
ar
X

iv
:1

70
7.

01
02

1v
1

 [
cs

.C
R

]
 4

 J
ul

 2
01

7

A general framework for Bitcoin analytics

Massimo Bartoletti1, Andrea Bracciali2, Stefano Lande1, and
Livio Pompianu1

1 University of Cagliari, Italy
{bart,lande,livio.pompianu}@unica.it

2 University of Stirling, UK
abb@cs.stir.ac.uk

Abstract. Modern cryptocurrencies exploit decentralised ledgers — the
so-called blockchains — to record a public and unalterable history of
transactions. These ledgers represent a rich, and increasingly growing,
source of information, in part of difficult interpretation and undisclosed
meaning. Many analytics, mostly based on ad-hoc engineered solutions,
are being developed to discover relevant knowledge from these data. We
introduce a framework for the development of custom analytics on Bit-
coin — the most preeminent cryptocurrency — which also allows to
integrate data within the blockchain with data retrieved form external
sources. We illustrate the flexibility and effectiveness of our analytics
framework by means of paradigmatic use cases.

1 Introduction

The last few years have witnessed a steady growth in interest on blockchains,
driven by the success of Bitcoin — the first and most widespread instance
of these technologies3. This has fostered the research on several aspects of
blockchain technologies, ranging from their theoretical foundations — both cryp-
tographic [4,9] and economic [16,29] — to their security and privacy [1,5,10,12,19].

Among the many research topics emerging from blockchain technologies, one
that has received major interest is the empirical analysis of the data stored in
blockchains, mostly in that of Bitcoin. Indeed, the Bitcoin blockchain currently
contains more than 120GB of data, that only in part are related to currency
transfers. Developing analytics on these data allows to obtain several insights
on Bitcoin, as well as economic indicators that help to predict market trends.
Metadata embedded in transactions offer other opportunities for analysis, as they
are often exploited by “smart contracts” which extend the range of applications
of Bitcoin beyond simple transfers of currency.

Many relevant works on the analysis of the Bitcoin blockchain have been pub-
lished over the last few years. Several papers address anonymity issues, either by
developing techniques to de-anonymise users [18,19,25,27], by clustering transac-
tions [11,30], or by evaluating the protection offered by anonymising services [22].

3 Considering only the last year, the market capitalization of Bitcoin grew by 400%,
passing from ∼ 10 to ∼ 40 USD billions. Source: http://coinmarketcap.com.

http://arxiv.org/abs/1707.01021v1
http://coinmarketcap.com

Other analyses address criminal uses of Bitcoin, e.g. by studying denial-of-service
attacks [2,32], ransomware [14], and various financial frauds [20,23,31]. Many
papers and websites perform statistics on Bitcoin, measuring e.g. economic in-
dicators [15,28], transaction fees [21], the usage of metadata [3], etc.

A common trait of these works is that they usually create views of the
blockchain which contain all the data needed for the goals of the analysis. In
many cases, this requires to combine data within the Bitcoin blockchain with
data from the outside. These data are retrieved from a variety of sources, e.g.
blockchain explorers, wikis, discussion forums, and dedicated sites (see Table 1
for a brief survey). Despite many of the operations needed to construct these
views are standard (e.g., scanning all the blocks and the transactions in the
blockchain, converting the value of a transaction from bitcoins to USD , etc.),
researchers usually have to implement ad-hoc tools to develop their analyses. As
far as we know, no general-purpose analytics tools are currently available which
allow to combine data in the Bitcoin blockchain with data from other sources4.

Several of the above-mentioned works acquire blockchain raw data by using
Bitcoin Core5 (the reference Bitcoin client), and encapsulate them into Java
objects with the BitcoinJ APIs6 before processing. However, neither Bitcoin
Core nor BitcoinJ are natural tools to analyse the blockchain. Actually, the
intended usage of BitcoinJ is to support the development of wallets, and so
it only gives direct access to blocks and transactions from their hash, but it
does not allow to perform forward scans of the blockchain. On the other hand,
Bitcoin Core would provide the means to scan the blockchain, but this requires
expertise on its low-level RPC interface, and even doing so would result in raw
pieces of JSON data, without any abstraction layer. A plethora of tools have been
developed to retrieve data external to the Bitcoin blockchain, e.g. by exploiting
the APIs of blockchain explorers, or by parsing their HTML pages. However,
these tools have not been integrated into general-purpose blockchain parsers,
with the consequence that the same features have been implemented again and
again as new Bitcoin analytics have been developed, as witnessed by Table 1.

Summing up, exploiting the available tools to access the Bitcoin blockchain
and the relevant external data requires a significant programming effort. We
believe that a general-purpose tool which provides a suitable abstraction layer
for processing the blockchain (and for combining it with external data) would
help to reduce this effort.

