
ar
X

iv
:1

31
2.

70
13

v1
 [

cs
.C

R
]

 2
5

D
ec

 2
01

3

Theoretical Bitcoin Attacks with less than Half

of the Computational Power (draft)

Lear Bahack
∗

Abstract

A widespread security claim of the Bitcoin system, presented in the

original Bitcoin white-paper, states that the security of the system is

guaranteed as long as there is no attacker in possession of half or more of

the total computational power used to maintain the system. This claim,

however, is proved based on theoretically flawed assumptions.

In the paper we analyze two kinds of attacks based on two theoretical

flaws: the Block Discarding Attack and the Difficulty Raising Attack.

We argue that the current theoretical limit of attacker’s fraction of total

computational power essential for the security of the system is in a sense

not 1

2
but a bit less than 1

4
, and outline proposals for protocol change that

can raise this limit to be as close to 1

2
as we want.

The basic idea of the Block Discarding Attack has been noted as early

as 2010, and lately was independently though-of and analyzed by both

author of this paper and authors of a most recently pre-print published

paper. We thus focus on the major differences of our analysis, and try

to explain the unfortunate surprising coincidence. To the best of our

knowledge, the second attack is presented here for the first time.

1 The Block Discarding Attack

The attack is based on (or can be much amplified by) the assumption that
the attacker can achieve "Network Superiority" by maintaining many direct
network connections, much above the average of a single user. As explained
in the previous section, when two blocks are released around the same time,
the one that will be propagated faster has much higher chance to be eventually
confirmed. The ability to make one’s block be propagated much faster is part
of what we regard as network superiority, while the other part is the ability to
become instantly aware of any new released block in the network.

Propagation of blocks is relatively slow – the average time it takes for a
node to be informed of a new block is 12.6 seconds[1] – since propagation delay
composes both of the data transmissions time and the blocks verification time

∗A math student at the Open University of Israel. Email: lear.bahack@gmail.com

1

http://arxiv.org/abs/1312.7013v1

(a node verifies each block before it propagates it to its neighbors). There-
fore, an attacker that maintains many slave nodes all across the network that
are programmed to propagate her blocks without verification and to send her
new received blocks without verification, is most definitely expected to acquire
network superiority. That is, as long as the network is homogeneous, as the
distributed Bitcoin network is ideally supposed to be. Propagation of the at-
tacker’s block can be accelerated even further by composing empty or relatively
short blocks, whose verification (by the non-slave nodes) is faster.

Let’s assume an attacker with 0 < p < 1
2 fraction of the total hash power

achieves total network superiority, meaning she 1 is instantly informed of any
new released block and her generated blocks always win the race when they
are released at the same time as a competitive block. Then the attacker will
lose nothing by secretly holding each new generated block until a competitor is
found and then release it immediately, and while holding the block treating it
like it was already accepted into the chain, i.e. mining the next block on top of
the temporary-secret block.

Normally, when the attacker generates x blocks and the rest of the network
generates y blocks, and each one of the blocks is mined on top of the previous
generated one, the chain eventually grows by x + y more blocks. However in
time of attack, if the attacker generates x blocks and the rest y blocks, then all
of the attacker’s blocks will eventually get into the chain while only y − x of
the other blocks will get into the chain, so the chain eventually grows by only y

more blocks:
Each block of the attacker is released when another block is found and hence

it is used to "replace" the competitive block within the chain. So if the attacker
mines x blocks, x blocks of the rest of the network will be discarded, and replaced
by the attacker’s blocks. The total block-chain growing rate will be as if the
attacker doesn’t mine at all, that is 1− p times the normal rate.

Difficulty adjustment then lowers the difficulty so there will be approximately
the same number of generated blocks within the same period of time. The total
share of the attacker’s blocks out of the block-chain is then raised from p to
p

1−p , raising the attacker’s profits.
Lows of economy dictate that the cost of hash-power invested into mining

should be around the expected reward. The expected reward of the non-attacker
miners is now only 1−2p

1−p times than before, so the total hash-power of the honest
miners is about to decline as more miners leave the system. By essence that
means the attacker’s share of the total hash-power is about to exceed p, so that
the attack becomes more efficient and hence there are more miners to leave the
system. . . the process can halt on some equilibrium or continue until all honest
miners leave.

In real-world though, the retirement of miners is expected to be less sig-
nificant, since the cost of mining is divided between the cost of electricity and
network connection, and the cost of dedicated ASIC machinery. Leaving the
system can immediately stop the wastage of electricity, while regaining the (rel-

1For simplicity we choose to adapt the feminine form. This was chosen by flipping a coin.

2

atively high) cost of ASIC on times there are less buyers and more sellers is
not trivial. Assuming the attacker isn’t generously willing to buy the unwanted
ASICs, honest miners might nevertheless continue to mine.

Hence the paper is more focused on the reasonability of each attack (mean-
ing, whether it is profitable or not) rather than the exact theoretical long term
outcome of a reasonable attack. Yet our theoretical equilibrium analysis is of
real-world importance: it is applicable to crypto-currencies that are based on
more economically liquid means of computation such as Litecoin, or SHA-256
based smaller crypto-currencies, in which an honest miner can just switch to
Bitcoin in case of attack.

To analyze the possible equilibrium, let b be the hash-power of the attacker,
g the initial hash-power of the honest network, and h > 0 the new hash-power
of the honest network when a possible equilibrium is reached. For simplicity let
the hash-power unit we use be such that b+ g = 1, or equivalently, b = p.

