
Developing Secure Bitcoin Contracts with BitML
Nicola Atzei

University of Cagliari
Italy

atzeinicola@gmail.com

Massimo Bartoletti
University of Cagliari

Italy
bart@unica.it

Stefano Lande
University of Cagliari

Italy
lande@unica.it

Nobuko Yoshida
Imperial College London

UK
n.yoshida@imperial.ac.uk

Roberto Zunino
University of Trento

Italy
roberto.zunino@unitn.it

ABSTRACT
We present a toolchain for developing and verifying smart con-
tracts that can be executed on Bitcoin. The toolchain is based on
BitML, a recent domain-specific language for smart contracts with
a computationally sound embedding into Bitcoin. Our toolchain au-
tomatically verifies relevant properties of contracts, among which
liquidity, ensuring that funds do not remain frozen within a contract
forever. A compiler is provided to translate BitML contracts into sets
of standard Bitcoin transactions: executing a contract corresponds
to appending these transactions to the blockchain. We assess our
toolchain through a benchmark of representative contracts.

Demo Video URL: https://youtu.be/bxx3bM5Pm6c

CCS CONCEPTS
• Software and its engineering→ Software verification; • Se-
curity and privacy→ Distributed systems security.

KEYWORDS
Bitcoin; smart contracts; verification
ACM Reference Format:
Nicola Atzei, Massimo Bartoletti, Stefano Lande, Nobuko Yoshida, and Roberto
Zunino. 2019. Developing Secure Bitcoin Contracts with BitML. In Pro-
ceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3338906.3341173

1 INTRODUCTION
In the last five years much outstanding research has been devoted
to showing how to exploit Bitcoin to execute smart contracts —
computer protocols which allow for exchanging cryptocurrency
according to complex pre-agreed rules [4–7, 10, 12, 15, 27–30, 33].
Despite the wide variety of use cases witnessed by these works, no
tool support has been provided yet to facilitate the development

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3341173

of Bitcoin contracts. Today, this task requires to devise complex
protocols which, besides using the standard cryptographic primi-
tives, can read and append transactions on the Bitcoin blockchain.
Creating a new protocol requires a significant effort to establish its
correctness and security: this is an error-prone task, usually per-
formed manually.Crafting the transactions used by these protocols
is burdensome as well, since it requires to struggle with low-level,
poorly documented features of Bitcoin.

In this paper we consider BitML, a recent high-level language for
smart contracts, featuring a computationally sound embedding into
Bitcoin [13], and a sound and complete verification technique of
relevant trace properties [14]. BitML can express many of the smart
contracts in the literature [8, 11], and execute them by appending
suitable transactions to the Bitcoin blockchain. The computational
soundness of the embedding guarantees that security properties
at the level of the BitML semantics are preserved at the level of
Bitcoin transactions, even in the presence of adversaries. Still, BitML
lives in a theoretical limbo, as no tool support exists yet to develop
contracts and deploy them on the Bitcoin blockchain.

Contributions. We develop a toolchain for writing and verifying
BitML contracts, and for deploying them on Bitcoin. More specifi-
cally, our main contributions can be summarised as follows:

(1) A BitML embedding in Racket [22], which allows for pro-
gramming BitML contracts within the DrRacket IDE.

(2) A security analyzer which can check arbitrary LTL proper-
ties of BitML contracts. In particular, the analysis can decide
liquidity, a landmark property of smart contracts requiring
that the funds within a contract do not remain frozen forever.

(3) A compiler from BitML contracts to standard Bitcoin trans-
actions. The computational soundness result in [13] ensures
that attacks to compiled contracts are also observable at
the BitML level. Therefore, the properties verified by our
security analyzer also hold for compiled contracts.

(4) A collection of BitML contracts, which we use as a bench-
mark to evaluate our toolchain. This collection contains some
of the most complex contracts ever developed for Bitcoin, e.g.
financial services, auctions, timed commitments, lotteries,
and a variety of other gambling games. We use our bench-
marks to discuss the expressiveness and the limitations of
Bitcoin as a smart contracts platform.

