
Bitcoin Security under Temporary Dishonest
Majority

Georgia Avarikioti, Lukas Käppeli, Yuyi Wang, and Roger Wattenhofer

ETH Zurich, Switzerland
{zetavar,yuwang,wattenhofer}@ethz.ch,

lukas.kaeppeli@hotmail.com

Abstract. We prove Bitcoin is secure under temporary dishonest ma-
jority. We assume the adversary can corrupt a specific fraction of parties
and also introduce crash failures, i.e., some honest participants are offline
during the execution of the protocol. We demand a majority of honest on-
line participants on expectation. We explore three different models and
present the requirements for proving Bitcoin’s security in all of them:
we first examine a synchronous model, then extend to a bounded delay
model and last we consider a synchronous model that allows message
losses.

Keywords: Bitcoin · Security · Dishonest Majority · Offline Players ·
Sleepy Model

1 Introduction

Bitcoin [10] is the predominant cryptocurrency today. Nevertheless, our under-
standing of Bitcoin’ s correctness is limited. Only relatively recently, there have
been attempts to formally capture Bitcoin’ s security properties. In a seminal
work, Garay et al. [7] proposed a formal framework (the “backbone protocol”) to
describe the Bitcoin system. They defined security properties for the backbone
protocol and proved these both in the synchronous and bounded-delay model.

Our work extends the work of Garay et al. [7] in several dimensions. First,
in contrast to our model, [7] assumed a constant honest majority of the partici-
pants. However, the Bitcoin protocol has been proven to be more fault-tolerant
and able to allow for a majority of dishonest players, as long as this dishonest
majority is only temporary. Specifically, in 2014 there was a majority takeover
(approximately 54% of the network) by the mining pool GHash.io. The cost to
perform such attacks have been studied in [3] and https://www.crypto51.app/.
In this work, we extend the original work of Garay et al. [7] to capture these
attacks, by allowing a temporary dishonest majority. We provide a formal analy-
sis and investigate under which circumstances Bitcoin is secure when the honest
majority holds only on expectation.

Second, motivated by a model of Pass and Shi [12], we not only have honest
(“alert”) or dishonest (“corrupted”) nodes. Instead, there is a third group of
nodes that are currently not able to follow the protocol. We call them “sleepy”,

https://www.crypto51.app/

2 G. Avarikioti et al.

which really is a euphemism for nodes that are basically eclipsed from the action,
for instance by a denial of service attack. Understanding this trade-off between
corrupted and sleepy nodes gives us a hint whether a dishonest attacker should
rather invest in more mining power (to get more corrupted players) or in a
distributed denial of service architecture (to get more sleepy players).

Third, we introduce a parameter c, which upper bounds the number of blocks
contributed by the adversary. This is not needed to prove security, but as [13]
showed, if the adversary follows a selfish mining strategy, it can gain a higher
reward fraction compared to its fraction of the mining power. By choosing an
appropriate value for c, it is possible to upper bound this advantage.

Fourth, we study network delays since they significantly affect the perfor-
mance and security. By extending our synchronous model to the a semi-synchro-
nous model, we are going to show that the upper bound on sleepy parties heavily
depends on the maximum allowed message delay.

Finally, we extend our analysis to a synchronous model, where we allow mes-
sage losses. This is inspired by an idea described in [8], where the adversary may
perform an eclipse attack [14,15] on some victims which enables the adversary
to control their view of the blockchain. We show security under the assumption
that the adversary can eclipse a certain number of players, depending on the
number of corrupted players.

The omitted proofs can be found in the appendix.

2 The Model

We adapt the model originally introduced by Garay et al. [7] to prove the security
of the Backbone protocol. We initially present all the components of a general
model and then parametrize the model to capture the three different models
under which we later prove that the backbone protocol is secure.

2.1 The Execution

We assume a fixed set of n parties, executing the Bitcoin backbone protocol.
Each party can either be corrupted, sleepy or alert ; sleepy is an offline honest
node and alert an honest node that is actively participating in the protocol.

Involved programs. All programs are modeled as polynomially-bounded in-
teractive Turing machines (ITM) that have communication, input and output
tapes. An ITM instance (ITI) is an instance of an ITM running a certain pro-
gram or protocol. Let the ITM Z denote the environment program that leads
the execution of the Backbone protocol. Therefore Z can spawn multiple ITI’s
running the protocol. These instances are a fixed set of n parties, denoted by
P1, . . . , Pn. The control program C, which is also an ITM, controls the spawning
of these new ITI’s and the communication between them. Further, C forces the
environment Z to initially spawn an adversary A. The environment will then ac-
tivate each party in a round-robin way, starting with P1. This is done by writing

Bitcoin Security under Temporary Dishonest Majority 3

to their input tape. Each time, a corrupted party gets activated, A is activated
instead. The adversary may then send messages (Corrupt, Pi) to the control
program and C will register the party Pi as corrupted, as long as there are less
than t < n parties corrupted. Further, the adversary can set each party asleep
by sending a message (sleep, Pi) to the control program. The control program
C will set the party Pi asleep for the next round with probability s, without
informing A if the instruction was successful or not.

Each party Pi has access to two ideal functionalities, the “random oracle” and
the “diffusion channel”, which are also modelled as ITM’s. These functionalities,
defined below, are used as subroutines in the Backbone protocol.

Round. A round of the protocol execution is a sequence of actions, performed
by the different ITI’s. In our setting, a round starts with the activation of the
party P1, which then performs the protocol-specific steps. By calling the below
defined diffuse functionality, P1 has finished it’s actions for the current round
and Z will activate P2. If the party Pi is corrupted, A will be activated and if
Pi is asleep, Pi+1 gets activated instead. The round ends after Pn has finished.
Rounds are ordered and therefore enumerated, starting from 1.

Views. Let us formally define the view of a party P . The only “external”
input to the protocol is the security parameter κ. Therefore, we can consider
κ to be constant over all rounds of the execution and we can exclude it from
the random variable describing the view of a party. We denote by the random
variable V IEWP,t,n

A,Z the view of a party P after the execution of the Bitcoin
backbone protocol in an environment Z and with adversary A. The complete
view over all n parties is the concatenation of their views, denoted by the random
variable V IEW t,n

A,Z .

Communication and “hashing power”. The two ideal functionalities, which
are accessible by the parties, model the communication between them and the
way of calculating values of a hash functionH(·) : {0, 1}∗ → {0, 1}κ concurrently.

The random oracle functionality. The random oracle (RO) provides two
functions, a calculation and a verification function. Each party is given a num-
ber of q calculation queries and unlimited verification queries per round. Thus,
an adversary with t corrupted parties may query the random oracle for t · q cal-
culation queries per round. Upon receiving a calculation query with some value
x by a party Pi, the random oracle checks, whether x was already queried be-
fore. If not, the RO selects randomly y ∈ {0, 1}κ and returns it. Further, the
RO maintains a table and adds the pair (x, y) into this table. If x was already
queried before, the RO searches in the table for the corresponding pair and re-
turns the value y from it. It’s easy to see that a verification query now only
returns true/valid, if such a pair exists in the table of the RO. Note that the
RO can maintain tables for different hash functions and can be used for all hash
functions we need.

4 G. Avarikioti et al.

The diffuse functionality. The diffuse functionality models the communica-
tion between the parties and thus maintains a RECEIVE () string for each party
Pi. Note that this is not the same as the previously mentioned input tape. Each
party can read the content of its RECEIVE () string at any time. The message
delay is denoted by ∆, where ∆ = 0 corresponds to a synchronous setting.

The diffuse functionality has a round variable, which is initially set to 1. Each
party Pi can send a message m, possibly empty, to the functionality, which then
marks Pi as complete for the current round. We allow A to read all the messages
that are sent by some Pi, without modifying, dropping or delaying it. When all
parties and the adversary are marked as complete, the functionality writes all
messages that are ∆ rounds old to the RECEIVE () strings of either only the alert
or all parties. We denote by B a Boolean function that indicates exactly that; if
B = 0 the diffuse functionality writes all messages to the RECEIVE () strings of
the alert parties, while if B = 1 the diffuse functionality writes all messages to
the RECEIVE () strings of all parties. Each party can read the received messages
in the next round being alert. At the end, round is incremented.