The expected number of (eventually accepted) mined blocks per hash-power
unit of an honest miner in the equilibrium state is the same as what the ex-
pected number of mined blocks per hash-power unit was before the attack.
Since the total hash-power of confirmed blocks in the equilibrium state is h,

we get
g/(b+g)

g =
(h−b)/h

h . By convention b + g = 1, so we get h2 = h–b, or

h = 1
2 (1 +

√
1− 4b). That means the fraction of the attacker out of the new

total hash-power is b
h+b = 2p

2p+1+
√
1−4p

.

For p = 1
4 that means 1

4 of the initial hah-power has left; attacker has
acquired a fraction of 1

3 of the new hash-power and gets twice as much revenue
as before; and the difficulty is half than before. For 0 < p < 1

4 , both the attacker
gain more rewards and the mining is easier than before with the same factor,
which is less than twice, and retirement is less than 1

4 of the initial power. For
p > 1

4 the equilibrium is obviously impossible, meaning the process will not halt
until all honest miners leave the network.

In practice, total network superiority can never be achieved. Therefore our
analysis should be based upon both the attacker’s fraction of total initial hash-
power 0 < p < 1

2 , and her network superiority measure 0 < ns < 1, defined as
follows: when an honest miner mines a new block and the attacker is quickly
informed of it and tries to release a competitive block as fast as she can, ns is
the probability of the event that the next block mined by the honest network
on top of either of the competitive blocks, will be on top of the attacker’s block.
We should stress that it is irrelevant to this event whether the attacker succeeds
to secretly mine yet another block before the honest network does so.

Interestingly, the attack is reasonable even were ns is explicitly lower than
1, and yet more surprisingly even were ns = 0, as long as p > 1

3 . However
the analysis is more complex since there are many Block Discarding Attack
strategies, and for different pairs of p and ns a different strategy is best suited.
The strategy we have just presented is called st∞, and is part of a hierarchical
family of strategies analyzed in subsection 3.1; in subsections 3.2 and 3.3 we
present some improvements to the strategies of subsection 3.1; in subsection
3.4 we examine the applicability of the Block Discarding Attack to non-Bitcoin

3

crypto-currencies designs; finally we suggest a simple countermeasure to all
possible Block Discarding Attack strategies on subsection 3.5.

1.1 The stk family of strategies

Under the following three assumptions, all reasonable less than 50% of hash-
power Block Discarding mining strategies are shown to be just the stk, k =
0, 1, 2, ..,∞ family, defined in algorithm 1:

1. While the attacker’s strategy might affect the mining difficulty, it affects
the attacker and the honest parties the same way.

2. The strategy is not based on any information but the current block-chain
branches.

3. The attacker never tries to extend a branch if there is a (strictly) longer
branch.

Since the attacker has less than half of the total hash-power, it follows from as-
sumption 1 that on any possible mining strategy, eventually will come a moment
where a new honest block is published and the attacker has no competitive block
to release. Then the attacker is forced to switch to the honest block, according
to assumption 3.

We shall call such a moment "consensus". Using this term we can say that
a Block-Discarding strategy is a set of rules the attacker follows, beginning on
consensus, until the next consensus is achieved. The aim of such strategy is to
increase the fraction of the attacker confirmed blocks out of all confirmed blocks,
and its means are decision as for releasing or holding a block, and choosing on
top of which block to try mining the next.

All strategies that fork the chain into more than two branches (meaning, the
attacker is simultaneously extending at least two different branches), or that are
not deterministic given the current state of branches, can be shown to be not
optimal. Thus in any reasonable strategy there are always up to two competitive
public branches of the same length, one is composed solely of the attacker’s block
and the other solely of honest blocks, where the public attacker’s branch might
have a secret extension.

Not mining on top of the attacker own branch is never reasonable; releasing a
secret block when the honest branch gets extended can never harm the attacker;
and releasing more blocks than needed for the attacker’s public branch to surpass
the honest branch by a single block, is never wise. Therefore, a reasonable
strategy is just a rule as for the circumstances on which to release just the single
block needed to make the two public branches even again, and the circumstances
in which it is better to release a block so that the attacker’s public branch
surpasses the honest branch, and thus ensure the attacker’s branch is eventually
confirmed.

While attacker with total network superiority has nothing to lose from se-
cretly holding each of her blocks until a competitive is found, attacker without

4

Figure 1: The stk strategy, k = 0, 1, 2, ... ,∞

on initialization
go to consensus

on consensus
gap← 0
public fork length← 0
mine on top of the last public block

on attacker (you) mine a new block
gap← gap+ 1
if gap = 1 and public fork length = k

. release the new mined block

. go to consensus
else
. mine on top of the new mined block

on the honest network mine a new block
gap← gap− 1
if gap = −1
. go to consensus
else
. release your earliest unpublished block
. public fork length← public fork length+ 1
. if the honest block is mined on top of attacker’s block
. public fork length = 1
. if gap = 1 and public fork length ≥ k

. releas your secret block

. go to consensus

. else

. continue to mine on top of the same block

5

total superiority takes a risk whenever she has only a single secret block ahead
of her public branch and there is a competitive equally long honest branch:

In case the honest network mines the next block before the attacker and it
is mined on top of the attacker’s public branch, her branch gets confirmed and
there are then just two competitive single-block new branches. On the other
hand, if this honest block is mined on top of the honest branch (the probability
of that is 1 − ns > 0), the attacker releases her last secret block and the next
block too happens to be an honest block extending the honest branch, she loses
her whole branch.

The stk strategy differs from the strategy of attacker with total network
superiority only in the event that the attacker has a single secret block and the
length of the public branches is of k or more blocks. On this event, the stk
attacker would release her secret block, obtaining a new consensus. Thus we
can view the strategy of the total network superior attacker as st∞, and st0 as
the honest mining strategy. We shall start by analyzing the profitability of the
st1 strategy, which is of crucial importance: as we latter prove, attacker has
some better strategy than st0 iff st1 is better than st0.