4 A couple of customizable blockchain parsers are discussed in Section 5, but they
offer limited built-in support for combining blockchain data with external data.

5 https://bitcoin.org/en/bitcoin-core. Another popular tool for accessing the
blockchain was Bitcointools (https://github.com/gavinandresen/bitcointools),
but is seems no longer available.

6 https://bitcoinj.github.io
7 No longer online.
8 https://en.bitcoin.it/wiki/Category:Pool_Operators
9 https://en.bitcoin.it/wiki/Trade

10 https://en.bitcoin.it/w/index.php?title=OP_RETURN&oldid=61694

https://bitcoin.org/en/bitcoin-core
https://github.com/gavinandresen/bitcointools
https://bitcoinj.github.io
https://en.bitcoin.it/wiki/Category:Pool_Operators
https://en.bitcoin.it/wiki/Trade
https://en.bitcoin.it/w/index.php?title=OP_RETURN&oldid=61694

Analysis Subject Gathered information Sources

Anonymity

Transactions graph
OP RETURN metadata
IP addresses
address tags
address tags

bitcoind [18,19,22,27,30], forum.bitcoin.org7 [27]
bitcoind [22]
bitcoin faucet [27], blockchain.info [22]
blockchain.info [18,19,30], bitcointalk.org [18,19,30]
bitcoin-otc.com [30], bitfunder.org [30]

Market analytics

Transactions graph
IP addresses
address tags
trade data

bitcoind [15], blockexplorer.com [28]
blockchain.info, ipinfo.io [15]
blockchain.info [15]
bitcoincharts.com [15]

Cyber-crime

Transactions graph
mempool
unconfirmed transactions
no longer online services
list of DDoS attacks
mining pools
trades on assets and services
list of fraudulent services
address tags
exchange rate

bitcoind [2,31,32], blockchain.info [14,20]
bitcoind [2]
bitcoind [2]
archive.org [31,32]
bitcointalk.org [32]
blockchain.info, bitcoin wiki8 [32]
bitcoin wiki9 [32]
bitcointalk.org [14,31], badbitcoin.org [31], cryptohyips.com [31]
blockchain.info [31]
bitcoincharts.com [14,31], quandl.com [14]

Metadata
OP RETURN transactions
OP RETURN identifiers

bitcoind [3]
kaiko.com, opreturn.org, bitcoin wiki10 [3]

Transaction fees
Transactions graph
exchange rate
mining pools

bitcoind [21]
coindesk.com [21]
blockchain.info [21]

Table 1. Information gathered by various blockchain analyses.

Contributions. We propose a methodology to create custom analytics for the
Bitcoin blockchain. Our methodology consists in two steps: (i) we construct a
view of the blockchain as a collection in a NoSQL database; (ii) then, we analyse
the collection by using the query language of the database. To support the first
step we develop a new Scala library, which allows both to use data contained
in the blockchain, and to embed arbitrary external data (e.g., exchange rates,
tags, etc.). These views are stored as collections of MongoDB, a NoSQL database
which is widely used for the storage and analysis of big data [7].

In Section 3 we illustrate our methodology through a series of real-world use
cases. We perform experiments (using consumer hardware) which analyse various
aspects of Bitcoin, like e.g. the embedding of metadata on the blockchain, the
impact of exchange rates, the evolution of transactions fees, and the usage of
address tags. We make available online11 the source code of our library and use
cases, including the Scala scripts used to construct views of the blockchain, the
queries in MongoDB, and the results of our experiments. In Section 4 we discuss
some implementation details of our library, and we evaluate its effectiveness.

2 Background on Bitcoin

Bitcoin is a decentralized cryptocurrency [24,4], that has recently reached a
market capitalization of 40 USD billions12. Bitcoin can be seen as a huge ledger
of transactions, which represent transfers of bitcoins (BTC). This ledger —

11 https://github.com/bitbart/bitcoin-analytics-api
12 Source: crypto-currency market capitalizations http://coinmarketcap.com

https://github.com/bitbart/bitcoin-analytics-api
http://coinmarketcap.com

usually called blockchain — is maintained by a peer-to-peer network of nodes,
and a consensus protocol ensures that it can only be updated consistently (e.g.,
one cannot tamper with or remove an already-published transaction).

To give the intuition on how Bitcoin works, we consider two transactions t0
and t1, which we graphically represent as follows:

t0

in: · · ·
in-script: · · ·

out-script(x): F0

value: v0

t1

in: hash(t0)
in-script: σ1

out-script(· · ·): · · ·
value: v1

The transaction t0 contains v0 bitcoins, which can be redeemed by putting on
the blockchain a transaction (e.g., t1), whose in field is the cryptographic hash
of the whole t0. To redeem t0, the in-script of t1 must contain a value σ1 which
makes the out-script of t0 evaluate to true. In its general form, the out-script is a
program in a (not Turing-complete) scripting language, featuring a limited set
of logic, arithmetic, and cryptographic operators. Typically, the out-script is just
a signature verification.