Note that in the case where B = 1, if a party is asleep at a round, it auto-
matically gets marked as complete for this round. Further, upon waking up, it
can read all the messages that were written to its RECEIVE () string while it
was asleep.

Successful queries. A query to the RO oracle is successful, if the returned
value y < T , where T is the difficulty parameter for the PoW function. The
party, which have issued the query will then create a new valid block and may
distribute it by the diffuse functionality. We denote the success probability of
a single query by p = Pr[y < T] = T

2κ . Note that in Bitcoin, the difficulty
parameter is adjusted such that the block generation time is approximately ten
minutes.

2.2 Sleepy, Alert and Corrupted

For each round i, we have at most t corrupted and nhonest,i = n−t honest parties.
Furthermore, the number of honest parties are divided to alert and sleepy parties,
nhonest,i = nalert,i + nsleepy,i. We assume without loss of generality that no
corrupted party is asleep, since we only upper-bound the power of the adversary.
Since nalert,i and nsleepy,i are random variables, we can also use their expected
value. The expected value is constant over different rounds, thus we will refer to
them as E[nalert] and E[nsleepy]. Since each honest party is independently set
to sleep with probability s and thus the random variable nsleepy,i is binomially
distributed with parameters (n−t) and s. Accordingly, nalert,i is also binomially
distributed with parameters (n − t) and (1 − s). Hence, E[nsleepy] = s · (n − t)
and E[nalert] = (1− s) · (n− t).

Bitcoin Security under Temporary Dishonest Majority 5

2.3 Parametrized Model

Let M(q,∆,B) be the model, defined in this section. In the following sections, we
will look at three instantiations of this model. First of all, we are going to analyze
the model M(q, 0, 1), which corresponds to a synchronous setting, in which each
party has the ability to make q queries to the random oracle and receives every
message, even if the party is asleep. Then, we extend these results to the bounded
delay model, which corresponds to M(1, ∆, 1). As before, every party will always
receive messages, but we restrict q to be 1. In the last section, we analyze the
model M(q, 0, 0), which corresponds to the synchronous model, but we do not
allow the diffuse functionality to write messages on the RECEIV E() tapes of
sleepy parties.

2.4 Properties

In order to prove the security of the Bitcoin backbone protocol, we are going to
analyze three different properties, following the analysis of [7]. These properties
are defined as predicates over V IEW t,n

A,Z , which will hold for all polynomially
bounded environments Z and adversaries A with high probability.

Definition 1. Given a predicate Q and a bound q, t, n ∈ N with t < n, we
say that the Bitcoin backbone protocol satisfies the property Q in the model
M(q,∆,B) for n parties, assuming the number of corruptions is bounded by
t, provided that for all polynomial-time Z,A, the probability that Q(V IEW t,n

A,Z)
is false is negligible in κ.

The following two Definitions concern the liveness and eventual consistency
properties of the Backbone protocol. We are using the notation of [7]: We denote
a chain C, where the last k blocks are removed, by Cdk. Further, C1 � C2 denotes
that C1 is a prefix of C2.

Definition 2. The chain growth property Qcg with parameters τ ∈ R and s ∈ N
states that for any honest party P with chain C in V IEW t,n

A,Z , it holds that for

any s+ 1 rounds, there are at least τ · s blocks added to the chain of P . 1

Definition 3. The common-prefix property Qcp with parameter k ∈ N states
that for any pair of honest players P1, P2 adopting the chains C1, C2 at rounds

r1 ≤ r2 in V IEW t,n
A,Z respectively, it holds that C

dk
1 � C2.

In order to argue about the number of adversarial blocks in a chain, we will
use the chain quality property, as defined below:

1 The Chain-Growth Property in [7] is defined slightly different: .., it holds that for
any s rounds, there are at least τ · s blocks added to the chain of P .. By considering
the proof for Theorem 1, one can see, why we use s + 1 instead of s. It follows by
the fact that the sum in Lemma 13 only goes from i = r to s− 1 and not to s.

6 G. Avarikioti et al.

Definition 4. The chain quality property Qcq with parameters µ ∈ R and l ∈ N
states that for any honest party P with chain C in V IEW t,n

A,Z , it holds that for
any ` consecutive blocks of C the ratio of adversarial blocks is at most µ.

The following two definitions formalize typical executions of the Backbone
protocol. Both of them are related to the hash functions, used for implement-
ing the Backbone Protocol. Further, the parameters ε and η are introduced.
Throughout the paper, ε ∈ (0, 1) refers to the quality of concentration of random
variables in typical executions and η corresponds to the parameter, determining
block to round translation.

Definition 5 ([7], Definition 8). An insertion occurs when, given a chain C
with two consecutive blocks B and B′, a block B∗ is such that B,B∗, B′ form
three consecutive blocks of a valid chain. A copy occurs if the same block exists
in two different positions. A prediction occurs when a block extends one which
was computed at a later round.

Definition 6 ([7], Definition 9). (Typical execution). An execution is (ε, η)−
typical if, for any set S of consecutive rounds with |S| ≥ ηκ and any random
variable X(S), the following holds:

a) (1− ε)E[X(S)] < X(S) < (1 + ε)E[X(S)]
b) No insertions, no copies and no predictions occurred.

Lemma 1. An execution is typical with probability 1− e−Ω(κ).

Proof. To prove a), we can simply use a Chernoff bound by arguing that E[X(S)]
is in Ω(|S|). The proof for b) is equivalent to [7], by reducing these events to
a collision in one of the hash functions of the Bitcoin backbone protocol. Such
collisions only happen with probability e−Ω(κ).

3 The q-bounded Synchronous Model without Message
Loss M(q, 0, 1)

In this section, we analyze the Bitcoin backbone protocol in the previously de-
fined model, instantiated as M(q, 0, 1). This corresponds to the q-bounded syn-
chronous setting in [7]. First, we define the success probabilities for the alert and
corrupted parties, which are used to prove the relations between them. At the
end, we use these results to show the properties of chain growth, common prefix
and chain quality.

Following the definition in [7], let a successful round be a round in which at
least one honest party solves a PoW. The random variable Xi indicates successful
rounds i by setting Xi = 1 and Xi = 0 otherwise. Further, we denote for a set
of rounds S: X(S) =

∑
i∈S Xi. We note that if no party is asleep, we have

E[Xi] = Pr[Xi = 1] = 1− (1− p)q(n−t).

Lemma 2. It holds that pqE[nalert]
1+pqE[nalert]

≤ E[Xi] ≤ pqE[nalert].

Bitcoin Security under Temporary Dishonest Majority 7

We also adapt the notation of a unique successful round from [7]. A round
is called a unique successful round, if exactly one honest party obtains a PoW.
Accordingly to the successful rounds, let the random variable Yi indicates a
unique successful round i with Yi = 1 and Yi = 0 otherwise. And for a set of
rounds S, let Y (S) =

∑
i∈S Yi.

Lemma 3. It holds E[Yi] = E[pqnalert,i(1− p)q(nalert,i−1)] ≥ E[Xi](1−E[Xi]).

The proofs of both Lemma 2 and Lemma 3 can be found in Appendix A.
Let the random variable Zijk = 1 if the adversary obtains a PoW at round i

by the jth query of the kth corrupted party. Otherwise, we set Zijk = 0. Summing

up, gives us Zi =
∑t
k=1

∑q
j=1 Zijk and Z(S) =

∑
i∈S Zi. Then, the expected

number of blocks that the adversary can mine in one round i is:

E[Zi] = qpt =
t

E[nalert]
pqE[nalert] ≤

t

E[nalert]
· E[Xi]

1− E[Xi]

3.1 Temporary Dishonest Majority Assumption

We assume the honest majority assumption holds on expectation. In particular,
for each round the following holds: t ≤ c ·(1−δ) ·E[nalert], where δ ≥ 2E[Xi]+2ε
and c ∈ [0, 1] is a constant. As in [7], δ refers to the advantage of the honest
parties and ε is defined in Definition 6.