We denote by ark and hrk the corresponding average rewards the attacker
and the honest network accept, where the attacker uses the stk strategy (and
the honest network use st0). The reward is measured as the miner’s number of
eventually confirmed blocks between two consecutive consensuses. We denote
by ek the probability to obtain between two consecutive consensuses, a situation
where the attacker holds a single secret block and the two public branches are
of exactly k blocks each, assuming the attacker uses stk. Obviously, ark hrk
and ek are functions of p and ns.

Claim 1:

1. ar1 = p3

1−2p +2p2(2−p)+p(1−p)2ns And hr1 = 1−p+p(1−p)2(2−ns).

2. The st1 attacker resulted fraction of the total rewards is
p3

1−2p+2p2(2−p)+p(1−p)2ns

p3

1−2p+2p2(2−p)+2p(1−p)2+1−p
.

3. The st1 attack is profitable iff p > 1−ns
3−2ns .

4. The resulted mining difficulty of the st1 attack is adjusted to be (1−p)(ar1+hr1)
ar1+hr1−p2(2−p)

times the previous difficulty. Note: we don’t assume the retirement of hon-
est miners, which could theoretically lead to a further decreased difficulty.

Corollary: No matter how fast is the information propagation between honest
nodes of a Bitcoin network compared to the attacker’s nodes, attacker with more
than 1

3 of the total hash-power would nevertheless have a reasonable strategy,
even if her network superiority is zero.

Proof: Beginning in a consensus, the process in which the next consensus
is reached where the attacker uses the st1 strategy, can either start by two
consecutive blocks the attacker mines before all others, or is one of four possible
paths:

6

1. The first block to be mined is honest, and then the new consensus is
reached.

2. First mined block is of the attacker, the second is honest and the third
is of the attacker too. When this block is mined the attacker releases it
immediately and the new consensus is reached.

3. First is the attacker block, second is an honest block, and the third block
is an honest block mined on top of the previous honest block. When this
block is mined the 2-blocks honest branch leads to the next consensus.

4. First is the attacker’s block, second is an honest block, and third is yet
another honest block which is mined on top of the attacker’s block. The
branch of the first and third blocks then leads to the next consensus.

The corresponding probabilities of the four special cases are: 1 − p, p2(1 − p),
p(1− p)2(1− ns), p(1 − p)2ns. The corresponding rewards of the attacker are:
0, 2, 0, 1 and of the honest network are: 1, 0, 2, 1.

As for a process starting by two consecutive attacker’s blocks, it will end as
soon as the honest network minimizes the 2-blocks gap to a single-block gap.
The rewards outcome depends only on the number of steps until this gap is
closed, while it doesn’t matter whether an honest block is mined on top of a
previous honest block or on top of the last block the attacker released.

The expectancy of the number of binomial random walking moves until we
first get to the point which is one step to the right, where moving left probability
is p < 1

2 , is known to be 1
1−2p , including the last step to the right. Thus the

average number of steps to the left until that point, is half of the total number
of steps until that point not counting the last one, that is, (1

1−2p − 1)12 = p
1−2p .

Thus the average rewards the attacker is about to get when the process begins
with two consecutive blocks of her own is p

1−2p + 2.

The probability of that is p2, hence we get: ar1 = p3

1−2p +2p2 +2p2(1− p)+

p(1−p)2ns And hr1 = 1−p+p(1−p)2(2−ns). Therefore the attacker resulted

fraction of the total rewards is ar1
ar1+hr1

=
p3

1−2p+2p2(2−p)+p(1−p)2ns

p3

1−2p
+2p2(2−p)+2p(1−p)2+1−p

.

The st1 strategy is reasonable iff ar1
hr1

> p
1−p , or equivalently ar1(1−2p)

p(1−p) −
hr1(1−2p)
(1−p)2 > 0, that is, p(3− 2ns) + ns− 1 > 0, or equivalently p > 1−ns

3−2ns .

As for the difficulty adjustment, the decreasing factor is the ratio of the
average number of chain blocks between two consecutive consensuses and the
average total number of valid blocks mined between two consensuses, including
all eventually dumped blocks.

The average number of chain blocks is obviously ar1+hr1, while the average
total number of mined blocks is 1

1−p times the average total number of honest
mined blocks. The number of chain blocks between two consecutive consensuses
is the total number of honest mined blocks or this number plus one, in case the
attacker is the composer of the new consensus block. The probability of the

7

latter case is p2(2− p), hence ar1 + hr1 − p2(2− p) is the average total number
of honest blocks. [end of proof]

Claim 2: Let k ∈ N ∪ {0}.

1. ark+1 = ak + ek(
p2

1−2p + 2p(2 − p) + (1 − p)2ns − 1 − k(1 − p)2(1 − ns))

and hrk+1 = hrk + ek(1− p)2(2 − ns+ k(1− ns)).

2. If stk+2 is more profitable than stk+1 then stk+1 is more profitable than
stk.

3. There is a reasonable Block Discarding Attack strategy if and only if
p > 1−ns

3−2ns , under assumptions 1,2,3.

Proof: The stk+1 strategy differs from stk only in case a situation is obtained
where both public attacker’s branch and the honest branch are of exactly k

blocks and the attacker holds a single secret block on top of her public branch.
The probability that between two consecutive consensuses this situation occurs,
while playing according to stk, is denoted by ek. Hence ark+1–ark is of the form
ek(A − (k + 1)) where A is the average reward the stk+1 attacker gets starting
in the described situation and until a new consensus is achieved.

