
Stabilizing Consensus in Mobile Networks

Dana Angluin∗ Michael J. Fischer∗ Hong Jiang∗†

February 15, 2006

Abstract

Inspired by the characteristics of biologically-motivated systems consisting of autonomous
agents, we define the notion of stabilizing consensus in fully decentralized and highly dynamic
ad hoc systems. Stabilizing consensus requires non-faulty nodes to eventually agree on one of
their inputs, but individual nodes do not necessarily know when agreement is reached. First
we show that, similar to the original consensus problem in the synchronous model, there exist
deterministic solutions to the stabilizing consensus problem tolerating crash faults. Similarly,
stabilizing consensus can also be solved deterministically in presence of Byzantine faults with
the assumption that n > 3f where n is the number of nodes and f is the number of faulty
nodes. Our main result is a Byzantine consensus protocol in a model in which the input to
each node can change finitely many times during execution and eventually stabilizes. Finally
we present an impossibility result for stabilizing consensus in systems of identical nodes.

1 Introduction

1.1 Fault-tolerant consensus
Coordination problems in distributed systems require nodes to agree on a common action. Lam-
port, Pease, and Shostak formulated this problem as the agreement problem [22, 25], which re-
mains a fundamental problem in distributed computing. It is usually trivial to reach agreement
in reliable systems. In practice, however, different components in a system don’t always work
correctly. Mission-critical control systems require agreement among non-faulty components even
when some components are faulty. The problem was originally defined for Byzantine faults, which
means faulty nodes in a network could behave arbitrarily. A more benign type of faults is crash
faults, meaning a faulty node may stop all activities at a certain point in the execution. Some-
times the recovery of crashed processes is also considered. [22,25] gave a synchronous f -resilient
solution for any f with authentication in the case of a complete communication graph and the im-
possibility result that consensus is not solvable without authentication unless the number of faulty
processes is less than one-third of the total. Dolev [11] considered the Byzantine agreement prob-
lem in networks that are not completely connected. The first polynomial communication algorithm

∗Department of Computer Science, Yale University.
†Supported by NSF grant ITR-0331548

1



for Byzantine agreement was designed by Dolev and Strong [14], whose work was subsequently
improved by Dolev, Fischer, Fowler, Lynch, and Strong [12]. Fischer, Lynch, and Paterson [20]
showed that in a fully asynchronous environment, there is no 1-resilient solution to the consensus
problem, even for crash failure. A survey on fault-tolerant consensus by Fischer [18] provides an
overview of early work on fault-tolerant distributed systems.

One of the reasons for the impossibility results for fault tolerance in the asynchronous model
is that, on one hand, messages are allowed to be delayed arbitrarily as long as they are eventually
delivered, and therefore there is no way to distinguish between a crashed node and a slow node,
or a lost message and a delayed message; on the other hand, distributed algorithms are expected
to terminate, and each non-faulty process is required to commit to an output at some point in its
execution when it knows the decision that all non-faulty processes will agree on.

1.2 Motivation
In some persistent ad hoc networks, especially biologically-motivated systems, it is not important
that each process be aware of the global status. For example, imagine the aggregation and mi-
gration of birds. During the initial gathering or a direction change, the movement of the birds is
usually chaotic. Although each bird is not aware of the status of the whole flock, the flock eventu-
ally converges to a stable state in which all the birds head in roughly the same direction. Each bird
adjusts its heading according to what it perceives but does not commit to a direction at any point,
because it is possible that some other birds are still changing directions.

Vicsek et al. [29] described a compelling model of dynamics in order to investigate the emer-
gence of self-ordered motion in systems of autonomous agents with biologically motivated in-
teraction. Each agent’s heading is updated from time to time according to a local rule. They
demonstrated that all agents eventually move in the same direction despite the absence of cen-
tralized coordination and the changing neighbor set of each agent as the system evolves. Agents
do not know accurately when the whole system converges, except for an estimation of expected
convergence time when the agents communicate synchronously and certain topological properties
are guaranteed as the network evolves. Jadbabaie, Lin, and Morse [21] provided a theoretical ex-
planation for the above behavior and investigated other similarly inspired models. Agent failures
were not considered in these two papers.