The architecture of our toolchain is displayed in Figure 1. The
development workflow is the following: (a) write the BitML con-
tract, and specify the required properties. Optionally, specify some

ar
X

iv
:1

90
5.

07
63

9v
2

 [
cs

.P
L

]
 2

 A
ug

 2
01

9

https://youtu.be/bxx3bM5Pm6c
https://doi.org/10.1145/3338906.3341173
https://doi.org/10.1145/3338906.3341173

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, and R. Zunino

BitML
on DrRacket

Properties +
Strategies

Contract Abstract BitML
semantics

Model
checker

Query
result

BitML to
Balzac

Balzac to
Bitcoin

Bitcoin
transactions

Security Analyzer

Compiler

Figure 1: Toolchain architecture.

constraints on the participants’ strategies, e.g. to partially define
the behaviour of the honest participants; (b) verify that the con-
tract satisfies the required properties through the security analyzer;
(c) compile the contract to Bitcoin transactions; (d) execute the
contract, by appending these transactions to the Bitcoin blockchain
according to the chosen strategy. We remark that the last step can
be performed on the Bitcoin main network, without requiring any
extensions or customizations. Our toolchain is open-source1, as well
as the contracts in our benchmark. A tutorial is available online2,
including references to our experiments on the Bitcoin testnet.

2 DESIGNING BITML CONTRACTS
BitML contracts allow two or more participants to exchange their
bitcoins (B) according to a given logic. A contract consists of two
parts: a precondition, describing requirements that participants
must fulfil to stipulate the contract, and a process, which specifies
the execution logic of the contract. Here, rather than providing
the syntax and semantics of BitML (see [13] for a formalization),
we illustrate it through a simple but paradigmatic example, the
mutual timed commitment contract [6]. This contract involves two
participants (named below A and B) each one choosing a secret
and depositing a certain amount of cryptocurrency (say, 1B). The
goal of the contract is to ensure that each participant will either
learn the other participant’s secret, or otherwise receive the other
participant’s deposit as a compensation. The contract gives some
time to the participants to reveal their secrets. If a participant reveals
her secret in time, then she can get her deposit back; otherwise,
after the time is up, the other participant can withdraw that deposit.

In our tool, we can specify this contract as follows:

(participant "A" "029c... cced ") ; A's public key
(participant "B" "022c... af30 ") ; B's public key

(contract
(pre

(deposit "A" 1 "1 a34 ...6 f38@0 ") ; tx output (1 BTC)
(secret "A" a "628f... de71 ") ; hash of A's secret
(deposit "B" 1 "19 e7 ...85 ff@2 ") ; tx output (1 BTC)
(secret "B" b "9 d48 ... bb35 ")) ; hash of B's secret

(choice
(reveal (a) (choice

(reveal (b) (split
(1 -> (withdraw "A"))
(1 -> (withdraw "B"))))

(after 100050 (withdraw "A"))))
(after 100000 (withdraw "B")))

1https://github.com/bitml-lang
2https://blockchain.unica.it/bitml

The first two lines create aliases for the participant names, spec-
ifying their public keys. The contract preconditions are in the pre
part: each participant must specify the identifier of a transaction
output, and the hash of the chosen secret. The transaction out-
put must be unspent, must contain the required 1B, and must be
redeemable using the participant’s private key. The hash is used
during the contract execution: when the participant provides a
value, claiming that it is the chosen secret, the hash of this value is
required to be equal to the one in the precondition.

The contract logic is specified after the preconditions. The top-
level choice defines two alternative branches of the contract. The
first branch can only be taken if A reveals her secret (named a); when
this happens, the contract continues with the innermost choice.
The second branch can only be taken after a timeout, specified as
the block at height 100000, and it allows B to redeem all the funds
deposited within the contract (i.e., 2B) by executing withdraw “B”.
So, to avoid losing her deposit, A is incentivized to reveal her secret
in time. Similarly, the innermost choice is used to incentivize B
to reveal his secret before the block at height 100050. If B reveals,
then the split subcontract is executed: this divides the balance of
the contract in two parts of 1B each, allowing the participants to
withdraw their deposits back.