Now, assume that the blockchain contains t0, not yet redeemed, when some-
one tries to append t1. To validate this operation, the nodes of the Bitcoin
network check that v1 ≤ v0, and then they evaluate the out-script F0, by in-
stantiating its formal parameter x to the value σ1. If, after the substitution,
F0 evaluates to true, then t1 redeems t0, meaning that the value of t0 is trans-
ferred to the new transaction t1, and t0 becomes no longer redeemable. A new
transaction can now redeem t1 by satisfying its out-script.

Bitcoin transactions may be more general than the ones illustrated by the
previous example, in that there can be multiple inputs and outputs. Each output
has an associated out-script and value, and can be redeemed independently from
others. Consequently, in fields must specify which output they are redeeming.
Similarly, a transaction with multiple inputs associates an in-script to each of
them. To be valid, the sum of the values of all the inputs must be greater or
equal to the sum of the values of all outputs.

The Bitcoin network is populated by a large set nodes, called miners, which
collect transactions from clients, and are in charge of appending the valid ones to
the blockchain. To this purpose, each miner keeps a local copy of the blockchain,
and a set of unconfirmed transactions received by clients, which it groups into
blocks. The goal of miners is to add these blocks to the blockchain, in order to get
a revenue. Appending a new block Bi to the blockchain requires miners to solve a
cryptographic puzzle, which involves the hash h(Bi−1) of block Bi−1, a sequence
of unconfirmed transactions 〈Ti〉i, and some salt R. The goal of miners is to win
the “lottery” for publishing the next block, i.e. to solve the cryptopuzzle before
the others; when this happens, the miner receives a reward in newly generated
bitcoins, and a fee for each transaction included in the mined block (the fee of
a transaction is the difference between the values of its inputs and outputs). If
a miner claims the solution of the current cryptopuzzle, the others discard their
attempts, update their local copies of the blockchain with the new block Bi,

and start mining a new block on top of Bi. In addition, miners are asked to
verify the validity of the transactions in Bi by executing the associated scripts.
Although verifying transactions is not mandatory, miners are incentivized to do
that, because if in any moment a transaction is found invalid, they lose the fee
earned when the transaction was published in the blockchain.

3 Analysing the Bitcoin blockchain

We illustrate our methodology through some case studies, which develop custom
analytics for the Bitcoin blockchain. All the case studies exploit our Bitcoin
Analytics library for processing the Bitcoin blockchain. The APIs provide the
following Scala classes to represent the primitive entities of the blockchain:

– BlockchainLib: main library class. It provides the getBitcoinBlockchain
method, which allows to iterate over BitcoinBlock objects. In the construc-
tor we can choose between a standard scan of the blockchain, or a “deep”
one. In the deep scan we also associate, to each transaction input, the value
of the redeemed output13.

– BitcoinBlock: contains a list of transactions, and some block-related at-
tributes (e.g., block hash and creation time).

– BitcoinTransaction: contains a list of inputs and outputs and various re-
lated attributes (e.g., transaction hash and size).

– BitcoinOutput: transaction outputs. Each output contains a script (the so-
called “scriptPubKey”), and the value of the output in BTC .

– BitcoinInput: transaction inputs. Each input contains a script (the so-
called “scriptSig”), and the value of the input in BTC (only for deep scans;
the value is set to 0 in a standard scan).

– BitcoinScript: the script of an input or an output.

The library constructs the above-mentioned Scala objects by scanning a lo-
cal copy of the blockchain. It uses Bitcoin Core to have a direct access to the
blocks, exploiting the provided indices, and BitcoinJ as a basis to represent the
various kinds of objects14. The APIs allow to export the constructed objects
as MongoDB documents. MongoDB15 is a non-relational database management
systems. In MongoDB, a database is a set of collections, each of them containing
documents. Documents are lists of pairs (k,v), where k is a string (called field

name), and v is either a value or a MongoDB document.

13 Evaluating input values is a resource-consuming algorithm, since it requires to re-
trieve data from blocks which be far in the past from the currently scanned one.
Hence, a deep inspection is only needed when the target analysis depends on these
values (e.g. balances, transaction fees).

14 As mentioned before, BitcoinJ does not provide methods to navigate the blockchain,
but only to recover a block by its hash, using Bitcoin Core.