From the expected honest majority assumption, we can derive a possible
upper bound for s, depending on t, δ and c. Formally,

s ≤
n− t− t

c(1−δ)

n− t
= 1− 1

c(1− δ)
t

n− t

3.2 Security Analysis

First of all, by Definition 6 the properties of the typical execution hold for the
random variables X(S), Y (S), Z(S), assuming |S| ≥ ηκ.

The following lemma shows the relations between the different expected val-
ues. The bounds are required in all proofs of the three properties and therefore
essential. 2

Lemma 4. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[Xi]|S| < X(S) < (1 + ε)E[Xi]|S|
b) (1− ε)E[Xi](1− E[Xi])|S| < Y (S)

c) Z(S) < (1 + ε) t
E[nalert]

E[Xi]
1−E[Xi]

|S| ≤ c(1 + ε)(1− δ) E[Xi]
1−E[Xi]

|S|

2 The statement d) uses different factors as [7]. The problem is, that it’s even not
possible to prove the bounds from [7] with their theorems, lemmas and assumptions.

8 G. Avarikioti et al.

d) For σ = (1− ε)(1− E[Xi]):

Z(S) <
(

1 +
δ

σ

) t

E[nalert]
X(S) ≤ c

(
1− δ2

2σ

)
X(S)

e) Z(S) < Y (S)

Next, we prove Bitcoin is secure under temporary dishonest majority in the
q-bounded synchronous setting by proving the three properties defined in [7]:
chain growth, common prefix and chain quality. The proofs can be found in
Appendix B.

4 The semi-Synchronous Model without Message Loss
M(1, ∆, 1)

In this section, we extend the previously seen results to the semi-synchronous
(bounded delay) model. This means, that we allow ∆3 delays for the messages,
as described in the Definition of our model. In order to realize the proofs, we
have to restrict q to be 1. And as in the last section, we do not assume message
losses.

Due the introduced network delays, we need to redefine unique successful
rounds, because they do not provide the same guarantees in the this model.
Especially, Lemma 15 will not hold in the new model. Therefore, we will intro-
duce two new random variables, one for successful and one for unique successful
rounds in the bounded delay model. Note, that the chances for the adversary do
not change and we can use the bounds from the synchronous model.

Let the random variable X ′i be defined such that for each round i, X ′i = 1, if
Xi = 1 and Xj = 0, ∀j ∈ {i −∆ + 1, . . . , i − 1}. A round i is called ∆-isolated
successful round, if X ′i = 1. Further, let X ′(S) =

∑
i∈S X

′
i. Using Bernoulli, we

can derive the following bound on E[X ′i]:

E[X ′i] = E[Xi](1− E[Xi])
∆−1 ≥ E[Xi](1− (∆− 1)E[Xi]).

In order to prove eventual consistency, we have to rely on stronger events
than just uniquely successful rounds. In [7], this is achieved by defining the
random variable Y ′i such that for each round i, Y ′i = 1, if Yi = 1 and Xj = 0,
∀j ∈ {i−∆+1, . . . , i−1, i+1, . . . , i+∆−1}. Then, a round i is called ∆-isolated
unique successful round, if Y ′i = 1. Further, let Y ′(S) =

∑
i∈S Y

′
i . As before, we

can lower bound E[Y ′i] using Bernoulli:

E[Y ′i] = E[Xi](1− E[Xi])
2∆−1 ≥ E[Xi](1− (2∆− 1)E[Xi]).

3 According to Theorem 11 of [12], the parameter ∆ has to be known by the honest
parties to achieve state machine replication, e.g. achieving consensus.

Bitcoin Security under Temporary Dishonest Majority 9

4.1 Temporary Dishonest Majority Assumption

We assume again honest majority on expectation, such that for each round
t ≤ c · (1 − δ) · E[nalert], where δ ≥ 2∆E[Xi] + 4ε + 4∆

ηκ and c ∈ [0, 1] is a

constant. 4 The reason for the higher value of δ (compared to the synchronous
model) is that E[Y ′i] ≤ E[Yi] and we need a way to compensate this difference.

4.2 Security Analysis

In this subsection, we prove Bitcoin is secure, i.e. the chain growth, common
prefix and chain quality properties hold, for the semi-synchronous model without
message loss. We note that the properties of the typical execution apply to the
predefined random variables (X ′(S), Y ′(S), Z(S)), given that |S| ≥ ηκ.

The following lemma corresponds to the semi-synchronous version of Lemma
4. Most of the relations follow the same structure and are similar to prove as in
the synchronous model.

Lemma 5. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[Xi](1− E[Xi])
∆−1|S| < X ′(S)

b) (1− ε)E[Xi](1− E[Xi])
2∆−1|S| < Y ′(S)

c) Z(S) < (1 + ε) t
E[nalert]

E[Xi]
1−E[Xi]

|S| ≤ c(1 + ε)(1− δ) E[Xi]
1−E[Xi]

|S|
d) Let S′ = {r, . . . , r′} with |S′| ≥ ηκ. For S = {r, . . . , r′ + ∆} and σ′ =

(1− ε)(1− E[Xi])
∆:

Z(S) <
(

1 +
δ

2σ′

) t

E[nalert]
X ′(S′)

e) Let S′ = {r, . . . , r′} with |S′| ≥ ηκ. For S = {r −∆, . . . , r′ +∆}:

Z(S) < Y ′(S′)

The proof of Lemma 5 as well as the proofs of the security properties can be
found in Appendix C.

5 The q-bounded Synchronous Model with Message Loss
M(q, 0, 0)

As in the synchronous case, we do not restrict the number of queries and assume
no message delays. In the previous sections, we assumed that messages, sent
from the diffusion functionality, will be written on the RECEIVE () string of
each party. However, in this section, we assume that the messages only get

4 One might notice that our lower bound of δ differs from the lower bound from [7].
First of all, they provided two different values for δ, where both of them are wrong
in the sense that they are too small in order to prove the needed bounds.

10 G. Avarikioti et al.

written to the RECEIVE () strings of alert parties, i.e. sleepy parties do not
receive messages. This models the worst possible event of the reality, because
in Bitcoin itself, parties that were offline will check on the currently longest
chain, once they get back online. This model captures the effects if none of them
receives one of the currently longest chains, thus are eventually a victim of an
eclipse attack. This implies that it’s not necessarily true that all parties’ local
chains have the same length.

This change to the model leads to major differences compared to the results
from the previous sections. In this case, unique successful rounds doesn’t provide
the same guarantees as before, especially Lemma 15 doesn’t hold any more.

In the following, we denote by Ci the set of chains containing all longest
chains that exist at round i. Further, we refer to the local chain of player Pj at

round i by Lji .
The following lemma shows the expected number of honest players, which

have adopted one of the longest chains existing at the current round.

Lemma 6. At every round i, there are expected E[nalert] = (1−s)(n−t) parties
j, such that Lji ∈ Ci.

Proof. We will prove the lemma by induction over all rounds of an execution.
The base case is trivial, because at round 1, every party starts with the genesis
block. Now for the step case, assume that the lemma holds at round i. Then we
show that it holds at round i+ 1 too. In order to prove this, we perform a case
distinction:

– Case Xi = 0: No new chains will be diffused, therefore no new chains can be
adopted and we can apply the induction hypothesis.