A is calculated much like ar1. In fact, this process is equivalent to the
process that starts with a situation where the attacker have a single secret
block on top of consensus and ends with the next consensus, where the attacker
plays according to st1, with a simple twist: in case the attacker’s first block is
eventually confirmed, she is extra rewarded with k more blocks.

When the st1 attacker starts with a single secret block and no public blocks,
the probability that eventually this block is excluded is (1 − p)2(1 − ns), since
this can only happen where the next two mined blocks are honest blocks and

the second is on top of the first. Thus we get A = p2

1−p +2p(2−p)+(1−p)2ns+

k(1 − (1 − p)2(1 − ns)), as claimed. As for hrk+1, it is similarly calculated:
hrk+1 − hrk = ek · H where H is the average reward the honest network gets
from the twisted st1–similar process.

A strategy stm+1 is more profitable than stm iff arm
hrm

<
arm+1

hrm+1
, or equivalently

arm
hrm

<
arm+1−arm
hrm+1−hrm

=
p2

1−p
+2p(2−p)+(1−p)2ns+m(1−(1−p)2(1−ns))

(1−p)2(2−ns+m(1−ns)) . The sequence
arm+1−arm
hrm+1−hrm m

decreases until all of its elements are negative, so if stk+2 is more

profitable than stk+1, meaning ark+1

hrk+1
<

ark+2−ark+1

hrk+2−hrk+1
, then ark+1

hrk+1
<

ark+1−ark
hrk+1−hrk

too. Therefore ark
hrk

= ark+1−(ark+1−ark)
hrk+1−(hrk+1−hrk)

<
ark+1

hrk+1
, meaning stk+1 is more prof-

itable than stk. As a consequence there is a reasonable attack, meaning a
strategy that is better than st0, iff st1 is better than st0. We already know this
is equivalent to p > 1−ns

3−2ns . [end of proof]
The above proof shows us how to calculate the best result attacker with

certain 0 < p < 1
2 and 0 ≤ ns < 1 can achieve using one of the stk strategies:

we can recursively calculate the expected rewards of stk, simply by calculating
ek and using the formulas for ark+1 and hrk+1. The first k whose consecutive
is yielding a smaller reward is the best option. If k is 0 or 1 only, there are

8

finitely many ways to obtain the described event whose probability is ek, hence
ek can be calculated simply by summing the corresponding probabilities. For
calculating ek for k ≥ 2, one can use basic theory of Markov processes.

In case p and ns are such that the best strategy is of relatively high k, the
difference between stk and st∞ might be insignificant, as ek is negligibly small.
Thus, although the st∞ is never optimal for ns < 1, we shall nevertheless use
the following claim as estimation for the stk outcome of relatively high k.

Claim 3: The st∞ attacker expected fraction of the total rewards is -

p− (1− 2p)(1
ns − 1)

(

1− 2(1−p)

1+
√

1−4p(1−p)(1−ns)

)

1− p

Proof: In the st∞ strategy, the resulted block-chain contains exactly the
same number of blocks as the number of valid mined honest blocks. However
the chain is only partially composed of those blocks, since some of them are
"replaced" by the attacker. Hence the desired fraction is the ratio between the
number of the attacker mined blocks that are eventually included in the chain
and the total number of honest mined blocks, either eventually included or
excluded. Equivalently, that is p

1−p times the probability of an attacker mined
block to get accepted.

We prove the claim by showing that a fraction of 1−2p
p (1

ns−1)
(

1− 2(1−p)

1+
√

1−4p(1−p)(1−ns)

)

out of the total attacker mined blocks are eventually excluded. This fraction
is the ratio between the average number of excluded attacker blocks between
two consecutive consensuses to, and the average total number of blocks the at-
tacker succeeds to mine between two consecutive consensuses. Out of the same
random-walking reasons presented in the proof of claim 1, the average total
number of attacker’s block between two consensuses is p

1−2p .
The average number of excluded blocks is a bit more complex to compute:

the probability that the honest network will surpass the attacker when she
has exactly k mined blocks since the last consensus is Catkp

k(1 − p)k+1 where
Catk = 1

k+1

(

2k
k

)

is the kth Catalan number. When this happens, for each
1 ≤ i ≤ k, the ith attacker’s block is excluded iff all the k+ 1− i honest blocks
that were mined after the ith block was publish, were not mined on top of the
attacker’s public branch. Thus the average of excluded blocks in this case is
∑k

i=1(1− ns)i = (1
ns − 1)(1− (1− ns)k).

Since
∑∞

k=0 Catkx
k = 2

1+
√
1−4x

, we get
∑∞

k=0 Catkp
k(1− p)k+1(1

ns − 1)(1−
(1−ns)k) = (1−p)(1

ns −1)
(

∑

Catk(p(1−p))k−∑

Catk(p(1−p)(1−ns))k
)

=

(1
ns − 1)

(

1 − 2(1−p)

1+
√

1−4p(1−p)(1−ns)

)

, So the fraction of excluded blocks out of

all the attacker’s mined blocks is 1−2p
p (1

ns − 1)
(

1 − 2(1−p)

1+
√

1−4p(1−p)(1−ns)

)

, as

claimed. [end of proof]

9

1.2 The sstk family of strategies

Although assumption 2 of the previous subsection seems to be very reasonable
at first sight, the network does supplies the attacker with external to the block-
chain important information that might help her make more justified decisions
as for holding or publishing blocks.

When the attacker tries to discard a new published honest block, just after
the two competitive blocks are propagated and before any new block is mined,
the honest miners are divided into those who mine on top of the honest block
and those who mine on top of the attacker’s block. On average, the hash-power
of the second part is a fraction of ns out of the total honest hash power.