The language is defined exploiting the Racket macro system,
which is used to rewrite BitML syntactic constructs to Racket code.
This approach benefits from the Racket language ecosystem, and
allows us to write BitML contracts in the DrRacket IDE. Indeed, our
toolchain integrates within the DrRacket IDE the contract editor,
the security analyzer and the BitML compiler. The implementation
of BitML in Racket extends the idealized version of BitML in [13]
to make the language usable in practice. For instance, it introduces
special deposits of type fee, which are automatically spread over
all the transactions obtained by the compiler. We also implement
static checks for a number of errors that could prevent the correct
execution of contracts, e.g. committing secrets with the same hash,
double spending a transaction output, etc.

3 VERIFYING BITML CONTRACTS
The tool verifies various forms of liquidity, requiring that no funds
(or funds up-to a certain amount) are frozen forever within a con-
tract3. Further, the tool can verify arbitrary LTL formulae, where
state predicates can specify, e.g., the funds owned by participants,
the provided authorizations, and the revealed secrets. By default, the
tool verifies the required property against all possible behaviours of
each participant: for instance, if a contract contains reveal a, the
verifier considers both the case where the secret is revealed and the
one where it is not. Authorizations are handled similarly, by con-
sidering both cases. However, in most cases, a participant wishes
to verify a contract with respect to a given behaviour for herself,
making no assumptions on the other participants’ behaviour (un-
less some other participants are considered trusted, in which case it
would make sense to fix a behaviour also for them). For instance, a
participant A may want to give her authorization to perform a given
branch only after participant B has revealed his secret. The tool
allows for constraining the behaviour of participants, specifying

3A paradigmatic case of non-liquid contract was the Ethereum Parity Wallet [1]. An
attacker managed to kill a library called by the wallet, irreversibly freezing ∼160M$.

https://github.com/bitml-lang
https://blockchain.unica.it/bitml

Developing Secure Bitcoin Contracts with BitML ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

the conditions upon which secrets are revealed and authorizations
are provided. Actions which can be performed by everyone, like
withdraw and split, cannot be constrained.

For instance, we can verify that the mutual timed commitment
contract is liquid whatever strategies are chosen by participants.
The query check-liquid correctly answers true, since: (i) if A
does not reveal, then anyone (after the block at height 100000)
can perform withdraw “B”, which transfers the whole contract
balance to B; (ii) if A reveals but B does not reveal, then anyone (after
the block at height 100050) can perform withdraw “A”, which
transfers the whole contract balance to A; (iii) if both A and B reveal,
then anyone can perform split, which transfers the balance in
equal parts to A and B.

Note that if we remove the after branch at line 16, the contract
is no longer liquid. However, it becomes liquid when A’s strategy is
to reveal the secret. We can verify that this holds through the query
check-liquid (strategy "A" (do-reveal a)). Liquidity is
lost again if A chooses to reveal only after B has revealed, i.e. when
her strategy is "A" (do-reveal a) if ("B" (do-reveal b)).

Besides liquidity, we can check specific LTL properties of con-
tracts through the command check-query. E.g., in the mutual
timed commitment we can verify that, after A reveals, she will
eventually get back at least her 1B deposit. In LTL, this property is
formalised as the following formula, where 108 satoshi = 1B:
[](a revealed => <>A has-deposit>= 100000000 satoshi)

We also verify that if A reveals the secret, then eventually either B
reveals, or Awill get B’s deposit, too. The LTL query is the following:
[](a revealed =>
<>(b revealed \/ A has-deposit>= 200000000 satoshi))

Our verification technique is based on model-checking the state
space of BitML contracts. Since this state space is infinite, before
running the model-checker we reduce it to a finite-state one, by
exploiting the abstraction in [14]. This abstraction resolves the
three sources of infiniteness of the concrete semantics of BitML:
the passing of time, the advertisement/stipulation of contracts, and
the off-contract bitcoin transfers. To obtain a finite-state system, the
abstraction: (i) quotients time in a finite number of time intervals,
(ii) disables the advertisement of new contracts, and (iii) limits the
off-contract operations to those for transferring funds to contracts
and for destroying them. This abstraction is shown in [14] to enjoy
a strict correspondence with the concrete BitML semantics: namely,
each concrete step of the contract under analysis is mimicked by
an abstract step, and vice versa.

