owner sends a transaction (To) to update the contract’s reward (e.g., reduce the 

reward) right away. Those two transactions (To and Tu) might be included in the same block by 

chance. If the miner executed To before Tu, the user would get a lower reward and the malicious 

owner would succeed in his attack [23]. To tackle this issue, Natoli et al.[22] suggested the use of 

Ethereum-based functions (e.g., SendIfReceived) to enforce the order of transactions. Similarly, 

Luu et al.[23] suggested using a guard condition such that “a contract code either returns the 

expected output or fails". A tool called ‘OYENTE' developed by [23] can be used to detect 

contracts that are vulnerable to transaction-ordering dependency. 

 

The second issue is timestamp dependency [23]. This problem occurs when a contract uses the 

block timestamp as a condition to trigger and execute transactions (e.g., sending money). For 

instance, a game-based contract that takes the block timestamp as a random seed to select the 

winner. The block timestamp is usually set as the current local time by the miner who generated 

the block. However, an issue with the timestamp is that a dishonest miner could vary its value by 

about 15 minutes from the current time, while the block is still accepted by the blockchain 

system. As the timestamp of a block is not guaranteed to be accurate, contracts that rely on 

timestamp value are vulnerable to threats by dishonest miners. To tackle this issue, Luu et al.[23] 

suggested using the block number as a random seed for contracts instead of using the block 

timestamp. This is because the value of the block number is fixed (miners cannot vary the block 

number value). To detect contracts that are vulnerable to timestamp dependency, ‘OYENTE’ tool 

presented in [23] can be used. 

The third issue is mishandled exception vulnerability [23]. This problem occurs when a contract 

(caller) calls another contract (callee) without checking the value returned by the callee. When 

calling another contract, an exception (e.g., run out of gas) sometimes raised in the callee 
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contract. This exception, however, might/might not be reported to the caller depending on the 

construction of the call function. Having not reported an exception might lead to threats as in the 

KingOfTheEther (KoET) contract [23]. In KoET, an adversary might send a transaction that 

results in an exception in order to buy the throne from the current king for free. To tackle this 

issue, Luu et al.[ 23] highlighted the importance of checking the value returned by the callee. In 

the KoET example, the code can be improved to not release the throne till the payment from the 

adversary is completed successfully without any exception. The ‘OYENTE' tool proposed by [23] 

can be used to detect mishandled exception vulnerability in smart contracts. 

 

The fourth issue is re-entrancy vulnerability [23]. This problem occurs when an attacker utilises a 

recursive call function to conduct multiple repetitive withdrawals, while their balances are only 

deduced once. In June 2016, an attacker utilised the re-entrancy vulnerability in the Decentralised 

Autonomous Organisation (DAO) to steal over 60 million US dollars [23]. Luu et al. [23] 

developed a tool called ‘OYENTE’ to detect this vulnerability. 

 

The fifth issue is criminal activities. Jules et al. [24] highlighted the feasibility of constructing 

three different types of criminal activities in smart contract systems, namely, “leakage/sale of 

secret documents, theft of private keys and calling-card crimes, a broad class of physical-world 

crimes (murder, arson, etc.)" [24]. These crimes can be implemented efficiently in the Ethereum 

blockchain by utilising cryptographic techniques as follows. Leakage of secret documents can be 

achieved with the support of Serphent (an Ethereum scripting language). Theft of private keys can 

be achieved using Succinct Non-interactive ARgument of Knowledge (SNARKs) cryptographic 

primitives. Authenticated data feeds, which is data from an external party, can facilitate the 

calling-card crimes. The authors of [24], however, did not attempt to tackle those crime activities, 

but instead, they highlighted the importance of constructing safeguards against such activities. 

 

The last issue is the lack of trustworthy data feeds (oracles) [25]. As we explained in Section 2.2, 

some smart contracts require information (data feeds) from outside the blockchain. The problem 

is that there is no guarantee that the information provided by an external source is trustworthy. In 

an attempt to tackle this issue, Zhang et al. [25] built a Town Crier (TC) solution that acts as a 

trusted third party between external sources and smart contracts to provide authenticated data 

feeds for smart contracts. Figure 5 explains the architecture of TC solution. The TC solution 

consists of a TC contract that resides on the blockchain and a TC server that resides outside the 

blockchain. To send a data feeds request, a user contract can send a request to the TC contract, 

which will then be forwarded to the TC server. The server then communicates with external data 

sources via HTTPS to get the data feeds. Upon getting the required data feeds, the server will 

forward those feeds to the TC contract, which will then be forwarded to the user contract. 

 

Figure 4. Architecture of TC solution [25]. 
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Privacy issues 

From the literature, we found two privacy issues, namely, the lack of transactional privacy and 

the lack of data feeds privacy. 