We discuss asynchronous fault-tolerant consensus in a similar scenario. We relax the require-
ment of the original consensus problem: in particular, agents do not need to know whether a
decision is final. We also investigate persistent distributed systems that run for an extended period
and whose inputs may change from time to time, and systems that have incomplete or evolving in-
teraction graphs. We also prove that stabilizing Byzantine consensus cannot be solved in systems
consisting of identical nodes.

1.3 Other related work
Because agreement is a fundamental problem in building distributed systems, and most practical
systems are not synchronous, various methods have been used to circumvent the impossibility
result in [20]. In many practical systems, nodes periodically send “I’m alive” messages (pings) to

2



each other to detect possible crashes. In theoretical models, such techniques are captured by the
abstract concept of failure detectors [9]. Generally, a failure detector is a module that provides
information to processes about previous failures. Failure detectors differ in strength depending on
whether they are always correct or whether they detect all failures [8]. Some failure detectors can
be implemented in practical systems using timeouts.

The agreement problem can be solved in a randomized asynchronous model which allows
each process to flip coins during execution. The problem statement is modified to require that the
processes eventually terminate with probability 1. The first randomized solution for consensus was
given by Ben-Or [4]. Rabin [27] and Feldman [17] produced more efficient algorithms.

The k-agreement problem [10] is a weakened problem statement that only requires all the
decisions to be in a set of k values. Another weakened variation is the approximate agreement
problem [13] which allows inputs, decisions, and messages to be real numbers and requires the
difference between any two decision values to be within a small tolerance ε and that any decision
value is within the range of input values.

Lamport invented the PAXOS algorithm [23] for a partially synchronous model of distributed
systems. Asynchrony is considered timing failure. Other failures allowed are loss, duplication
and reordering of messages, and crash failure of processes. Process recovery is also allowed. The
PAXOS algorithm guarantees safety, meaning that in spite of timing, process, and link failures,
and process recoveries, non-faulty nodes do not decide on inconsistent values. When the system
stabilizes (no failure occurs, and a majority of the processes are active) for a sufficiently long time,
termination can also be achieved.

Although mobile computing has been under active study for many years, research on fault-
tolerance issues has been limited, and many desirable goals are yet to be achieved. The problems
studied include ad hoc routing [5,28], which allow nodes to exchange data despite the limited trans-
mission range of wireless interfaces by routing messages through multiple network hops, broad-
casting and multicasting [31], transaction control [2, 6, 26], group communication [7, 16], leader
election [24], and mutual exclusion [30]. Angluin et al. [1] proposed self-stabilizing solutions to
problems like leader election, ring orientation, token circulation, and spanning-tree construction in
a model of pairwise interacting anonymous finite-state sensors under a global fairness condition.
Basile, Killijian, and Powell [3] gave a survey of fault tolerance in mobile wireless networks. The
fault models considered in existing works are usually mobility, network partitioning, and some-
times crash failures. Byzantine node failures have generally not been considered.

2 Model and definitions
We consider a network of n mobile nodes. Each has a unique ID ∈ [1, n], an input port, and
an output port to send outputs to an external observer. By assigning unique IDs to the nodes,
we give each node the ability to distinguish between different nodes. Also, the IDs are assumed
to be unforgeable in the sense that a faulty node cannot impersonate a non-faulty node in direct
communications (i.e. messages not involving any intermediate nodes). The nodes do not have
access to timing features like global or local clocks, pulses, or time-out notification. Nodes can
communicate with each other by sending messages. A node i can send a message to another node
j when j is close enough to i. Messages may get lost, but we assume that if i sends a message to j

3



infinitely often, j receives the message infinitely often. We also assume the fairness condition that
every pair of nodes have a chance to communicate (move close enough to send messages) infinitely
often. We remark that this model is weaker than the asynchronous model of distributed systems
in [20], therefore one cannot expect to solve the original consensus problem in presence of faults.