Our tool implements the abstract BitML semantics in Maude, a
model-checking framework based on rewriting logic [18]. Maude
is particularly convenient for this purpose: we use its equational
logic to express structural equivalence between BitML terms, and
its conditional rewriting rules to encode the abstract semantics
of BitML. In this way, we naturally obtain an executable abstract
semantics of BitML. Once a BitML contract in translated in Maude,
we use the Maude LTL model-checker [21] to verify the required
security properties, under the strategies specified by the user. The
various forms of liquidity are also translated to corresponding LTL
formulae. The computational soundness of the BitML compiler
guarantees that the properties verified by the model checker are
preserved when executing the contract on Bitcoin.

4 COMPILING BITML TO BITCOIN
Our compiler operates in two phases: first, it translates BitML con-
tracts into Balzac4, an abstraction layer over Bitcoin transactions
based on the formal model of [9]; then, it translates Balzac transac-
tions into standard Bitcoin transactions. The compiler from BitML
to Balzac implements the algorithm in [13], extending it with trans-
action fees. In particular, the compiler guarantees that each transac-
tion contains enough fees to be publishable in the blockchain. The
compiler from Balzac to Bitcoin produces standard Bitcoin transac-
tions [3]: this is crucial since non-standard ones are discarded by
the Bitcoin network. To this aim, Balzac produces standard output
scripts of the form “Pay to Public Key Hash” (P2PKH) or “Pay to
Script Hash” (P2SH). P2PKH is used for encoding signature verifi-
cation (e.g., to redeem the deposit obtained by a withdraw), while
P2SH is used for complex redeeming conditions (e.g., to check that
the revealed secret matches the committed hash). Since Bitcoin
requires that all the values pushed by standard scripts fit within
520 bytes, our compiler checks that this constraint is satisfied for
each generated script. Balzac outputs serialized raw transactions,
which can be directly broadcast to the Bitcoin network.

5 EVALUATION
To evaluate our toolchain, we use a benchmark of representative
use cases, including financial contracts [17, 38], auctions, lotter-
ies [7, 33] and gambling games5. For each contract in the benchmark,
we display in Table 1 the number N of involved participants, the
numberT of transactions obtained by the compiler, and the verifica-
tion time V for checking liquidity6. The participants’ strategies are
constrained only as needed to ensure liquidity: in most cases, we
do not put any constraints at all. For the contracts which involve
predicates on secrets (e.g., all the lotteries), in principle one would
need to check liquidity against all the possible choices of secrets.
To make verification feasible, since each contract only checks a
finite set of predicates, we partition the infinite choices of secrets
into a finite set of regions, and sample one choice from each region.
In this way, the liquidity check is performed a finite number of
times, ensuring that the verifier explores every reachable state of
the contract. For instance, in the 4-players lottery we explore 34
regions, which explains the 67 hours needed to verify its liquidity.7

The only work against which we can compare the performance
of our tool is [5], which models Bitcoin contracts in Uppaal, a model-
checking framework based on Timed Automata. The most complex
contract modelled in [5] is the mutual timed commitment with 2
participants: this requires ∼ 30s to be verified in Uppaal, while our
tool verifies the same property in < 100ms. This speedup is due to
the higher abstraction level of BitML over [5], which operates at
the (lower) level of Bitcoin transactions.

One of the main difficulties that we have encountered in develop-
ing contracts is that some complex BitML specifications can not be
compiled to Bitcoin, because Bitcoin has a 520-byte limit on the size
of each value pushed to the evaluation stack [2]. In some cases, we

4https://github.com/balzac-lang/balzac
5https://github.com/bitml-lang/bitml-compiler/tree/master/examples/benchmarks
6For uniformity, in the performance evaluation we focus on liquidity We carry out our
experiments on a PC with a Intel Core i7-7800X CPU @ 3.50GHz, and 64GB of RAM.
7Another feature which significantly affects the verification time is the fact that we
are considering all the possible strategies of all the participants.

https://github.com/balzac-lang/balzac
https://github.com/bitml-lang/bitml-compiler/tree/master/examples/benchmarks