15 https://www.mongodb.com

https://www.mongodb.com

1 object MyBlockchain {
2 def main(args: Array[String]): Unit = {
3

4 val blockchain = BlockchainLib.getBitcoinBlockchain(
5 new BitcoinSettings("user", "password ", "8332", MainNet))

6 val mongo = new MongoDatabase("myDatabase")
7

8 val myBlockchain = mongo.getCollection("myBlockchain")
9

10 blockchain.foreach (block => {

11 block.bitcoinTxs.foreach (tx => {
12 myBlockchain.append(List(

13 ("txHash", tx.hash),
14 ("blockHash", block.hash),
15 ("date", block.date),

16 ("inputs", tx.inputs),
17 ("outputs ", tx.outputs)

18))
19 })

20 })
21 }
22 }

Fig. 1. A basic view of the blockchain.

In Sections 3.1 to 3.5 we develop a series of analytics on Bitcoin, showing the
Scala code which builds the needed blockchain views16.

3.1 A basic view of the Bitcoin blockchain

Since all the analyses shown in Table 1 explore the transaction graph (e.g. they
investigate output values, timestamps, metadata, etc.), our first case study fo-
cusses on a basic view of the Bitcoin blockchain containing no external data.
The documents in the resulting collection represent transactions, and they in-
clude: (i) the transaction hash; (ii) the hash of the enclosing block; (iii) the date
in which the block was appended to the blockchain; (iv) the list of transaction
inputs and outputs.

We show in Figure 1 how to exploit our Bitcoin Analytics APIs to construct
this collection. Lines 1-2 are standard Scala instructions to define the main

function. The object blockchain constructed at line 4 is a handle to the Bitcoin
blockchain. At line 5 we setup the connection to Bitcoin Core, by providing the
needed parameters (user, password, and port), and by indicating that we want
to use the main network (alternatively, the parameter TestNet allows to use the
test network). At line 6 we setup the connection to MongoDB. Since lines 1-6
are similar for all our case studies, for the sake of brevity we will omit them in
the subsequent listings. We declare the target collection myBlockchain at line 8.

At this point, we start navigating the blockchain to populate the collection.
To do that we iterate over the blocks (line 10) (note that b => {...} is an
anonymous function, where b is a parameter, and {...} is it’s body), and for
each block we iterate over its transactions (at line 11). For each transaction we

16 The full code of our case studies, including the MongoDB queries that fetch the anal-
ysis results, is available at https://github.com/bitbart/bitcoin-analytics-api

https://github.com/bitbart/bitcoin-analytics-api

db.myBlockchain.aggregate([
{ $group : {

_id: {
year : { $year : "$date" },
month : { $month : "$date" },

day : { $dayOfMonth : "$date" },
},

avgIn: { $avg: {$size : "$inputs "} },
avgOut: { $avg: {$size : "$outputs "} }

}},

{ $sort : { _id : 1}}
]);

Fig. 2. A query to estimate the average number of inputs and outputs by date.

append a new document to myBlockchain (lines 13-17). This document is a set
of fields of the form (k,v), where k is the field name, and v is the associated
value. For instance, at line 13 we stipulate that the field txHash will contain the
hash of the transaction, represented by tx.hash. This value is obtained by the
API BitcoinTransaction.

Running this piece of code results in a collection, which we can process with
the query language of MongoDB to obtain several standard statistics, like e.g. the
number of daily transactions17, their average value18, the largest recent transac-
tions19, etc.20 Hereafter we consider another kind of analysis, i.e. the evolution
over the years of the number of transaction inputs and outputs. To this purpose,
we run the MongoDB query is shown in Figure 2. The query first groups the
documents with the same date. Then, for each group, it computes the average
number of inputs and outputs. Finally, the results are sorted in ascending order.

The results of the query are graphically rendered in Figure 3, which shows the
average number of inputs/outputs by date. We see that, after an initial phase,
the average number of inputs and outputs has stabilised between 2 and 3. This
is mainly due to the fact that most transactions are published through standard
wallets, which try to minimise the number of inputs; a typical transaction has
two outputs, one to perform the payment and the other for the change. We also
observe a few peaks in the number of inputs and outputs, which are probably
related to experimentation of new services, like e.g. CoinJoin21.

3.2 Analysing OP RETURN metadata

In this section we analyse the usage of the Bitcoin blockchain as a distributed
storage. Actually, besides being used as a cryptocurrency, Bitcoin allows for
appending a few bytes of metadata to transaction outputs. This is done preem-

17 https://blockchain.info/charts/n-transactions
18 https://bitinfocharts.com/comparison/bitcoin-transactionvalue.html
19 https://blockchain.info/largest-recent-transactions
20 Note that one could also perform these queries during the construction of the view.

However, this would not be convenient in general, since — as we will see also in the
following case studies — many relevant queries can be performed on the same view.

21 https://en.bitcoin.it/wiki/CoinJoin

https://blockchain.info/charts/n-transactions
https://bitinfocharts.com/comparison/bitcoin-transactionvalue.html
https://blockchain.info/largest-recent-transactions
https://en.bitcoin.it/wiki/CoinJoin

0
1
.2
0
0
9

0
5
.2
0
1
0

1
0
.2
0
1
1

0
2
.2
0
1
3

0
7
.2
0
1
4

1
1
.2
0
1
5

0
3
.2
0
1
7

5

10

Fig. 3. Average number of inputs (red line) and outputs (blue line) by date.