In the literature two kinds of failures (equivalently, faults) are usually considered for the con-
sensus problem. The benign type of failure is crash failure: a faulty node may crash at anytime.
When a node crashes, it stops operating but does not do any wrong operation, otherwise it honestly
follows the protocol. We assume that if a node crashes when sending a message, the incomplete
message is discarded by the recipient. Byzantine failures are more severe. A Byzantine node may
behave arbitrarily without the limit of computational power or memory usage to which a non-faulty
node is constrained otherwise.

We define the notion of stabilizing consensus. Instead of requiring that each node commit to
a final output at some point, we assume each node has a current output which may change as the
execution proceeds. In practical applications, the output could be interpreted as some parameter
that reflects the behavior of each node. For example, in a flock of mobile nodes, the current output
of each node could be its current speed or current direction.

As in the usual convention, a configuration includes all nodes’ local states and the pending
messages. A configuration C is said to be output-stable if in all possible executions starting from
C, the output of each non-faulty node does not change. If every non-faulty node outputs x in an
output-stable configuration C, we say the outputs stabilize to x in C.

Definition 1 (Stabilizing Consensus). A protocol P solves the stabilizing consensus problem if all
of the following requirements are satisfied:

Stabilization The system eventually reaches an output-stable configuration.

Validity The requirement depends on the fault model:

Crash-fault version If all nodes have the same input x, the outputs of all non-faulty nodes
eventually stabilize to x.

Byzantine version If all non-faulty nodes have the same input x, the outputs of all non-
faulty nodes eventually stabilize to x.

Agreement In any reachable output-stable configuration, all non-faulty nodes have the same out-
put.

In the following sections, we consider both crash faults and Byzantine faults. We also discuss
consensus in a scenario where each node receives an input that may change finitely many times
and define consensus with stabilizing inputs. Finally we show that stabilizing consensus cannot be
solved in a system consisting of identical nodes in the presence of one Byzantine fault.

3 Stabilizing consensus with crash faults
The following is a simple protocol that solves consensus in the presence of crash faults, assuming
the inputs are non-negative integers. The protocol is a straight-forward adaptation of the protocol
for synchronous distributed systems from [15].

4



For each node i, xi is its local input (a non-negative integer), and yi is its output.

• At the beginning, node i sets yi = xi.

• Whenever i is able to send a message, it sends yi to the recipient.

• Upon receiving message yj from some node j:

yi = min(yi, yj)

Notice that in general, a node does not know when its output stabilizes.
The following theorem establishes the correctness of the protocol.

Theorem 2. The above protocol solves stabilizing consensus in presence of f crash faults for any
f < n, where n is the total number of nodes.

Proof sketch:
It is easy to see that the outputs will stabilize, because the output of each node can only decrease

and cannot be negative. Also it is clear that the validity condition is satisfied because if all nodes
have the same input, they will all receive the same messages and output that same value.

Suppose for the sake of contradiction that two nodes i and j stabilize to different outputs, yi and
yj . Without loss of generality, we assume yi < yj . According to the fairness condition, eventually
j will receive a value of yi from i and set yj = min(yi, yj) = yi, contradicting the assumption that
the output of j stabilized to yj .

4 Stabilizing consensus with Byzantine faults

4.1 A protocol for fixed inputs
In this section we give protocols tolerating Byzantine faults. We assume that when a node receives
a message, it knows the identity of the sender. We first consider a system where each node receives
an input at the beginning. Each node i has a fixed local input xi. For simplicity, we assume
xi ∈ {0, 1}. We give a protocol that tolerates f Byzantine faults, assuming 3f < n where n is the
total number of nodes.

The state of each non-faulty node i consists of the arrays Ii[n], Ei[n][n] and Mi[n], in which all
elements are initialized to 0.

• When node i is able to send a message, it sends a message including one or more of the
following components:

If xi = 1, it sends (init, i) to the recipient.