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, and R. Zunino

Contract N T V
Mutual timed commitment 2 15 83ms
Mutual timed commitment 3 34 103ms
Mutual timed commitment 4 75 454ms
Mutual timed commitment 5 164 13s

Escrow (early fees) 3 12 8s
Escrow (late fees) 3 11 3.4s
Zero Coupon Bond 3 8 86ms

Coupon Bond 3 18 1.3s
Future(C) 3 5 + TC 80ms + VC

Option(C, D) 3 14 + TC +TD 90ms + VC +VD
Lottery (O (N 2) collateral) 2 15 427ms

Lottery (0 collateral) 2 8 142ms
Lottery (0 collateral) 4 587 67h
Rock-Paper-Scissors 2 23 781ms

Morra game 2 40 674ms
Shell game 2 23 27s

Auction (2 turns) 2 42 3.3s
Table 1: Benchmarks for the BitML toolchain.

managed to massage the BitML contract so to make its compilation
respect the 520-byte constraint. For instance, a common pattern
that easily violates the 520-byte constraint is the following:

(choice (revealif (b) (pred (p0)) (C0))
(revealif (b) (pred (p1)) (C1))
(after T (C2)))

The choice is compiled into a transaction whose redeem script
encodes the disjunction of three logical conditions, corresponding
to the three branches of the choice. Depending on the predicates
p0 and p1, and on the number of participants in the contract, this
script may violate the 520-byte constraint. A workaround is to
rewrite the pattern above into the following one:

(choice (revealif (b) (pred (p0)) (C0))
(after T (tau (choice

(revealif (b) (pred (p1)) (C1))
(after T1 (C2))))))

In this case the compilation includes two transactions, corre-
sponding to the two choices. The scripts of these transactions
encode the disjunction of two logical conditions, corresponding to
the two branches of the choices. Using this workaround we have
managed to compile the 4-players lottery into standard transac-
tions, at the price of increasing the number of transactions (587
for the standard version vs. 138 for the nonstandard one). Similar
techniques (e.g. simplification of predicates) allowed us to compile
all the contracts in Table 1 into standard Bitcoin transactions.

In general, the 520-byte constraint intrinsically limits the expres-
siveness of Bitcoin contracts: for instance, since public keys are
33 bytes long, a contract which needs to simultaneously verify 15
signatures can not be implemented using standard transactions.

6 CONCLUSIONS
Although our benchmarks witness a rich variety of contracts ex-
pressible in BitML, there is room for improvement. BitML is not
Bitcoin-complete, i.e. some contracts executable in Bitcoin are not
expressible in BitML. The main sources of this incompleteness
are three: (i) all the transactions obtained by the compiler must
be signed before stipulation by all the involved participants (only

the signatures for authorizations can be provided at run-time);
(ii) all transaction fields must be taken into account when com-
puting signatures, while partial signatures (e.g. those obtained
through SIGHASH_ANYONECANPAY and SIGHASH_SINGLE) are not
used; (iii) off-chain interactions are limited to revealing secrets and
providing authorizations. The first constraint is required to ensure
that honest participants can always perform, at the Bitcoin level,
the moves enabled in the corresponding BitML contract, regard-
less of the behaviour of the others. In this respect, BitML follows
the standard assumption that participants are non-cooperative, i.e.
at any moment after stipulation they can stop interacting (unlike
TypeCoin [19], which assumes cooperation, allowing dishonest
participants to make a contract deadlock). Yet, cooperation can be
incentivized, by punishing misbehaviour with penalties, like e.g. in
the timed commitment of Section 2. As a consequence of the design
choices above, contracts with a dynamically-defined set of players
(e.g., crowdfunding), or an unbounded number of iterations (e.g.,
micro-payment channels), are not expressible in BitML.

The limitations of BitML (and of Bitcoin) could be overcome in
various ways. For instance, using Bitcoin “as-is”, it would be possi-
ble to relax constraint (iii) above, so to allow e.g. zero-knowledge
off-chain protocols. This would enable to extend BitML with primi-
tives to express contingent payments contracts, where participants
trade solutions of a class of NP problems [10, 32]. Similarly, by
relaxing constraint (i), we could extend BitML to enable dynamic
stipulation of subcontracts, requiring that all the involved partic-
ipants provide their signatures at run-time. This would allow to
model e.g. micro-payment channels in BitML. Together with the use
of SIGHASH_ANYONECANPAY (relaxing constraint (ii)), this would
also allow for modelling crowdfunding contracts. As before, this
extension could be implemented without modifying Bitcoin.