1 val opReturnOutputs = mongo.getCollection("opReturnOutputs")

2

3 blockchain.start (290000) .foreach (block => {

4 block.bitcoinTxs.foreach (tx => {
5 tx.outputs .foreach (out => {

6 if(out.isOpreturn()) {
7 opReturnOutputs.append(List(
8 ("txHash", tx.hash),

9 ("date", block.date),
10 ("protocol ", OpReturn .getApplication(out.outScript.toString)),

11 ("metadata ", out.getMetadata())
12))
13 }

14 })
15 })

16 })

Fig. 4. A blockchain view exposing OP RETURN metadata.

inently through the OP RETURN operator of the Bitcoin scripting language22.
Several protocols exploit this feature to implement blockchain-based applica-
tions, like e.g. digital assets and notarization services [3]. These protocols usually
mark their transactions by pre-pending an identifier to each piece of metadata.
Hence, a way to analyse the usage of metadata in Bitcoin is to count the trans-
actions of each protocol.

To this purpose, we construct a view of the blockchain which exposes the pro-
tocol metadata. More specifically, we build a collection opReturnOutputs whose
documents represent transaction outputs, and are composed of: (i) the hash of
the transaction containing the output; (ii) the date in which the transaction has
been appended to the blockchain; (iii) the name of the protocol that produced
the transaction; (iv) the metadata contained in the OP RETURN script.

Figure 4 shows the Scala code which constructs this collection. At line 3

we scan the blockchain, starting from block 290,00023. We then iterate through
transactions at line 4, and through their outputs at line 5. We append a new
document to our collection (lines 7-11) whenever the output of the corresponding
transaction is an OP RETURN (line 6). The method OpReturn.getApplication

22 https://en.bitcoin.it/wiki/OP_RETURN
23 We can discard the initial 290,000 blocks because OP RETURN transactions were

only relayed as standard transactions after the release 0.9.0 of Bitcoin Core.

https://en.bitcoin.it/wiki/OP_RETURN
https://bitcoin.org/en/release/v0.9.0

co
lu

co
in
sp
ar
k

op
en
as
se
ts

om
ni

fa
ct
om

st
am

p
er
y

pr
oo
fo
fe
xi
st
en
ce

bl
oc
ks
ig
n

m
on
eg
ra
ph

as
cr
ib
e

et
er
ni
ty
w
al
l

bl
oc
ks
to
re

sm
ar
tb
it

50,000

100,000

150,000

200,000

250,000

N
u
m
b
e
r
o
f
tr
a
n
sa

c
ti
o
n
s

Fig. 5. Number of transactions per protocol (only protocols with > 1000 transactions).

of our APIs takes as input a piece of metadata, and returns the name of the as-
sociated protocol. This is inferred by the results of the analysis in [3].

Figure 5 shows the number of transactions associated with the most used
protocols (only those with at least 1000 transactions). The protocol with the
highest number of transactions is Colu24, which is used to certify and transfer the
ownership of physical assets. The second most used protocol is Omni25, followed
by Blockstore26, a key-value store upon which other protocols are based.

3.3 Exchange rates

Several analyses in Table 1 use exchange rates for quantifying the economic im-
pact of various phenomena (e.g. cyber-crime attacks, transaction fees, business
activities). In this section we analyse how the value transferred in transactions
is affected by the exchange rate between USD and BTC over the years. Since
exchange rates are not stored in the Bitcoin blockchain, we need to obtain these
data from an external source, e.g. the Coindesk APIs27. Using these data, we
construct a blockchain view where each transaction is associated with the ex-
change rate at the time it has been appended to the blockchain.

More specifically, we construct a MongoDB collection whose documents rep-
resent transactions containing: (i) the transaction hash; (ii) the sum of its output
values (in BTC); (iii) the date in which the transaction has been appended to
the blockchain; (iv) the exchange rate between BTC and USD in such date.

Figure 6 shows the Scala code which builds this collection, using our APIs
(we omit the declaration of the main method, already shown in Figure 1). At
line 1 we declare the collection that we are going to build, txWithRates. At
lines 3-4 we iterate over all the transactions in the Bitcoin blockchain. For each

24 https://www.colu.com/
25 http://www.omnilayer.org/
26 https://github.com/blockstack/blockchain-id/wiki/Blockstore
27 http://www.coindesk.com/price/bitcoin-price-index/

https://www.colu.com/
http://www.omnilayer.org/
https://github.com/blockstack/blockchain-id/wiki/Blockstore
http://www.coindesk.com/price/bitcoin-price-index/

1 val txWithRates = mongo.getCollection("txWithRates")
2

3 blockchain.foreach (block => {
4 block.bitcoinTxs.foreach (tx => {
5 txWithRates.append(List(

6 ("txHash", tx.hash),
7 ("date", block.date),

8 ("outputSum", tx.getOutputsSum()),
9 ("rate", Exchange .getRate (block.date))
10))

11 })
12 })

Fig. 6. A view of the blockchain including exchange rates.