– Case Zi = 0: Analogue to the previous case.
– Case Xi = 1: (But Yi = 0) Now we have to differentiate, if the new blocks

extend some chain in Ci not:

a) Some longest chain is extended:
Every party, which is not asleep at round i will adopt one of the possibly
multiple resulting new longest chains. Thus, there are expected E[nalert]
alert parties which will have adopted one of the longest chains at round
i+ 1.

b) No longest chain is extended:
No honest party, whose local chain is already one of the currently longest
chain will adopt a new chain, since it’s length will not be larger than the
length of its local chain. Thus, we can apply the induction hypothesis.

– Case Yi = 1: As in the case before, every party, which was alert at round
i, will adopt the resulting chain, if its length is larger than the length of
its local chain. As before, there are E[nalert] alert parties which will have
adopted one of the longest chains at round i+ 1.

– Case Zi = 1: Analogue to the previous case. But if the adversary withholds
the found block, the case Zi = 0 applies and at the round, where it diffuses
this block, this case applies.

Bitcoin Security under Temporary Dishonest Majority 11

By the lemma above, at every round i only expected (1 − s)(n − t) parties
j have a local chain Lji ∈ Ci. And a fraction of (1 − s) of them will again be
sleepy in the following rounds. Therefore, let n∗alert,i denote the number of alert

parties j at round i, where Lji ∈ Ci.
It’s easy to see that n∗alert,i is binomially distributed with parameters (n− t)

and (1−s)2. Let E[n∗alert] = (1−s)2(n− t) denote the expected value of n∗alert,i,
omitting the round index i, since the expected value is equal for all rounds. We
define the random variable X∗i which indicates, if at least one of the n∗alert,i
parties solves a PoW at round i. Thus, we set X∗i = 1, if some honest party j

with Lji ∈ Ci solves a PoW at round i and X∗i = 0 otherwise. Further, we define
for a set of rounds S: X∗(S) =

∑
i∈S X

∗
i .

Lemma 7. It holds that
pqE[n∗alert]

1+pqE[n∗alert]
≤ E[X∗i] ≤ pqE[n∗alert].

Proof. The lemma can be proven using the same argumentation as in the proof
for the Lemma 2.

Accordingly, let Y ∗i denote the random variable with Y ∗i = 1, if exactly one

honest party j solves a PoW at round i and Lji ∈ Ci. Note that the resulting
chain, will be the only longest chain. Further, for a set of rounds S let Y ∗(S) =∑
i∈S Y

∗
i .

Lemma 8. It holds E[Y ∗i] = E[pqn∗alert,i(1−p)
q(n∗alert,i−1)] ≥ E[X∗i](1−E[X∗i]).

Proof. The proof follows the exactly same steps as the proof for Lemma 3.

5.1 Temporary Dishonest Majority Assumption

In this setting, the honest majority assumption changes slightly. We cannot
simply assume that t is smaller than some fraction of E[n∗alert], because we have

also to consider parties j with Lji /∈ Ci. We assume that for each round holds
t + (1 − s)E[nsleepy] ≤ c · (1 − δ) · E[n∗alert], where δ ≥ 3ε + 2E[X∗i] and some
constant c ∈ [0, 1]. Note that (1 − s)E[nsleepy] is the fraction of alert parties,
working on shorter chains.

In order to compute the upper bound for s, we reformulate the honest ma-
jority assumption. Using the quadratic formula, this results in the following:

s ≤
2c(1− δ)−

√
1 + 4(1 + c(1− δ) t

n−t)

2(1 + c(1− δ))
In the model description, we specified that the adversary is not informed

if a party Pi is set to sleep, after sending an instruction (sleep, Pi) to the
control program C. This assumption is realistic since the adversary can not
be certain about the success of his attempt to create a crash-failure. Further,
allowing the adversary to know when he successfully set to sleep a node makes
him quite powerful. Specifically, in our model we have a fraction of 1 − s alert

12 G. Avarikioti et al.

parties. Subtracting the parties, which are working on a longest chain, from
the (1 − s)(n − t) parties, leaves us an expected fraction of s(1 − s) parties,
which can be found on the left hand side of the honest majority assumption.
If we would assume that the adversary knows, which parties are asleep at each
round, we would have to change the temporary dishonest majority assumption
to t + E[nsleepy] ≤ c · (1 − δ) · E[n∗alert]. Then, the adversary could exploit this
knowledge to his advantage and send sleep instructions to the parties working on
the longest chains. To capture this adversarial behavior a different model would
be necessary (since s cannot be considered constant).

5.2 Security Analysis

For this section, we note that the properties of an typical execution apply for
the random variables X∗(S), Y ∗(S) and Z(S), given that |S| ≥ ηκ.

Lemma 9. Suppose that at round r, the chains in Ci have size l. Then by round
s ≥ r, an expected number of E[nalert] = (1− s)(n− t) parties will have adapted

a chain of length at least l +
∑s−1
i=r X

∗
i .

Proof. By Lemma 6, for every round i, the expected number of parties j with
Lji ∈ Ci is E[nalert]. Therefore, we only have to count the number of times, when
one of these longest chains gets extended.

In the following, we define a new variable φ and provide an upper bound for
it. This is required for the proof of the common prefix property. Although the
proven bound is not tight, it is sufficient for proving the desired properties.

Lemma 10. The probability that the honest parties j with Lji /∈ Ci can create a
new chain C ′ ∈ Cr for some round r ≥ i, before any chain from Ci gets extended
is denoted by φ. It holds that:

φ ≤ s

1− s

Proof. Without loss of generality, we may assume that all parties j with Lji /∈ Ci
have the same local chain. Further, we can assume that this chain is just one
block shorter than the currently longest chain. Thus, we search an upper bound
for the probability that the parties {Pj}Lji /∈Ci are faster in solving two PoW’s

than the parties {Pj}Lji∈Ci solving one PoW.

In order to prove that, we have to introduce a new random variable X̃i,
with X̃i = 1 if some honest party j with Lji /∈ Ci solves a PoW. By the same

argumentation as in Lemma 2, we can argue that
pq(1−s)E[nsleepy]

1+pq(1−s)E[nsleepy]
≤ E[X̃i] ≤

pq(1− s)E[nsleepy]. Therefore, the upper bound on the required probability is:

∞∑
k=2

(k − 1)E[X̃i]
2(1− E[X̃i])

k−2(1− E[X∗i])k

Bitcoin Security under Temporary Dishonest Majority 13

=
E[X̃i]

2

(1− E[X̃i])2
·
∞∑
k=2

(k − 1)
(
(1− E[X̃i])(1− E[X∗i])

)k
=

E[X̃i]
2(1− E[X∗i])2

(E[X̃i] + E[X∗i]− E[X̃i]E[X∗i])2

Now, let a := pq(1 − s)2(n − t) = pqE[n∗alert] and b := pqs(1 − s)(n − t) =

pq(1− s)E[nsleepy]. Then by the Definition of E[X̃i] and E[X∗i] holds:

E[X̃i]
2(1− E[X∗i])2

(E[X̃i] + E[X∗i]− E[X̃i]E[X∗i])2
=

b2

(1 + a)2(1− ab)2(a+ ab+ b)2

Thus, φ ≤ s
1−s is equivalent to:

b2

(1 + a)2(1− ab)2(a+ ab+ b)2
≤ s

1− s
⇔ ab ≤ (1 + a)2(1− ab)2(a+ ab+ b)2

The inequality holds, since (1 + a)2(1− ab)2 ≥ 1 and ab ≤ (a+ ab+ b)2.

The lemma below replaces Lemma 15. The possibility to have chains of dif-
ferent length at the same round offers various ways to replace a block from round
i, where Y ∗i = 1. Thus, we cannot use the same arguments as in Lemma 15.

Lemma 11. Suppose the kth block B of a chain C was computed at round i,
where Y ∗i = 1. Then with probability at least 1 − φ, the kth block in a chain C ′

will be B or requires at least one adversarial block to replace B.

As in the previous sections, the properties of the typical execution hold and
executions are typical with high probability, by Lemma 1.

Since we allow message losses in this model, we require more unique successful
rounds than in other models. This leads to a different bound in part e) of the
following lemma.