Other extensions of BitML would require extensions of Bitcoin.
For instance, covenants [34, 36] would allow for implementing arbi-
trary finite-state machines. Controlled input malleability would al-
low to efficiently implement tournaments in multi-player gambling
games, like e.g. lotteries [12]. This can also be achieved through a
new opcode that checks if the redeeming transaction belongs to
a given set [33]. Contingent payments without zero-knowledge
proofs can be achieved by exploiting a new opcode that checks the
validity of key pairs [20]. A new opcode which checks signatures
for arbitrary messages would allow for expressing general fair mul-
tiparty computations [29]. Further, fair and robust multiparty com-
putations can be achieved using more complex transactions [26].
A more radical approach would be to replace the Bitcoin scripting
language with a more expressive one, like e.g. Simplicity [35].

Compared with the tools for analysing Ethereum contracts [16,
23–25, 31, 37, 39, 40], whose precision is subject to the limitations
derived by the Turing-completeness of the underlying languages,
our toolchain features a sound and complete verification technique.

ACKNOWLEDGMENTS
Work partially supported by MIUR PON 2018 “Distributed Ledgers
for Secure Open Communities” ARS01_00587; by R.A.S. projects
“Sardcoin” and “Smart collaborative engineering”; by EPSRC projects
EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1 and
EP/N028201. Stefano Lande is supported by P.O.R. F.S.E. 2014-2020.

Developing Secure Bitcoin Contracts with BitML ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] 2017. A Postmortem on the Parity Multi-Sig Library Self-Destruct. https:

//goo.gl/Kw3gXi.
[2] 2019. Bitcoin script size limit. https://github.com/bitcoin/bips/blob/master/bip-

0016.mediawiki#520-byte-limitation-on-serialized-script-size.
[3] 2019. Bitcoin standard transactions. https://bitcoin.org/en/developer-guide#

standard-transactions.
[4] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz

Mazurek. 2014. Fair Two-Party Computations via Bitcoin Deposits. In Financial
Cryptography Workshops (LNCS), Vol. 8438. Springer, 105–121. https://doi.org/
10.1007/978-3-662-44774-1_8

[5] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Łukasz
Mazurek. 2014. Modeling Bitcoin contracts by timed automata. In International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS) (LNCS),
Vol. 8711. Springer, 7–22. https://doi.org/10.1007/978-3-319-10512-3_2

[6] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. 2014. Secure Multiparty Computations on Bitcoin. In IEEE S & P. 443–
458. https://doi.org/10.1109/SP.2014.35 First appeared on Cryptology ePrint
Archive, http://eprint.iacr.org/2013/784.

[7] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. 2016. Secure multiparty computations on Bitcoin. Commun. ACM 59,
4 (2016), 76–84. https://doi.org/10.1145/2896386

[8] Nicola Atzei, Massimo Bartoletti, Tiziana Cimoli, Stefano Lande, and Roberto
Zunino. 2018. SoK: unraveling Bitcoin smart contracts. In POST (LNCS), Vol. 10804.
Springer, 217–242. https://doi.org/10.1007/978-3-319-89722-6

[9] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. 2018. A
formal model of Bitcoin transactions. In Financial Cryptography and Data Security
(LNCS), Vol. 10957. Springer. https://doi.org/10.1007/978-3-662-58387-6

[10] Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. 2016. Efficient
Zero-Knowledge Contingent Payments in Cryptocurrencies Without Scripts. In
ESORICS (LNCS), Vol. 9879. Springer, 261–280. https://doi.org/10.1007/978-3-
319-45741-3_14

[11] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. 2018. Fun with Bitcoin
Smart Contracts. In ISoLA (LNCS), Vol. 11247. Springer, 432–449. https://doi.org/
10.1007/978-3-030-03427-6_32