0-300 300-600 600-900 900-1200 1200-1500 1500-1800 1800-2100

10

20

30

B
T
C

Fig. 7. Average value of outputs (in BTC) by exchange rate.

one, at lines 5-9 we add a new document to txWithRates. The total amount of
BTC sent by the current transaction is stored in the field outputSum (line 8).
The exchange rate is obtained by invoking the method Exchange of our APIs
(line 11). This method takes a date as parameter, and retrieves from Coindesk
the exchange rate BTC /USD in that date.

We can analyse the obtained collection in many ways, in order to study
how exchange rates are related to the movements of currency in Bitcoin. For
instance, one can obtain statistics about the daily transaction volume in USD28,
the market capitalization29, the list of richest addresses30, etc. Hereafter, we
measure the average value of outputs (in BTC) of the transactions in intervals
of exchange rates. The diagram in Figure 7 shows the results of this analysis,
where we have split exchange rates in 7 intervals of equal size. In the first five
intervals we observe the expected behaviour, i.e. the value of outputs decreases
as the exchange rate increases. Perhaps surprisingly, the last two intervals show
an increase in the value of outputs when the value BTC has surpassed 1500
USD . This may be explained by speculative operations on Bitcoin.

3.4 Transaction fees

In this section we study transaction fees, which are earned by miners when they
append a new block to the Bitcoin blockchain. Each transaction in the block

28 https://blockchain.info/charts/estimated-transaction-volume-usd
29 http://blockchain.info/charts/market-cap
30 https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html

https://blockchain.info/charts/estimated-transaction-volume-usd
http://blockchain.info/charts/market-cap
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html

1 val blockchain = BlockchainLib.getBitcoinBlockchain(new BitcoinSettings("user", "
password ", "8332", MainNet , true))

2 val mongo = new MongoSettings("myDatabase")
3

4 val txWithFees = mongo.getCollection("txWithFees")
5

6 blockchain.foreach (block => {

7 block.bitcoinTxs.foreach (tx => {
8 txWithFees.append(List(

9 ("blockHash", block.hash),
10 ("txHash", tx.hash),

11 ("fee", tx.getInputsSum() - tx.getOutputsSum()),
12 ("date", block.date),
13 ("rate", Exchange .getRate (block.date))

14))
15 })

16 })

Fig. 8. A blockchain view exposing transaction fees.

pays a fee, defined as the difference between its input and output values. While
the values of outputs are stored explicitly in the transaction, those of inputs are
not: to obtain them, one must retrieve from a past block the transaction that
is redeemed by the input. This can be obtained through a “deep” scan of the
blockchain, which is featured by our library.

We show in Figure 8 how to construct a collection which contains, for each
transaction: (i) the hash of the enclosing block; (ii) the transaction hash; (iii) the
fee; (iv) the date in which the transaction was appended to the blockchain; (v) the
exchange rate between BTC and USD in such date. The extra parameter true
in the BitcoinSettings constructor (missing in the previous examples), triggers
the “deep” scan. When scanning the blockchain in this way, the library main-
tains a map which associates transaction outputs to their values, and inspects
this map to obtain the value of inputs31. The methods getInputsSum (resp.,
getOutputsSum) at line 11 returns the sum of the values of the inputs (resp.,
the outputs) of a transaction.

The obtained collection can be used to perform several standard statistics,
e.g. the daily total transaction fees32, the average fee33, the percentage earned
by miners from transaction fees, etc. Hereafter we focus on the so-called whale

transactions [13], which pay a unusually high fee to the miners34. To do that, we
first compute the average x̄ and standard deviation σ of the fees in all transac-
tions: in USD , we have x̄ = 0.41, σ = 12.09. Then, we define whale transactions
as those which pay a fee greater than x̄ + 2σ = 24.58 USD . Overall we collect
242, 839 whale transactions; those with biggest fee are displayed below.

31 Since inputs can only redeemed transactions on past blocks, the map always contains
the required output. Although coinbase inputs do not have a value in the map, we
calculate their value using the total fees of the current block and the block height
(reward is halved each 210,000 blocks).