However, the sophisticated attacker can use slave nodes to estimate the
current fraction of the honest network that accepts her last released block,
and act accordingly: while the stk attacker always releases her secret block
whenever there is a single such block and the public branches are of k blocks,
the sophisticated attacker may nevertheless holds the secret block if the current
winning probability happens to be significantly higher than ns. On the other
hand, when the sophisticated attacker is left with a single secret block and
public branches are shorter than k blocks, she may nevertheless release it if the
winning probability happens to be small.

The author suspects that the posterior wining probabilities tend to be either
very close to 1 or 0, due to the exponential nature of the block propagation pro-
cess in the Bitcoin network[1]. Obviously, the distribution of posterior winning
probabilities where values are either 1 or 0, which is equivalent to the possibility
to know in advance whether a block is going to win or lose, is the best distribu-
tion for the attacker. The distribution where winning probability is constantly
ns, on the other hand, is the worst. Unfortunately we don’t know the actual
distribution, which is strongly dependent on the real-world network topology,
and trying to measure it is very expensive. Hence the attacker best possible
outcome should be upper and lower bounded.

The best stk strategy is in fact the best sophisticated strategy in the case
of constant winning probabilities, thus it provides us a lower bound. As for the
upper bound, we define the sstk family of sophisticated strategies, which can
be shown to be the only reasonable strategies for the 1/0 binary distribution.

The sstk strategy differs from stk only in the situation where the attacker
was left with a single secret block and the public branches are of at least k
blocks: while the stk attacker always releases her last block, the sstk attacker
does so only when she is about to lose, and with probability of ns keeps holding
the secret block.

We note that sst0 and sst∞ are correspondingly identical to st0 and st∞;
claim 2 has a similar version about the sstk family; the sst1 attacker fraction

of total rewards is
p2(p

1−2p+2)+ns·p(1−2p)

p2(p

1−2p+2)+ns·p(1−2p)+(1−p)(1−p·ns) ; and the attacker has a

reasonable strategy iff p > 1−ns
3−2ns , meaning there is no profitable sophisticated

strategy if there is no regular profitable strategy.
The last claim can be intuitively explained by noticing that for a pair of p

10

and ns such that st1 is of the same profitability as st0 (and sst0), sst1 is also of
the same profitability: when the sst1 attacker holds her last secret block despite
having a non-empty public branch, in case she know her branch is going to win
the competitor branch, we may regard the situation as having a single secret
block on top of consensus. Hence the only difference between the st1 and the
sst1 attacker is in a sense that in some of the cases the latter keeps a single
block on top of consensus in secret, the former choose to publish it. However
publishing a single block on top of a consensus is of the same expected profits as
holding it secret, so the sst1 attacker achieve the same profitability nevertheless.

1.3 Possible countermeasures

Considering countermeasures to the described attacks, a natural direction is to
change the process of propagating new mined blocks so that attacker will be
less likely to achieve network superiority above 1

2 . More specifically, we may
ask the Bitcoin users to maintain a list of all received maximal-length branches
and deliver new received blocks to all of their neighbors. Moreover, we may ask
miners to randomly choose on top of which branch to try mining the next block,
and ignore the order in which they were received.

This natural direction has two major problems: first, it does not change the
core of the Bitcoin protocol, but rather suggests a non-obligatory new configu-
ration of end users’ clients. A user may choose not to maintain a list nor deliver
more than one competitive block, and nevertheless is not about to experience
any resulted problem. Though the group of Bitcoin users and miners has a
motive to implement such a change, the individual user has no incentive at all
doing so. On the contrary: as the protocol transport volume keeps rising, users
would like to minimize the delivered data. As we already know, bad incentives
make real problems in the Bitcoin system [2].

The second and more crucial problem is the essentially limited success of this
direction. Due to the theoretical inability of honest miners to recognize which
one of two competitive blocks is the attacker’s, we can doubtfully guarantee
the attacker network superiority to be less than 1

2 . Yet even attacker with zero
superiority needs less than half of the total hash-power to have a reasonable
attack.

Therefore we propose a different countermeasure, by tackling the block dis-
carding attacks from a different angle. All attack strategies are based on contin-
uously forking the block-chain into relatively short branches, hence introducing
a fork-punishment rule into to core of the protocol can make those strategies
unprofitable. More specifically, we suggest not rewarding the miner of a block
that has a competitive block of another same-length branch, despite belonging
to the winner branch. There is a variety of possible implementations of this
basic idea, yet we would like to technically specify a simple possibility:

A pair of two same-length competitive branches, composed of N blocks at
most, shall be called "fork evidence". A miner may include fork evidence as
part of the new block she is trying to mine, as long as the origin of the fork is
less than 100 blocks deep. When a fork evidence have been successfully included

11

within a confirmed block, its lucky miner is rewarded half of the total rewards
the winning branch of the fork is about to gain, excluding blocks of a sub-branch
that has already been punished before, while the owners of those punished blocks
will then be totally disrewarded.

It should be noted that by doing so we can set the reasonability threshold
of block discarding attack to be as close to half of the hash-power as we want,
by choosing big enough N, yet in practice we see no reason to choose N which
is greater than 10. There are two disadvantages of the proposed change: the
current 100-blocks delay of the mining rewards, could not be abolished or get
shortened as it can be now, and the variance of mining profits[3] would slightly
increase.

The reason for not delivering all of the punished blocks rewards to the miner
who supplies the fork-evidence, is to prevent the profitability of intentionally
mining on top of previous blocks in order to get the old rewards into pos-
session. An even further restriction, such as maximum reward for supplying
fork-evidence, is needed if fees can make some of the rewards twice as big as
the average reward. The author is not concerned by the limited abolishment
of money this proposal is about to cause, yet there are possible mechanisms to
spread the total rewards of the punished blocks over many miners.