[12] Massimo Bartoletti and Roberto Zunino. 2017. Constant-deposit multiparty
lotteries on Bitcoin. In Financial Cryptography Workshops (LNCS), Vol. 10323.
Springer. https://doi.org/10.1007/978-3-319-70278-0

[13] Massimo Bartoletti and Roberto Zunino. 2018. BitML: a calculus for Bitcoin smart
contracts. In ACM CCS. https://doi.org/10.1145/3243734.3243795

[14] Massimo Bartoletti and Roberto Zunino. 2019. Verifying liquidity of Bitcoin
contracts. In POST (LNCS), Vol. 11426. Springer, 222–247. https://doi.org/10.
1007/978-3-030-17138-4_10

[15] Iddo Bentov and Ranjit Kumaresan. 2014. How to Use Bitcoin to Design Fair
Protocols. In CRYPTO (LNCS), Vol. 8617. Springer, 421–439. https://doi.org/10.
1007/978-3-662-44381-1_24

[16] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, et al. 2016. Formal verification of smart
contracts: Short paper. In Proceedings of the 2016 ACM Workshop on Program-
ming Languages and Analysis for Security (PLAS ’16). ACM, 91–96. https:
//doi.org/10.1145/2993600.2993611

[17] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. 2017. Findel: Secure
Derivative Contracts for Ethereum. In Financial Cryptography Workshops (LNCS),
Vol. 10323. Springer, 453–467. https://doi.org/10.1007/978-3-319-70278-0_28

[18] Manuel Clavel, FranciscoDurán, Steven Eker, Patrick Lincoln, NarcisoMartí-Oliet,
José Meseguer, and Jose F. Quesada. 2002. Maude: specification and programming
in rewriting logic. Theor. Comput. Sci. 285, 2 (2002), 187–243. https://doi.org/10.
1016/S0304-3975(01)00359-0

[19] Karl Crary and Michael J. Sullivan. 2015. Peer-to-peer affine commitment using
Bitcoin. In ACM Conf. on Programming Language Design and Implementation.
479–488. https://doi.org/10.1145/2737924.2737997

[20] Sergi Delgado-Segura, Cristina Pérez-Solà, Guillermo Navarro-Arribas, and Jordi
Herrera-Joancomartí. 2017. A fair protocol for data trading based on Bitcoin
transactions. Future Generation Computer Systems (2017). https://doi.org/10.
1016/j.future.2017.08.021

[21] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. 2002. The Maude
LTL Model Checker. Electr. Notes Theor. Comput. Sci. 71 (2002), 162–187. https:
//doi.org/10.1016/S1571-0661(05)82534-4

[22] Matthew Flatt. 2012. Creating languages in Racket. Commun. ACM 55, 1 (2012),
48–56. https://doi.org/10.1145/2063176.2063195

[23] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. Foundations
and Tools for the Static Analysis of Ethereum Smart Contracts. In CAV (LNCS),
Vol. 10981. Springer, 51–78. https://doi.org/10.1007/978-3-319-96145-3_4

[24] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. In POST
(LNCS), Vol. 10804. Springer, 243–269. https://doi.org/10.1007/978-3-319-89722-
6_10

[25] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip
Daian, Dwight Guth, Brandon M. Moore, Daejun Park, Yi Zhang, Andrei Ste-
fanescu, and Grigore Rosu. 2018. KEVM: A Complete Formal Semantics of the
Ethereum Virtual Machine. In IEEE Computer Security Foundations Symposium
(CSF). IEEE Computer Society, 204–217. https://doi.org/10.1109/CSF.2018.00022

[26] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. 2016. Fair and Robust
Multi-party Computation Using a Global Transaction Ledger. In EUROCRYPT
(LNCS), Vol. 9666. Springer, 705–734. https://doi.org/10.1007/978-3-662-49896-
5_25

[27] Ranjit Kumaresan and Iddo Bentov. 2014. How to Use Bitcoin to Incentivize
Correct Computations. In ACM CCS. 30–41. https://doi.org/10.1145/2660267.
2660380

[28] Ranjit Kumaresan and Iddo Bentov. 2016. Amortizing Secure Computation with
Penalties. In ACM CCS. 418–429. https://doi.org/10.1145/2976749.2978424

[29] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. 2015. How to Use Bitcoin to Play
Decentralized Poker. In ACM CCS. 195–206. https://doi.org/10.1145/2810103.
2813712

[30] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. 2016.
Improvements to Secure Computation with Penalties. In ACM CCS. 406–417.
https://doi.org/10.1145/2976749.2978421

[31] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[32] Gregory Maxwell. 2016. The first successful Zero-Knowledge Contingent Pay-
ment. (2016). https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-
payments-announcement/.