32 https://blockchain.info/charts/transaction-fees
33 https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
34 The first whale transaction is supposed to be a mis-

take, so the mining pool offered to refunded the user.
http://www.coindesk.com/accidental-136000-bitcoin-mining-pool/

https://blockchain.info/charts/transaction-fees
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html
http://www.coindesk.com/accidental-136000-bitcoin-mining-pool/

1 val outWithTags = mongo.getCollection("outWithTags")
2 val tags = new Tag("path\\input.txt")
3

4 blockchain.foreach (block => {
5 block.bitcoinTxs.foreach (tx => {

6 tx.outputs .foreach (out => {
7 out.getAddress(MainNet) match {

8 case Some(add) =>
9 tags.getValue (add) match {
10 case Some(tag) =>

11 outWithTags.append(List(
12 ("txHash", tx.hash),

13 ("date", block.date),
14 ("value", out.value),
15 ("address ", add),

16 ("tags", tags.getValue (add))
17))

18 case None =>
19 }

20 case None =>
21 }
22 }) }) })

Fig. 9. A view of the blockchain associating transaction outputs with tags.

Fee (USD) Date Transaction hash
136243.37 2016-04-26 14:15:22 cc455ae816e6cdafdb58d54e35d4f46d860047458eacf1c7405dc634631c570d
56493.50 2017-01-04 20:01:28 d38bd67153d774a7dab80a055cb52571aa85f6cac8f35f936c4349ca308e6380
39502.15 2017-05-31 14:28:51 cb95ab3aef378c14bc59d0db682d96202b981c1f8fad7d66e23e0be06f2a00c4
25095.71 2017-05-31 14:28:51 8e12a1aba87e4657f5fabec1121ed57f706805ad6d4ffe88c6fce78596bd9b75
23518.00 2013-08-28 10:45:17 4ed20e0768124bc67dc684d57941be1482ccdaa45dadb64be12afba8c8554537

3.5 Address tags

The website blockchain.info/tags hosts a user-generated list of associations
between bitcoin addresses and tags which briefly describe their usage35. Table 1
shows that address tags are widely adopted. Cyber-crime studies retrieve ad-
dresses tagged as scam or ransomware on forums. Market analysis exploit tags
for recognising addresses of business services. Anonymity studies tag the ad-
dresses that seems to belong to the same entity. In this section we construct
a blockchain view where outputs are associated with the tags of the address
which can redeem them (we discard the outputs with untagged addresses). More
specifically, we construct a collection whose documents represent transaction
outputs containing: (i) hash of the enclosing transaction; (ii) the date in which
the transaction has been appended to the blockchain; (iii) the output value (in
BTC); (iv) the address receiving the payment; (v) the tag associated to the
address.

Figure 9 shows the Scala script which builds this collection. We retrieve tags
from an external source, the blockchain.info website. While in the previous
case studies we have retrieved external data by querying the source (e.g. the

35 For instance, (i) the address 1Archive1n2C579dMsAu3iC6tWzuQJz8dN is associated
to the tag Internet Archive (https://archive.org/donate/bitcoin.php); (ii) the
address 1PQCrkzWweCw4huVLcDXttAZbSrrLbJ92L is associated to the tag Linux

Mint Donations (http://www.linuxmint.com/donors.php).

https://blockchain.info/tags
https://blockchain.info/address/1Archive1n2C579dMsAu3iC6tWzuQJz8dN
https://archive.org/donate/bitcoin.php
https://blockchain.info/address/1PQCrkzWweCw4huVLcDXttAZbSrrLbJ92L
http://www.linuxmint.com/donors.php

1
0
.2
0
1
2

0
4
.2
0
1
3

1
1
.2
0
1
3

0
5
.2
0
1
4

1
2
.2
0
1
4

0
6
.2
0
1
5

0
1
.2
0
1
6

0

1,000

2,000

3,000

N
u
m
b
e
r
o
f
tr
a
n
sa

c
ti
o
n
s

Fig. 10. Number of daily transactions to addresses tagged with SatoshiDICE*.

Coindesk APIs), in this case we query a local file in which we have stored the
data fetched from blockchain.info. At line 2, given the file containing tags,
the Tag class builds a Map which associate each address to the correspondent
tag. At lines 4-6 we iterate over all the transaction outputs. At line 7 we try to
extract the address which can redeem the current output. If we find it (line 8),
then we search the map for the associated tag (line 9); if a tag is found (line 10)
we add a new document to outWithTags (lines 11-16).

Since it is often possible to infer the business of an address from its tag36, the
obtained collection allows to get some insights on several transfers of bitcoins.
For instance, one can aggregate transactions on different business levels [15]
to obtain statics about the total number of transactions, the amount of BTC
exchanged, the geographical distributions of tagged service, etc. Hereafter, we
aggregate all addresses whose tag starts with SatoshiDICE, and then we measure
the number of daily transactions which send BTC to one of these addresses. The
diagram in Figure 10 shows the results of this analysis. The fall in the number
of transactions at the start of 2015 may be due to the fact that SatoshiDICE is
using untagged addresses.