Lemma 12. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[X∗i]|S| < X∗(S)
b) (1− ε)E[X∗i](1− E[X∗i])|S| < Y ∗(S)

c) Z(S) < (1 + ε) t
E[n∗alert]

E[X∗i]
1−E[X∗i]

|S| < (1 + ε)
(
c(1− δ)− s

1−s
) E[X∗i]
1−E[X∗i]

|S|
d) For σ∗ = (1− ε)(1− E[X∗i]):

Z(S) <
(

1 +
δ

σ∗

) t

E[n∗alert]
X∗(S) ≤ c

(
1− δ2

2σ∗

)
X∗(S)

e)
Z(S) < Y ∗(S)(1− ε)(1− φ)

Next, we prove Bitcoin is secure in the synchronous model with message loss.
The proof can be found in Appendix D.

14 G. Avarikioti et al.

6 Security Analysis Results

As a result of the temporary dishonest majority assumptions, we have derived
upper bounds for the probability s as shown in Figure 6. Therefore, we fixed
c = 0.5 to limit the advantage of an adversary, following a Selfish Mining strategy.
Further, we have chosen for all three models ε = 0.005. For the synchronous
model without message losses, we set E[Xi] = 0.03, which results in δ = 0.075.
For the Semi-Synchronous model, we set also E[Xi] = 0.03, resulting in E[X ′i] =
0.022. For ∆ = 10, we then get δ = 0.46. And for the synchronous model with
message losses, we have chosen E[X∗i] = 0.03, which results in δ = 0.075.

Fig. 1. This figure shows the upper bound on the fraction of sleepy parties, depending
on the fraction of corrupted parties.

One might be wondering how we could allow such high values for s. We have
fixed E[Xi], respectively E[X∗i], for our calculations. We can do this without loss
of generality, since these expected values are dependent on p, which depends on
the difficulty parameter T . The adjustment of T , used to regulate the block
generation rate, depends on the fraction of sleepy parties, because they do not
provide computational power (e.g. new blocks) to the blockchain.

These results are also consistent with the results from [4], where the upper
bound on the adversarial fraction is stated at 49.1%. If we set c = 1 and s = 0,
due the value of δ, we get an maximal possible adversarial fraction of 48.5%.

7 Related Work

To model temporary dishonest majority in Bitcoin we used an idea, originally
introduced by Pass and Shi [12]. In this work, they introduced the notion of

5 Note that δ is dependent on E[Xi], which is again dependent on s. If we would
remove this dependency, the results would be at most 2% better than the actual
results shown in Figure 6.

Bitcoin Security under Temporary Dishonest Majority 15

sleepy nodes, i.e. nodes that go offline during the execution of the protocol,
and presented a provably secure consensus protocol. In this paper, we model
the dynamic nature of the system by additionally allowing the adversary to set
parties to sleep, thus enabling temporary dishonest majority.

Bitcoin has been studied from various aspects and multiple attacks have
been proposed, concerning the network layer [8,11,1] as well as the consensus
algorithm (mining attacks) [6,13,5,9]. The most famous mining attack is selfish
mining [6], where a selfish miner can withhold blocks and gain disproportionate
revenue compared to his mining power. The chain quality property, originally
introduced in [7], encapsulates this ratio between the mining power and the final
percentage of blocks, and thus rewards, the adversary owns. On the other hand,
Heilman et al. [8] examined eclipse attacks on the Bitcoin’s peer-to-peer network.
In turn, Nayak et al. [11] presented a novel attack combining selfish mining and
eclipse attacks. They showed that in some adversarial strategies the victims of
an eclipse attack can actually benefit from being eclipsed. Our last model, where
offline parties do not get the update messages, captures this attack.

8 Conclusion & Future Work

In this paper, we prove Bitcoin is secure under temporary dishonest majority.
Specifically, we extended the framework of Garay et al. [7] to incorporate offline
nodes and allow the adversary to introduce crush failures. This way we can
relax the honest majority assumption and allow temporary dishonest majority.
We prove Bitcoin’ s security by showing that under an expected honest majority
assumption the following security properties hold: chain growth, common prefix
and chain quality.

We examine three models: the synchronous model, the bounded delay model
and the synchronous model with message loss. The first two models result in
similar bounds regarding the fractions of corrupted and sleepy parties. In con-
trast, the last model that allows message losses when a party goes offline is less
resilient to sleepy behavior. This is expected since this model captures the na-
ture of eclipse attacks where the adversary can hide part of the network form an
honest party and either waste or use to his advantage the honest party’s min-
ing power. We illustrate in Figure 6 the upper bounds on the fraction of sleepy
parties depending on the fraction of corrupted parties for all three models.

For future work, we did not consider the bounded delay with message loss
model. We expect the difference on the results from synchronous to bounded
delay model to be similar to the model without message loss. Another interesting
future direction is to consider a more powerful adversary, who knows whether
his attempt to set a party to sleep is successful or not.

9 Acknowledgments

We thank Dionysis Zindros for the helpful and productive discussions. Y. W. is
partially supported by X-Order Lab.

16 G. Avarikioti et al.

References

1. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017. pp. 375–392 (2017)

2. Bahack, L.: Theoretical bitcoin attacks with less than half of the computational
power (draft). In: IACR Cryptology ePrint Archive, Report 2013/868 (Nov 2013)

3. Bonneau, J.: Hostile blockchain takeovers (short paper). In: Bitcoin18: Proceedings
of the 5th Workshop on Bitcoin and Blockchain Research (2018)

4. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
IEEE P2P 2013 Proceedings (Sep 2013)

5. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015. pp. 89–103 (2015)

6. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Commun. ACM (Nov 2013)

7. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Advances in Cryptology - EUROCRYPT 2015 - 34th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. pp. 281–310
(2015)

8. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: Proceedings of the 24th USENIX Conference on Security
Symposium. pp. 129–144. SEC’15, USENIX Association, Berkeley, CA, USA (2015)

9. Kwon, Y., Kim, D., Son, Y., Vasserman, E.Y., Kim, Y.: Be selfish and avoid dilem-
mas: Fork after withholding (FAW) attacks on bitcoin. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017. pp. 195–209 (2017)

10. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. In:
https://bitcoin.org/bitcoin.pdf (Oct 2008)

11. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack. 2016 IEEE European Symposium
on Security and Privacy (EuroSP) pp. 305–320 (2015)

12. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.)
Advances in Cryptology – ASIACRYPT 2017. pp. 380–409. Springer International
Publishing, Cham (2017)

13. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Financial Cryptography and Data Security - 20th International Confer-
ence, FC 2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected
Papers. pp. 515–532 (2016)

14. Singh, A., Ngan, T.W.J., Druschel, P., Wallach, D.S.: Eclipse attacks on overlay
networks: Threats and defenses. In: IEEE Infocom 2006 (Apr 2006)

15. Sit, E., Morris, R.: Security considerations for peer-to-peer distributed hash tables.
In: Springer, pp. 261269 (Oct 2002)

Bitcoin Security under Temporary Dishonest Majority 17

A Bounds for (unique) successful rounds

Lemma 2. It holds that pqE[nalert]
1+pqE[nalert]

≤ E[Xi] ≤ pqE[nalert].

Proof. By the definition of Xi, we know that E[Xi] = E[1 − (1 − p)qnalert,i].
Thus, the second inequality can easily be derived using Bernoulli. And for the
first inequality holds:

E[Xi] =

n−t∑
k=0

E[Xi|nalert,i = k] · Pr[nalert,i = k]

=

n−t∑
k=0

(
1− (1− p)qk

)
·
(
n− t
k

)
(1− s)ksn−t−k

= 1−
(
s− (s− 1)(1− p)q

)n−t
≥ 1−

(
s− (s− 1)(1− pq)

)n−t
≥ 1− e−(1−s)(n−t)pq =

pqE[nalert]

1 + pqE[nalert]

Lemma 3. It holds E[Yi] = E[pqnalert,i(1− p)q(nalert,i−1)] ≥ E[Xi](1−E[Xi]).