For all j such that Ii[j] = 1 or
∑n

k=1 Ei[j][k] ≥ f +1, i sends (echo, j) to the recipient.

• When i receives (init, j) from j, it sets Ii[j] = 1.

• When i receives (echo, k) from j, it set Ei[k][j] = 1, and if
∑n

k=1 Ei[j][k] ≥ n − f , i sets
Mi[j] = 1

5



Output:
The current output of node i is 1 if

∑
j Mi[j] ≥ 2f + 1, otherwise its output is 0.

It is easy to see that the outputs will stabilize, because each node outputs 0 initially, and can
flip its output to 1 at most once.

Correctness can be established by verifying the following claims.

Lemma 3. If any non-faulty node i has 1 as input, eventually every non-faulty node j sets Mj[i] =
1.

Eventually every node receives (init, i) from node i, and all non-faulty nodes will send (echo,
i) to every other node it encounters. Therefore any non-faulty node j will receive (echo, i) from at
least n− f nodes and set Mj[i] = 1

Lemma 4. If any non-faulty node i has 0 as input, Mj[i] is always 0 for any non-faulty node j.

In this case, no non-faulty node receives (init, i) from node i. Suppose node j is the first non-
faulty node that sends (echo, i). It must have been triggered by receiving (echo, i) from f +1 faulty
nodes, which contradicts the assumption. A non-faulty node j never sends (echo, i) and receives
(echo, i) from at most f faulty nodes, so it will never set Mj[i] = 1.

Lemma 5. For any i, if Mj[i] stabilizes to 1 in any non-faulty node j, Mk[i] eventually stabilizes
to 1 in any other non-faulty node k.

If any non-faulty node j sets Mj[i] = 1, it must have received (echo, i) from at least n − f
nodes among which there are at least f + 1 non-faulty nodes. The messages (echo, i) sent by these
f + 1 nodes are received by all non-faulty nodes, therefore all non-faulty nodes will send (echo, i)
to each non-faulty node k so that it sets Mk[i] = 1.

Theorem 6. The above protocol solves the stabilizing consensus problem.

Given the above claims, it is easy to see that the protocol satisfies stabilization, validity, and
agreement.

4.2 Stabilizing inputs
We define a model of stabilizing inputs to a network protocol in which the input to each node may
change finitely many times before it stabilizes to a final value. We are interested in solving the
consensus problem corresponding to the final stabilized input assignment. This consistent input
and output convention makes a solution suitable as middleware in constructing more complex
systems. Here we define what consensus means in this model.

Definition 7 (Consensus with Stabilizing Inputs). A protocol P solves consensus with stabilizing
inputs if all of the following requirements are satisfied:

Stabilization If the inputs to the non-faulty nodes stabilize, the system eventually reaches an
output-stable configuration.

6



Validity If all non-faulty nodes have the same stabilized input x, their outputs eventually stabilize
to x.

Agreement In any reachable output-stable configuration, all non-faulty nodes have the same out-
put.

Fixed inputs is a special case of stabilizing inputs.
The following protocol achieves consensus with stabilizing inputs tolerating f Byzantine faults,

assuming 3f < n where n is the total number of nodes. Here we give only a high-level description
of the protocol, because our purpose is to establish the possibility of a protocol, rather than an opti-
mal implementation. In our description, each node needs to keep track of messages received in the
past. This intensive memory usage could be reduced by garbage-collecting data that is no longer
useful in subsequent computation. We postpone the details of implementation and optimization to
the full version of the paper.

Each non-faulty node i maintains two arrays Mi[n] and Ci[n]. The elements of Mi are initial-
ized to 0, and the elements of Ci are initialized to −1. It also has a counter ci initially equal to 0.
Let xi ∈ {0, 1} denote the current reading of the input port. Node i also maintains a variable x′

i

and initially sets x′
i = xi.

• When i is able to send a message:

1. If xi 6= x′
i, set x′

i = xi and ci = ci + 1;

2. Always send (init, i, xi, ci);

3. For all j, xj , and cj , such that i has received (init, j, xj , cj) from j, or i has received
(echo, j, xj , cj) from at least f+1 different nodes, send (echo, j, xj , cj) to the recipient.