2 The Difficulty Raising Attack

On this section we show that the fundamental security claim of Bitcoin, pre-
sented on the original paper of S. Nakamoto[4] based on binomial random walk,
is theoretically inaccurate. As explained on section 2, assuming difficulty and
hash-power ownerships are constant, the probability that an attacker in pos-
session of 0 < p < 1 times the hash-power of the other network will be able
to discard a block that has been extended by n sequential blocks is pn. Please
notice that on this section we regard p as the ratio between the hash-powers of
the attacker and the honest network, rather than the fraction of the attacker’s
hash-power out of the total hash-power.

However difficulty is not constant, and can be manipulated by the attacker.
The Difficulty Raising Attack enables the attacker to discard n-depth block, for
any n and any positive p, with probability 1 if she is willing to wait enough
time.

On contrast with the Block Discarding Attack, on this second attack the
attacker is trying to calculate a completely competitive block-chain whose blocks
are uncorrelated to the honest network’s blocks. The two requirements each
valid block must satisfy presented on section 2, will sure be fulfilled if each
block timestamp precedes its previous block timestamp and the time stamp of
the last block of the chain will be earlier than the real time at the point of the
release.

12

2.1 The simplified attack

In order to demonstrate the basic idea of the difficulty raising, let’s make a
relaxation of the adjustment mechanism: we say the difficulty of a window is
different from the difficulty of the previous window by a factor of exactly the
ratio between two weeks and the timespan of the previous window, also when
this ratio is more than 4:1 or less than 1:4.

The (simplified) attack is launched when a new window begins. The first
block of that window is going to be the last common block of the honest network
chain and the attacker’s chain: the attacker secretly calculates 2014 blocks on
top of this first block of the window, each block’s timestamp is chosen to be
one second ahead of its predecessor. An even better possibility is to declare
all times as being exactly the same as the first block of the window – this is
possible, according to section 2.

Let the attacker hash-power be 0 < p < 1 times the power of the honest
network. The attacker is going to keep try mining two blocks – the last of
the current window and the first of the consecutive window – such that the
difficulties sum of the faked branch will exceeds that of the honest network.
When she fails, she tries to mine another couple of blocks on top of the last of
the 2014 blocks. The timestamp of the first block in the couple is chosen so that
the second block will have the desired difficulty.

Using the difficulty of the first window as our difficulty unit and 10 minutes
as our time unit, on time t since the attack the total honest block difficulties
sum is about t, hence the attacker needs to choose the difficulty d of the second
window such that 2015 + d > t.

As time proceeds, d becomes much greater than 1, so the expected time
needed for mining the first block is negligible compared to the second. When
the attacker takes a new trial she choose an interval ∆ that is much bigger than
1
p , which is the expected time of calculating the first block, and set d to be
such that if she manages to mine her two blocks during the interval time, her
block-chain is about to surpass the one of the honest network. Her chances of
succeeding are about ∆·p

t−2015 .

The integral
´

dx
x diverges to infinity, so if the attacker continues with the

strategy long enough, eventually she will win and be able to double-spend.
Interestingly, although the probability of success is 1, the mean time it takes is
infinity. However the median time is finite and can be approximated by

√
e 2015

p
units of 10 minutes for small values of p.

Since the attack might take a very long time, our assumption that the sum of
difficulties of the honest block-chain on time t is about t, needs to be reconsid-
ered. As time proceeds it is reasonable to assume the technology of computation
improves. If both the honest network and the attack hash-power have been in-
creased by the same factor, meaning p hasn’t changed, the attack would actually
be easier: the necessary ratio between the current difficulty of the honest net-
work and the artificially chosen difficulty d of the attack is 1 : t where the honest
network difficulty remains constant, but higher otherwise. In fact, if hash-power
exponentially rises with time, this necessary ratio – and hence the success prob-

13

ability of each interval – approaches a positive constant as t approaches infinity.
Thus the attacker is about to succeed on a finite average time.

2.2 The non-simplified attack

We shall now describe the non-simplified attack, in which the difficulty can
be increased by a factor of at most 4 between two consecutive windows. For
simplicity, we assume that on time t since the attack, the sum of difficulties
of the honest branch is exactly t. It is sound to assume the total hash-power
is constant, as a proportional increment of both the attacker’s and the honest
miners’ hash-power can only make it easier for the attacker.

Claim 4:
Attacker forks the chain when a new window begins by mining a competitive

block on top of the first block of the window. The declared time of each of the
attacker’s blocks is chosen to be 2.5 minutes ahead of its predecessor. If the
attacker continues with this strategy long enough, no matter how small her
hash-power is, on some point her chain will surpass the honest chain.

In order to prove the claim we use two lemmas about sums of independent
exponentially distributed random variables. We denote by exp(λ) a random
variable whose probability density function is λe−λx.

Lemma 1: Denote Pbad = Pr
(

∑2016
i=1 exp(λ) > 4032

λ

)

. In other words, Pbad

is the probability of
∑2016

i=1 exp(λ) being more than twice its expected value.
Then Pbad is the same extremely small positive constant for all values of λ, and

for all k ∈ N: Pr
(

∑∑2016
i=1 exp(4jλ) >

∑k
j=0

4032
4jλ

)

< Pbad.