Proof. To prove the required bounds, we need a few intermediary steps. Using
Bernoulli, we can derive the following:

E[Yi] = E[pqnalert,i(1− p)q(nalert,i−1)] ≥ E[pqnalert,i(1− pq(nalert,i − 1))]

Then, we have to prove that pqE[nalert](1−pqE[nalert]) ≥ E[Xi](1−E[Xi]).
From the upper bound on E[Xi], we can derive E[Xi] = pqE[nalert] − b, for
b ≥ 0. Therefore:

E[Xi](1− E[Xi]) = (pqE[nalert]− b)(1− pqE[nalert] + b)

= pqE[nalert](1− pqE[nalert])− b2 − b+ 2pqE[nalert]b

In order to prove the required bound, it must hold that 0 ≥ −b2 − b +
2pqE[nalert]b, which is equivalent to 1 ≥ E[Xi] + pqE[nalert] and holds by the
fact that 2E[Xi] ≤ 1. This is also required by the proof in [7], but not stated
explicitly. Since in Bitcoin, E[Xi] is between 2% − 3%, the inequality can be
justified.

To conclude the proof, we just have to prove the following:

E[pqnalert,i(1− pq(nalert,i − 1))] ≥ pqE[nalert]− (pq)2E[nalert]
2

⇐E[nalert
2]− E[nalert] ≤ E[nalert]

2

Which is equivalent to V ar[nalert] ≤ E[nalert] and holds for the binomial
distribution.

18 G. Avarikioti et al.

B Bitcoin Security in M(q, 0, 1)

In this Section we prove the three properties, as stated in [7], for Bitcoin security
under the synchronous model with temporary dishonest majority as defined in
3.1. First, we prove the following lemma for a typical execution, which we later
use to prove the desired properties.

Lemma 4. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[Xi]|S| < X(S) < (1 + ε)E[Xi]|S|
b) (1− ε)E[Xi](1− E[Xi])|S| < Y (S)

c) Z(S) < (1 + ε) t
E[nalert]

E[Xi]
1−E[Xi]

|S| ≤ c(1 + ε)(1− δ) E[Xi]
1−E[Xi]

|S|
d) For σ = (1− ε)(1− E[Xi]):

Z(S) <
(

1 +
δ

σ

) t

E[nalert]
X(S) ≤ c

(
1− δ2

2σ

)
X(S)

e) Z(S) < Y (S)

Proof.
a) Follows directly from Definition 6.
b) By E[Yi] ≥ E[Xi](1− E[Xi]) and Definition 6.
c) The first inequality follows from Definition 6 and the second inequality fol-

lows from the honest majority assumption.
d) Let us first prove the first inequality:

Z(S) < (1 + ε)E[Z(S)] < (1 + ε)
t

E[nalert]

1

1− E[Xi]

1

1− ε
X(S)

So, the only thing left to prove is that 1+ε
1−ε

1
1−E[Xi]

≤ 1 + δ
σ :

1 + ε

1− ε
1

1− E[Xi]
− 1 =

1 + ε− σ
σ

=
2ε+ E[Xi]− εE[Xi]

σ
≤ δ

σ

For the second inequality, we can use the honest majority assumption, which
gives us:

(
1 +

δ

σ

) t

E[nalert]
≤ c ·

(
1 +

δ

σ

)
(1− δ) ≤ c

(
1 +

δ(δ2 − δ)
σ

)
≤ c
(

1− δ2

2σ

)
e) To prove Z(S) < Y (S), we apply Lemma 4 b) and c) and then prove that

(1 + ε)
t

E[nalert]

E[Xi]

1− E[Xi]
|S| < (1− ε)E[Xi](1− E[Xi])|S|

Dividing both sides with E[Xi]|S| and multiplying with (1−E[Xi]) gives us:

Bitcoin Security under Temporary Dishonest Majority 19

(1 + ε)
t

E[nalert]
< (1− ε)(1− E[Xi])

2

By the honest majority assumption, we get (1 + ε) t
E[nalert]

≤ c(1 + ε)(1− δ).
And since c ∈ [0, 1], we get c(1 + ε)(1 − δ) ≤ (1 + ε)(1 − δ). Thus, we only
need to prove that:

(1 + ε)(1− δ) ≤ (1− ε)(1− E[Xi])
2

⇔1 + ε− δ − δε ≤ 1− 2E[Xi] + E[Xi]
2 − ε+ 2εE[Xi]− εE[Xi]

2

⇔εE[Xi]
2 ≤ E[Xi]

2 + 2εE[Xi] + δε

Where the last step was just applying 2E[Xi] + 2ε ≤ δ. And since ε ∈ (0, 1):
εE[Xi]

2 ≤ E[Xi]
2.

B.1 Chain-Growth

In the following, we provide and prove a lower bound for the chain growth of the
backbone protocol. This property is generally known as liveness property. The
following lemma holds since it only depends on the random variable Xi.

Lemma 13 ([7], Lemma 7). Suppose that at round r, an honest party has a
chain of length l. Then, by round s ≥ r, every alert party has adopted a chain of
length at least l +

∑s−1
i=r Xi.

Below, we prove Theorem 13 of [7] in this model.

Theorem 1. In a typical execution, the chain-growth property holds with pa-
rameters τ = (1− ε)E[Xi] and s ≥ ηκ.

Proof. Note that it’s sufficient to lower-bound the chain growth by only consid-
ering the random variable Xi, because if the adversary obtains a PoW, he either
tries to “replace” some block from a honest node or he just adds the block to
the chain. In both cases, the chain doesn’t get smaller.

Then, for any set of rounds S = {r1, . . . , rs} with |S| ≥ ηκ + 1 holds by
Lemma 13:

The chains of every honest player grows by at least
∑|S|−1
i=1 Xri = X(S \ rs).

Using Lemma 4, we can derive

X(S \ rs) > (1− ε)E[Xi](|S| − 1) ≥ (1− ε)E[Xi]ηκ

Now, we prove an upper bound for the chain growth of the backbone protocol.
The main difference to the lower bound is that we now also have to consider
blocks, contributed by the adversary.

20 G. Avarikioti et al.

Lemma 14. In ηκ consecutive rounds of a typical execution, it holds that less
than (1 + c)(1 + ε)ηκE[Xi] blocks are computed.

Proof. We know that for any set S of consecutive rounds, X(S)+Z(S) blocks can
be added in expectation. This is already an upper bound, since X(S) + Z(S)
blocks implies that the adversary does not replace any block from an honest
party. We can upper bound X(S) + Z(S) using Lemma 4 a) and d) in the
following way:

X(S)+Z(S) < X(S)
(

1+c(1− δ
2

2σ
)
)
< (1+c)(1+ε)E[Xi]|S| = (1+c)(1+ε)ηκE[Xi]

B.2 Common Prefix

In the following, we prove that the common prefix property holds for a lower
bounded parameter k. This proof provides the eventual consistency guarantees of
the Bitcoin backbone protocol. The following lemma holds, since the adversary
can try to replace blocks, computed by the honest parties. If he cannot or will
not, the new block gets diffused and adapted by every other party in the next
round. 6

Lemma 15 ([7], Lemma 6). Suppose the kth block B of a chain C was com-
puted by an honest party in a uniquely successful round. Then the kth block in a
chain C ′ is either B or has been computed by the adversary.

Using this fact, we are able to prove the following lemma and the common
prefix property, which are adapted from [7].

Lemma 16. Assume a typical execution and consider two chains C1 and C2

such that len(C2) ≥ len(C1). If C1 is adopted by an honest party at round r and

C2 is either adopted by an honest party or diffused at round r, then C
dk
1 � C2

and C
dk
2 � C1, for k ≥ (1 + c)(1 + ε)ηκE[Xi].