The first issue is the lack of transactional privacy [26,27]. In blockchain systems, all transactions 

and users’ balances are publicly available to be viewed. This lack of privacy could limit the 

adoption of smart contracts as many people consider financial transactions (e.g., stock trading) as 

confidential information [26]. To tackle this issue, Kosba et al.[26] built a tool called ‘Hawk’ that 

allows developers to write privacy-preserving smart contracts without the need of implementing 

any cryptography. The tool is responsible for compiling smart contract code to privacy-preserving 

one. Watanabe et al.[27] proposed to encrypt smart contracts before deploying them to the 

blockchain. Only participants, who are involved in a contract, can access the contract’s content by 

using their decryption keys. 

The second issue is the lack of data feeds privacy [25]. When a contract requires data feeds to 

operate, it sends a request to the party that provides those feeds. However, this request is exposed 

to the public as anyone in the blockchain can see it. To tackle this issue, Zhang et al. [25] extend 

their Town Crier (TC) tool to support private requests. A contract can encrypt the request using 

the TC’s public key, before sending the request. Upon receiving the encrypted request, the TC 

can decrypt it using its private key. Thus, this would guarantee that the content of the request is 

kept secret from other users/contracts in the blockchain. 

Performance issues 

From the literature, we only found one performance issue, which is the sequential execution of 

smart contracts [28]. In blockchain systems, smart contracts are executed sequentially (e.g., one 

contract at a time). However, this would affect the performance of the blockchain systems 

negatively as the number of smart contracts that can be executed per second will be limited. With 

the growing number of smart contracts in the future, the blockchain systems will not be able to 

scale. Vukolić [28] suggested to execute smart contracts in parallel as long as they are 

independent (e.g., “do not update the same variables” [28]). By doing so, the performance of 

blockchain systems would be improved as more contracts can be executed per second. 

Other topics 

Apart from smart contract issues, we found nine papers from the literature that propose smart 

contract applications or discuss other smart contract related topics. 

There are four smart contract applications proposed in the literature, namely, trading and fair 

exchange, identity management, Internet of Thing and agreements establishment applications. For 

trading and fair exchange, Bogner et al. [30] developed a smart contract application on top of the 

Ethereum blockchain to allow untrusted participants to share everyday objects (e.g., rent devices). 

For identity management, Al-Bassam et al. [31] built a system called `SCPKI' on top of the 

Ethereum blockchain to overcome the limitations (e.g, centralisation and lack of transparency) of 

the Public Key Infrastructure. This system allows entities to manage their identities in a 

transparent way without the involvement of a trusted third party such as central authorities. For 

the Internet of Thing, Huh et al. [32] used Ethereum smart contracts to define and manage the 

behaviours of a few devices under specified conditions. For example, an air conditioner that 

switches to energy saving mode when the usage of electricity reaches 170 KW. For agreements 

establishment, Carrillo et al. [33] developed an application that allows two untrusted parties (e.g., 

consumer and provider) to negotiate and then establish an agreement as a contract. 

In addition to smart contract applications, there are different topics that were discussed in the 

literature. In [12], the authors discussed how the combination of blockchain-based smart contracts 

with the Internet of Thing could be powerful in terms of facilitating the sharing of services. In [9], 
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the authors discussed the possibility of applying blockchain-based smart contracts for licensing 

management. For example, the use of smart contracts to control the license of software products. 

In [14], the authors investigated the possibility of creating complex smart contracts without 

relying on scripts. In [34], the authors proposed a new consensus method called ‘credibility’ for 

contracts management (e.g., digital right management) to avoid the limitations of existing 

consensus methods. In [35], the authors proposed a semantic index approach to search for 

information in the Ethereum blockchain.  

5. DISCUSSION 

This section discusses the study results and answers the research questions that we defined in 

Section 3. 

RQ1: What are the current research topics on smart contracts? 

The results of this systematic mapping study showed that most of the current research on smart 

contracts is about identifying and tackling smart contract issues. Four different issues were 

identified, namely, codifying, security, privacy and performance issues. Codifying and security 

issues were among the most discussed issues. This is because smart contracts store valuable 

currency units and any security breach or coding error could result in losing money. The 

identified codifying issues are the difficulty of writing correct codes, the inability to modify or 

terminate contracts, the lack of support to identify under-optimised contracts and the complexity 

of programming languages. The identified security issues are transaction-ordering dependency, 

timestamp dependency, mishandled exception, re-entrancy, untrustworthy data feeds and criminal 

activities. The identified privacy issues are the lack of transactional privacy and the lack of data 

feeds privacy. The identified performance issue is the sequential execution of smart contracts. 

Although there are some proposed solutions to tackle these issues, some of them are only abstract 

ideas without including any concrete evaluation. A few others are still not tackled yet. For 

example, the solution proposed by [21] is only a suggestion to use alternative programming 

languages without any implementation. Criminal activities identified by [24] are still not 

overcome yet. 