• When i receives (init, j, xj , cj) from j, if cj ≤ Ci[j], the message is ignored, otherwise it
records this message in its event log. If i receives contradicting init messages from the same
node ((init, j, xj , cj) and (init, j, x′

j , cj) with xj 6= x′
j), only the first message is recorded.

• When i receives (echo, j, xj , cj), if cj ≤ Ci[j], the message is ignored, otherwise it records
this message in its event log, and if the same message has been received from at least n− f
different nodes, i sets Mi[j] = xj and Ci[j] = cj

Output:

• Define the stable set Si to be a set of 2f + 1 distinct integers in [1 . . . n] that minimizes∑
j∈Si

Ci[j]. In case of ties, the set that minimizes
∑

x∈Si
x is chosen.

• Node i outputs 1 if
∑

j∈Si
Mi[j] ≥ f + 1, otherwise it outputs 0.

The variable ci is a counter for node i to keep track of how many times its input has changed.
Each node also uses the counter array Ci to keep track of the number of times the other nodes
change their inputs. Because messages can be delivered out of order, and “echo” messages cor-
responding to inputs at different time can co-exist in the network, the counters also ensure that
obsolete messages are ignored.

7



Lemma 8. The invariant Ci[j] ≤ cj holds in any real-time snapshot of the system for any non-
faulty nodes i and j.

Proof. Suppose at some point in real time, Ci[j] = a, cj = b and a > b. Then i must have received
(echo, j, m, a) for some m from at least n − f nodes. Therefore j must have sent (init, j, m, a),
because at most f nodes send (echo, j, m, a) otherwise. This contradicts a > b. Because j would
have set cj = a before sending (init, j, m,a), it must be true that b ≥ a.

Lemma 9. Let i and j be two non-faulty nodes. If i’s input stabilizes to x, Mj[i] eventually
stabilizes to x.

Proof. Suppose Mj[i] stabilizes to y 6= x. Then j must have received (echo, i, y, a) for some a
from at least n − f nodes, so i must have sent (init, i, y, a) to at least f + 1 nodes. Since x is
the final input of i, eventually i sends (init, i, x, b) for some b to all nodes. According to lemma
8 a < b. Suppose the time j receives (echo, i, y, a) from the (n − f)th node is t, and the time it
receives (echo, i, x, b) from the (n − f)th node is t′. If t < t′, j will set Mj[i] = x. If t′ < t, y
is ignored by j, because at t the value of Cj[i] can only be greater than or equal to b and a < b.
Therefore Mj[i] couldn’t have stabilized to y.

Lemma 10. If i and j are non-faulty nodes, for any k, if Mi[k] stabilizes to x, Mj[k] also stabilizes
to x.

Proof. Suppose Mi[k] stabilizes to x, Mj[k] stabilizes to y, and x 6= y. Let (echo, k, x, a) and
(echo, k, y, b) be the corresponding messages received by i and j respectively when they assigned
the final values to Mi[k] and Mj[k].

1. Without loss of generality, we assume a > b. Since i must have received (echo, k, x, a) from
at least n − f nodes, there must be at least f + 1 non-faulty nodes in them. All non-faulty
nodes would receive (echo, k, x, a) from these f +1 nodes, and therefore would send (echo,
k, x, a) to all nodes they encounter. Thus j would also receive (echo, k, x, a) from at least
n− f nodes. Because a > b, Mj[k] could not have stabilized to y.

2. If a = b, i receives (echo, k, x, a) from n−f nodes, and j receives (echo, k, y, b) from n−f
nodes. This cannot happen, because n > 3f , and according to the protocol, a non-faulty
node only sends one of the two messages but not both.

Therefore Mi[k] and Mj[k] cannot stabilize to different values for any k. This property guarantees
that all non-faulty nodes will eventually agree on the stabilized entries of vector M .