Proof. Equivalent to the proof in [7]. The lemma can be shown by creating a set
of rounds S, in which at least k blocks were created. Then, using Lemma 15, we
can pair uniquely successful rounds in S with an adversarial block computed in

S. In order to violate C
dk
1 � C2 and C

dk
2 � C1, it must hold that Z(S) ≥ Y (S).

By Lemma 14, the properties of a typical execution have to apply for S, but
then Z(S) ≥ Y (S) contradicts Lemma 4 e).

6 In order to replace a block, the adversary may use a Block Discarding Attack, de-
scribed in [2]. Thus, the adversarial block is likely to be a precomputed block, where
the adversary performed a block withholding attack (e.g. Selfish Mining), analyzed
in [6].

Bitcoin Security under Temporary Dishonest Majority 21

Theorem 2. In a typical execution, the common-prefix property holds with pa-
rameter k ≥ (1 + c)(1 + ε)ηκE[Xi].

Proof. Equivalent to the proof in [7]. By two considering chains C1 and C2,
violating the common-prefix property, we can derive a contradiction. Therefore,
let C1 and C2 be adopted by parties P1 and P2 at rounds r1 and r2. Let r1 ≤ r ≤
r2 be the round, in which some party Pi adopts a chain C ′2 such that C

dk
1 � C ′2.

For the case r = r1, the contradiction can be obtained by Lemma 16. And for
r1 > r, let C ′1 be the chain, which Pi adopted at round r − 1. Using Lemma 16,
the Definition of r and that len(C ′2) ≥ len(C1) holds, because C ′2 was preferred
over C1 by some party, we can derive

(
C
′dk
2 � C ′1

)
∧
(
C
dk
1 � C ′1

)
∧
(
len(C

′dk
2) ≥ len(C

dk
1)
)

=⇒ C
dk
1 � C

′dk
2

which contradicts the Definition of r.

B.3 Chain Quality

In this part, we are going to prove an upper bound on the adversarial blocks
in a chain. Intuitively, this upper bound is approximately equal to t

E[nalert]
, but

differs by some small factor, as we show in the following.

Theorem 3. In a typical execution the chain-quality property holds with param-

eters µ = (1 + δ
σ) t

E[nalert]
< c · (1− δ2

2σ) and ` ≥ (1 + c)(1 + ε)ηκE[Xi].

Proof. Follows the same logic as the proof from [7]. We first define L ≥ ` as the
minimal number of consecutive blocks, where the first block was created by an
honest party and some honest party tried to extend the chain ending at the last
block. Then, we define the set of rounds S as the rounds, where the L blocks
were created.

Then, let x denote the number of blocks, created by honest parties and
included in the ` blocks. To get a contradiction, assume that

x ≤
(

1−
(

1 +
δ

σ

) t

E[nalert]

)
· ` ≤

(
1−

(
1 +

δ

σ

) t

E[nalert]

)
· L

.
Assuming a typical execution, we know that all L blocks are created during

rounds in S. Further, L ≥ X(S) can be shown, using Lemma 13. Thus:

Z(S) ≥ L− x ≥
(

1 +
δ

σ

) t

E[nalert]
· L ≥

(
1 +

δ

σ

) t

E[nalert]
X(S)

Where Z(S) ≥
(

1 + δ
σ

)
t

E[nalert]
X(S) contradicts Lemma 4 d), since by

Lemma 14, the rules of a typical execution apply for the set S.

22 G. Avarikioti et al.

As a result of Theorem 3, we can finally make use of the constant c. As we just

proved, the fraction of adversarial blocks is upper bounded by c · (1− δ2

2σ). This
means that we can adjust the desired fraction, by changing c. Of course, since

1− δ2

2σ is a bit lower than one, the ratio will be higher than c. But the difference
will be very small and it’s possible to adjust c until we have the desired bound.
In order to restrict the advantage of selfish mining, it’s possible to analyze the
Bitcoin backbone protocol, by selecting the wished upper bound by setting c
accordingly.

C Bitcoin Security in M(1, ∆, 1)

In this Section, we prove Bitcoin is secure under temporary dishonest majority,
as defined in 4.1, in the bounded delay model. We first prove Lemma 5 and later
the three security properties.

Lemma 5. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[Xi](1− E[Xi])
∆−1|S| < X ′(S)

b) (1− ε)E[Xi](1− E[Xi])
2∆−1|S| < Y ′(S)

c) Z(S) < (1 + ε) t
E[nalert]

E[Xi]
1−E[Xi]

|S| ≤ c(1 + ε)(1− δ) E[Xi]
1−E[Xi]

|S|
d) Let S′ = {r, . . . , r′} with |S′| ≥ ηκ. For S = {r, . . . , r′ + ∆} and σ′ =

(1− ε)(1− E[Xi])
∆:

Z(S) <
(

1 +
δ

2σ′

) t

E[nalert]
X ′(S′)

e) Let S′ = {r, . . . , r′} with |S′| ≥ ηκ. For S = {r −∆, . . . , r′ +∆}:

Z(S) < Y ′(S′)

Proof.
a) By (1− ε)E[Xi](1− E[Xi])

∆−1|S| ≤ (1− ε)E[X ′i]|S| < X ′(S)
b) By (1− ε)E[Xi](1− E[Xi])

2∆−1|S| ≤ (1− ε)E[Y ′i]|S] < Y ′(S)
c) Equivalent to Lemma 4 c).
d) By applying a) and c), we only have to prove that the following holds:

2ε+
2∆

ηκ
+∆E[Xi] ≤ δ

2

⇔
1 + ε+ 2∆

ηκ

σ′
− 1 ≤ δ

2σ′

⇒(1 + ε)|S| ≤ (1− ε)(1− E[Xi])
∆|S′|

(
1 +

δ

2σ′

)
e) By applying b) and c), we only have to prove that the following holds:

Bitcoin Security under Temporary Dishonest Majority 23

1− δ ≤ (1− ε)(1− E[Xi])
2∆

c(1 + ε)
(

1 + 2∆
ηκ

)
⇔(1 + ε)c(1− δ) |S|

|S′|
≤ (1− ε)(1− E[Xi])

2∆

⇒(1 + ε)
t

E[nalert]
|S| ≤ (1− ε)(1− E[Xi])

2∆|S′|

Therefore:

1− (1− ε)(1− E[Xi])
2∆

c(1 + ε)
(

1 + 2∆
ηκ

) ≤
(1 + ε)

(
1 + 2∆

ηκ

)
− (1− ε)(1−∆E[Xi])

2

(1 + ε)
(

1 + 2∆
ηκ

)
≤ 2ε+ 2∆E[Xi] +

4∆

ηκ

≤ δ

C.1 Chain growth

Note, that the chain growth upper bound holds, as it is, since it only depends
on X(S) and Z(S).

Lemma 17 ([7], Lemma 26). Suppose that at round r an honest party has a
chain of length l. Then, by round s ≥ r+∆− 1, every honest party has adopted
a chain of length at least l +

∑s−∆
i=r X ′i.

Proof. Equivalent to [7], by induction on s− r −∆+ 1 ≥ 0.

Theorem 4. In a typical execution, the chain-growth property holds with pa-
rameters τ = (1− ε)E[Xi](1− E[Xi])

∆−1 and s ≥ ηκ.

Proof. Equivalent to the proof from the synchronous case, but using Lemma 17
instead.

C.2 Common prefix

The following lemma is the adopted version of Lemma 16.

Lemma 18. Assume a typical execution and consider two chains C1 and C2 at
round r, such that len(C2) ≥ len(C1). For the same conditions of Lemma 16, it

holds C
dk
1 � C2 and C

dk
2 � C1, for k ≥ (1 + c)(1 + ε)ηκE[Xi] + 2∆.

Proof. The proof is the same as in Lemma 16, but considering a set S′ = {i :
r∗ +∆ < i < r −∆} to contradict Z(S) < Y ′(S′) from Lemma 5.