Other research proposed smart contract applications or studied other smart contract related topics. 

The proposed applications are trading and fair exchange, identity management, Internet of Thing 

and agreements establishment. The studied topics are combining smart contracts with the Internet 

of Thing and licensing management, studying scripting languages for smart contracts, proposing 

new consensus methods and proposing an indexing approach to search for useful information in 

blockchain systems. 

RQ2: What are the current smart contract applications? 

Smart contract applications are solutions that have been developed on top of blockchain 

technology. We identified some smart contract applications developed on top of the Ethereum 

blockchain. Those applications are to allow untrusted participants to share everyday objects, 

establish an agreement as a contract, manage their identities and control the behaviours of the 

Internet of Thing devices. Furthermore, we identified other applications that were built as a smart 

contract tool on top of the blockchain to detect or tackle codifying, security and privacy issues. 

Some of these tools are ‘GASPER’, ‘OYENTE’, ‘HAWK’ and ‘Town Crier’. 

RQ3: What are the research gaps that need to be addressed in future studies? 

From this systematic mapping study, we identified a number of research gaps in smart contract 

research that can be studied by future research. The methodologies used to identify those gaps are 

as follows. First, observing issues or limitations from the papers included in this study (e.g., gaps 
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number 2, 3 and 5). Second, recognising issues that were highlighted by the papers included in 

this study, but still are not solved yet (e.g., gaps number 1 and 4).  

The first one is the lack of studies on scalability and performance issues. The sequential execution 

of smart contracts affects the ability of blockchain systems to scale as we discussed in Section 

4.2. With the growing number of smart contracts in the future, this issue will increase further. The 

author of [28] described a very high-level solution, which is parallel execution of contracts, 

without any concrete evaluation. Parallel execution of contracts faces a challenge in how to 

execute contracts that depend on each other at the same time. It is, therefore, essential to conduct 

research on identifying and tackling performance issues to ensure the ability of blockchain to 

scale. 

The second gap is that almost all current research is discussing smart contracts on the Ethereum 

blockchain, although there are some other blockchains (e.g., NXT and Eris) that can support the 

creation of smart contracts. Different blockchains have distinctive features and advantages. Thus, 

future research might investigate different implementations of blockchain to deploy and run smart 

contracts. 

The third gap is the small number of smart contract applications. Although the concept of smart 

contract has gained a lot of attention, there are only a few applications developed by the literature. 

This is because smart contract concept is still in its infancy stage. Banasik et al.[14] claimed that 

smart contracts are not widely common in practice. For future research, therefore, researchers 

could consider studying various potential applications such as e-commerce and cloud storage. 

The fourth gap is the lack of research on tackling criminal activities in smart contracts. The author 

of [24] only identified three types of criminal activities that can be conducted on smart contracts 

without proposing any solution to them. Thus, future research could focus on identifying more 

types of criminal activities and proposing solutions to overcome them. 

The last gap is the lack of high quality peer-reviewed research on smart contracts. Most of the 

research is conducted as blog articles or grey literature without providing great contributions. 

There is, therefore, a need for high quality publications on smart contracts. 

6. CONCLUSION 

Blockchain technology is a distributed database that records all transactions that have ever 

occurred in the network. The main feature of blockchain is that it allows untrusted parties to 

communicate between each other without the need of a trusted third party. Different distributed 

applications beyond cryptocurrencies can be deployed on top of blockchain. One of these 

applications is smart contracts, which are executable codes that facilitate, execute and enforce an 

agreement between untrusted parties. Ethereum is currently the most common blockchain 

platform for developing smart contracts, although there are some other available platforms.  

To understand current topics on smart contracts, we decided to conduct a systematic mapping 

study. The main aim of this systematic mapping study was to identify and map research areas 

related to smart contracts. By doing so, we were able identify research gaps that need to be 

addressed in future studies. The focus of this study was on smart contracts from a technical point 

of view. Thus, we excluded studies with different perspectives (e.g., papers with an economic 

perspective). We extracted 24 papers from different databases. We found that most papers 

identifying and tackling issues on smart contracts. We grouped these issues into four categories, 

namely, codifying, security, privacy and performance issues. The rest of the papers focuses on 

proposing smart contract applications or discussing other smart contract related topics.  

In this paper, we presented a few research gaps in smart contract research that need to be 

addressed in future studies. The identified gaps are the lack of studies on scalability and 

performance issues, the lack of studies on deploying smart contracts on different blockchain 

platforms other than Ethereum, the small number of the proposed smart contract applications, the 
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lack of studies on criminal activities in smart contracts and the lack of high quality research on 

smart contracts. These identified gaps could be studied by researchers as future works. 
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