[33] Andrew Miller and Iddo Bentov. 2017. Zero-Collateral Lotteries in Bitcoin and
Ethereum. In EuroS&PWorkshops. 4–13. https://doi.org/10.1109/EuroSPW.2017.44

[34] Malte Möser, Ittay Eyal, and Emin Gün Sirer. 2016. Bitcoin covenants. In Financial
Cryptography Workshops (LNCS), Vol. 9604. Springer, 126–141. https://doi.org/
10.1007/978-3-662-53357-4_9

[35] Russell O’Connor. 2017. Simplicity: A New Language for Blockchains. In PLAS.
https://doi.org/10.1145/3139337.3139340

[36] Russell O’Connor and Marta Piekarska. 2017. Enhancing Bitcoin transactions
with covenants. In Financial CryptographyWorkshops (LNCS), Vol. 10323. Springer.
https://doi.org/10.1007/978-3-319-70278-0_12

[37] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Rosu. 2018.
A formal verification tool for Ethereum VM bytecode. In ACM ESEC/SIGSOFT
FSE. 912–915. https://doi.org/10.1145/3236024.3264591

[38] Pablo Lamela Seijas and Simon J. Thompson. 2018. Marlowe: Financial Contracts
on Blockchain. In ISoLA (LNCS), Vol. 11247. Springer, 356–375. https://doi.org/
10.1007/978-3-030-03427-6_27

[39] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Scilla: a Smart Contract
Intermediate-Level LAnguage. CoRR abs/1801.00687 (2018).

[40] Petar Tsankov, Andrei Marian Dan, Dana Drachsler Cohen, Arthur Gervais,
Florian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. CoRR abs/1806.01143 (2018).

https://goo.gl/Kw3gXi
https://goo.gl/Kw3gXi
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki#520-byte-limitation-on-serialized-script-size
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki#520-byte-limitation-on-serialized-script-size
https://bitcoin.org/en/developer-guide#standard-transactions
https://bitcoin.org/en/developer-guide#standard-transactions
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-319-10512-3_2
https://doi.org/10.1109/SP.2014.35
http://eprint.iacr.org/2013/784
https://doi.org/10.1145/2896386
https://doi.org/10.1007/978-3-319-89722-6
https://doi.org/10.1007/978-3-662-58387-6
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-030-03427-6_32
https://doi.org/10.1007/978-3-030-03427-6_32
https://doi.org/10.1007/978-3-319-70278-0
https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1007/978-3-030-17138-4_10
https://doi.org/10.1007/978-3-030-17138-4_10
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1007/978-3-319-70278-0_28
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1145/2737924.2737997
https://doi.org/10.1016/j.future.2017.08.021
https://doi.org/10.1016/j.future.2017.08.021
https://doi.org/10.1016/S1571-0661(05)82534-4
https://doi.org/10.1016/S1571-0661(05)82534-4
https://doi.org/10.1145/2063176.2063195
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2976749.2978424
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2976749.2978421
https://doi.org/10.1145/2976749.2978309
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://doi.org/10.1109/EuroSPW.2017.44
https://doi.org/10.1007/978-3-662-53357-4_9
https://doi.org/10.1007/978-3-662-53357-4_9
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1007/978-3-319-70278-0_12
https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1007/978-3-030-03427-6_27
https://doi.org/10.1007/978-3-030-03427-6_27

	Abstract
	1 Introduction
	2 Designing BitML contracts
	3 Verifying BitML contracts
	4 Compiling BitML to Bitcoin
	5 Evaluation
	6 Conclusions
	Acknowledgments
	References