Theorem 5. In a typical execution, the common-prefix property holds with pa-
rameter k ≥ (1 + c)(1 + ε)ηκE[Xi] + 2∆.

Proof. Equivalent to the proof from Theorem 2.

24 G. Avarikioti et al.

C.3 Chain quality

Theorem 6. In a typical execution, the chain-quality property holds with pa-

rameters µ =
(

1 + δ
2σ′

)
t

E[nalert]
and ` ≥ (1 + c)(1 + ε)ηκE[Xi] +∆.

Proof. As in Theorem 3, we can argue that for S′ = {r : r1 ≤ r ≤ r2 −∆}:

Z(S) ≥ L− x ≥
(

1 +
δ

2σ′

) t

E[nalert]
L ≥

(
1 +

δ

2σ′

) t

E[nalert]
X ′(S′)

which is contradicting Lemma 5 d).

D Bitcoin Security in M(q, 0, 0)

In this Section, we prove Bitcoin is secure under temporary dishonest majority,
as defined in 5.1, in the synchronous setting with message losses. We first prove
Lemma 11 regarding block replacement, then we prove the properties for a typical
execution in this setting, as stated in Lemma 12, and lastly the three security
properties.

Lemma 11. Suppose the kth block B of a chain C was computed at round i,
where Y ∗i = 1. Then with probability at least 1 − φ, the kth block in a chain C ′

will be B or requires at least one adversarial block to replace B.

Proof. There are several ways to replace a block from a round i, where Y ∗i = 1:

1) The adversary has a precomputed block B′, replacing B directly. Thus, in
the same round, A diffuses the chain C ′, where the last added block is B′.

2) The parties j, with Lji /∈ Ci and thus with Lji 6= C solve a PoW at some
round r ≥ i, leading to a new block on some chain C ′, which has the same
length as C. Then, A extends and diffuses C ′ before C gets further extended.

3) The adversary solves a PoW and creates some chain C ′. As in the second
case, we may assume that the length of C and C ′ is equal. Then at some
round r ≥ i, either A or at least one party j with Ljr = C ′ solve a PoW,
resulting in the creation of the set Cr.

4) The parties j with Lji /∈ Ci are faster in solving two PoW’s, before C gets
extended.

The cases 1) - 3) involve at least one adversarial block, as required. And by
Lemma 10, we know that the case 4) only happens with probability φ.

Lemma 12. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[X∗i]|S| < X∗(S)
b) (1− ε)E[X∗i](1− E[X∗i])|S| < Y ∗(S)

c) Z(S) < (1 + ε) t
E[n∗alert]

E[X∗i]
1−E[X∗i]

|S| < (1 + ε)
(
c(1− δ)− s

1−s
) E[X∗i]
1−E[X∗i]

|S|

Bitcoin Security under Temporary Dishonest Majority 25

d) For σ∗ = (1− ε)(1− E[X∗i]):

Z(S) <
(

1 +
δ

σ∗

) t

E[n∗alert]
X∗(S) ≤ c

(
1− δ2

2σ∗

)
X∗(S)

e)

Z(S) < Y ∗(S)(1− ε)(1− φ)

Proof.
a) Follows directly from Definition 6.
b) By E[Y ∗i] ≥ E[X∗i](1− E[X∗i]) and Definition 6.
c) The first inequality follows from Definition 6 and the second inequality fol-

lows from the honest majority assumption.
d) Let us first prove the first inequality:

Z(S) < (1 + ε)E[Z(S)] By Definition 6 c)

≤ (1 + ε)
t

E[n∗alert]

E[X∗i]

1− E[X∗i]
|S| upper-bound for E[Zi]

< (1 + ε)
t

E[n∗alert]

1

1− E[X∗i]

1

1− ε
X∗(S) By a)

So, the only thing left to prove is that 1+ε
1−ε

1
1−E[X∗i]

≤ 1 + δ
σ∗ :

1 + ε

1− ε
1

1− E[X∗i]
− 1 =

1 + ε

σ∗
− 1 =

1 + ε− σ∗

σ∗
≤ 2ε+ E[X∗i]

σ∗
≤ δ

σ∗

For the second inequality, we can apply the honest majority assumption and
just need to prove:

1− σ∗ ≤ δ

2

⇒
(

1 +
δ

σ∗

)
(1− δ) ≤ 1− δ2

2σ∗

⇒c
(

1 +
δ

σ∗

)(
(1− δ)− s

1− s

)
≤ c
(

1− δ2

2σ∗

)
which follows from the Definition of σ∗ and δ.

e) The proof goes straight forward, using parts b) and c):

3ε+ 2E[X∗i] ≤ δ

⇒3ε+ 2E[X∗i] + φ− s

1− s
≤ δ

⇒(1 + ε)
(
c(1− δ)− s

1− s
)
≤ (1− ε)2(1− φ)(1− 2E[X∗i] + E[X∗i]2)

26 G. Avarikioti et al.

⇒(1 + ε)
t

E[n∗alert]
≤ (1− ε)2(1− E[X∗i])2(1− φ)

⇒Z(S) < Y ∗(S)(1− ε)(1− φ)

where the last step follows from Lemma 10 and the inequality holds according
to the Definition of δ.

D.1 Chain-growth

Note that the chain growth upper bound holds with the parameters from the
synchronous model without message losses and we just have to prove the new
lower bound. Intuitively, if we set s = 0, the upper bound is equal to the upper
bound from the synchronous model without message losses.

Theorem 7. In a typical execution, the chain-growth property holds with pa-
rameters τ = (1− ε)E[X∗i] and s ≥ ηκ.

Proof. Equivalent to the proof from the synchronous case, but using Lemma 17
instead.

D.2 Common-prefix

Only the proof for the common prefix lemma changes, since we have several
possibilities to replace a block in this new model. This is formalized in the proof
of the lemma below.

Lemma 19. The Lemma 16 holds in this model with the same parameters as in
the synchronous model without message losses.

Proof. The proof follows the same logic as in the synchronous model without
message losses. We create a set of round S, in which at least k blocks were

created. In order to violate C
dk
1 � C2 and C

dk
2 � C1, each block created in a

round i ∈ S, where Y ∗i = 1 has to be replaced. Using Lemma 11, it holds that
an expected fraction of 1−φ block replacements involve at least one adversarial
block. Using Chernoff, we can argue that the number of such block replacements

is lower bounded by (1 − ε)(1 − φ) with probability 1 − eΩ(κ). Thus, C
dk
1 � C2

and C
dk
2 � C1 is violated if and only if Z(S) > Y ∗(S)(1 − ε)(1 − φ). And by

Lemma 14, the properties of a typical execution have to apply for S, but then
Z(S) > Y ∗(S)(1− ε)(1− φ) contradicts Lemma 12 e).

Theorem 8. In a typical execution, the common-prefix property holds with pa-
rameter k > (1 + c)(1+ε)ηκE[Xi].

Proof. Equivalent to the proof from the synchronous model without message
losses, but using Lemma 19 instead.

Bitcoin Security under Temporary Dishonest Majority 27

D.3 Chain-Quality

Theorem 9. In a typical execution, the chain-quality property holds with pa-

rameters µ = (1 + δ
σ∗) t

E[n∗alert]
≤ c · (1− δ2

2σ∗) and ` ≥ (1 + c)(1 + ε)ηκE[Xi].

Proof. We can use the same arguments as in the proof from the synchronous
model without message losses. Assume that x ≤ (1 − (1 + δ

σ∗) t
E[n∗alert]

) · ` ≤
(1 − (1 + δ

σ∗) t
E[n∗alert]

) · L. Then, by Lemma 9, it holds that L ≥ X∗(S), which

implies that Z(S) ≥ L− x ≥ (1 + δ
σ∗) t

E[n∗alert]
·L ≥ (1 + δ

σ∗) t
E[n∗alert]

X∗(S). The

contradiction is obtained by Lemma 12 d).

	Bitcoin Security under Temporary Dishonest Majority