Lemma 11. Let i and j be any non-faulty nodes. For any k, if Ci[k] stabilizes to c, Cj[k] also
stabilizes to c.

Proof. Suppose Ci[k] stabilizes to c1, Cj[k] stabilizes to c2 6= c1. Without loss of generality, we
assume c1 > c2. Let (echo, k, x, c1) and (echo, k, y, c2) be the corresponding messages received
by i and j respectively when they assign the final values of Ci[k] and Cj[k]. Since i must have
received (echo, k, x, c1) from at least n − f nodes, there must be at least f + 1 non-faulty nodes
in them. All non-faulty nodes would receive (echo, k, x, c1) from these f + 1 nodes, and therefore

8



would send (echo, k, x, c1) to all nodes they encounter. j would also receive (echo, k, x, c1) from at
least n−f nodes. Because c1 > c2, Cj[k] could not have stabilized to c2. This property guarantees
that all non-faulty nodes will eventually agree on the stabilized entries of vector C.

Lemma 12. In any execution of the above protocol, if the inputs to the non-faulty nodes stabilize,
the outputs of the non-faulty nodes eventually stabilize.

Proof. Let i be any non-faulty node. If xi stabilizes, ci also stabilizes, because they always change
at the same time. According to lemmas 8 and 9, Mj[i] and Cj[i] also stabilize for any non-faulty j.
According to lemma 10 and lemma 11, all non-faulty nodes will eventually agree on the stabilized
entries of the arrays M and C (at least 2f +1 entries in each), which include entries corresponding
to non-faulty nodes and entries corresponding to faulty nodes that stabilize at all. If some of the
entries in the M arrays corresponding to faulty nodes do not stabilize, the corresponding entries in
the C arrays of the non-faulty nodes will eventually be greater than the stabilized entries, because
the entries of C arrays are non-decreasing. Only the 2f − 1 nodes corresponding to the C entries
with the smallest values affect the output, therefore the faulty nodes will eventually be ignored.

Theorem 13. The above protocol solves consensus with stabilizing inputs.

If all non-faulty nodes have x ∈ {0, 1} as input, according to lemma 9, for any non-faulty
node i at least f + 1 Mi entries corresponding to the stable set will be x, therefore all non-faulty
nodes will output x, and the validity condition is satisfied. According to lemmas 10 , 11, and 12,
agreement and stabilization are also satisfied.

5 Impossibility of stabilizing Byzantine consensus among iden-
tical nodes

In this section we give the impossibility result that stabilizing consensus cannot be solved in the
presence of a single Byzantine fault in a network of nodes that are identical other than their inputs.
We note that any subconfiguration of an output-stable configuration is also output-stable.

Theorem 14. The stabilizing consensus problem cannot be solved in a set of identical nodes in the
presence of one Byzantine fault.

Proof. Assuming there is a protocol P that solves this problem, consider a system C = C0 ∪
C1(C0 6= φ,C1 6= φ), in which C0 is the set of nodes with input 0, and C1 is the set of nodes with
input 1. There exists a finite execution E of P in C that reaches an output-stable configuration in
which the outputs of all nodes have stabilized to the same value. Without loss of generality assume
the common output value is 0. Consider another system C ′ = {a} ∪C1, in which a is a Byzantine
node, and C1 is the same as in C. Node a runs a two-phase protocol. In phase one, when it is a’s
turn to send a message, it nondeterministically chooses whether to remain in phase one or move
to phase two. If it remains in phase one, it chooses one of the messages sent by nodes in C0 in
the execution E and sends that message to the recipient. Upon entering phase two, a faithfully
imitates a nondeterministically chosen non-faulty node i from C0 starting from the state i is in

9



at the end of the execution E. There exists an execution E ′ of P in C ′ that simulates E, in the
sense that every time there is a message in E sent between a node in C0 and a node in C1, there
is a corresponding message in E ′ sent between a and the node in C1, and at the end of E ′, node
a will faithfully simulate one node in C0. Thus, the configuration of the system C ′ at the end of
E ′ is a subconfiguration of the system C at the end of E, and will continue so at every subsequent
time. Thus the outputs of the non-faulty nodes (those in C1) will remain 0 no matter how execution
proceeds from this point. This violates the validity condition, because the inputs of all non-faulty
nodes in C ′ are 1.