Lemma 2: For each ǫ > 0 there is δ > 0 such that for any big enough k ∈ N

the probability that
∑k

j=0

∑2016
i=1 exp(4kλ) is less than ǫ times its expected value,

is greater than δ.
Proof of lemma 2: Let m be sufficiently large so that for any k > m, the

expected value of
∑k

j=m

∑2016
i=1 exp(4jλ) is less than ǫ

4 of the expected value of
∑m−1

j=0

∑2016
i=1 exp(4jλ), which we shall denote by E . Then the probability that

∑k
j=0

∑2016
i=1 exp(4jλ) is less than ǫ times its expected value, for k > m, is at

least the probability that
∑k

j=m

∑2016
i=1 exp(4jλ) is smaller than ǫ

2E times the

probability that
∑m−1

j=0

∑2016
i=1 exp(4jλ) is smaller than ǫ

2E . While the second
probability is constant, the first is greater than 1 − Pbad, hence there is such a
δ. [end of proof]

Proof of claim 4: Let ǫ = 3
4p where p is the fraction of the attacker hash-

power out of the honest network hash-power, and let δ and m be as of lemma
2 with respect to this ǫ. We divide the time, which is measured in units of 10
minutes, into consecutive intervals of lengths: 2016

∑m−1
j=0 4j , 2016

∑2m−1
j=m 4j ,

2016
∑3m−1

j=2m 4j , etc. As we show next, the conditional probability of the attacker
success in any interval, given the failure of the attacker to surpass the honest
chain during all earlier intervals, is bigger than δ, which proves the claim.

14

The time it takes to the attacker to compute k ·m consecutive windows from
the beginning of the fork, is distributed like

∑k·m−1
j=0

∑2016
i=1 exp(4−jp). With

probability higher than δ it is computed within less time than ǫ·E
(

∑k·m−1
j=0

∑2016
i=1 exp(4−jp)

)

=

3
4p

∑k·m−1
j=0

∑2016
i=1 4j 1

p = 3
4 · 2016

∑k·m−1
j=0 4j ≤ (1 − 4−m)2016

∑k·m−1
j=0 4j =

2016
∑k·m−1

j=(k−1)·m 4j which is exactly the length of the kth interval. When the
attacker goes into another interval of time she doesn’t calculate the block-chain
from the beginning of the fork but continues from the point she has gone so
far during the previous intervals of time, so the probability of success within a
certain interval is greater than δ. [end of proof]

A natural question of theoretical importance is whether this counterintuitive
attack has a possible protocol countermeasure. We believe the answer is nega-
tive: the capabilities of computational devices seem to grow exponentially with
time, though the exponential base might gradually and unpredictably change
over time. Thus any protocol mechanism of difficulty adjustment should enable
a difficulty rising that is exponential with respect to the block-chain length.

There is a variety of adjustment mechanisms that differ from the Bitcoin
mechanism by having different window lengths, different adjustment restrictions
than having up to 4 times or at least as 1

4 times the previous difficulty, or even
having the adjustment delayed or smoothed[5]. Yet any mechanism enabling
exponentially rise of the difficulty is vulnerable to the attacker, no matter how
small is the exponential base of the maximal rising.

3 Estimating the real-world threats

Both the Block Discarding Attack and the Difficulty Raising Attack are cur-
rently unrealistic and of theoretical importance only. However, while the math-
ematical calculations convincingly show there is no actual threat out of the
second attack, the first attack threat is limited by the structure of the current
Bitcoin network: the highest share of a solo miner out of the total hash-power,
the network topology of miners and their delays when receiving and releasing
blocks.

First of all it should be noted that the Block Discarding Attack is not ap-
plicable to pools, since the attack requires the secrecy of the new mined blocks,
which cannot be guaranteed while they are shared with all (anonymous) pool
miners. The only thing a centralized pool can do is to withhold a new block
someone in the pool has found, while the other pool members keep mining on
top of the older block, until a competitive block of non-pool miner has been
released. Then the one or more blocks the pool has found will be released too
– and hopefully win the race over the non-pool competitor.

By doing so the pool’s relative share out of all mining rewards is unchanged
if the pool has total network superiority, and decreased otherwise, hence the
attack is unreasonable. Nevertheless the attack can be performed by a small
well organized group of solo miners. In case one of the attackers happens to be
a centralized pool owner, the pool might be used to amplify the attack.

15

The smaller is the attacker fraction of the system total hash-power, the
closer to 1 is the minimal network superiority essential for a reasonable attack.
Assuming all current solo miners’ hash-power fractions are relatively small, the
attack is enabled only if achieving almost total network superiority is possible
within the real Bitcoin network, which is very questionable.

On theory, an ideally homogeneous decentralized Bitcoin network will enable
attacker that maintains many slave nodes to achieve network superiority. In
practice, the real network topology is definitely not homogeneous or ideally
decentralized. The author believes it is possible to get quickly informed of
any new published block, yet harder to immediately propagate a new block.
The blockchain.info website seems to assure the first part of the claim, while
trying to validate the second part is unfortunately very costly. Despite being
generally considered a negative phenomenon, the gathering of small miners into
major pools might positively affect the difficulty to immediately propagate new
blocks: while the average time it takes for a node to be informed of a new block
is said to be 12.6 seconds, the time it takes for a pool organizer, which naturally
maintains many network connections, is expected to be much lower.

Assuming attacker with less than 1
4 of the total hash-power have nevertheless

magically achieves total network superiority and uses the st∞ strategy, the
resulted new equilibrium can hardly be considered as a real threat to the system.
This attacker will not be able to do any real harm, yet the resulted decline of
the total difficulty of the chain theoretically makes the system more vulnerable
to a second more powerful attacker.

On the purely theoretical scenario where the attacker deports all other min-
ers, she can harm the system by launching a DoS attack. Double-spending
attack, however, is more problematic since the moment the Block-Discarding
attacker stops mining linearly, all the ex-miners will happily start mining again,
and are expected to gain awesome rewards due to the lower difficulty.

Yet we believe a countermeasure should be implied. Although not very likely,
it is absolutely possible that some government offended by the dark market uses
of Bitcoins decides to launch a DoS attack against the system.