The proof does not depend on the specific communication model and fairness assumption;
therefore stabilizing Byzantine consensus is impossible even with the strong fairness condition and
two-way interaction model in [1], and unbounded memory. Note that theorem 14 rules out not only
deterministic solutions, but also randomized solutions1, in the sense that for any candidate protocol
P , there exists an εP > 0, such that the probability of an execution failing to reach consensus is
always greater than εP . εP is any constant less than the probability that C ′ successfully simulates
C to the point when all non-faulty nodes are output-stable.

6 Discussion

6.1 Upper bound on faults
It was shown that in synchronous systems the number of Byzantine nodes must be strictly less
than one third of the total number of nodes for any solution to the agreement problem [19, 25].
This bound still holds for stabilizing consensus in our model. We omit the proof here, because the
original proof in [19] does not rely on synchrony and can be adapted to our model easily.

6.2 General graphs
In our model there is no limitation on the movement of nodes, except for the fairness condition.
If we define an edge between every pair of nodes that can communicate with each other infinitely
often, the graph is complete. In some applications nodes are restricted to a certain region, therefore
the communication graph is not complete. It was proven in [11] that the Byzantine agreement
problem can be solved in an n-node synchronous network graph G, tolerating f faults, if and only
if the n > 3f bound holds and G is at least (2f + 1)-connected. This result can also be transferred
to our model. Intuitively, since G is at least 2f + 1-connected, there are at least 2f + 1 disjoint
paths between any two nodes. Let each node send each message through 2f + 1 disjoint paths.
Then the majority of the copies the recipient receives are sent via paths that do not contain faults.
Thus, it is possible to implement reliable communication between any two nodes, and the above
algorithms still work for such communication graphs with messages sent over multi-hop links.

In some systems, nodes are moving around, but the fairness condition does not hold, meaning
not every pair of nodes have infinitely many chances to communicate. Some pair of nodes can

1A randomized solution would guarantee that consensus be reached with probability 1, assuming some probabilistic
distribution of the nodes’ coin flips and the choices of the scheduler.

10



only send finitely many messages to each other, and some pairs won’t get close enough to com-
municate at all. Such systems have an incomplete and changing communication graph. In their
self-stabilizing group membership protocol, Dolev, Schiller and Welch [16] used random walks of
a mobile agent as a means of information dissemination. Similarly, one or more non-Byzantine
message carriers could be used as a link-layer service to implement end-to-end message passing
between all pairs of nodes, thus simulating a complete communication graph. The message carriers
do not have to be reliable as long as they successfully deliver messages infinitely often.

7 Conclusions and future work
In this paper we defined and investigated fault-tolerant stabilizing consensus in a model inspired
by natural phenomena. We considered crash faults and Byzantine faults in fully asynchronous
and decentralized mobile networks, as well as systems with stabilizing inputs and systems with
incomplete or evolving connectivity. The algorithms are useful in controlling distributed systems,
such as sensor networks, that simulate certain biological behaviors. They are also useful as a mid-
dleware layer that provides service to higher-level protocols. One drawback of the algorithm for
stabilizing inputs is that it involves unbounded counters, unless there is a bound on the maximum
number of times the inputs could change. It is open whether there exists a protocol for this prob-
lem with bounded memory. In many practical ad hoc networks, the graph representing possible
communications changes over time. It is open for future research whether stabilizing consensus
can be solved in these systems without additional message carriers, possibly using authentication
and a fault-tolerant ad-hoc routing protocol.

References
[1] Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-stabilizing population

protocols. In Ninth International Conference on Principles of Distributed Systems, pages 79–
90, December 2005.

[2] D. Barbara. Mobile computing and databases - a survey. Knowledge and Data Engineering,
11(1):108–117, 1999.

[3] Claudio Basile, Marc-Oliver Killijian, and David Powell. A survey of dependability issues
in mobile wireless networks. Technical report, Laboratory for Analysis and Aarchitecture of
Systems, National Center for Scientific Research, Toulouse, France, Feb 2003.

[4] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols. In Proceedings of the Second Annual ACM Synmposium on Principles of Dis-
tributed Computing, pages 27–30, Montreal, Quebec, Canada, Aug 1983.

[5] Roberto Beraldi and Roberto Baldoni. The handbook of ad hoc wireless networks, pages
127–148. The Electrical Engineering Handbook Series. CRC Press, Inc. Boca Raton, FL,
USA, 2003.

11



[6] C. Bobineau, P. Pucheral, and M. Abdallah. A unilateral commit protocol for mobile and
disconnected computing. In 12th International Conference on Parallel and Distributed Com-
puting Systems, 2000.

[7] L. Briesemeister. Group Membership and Communication inHIghly Mobile Ad Hoc Net-
works. PhD thesis, School of Electrical Engineering and Computer Science, Technical Uni-
versity of Berlin, Germany, 2001.

[8] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus. Journal of the ACM, 43(4):685–722, Jul 1996.

[9] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, Mar 1996.

[10] Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Information and Computation, 105(1):132–158, Jul 1993.

[11] Danny Dolev. The byzantine generals strike again. Journal of Algorithms, 3(1):14–30, Mar
1982.

[12] Danny Dolev, Michael J. Fischer, Rob Fowler, Nancy A. Lynch, and H. Raymond Strong. An
efficient algorithm for byzantine agreement without authentication. Information and Control,
52(3):257–274, 1982.

[13] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. Journal of the ACM, 33(3):499–
516, Jul 1986.

[14] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple processor agree-
ment. In Proceedings of the 14th annual ACM symposium on Theory of computing, pages
401–407, San Francisco, California, United States, 1982.

[15] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal of Computing, 12(4):656–666, Nov 1983.

[16] S. Dolev, E. Schiller, and J. Welch. Random walk for self-stabilizing group communication
in ad-hoc networks. In 21st Symposium on Reliable Distributed Systems, 2002.

[17] Paul Neil Feldman. Optimal Algorithms for Byzantine Agreement. PhD thesis, Massachusetts
Institute of Technology, Jun 1988.

[18] Michael J. Fischer. The consensus problem in unreliable distributed systems (a brief survey).
Technical Report YALEU/DCS/TR-273, Yale University, 1983.

[19] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1(1):26–39, Jan 1986.

12



[20] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, apr 1985.

[21] A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Transactions on Automatic Control, 2002.

[22] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. In Advances
in Ultra-Dependable Distributed Systems, N. Suri, C. J. Walter, and M. M. Hugue (Eds.).
IEEEComputer Society Press, 1995.

[23] Leslie Lamport. The part-time parliament. ACM Transaction on Computer Systems,
16(2):133–169, May 1998.

[24] N. Malpani, J. L. Welch, and N. H. Vaidya. Leader election algorithms for mobile ad hoc
networks. In Proc. Fourth International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, pages 96–103, 2000.

[25] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27:228–234, 1980.

[26] E. Pitoura and B. K. Bhargava. Data consistency in intermittently connected distributed
systems. Knowledge and Data Engineering, 11(6):896–915, 1999.

[27] Michael O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on Founda-
tions of Computer Science, pages 403–409. IEEE, Los Alamitos, California, United States,
1983.

[28] E. Royer and C. Toh. A review of current routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications, pages 46–55, 1999.

[29] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel Type of Phase Transition
in a System of Self-Driven Particles. Physical Review Letters, 75:1226–1229, August 1995.

[30] Jennifer E. Walter, Jennifer L. Welch, and Nitin H. Vaidya. A mutual exclusion algorithm for
ad hoc mobile networks. Wireless Networks, 7(6):585–600, 2001.

[31] B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad hoc net-
works. In ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pages 194–205, 2002.

13