4 Related works

Related works Bitcoin attacks with less than 1
2 of the computational power are

by no means new. Several attacks have been known since the early days of
the system, of which one simple yet important double spending attack goes as
follows: the attacker secretly mines blocks on top of the longest branch she
knows. No matter how small is the attacker hash-power, eventually the time
would come where the attacker secret chain is longer by 6 blocks than the honest
chain. Then the attacker may send conflicting transactions to the honest and
the secret branch, and publish the secret branch just before the honest branch
close the gap.

As for the two attacks described in this paper, although the author comes
to all the ideas and analysis presented here independently of any related work,

16

there are some similar works. Some of them are as early as 2010, while others
have been published during the last few days. The alleged coincidence can be
explained by the publication of analysis regarding the flow of information in
the Bitcoin network, e.g. [2] and the quite recent [2], that inspired the block-
discarding idea.

4.1 The Block Discarding Attack

The basic block-discarding idea, and a strategy to secretly hold new mined
block, were explicitly described in 2010-old thread of Bitcoin technical discus-
sions forum[7] including numerical results of a simplified simulation[8]. Despite
the participation of influential Bitcoin developers in this forum discussion, the
attack has been long forgotten, probably due to allegedly being impractical.
Surprisingly, two researchers of Cornell University have recently and indepen-
dently published a pre-print paper mathematically analyzing the st1 strategy,
which they call "Selfish Mining"[9].2

Apart from presenting a more comprehensive analysis of the Block Discard-
ing Attack and its many strategies, we suggest a different view of the attack
nature: while the pre-print paper describes the attack as being done by a min-
ing pool, and the resulted effect of the st1 strategy is said to be a transfer of
small miners from honest pools to the "selfish" pool, we stress that a Block
discarding attack can only be performed by a very powerful solo miner and that
the key point of the attack is the difficulty adjustment which enables the solo
attacker to gain higher rewards.

Moreover, the mentioned paper claims the attack creates a process which
will not end until the attacker pool oust all other miners. As we explain, the
more likely outcome is a new equilibrium with fewer honest miners that maintain
the same profits, as the difficulty adjustment makes mining easier. Yet another
difference is about the suggested countermeasures.

4.2 The Difficulty Raising Attack

The fact that there is no way to determine whether a block have been computed
on its declared time or not, which is at the base of our Difficulty Raising Attack,
have been noted before in Bitcoin discussions forums and even been used as part
of two attacks[11, 12].

While concerns of [11] were limited to the possible vulnerability of network
time differences, the false timestamps in [12] are used to manipulate the mining
difficulty: the attack exploit the protocol bag stated in section 2, that the time
span of a window is calculated from its first to its last block and not from the
last block of the previous window. However, the attack requires the cooperation
of more than half of the hash-power, and aimed only to increase the rewarding
of miners. Inventors of the attack explicitly state their opinion regarding the
impossibility of manipulate the difficulty to achieve a chain with total sum of

2Unfortunately the paper results were misleadingly propagated via the web and media[10],
causing disproportionate panic among Bitcoin users.

17

difficulties higher than the real amount of hash-power invested to calculate the
chain.

References

[1] C. Decker and R. Wattenhofer. Information Propagation in the Bitcoin
Network, 13th IEEE International Conference on Peer-to-Peer Computing,
2013.

[2] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar. On Bitcoin and Red
Balloons, 13th ACM Conference on Electronic Commerce, 2012.

[3] M. Rosenfeld. Analysis of Bitcoin Pooled Mining Reward Systems.
http://arxiv.org/pdf/1112.4980.pdf.

[4] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. http:
//bitcoin.org/bitcoin.pdf.

[5] Bitcoin wiki: List of alternative crypto-currencies.
https://en.bitcoin.it/wiki/List_of_alternative_cryptocurrencies.

[6] Bitcoin wiki: Block timestamp. https://en.bitcoin.it/wiki/Block_timestamp.

[7] User "BiteCoin" et al. Mining cartel attack, Bitcoin talk forum thread,
2010. https://bitcointalk.org/index.php?topic=2227.msg30064#msg30064.

[8] User "BiteCoin" et al. Mining cartel attack, Bitcoin talk forum thread,
2010. https://bitcointalk.org/index.php?topic=2227.msg30083#msg30083.

[9] I. Eyal and E. Gun Sirer. Majority is not Enough: Bitcoin Mining is Vul-
nerable, 2013. http://arxiv.org/pdf/1311.0243v5.pdf.

[10] I. Eyal and E. Gun Sirer. Bitcoin is Broken, "Hacking Distributed" blog,
2013. http://hackingdistributed.com/2013/11/04/bitcoin-is-broken.

[11] The Timejacking Attack, Culubas blog, 2011. http://culubas.blogspot.com.

[12] User "ArtForz" et al. The time Wrap-
ping Attack, Bitcoin talk forum thread, 2011.
https://bitcointalk.org/index.php?topic=43692.msg521772#msg521772.

[13] M. Rosenfeld et al. Dynamic block frequency, Bitcoin forum thread, 2012.
https://bitcointalk.org/index.php?topic=79837.0;all .

18

http://arxiv.org/pdf/1112.4980.pdf
http://arxiv.org/pdf/1311.0243v5.pdf
http://hackingdistributed.com/2013/11/04/bitcoin-is-broken
http://culubas.blogspot.com

	1 The Block Discarding Attack
	1.1 The stk family of strategies
	1.2 The sstk family of strategies
	1.3 Possible countermeasures

	2 The Difficulty Raising Attack
	2.1 The simplified attack
	2.2 The non-simplified attack

	3 Estimating the real-world threats
	4 Related works
	4.1 The Block Discarding Attack
	4.2 The Difficulty Raising Attack