4 Implementation and performance evaluation

We implement our library by exploiting the RPC interface of Bitcoin Core. While
BitcoinJ APIs only allow the programmer to retrieve a block by its hash, Bitcoin
Core’s interface exposes calls to do so by its height on the chain. Furthermore,
BitcoinJ block objects do not carry information about block height and the
hash of the next block (they only have backward pointers, as defined in the
blockchain), which can be fetched by using Bitcoin Core. Our APIs allows to
navigate the Bitcoin blockchain by iterating over these steps: (i) get the hash h

of the block of height i, by using Bitcoin Core; (ii) get the block with hash h, by
using BitcoinJ; (iii) increment i. By default, the loop starts from 0 and stops at
the last block. The methods blockchain.start(i), and blockchain.stop(j)

allow to scan an interval of the blockchain, as shown in Section 3.2.

36 For instance, the Internet Archive and Linux Mint Donations tags are related to
donations, while the JackpotDICE tag is related to gambling.

We carry out our experiments using consumer hardware, i.e. a PC with a
quad-core Intel Core i5-4440 CPU @ 3.10GHz, equipped with 32GB of RAM and
2TB of hard disk storage. The following table displays the size of the blockchain
view, and the time required to construct and query it.

Case study Size (GB) Creation time (h) Query time (s) Updated to
Basic view of the blockchain 300 9 2860 2017-06-27
OP RETURN metadata 0.5 2 0.5 2017-06-27
Exchange rates 30 15 477 2017-06-27
Transaction fees 23 35 448 2017-06-27
Address tags 0.8 10 1.8 2017-06-27

Note that the size of the blockchain view constructed in Section 3.1 is more
than twice than the current Bitcoin blockchain. This is because, while Bitcoin
writes scripts in binary format, our library writes them as strings, so to allow
for constructing indices and performing queries on scripts.

5 Related works and conclusions

We have presented a framework for developing custom analytics on the Bitcoin
blockchain. Its main component is a Scala library which allows to construct views
of the blockchain, possibly integrating blockchain data with data retrieved from
external sources. Blockchain views are represented as NoSQL databases, which
can be analysed by using the query language of MongoDB.

Our APIs are closely related to a few projects that are available on online
repositories. BitIodine37 is a modular framework to parse the Bitcoin blockchain
and retrieve external information (e.g. exchange rates and tags). However, ac-
cording to its website, this project is no longer actively developed, and it does
not work with the recent Bitcoin blockchain. The projects blockparser38 and
rusty-blockparser39 implement blockchain parser which work on Bitcoin-based
blockchains. These tools allow to perform full scans of the blockchain, and to
define custom listeners which are called each time a new block or transaction
is read. Compared to our Scala library, these tools offer limited built-in sup-
port for combining blockchain and external data. Comparing the performance
of these two tools against ours would be a relevant question for future work. A
preliminary (rather approximate) comparison can be obtained by observing the
performance data reported in the rusty-blockparser’s website. They say that
a full scan of the blockchain took about 70 minutes on January 2016. This is not
too far from the the construction of our quickest view, that took about 2 hours,
considering that the blockchain has grown from ∼55GB to ∼120GB by then.

Although our framework is general enough to cover most of the analyses
reported in Table 1, it has some limitations that can be overcome with future
extensions. In particular, we note that some analyses, addressing e.g. information

37 https://github.com/mikispag/bitiodine
38 https://github.com/znort987/blockparser
39 https://github.com/mikispag/rusty-blockparser

https://github.com/mikispag/bitiodine
https://github.com/znort987/blockparser
https://github.com/mikispag/rusty-blockparser

propagation, forks and attacks [6,8,17,26], require to gather data from the Bitcoin
network, besides that from the blockchain. To support this kind of analyses one
has to run a (customized) Bitcoin node. We believe that this kind of extension
would also be helpful to obtain on-the-fly updates of the analyses.

References

1. Androulaki, E., Karame, G., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: Financial Cryptography and Data Security. LNCS, vol.
7859, pp. 34–51. Springer (2013)

2. Baqer, K., Huang, D.Y., McCoy, D., Weaver, N.: Stressing out: Bitcoin “stress test-
ing”. In: Financial Cryptography Workshops. LNCS, vol. 9604, pp. 3–18. Springer
(2016)

3. Bartoletti, M., Pompianu, L.: An analysis of Bitcoin OP RETURN metadata. In:
Bitcoin Workshop (2017), also available as arXiv preprint 1702.01024

4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
S & P. pp. 104–121 (2015)

5. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: Anonymity for Bitcoin with accountable mixes. In: Financial Cryptography
and Data Security. LNCS, vol. 8437, pp. 486–504. Springer (2014)

6. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
P2P. pp. 1–10. IEEE (2013)

7. Dede, E., Govindaraju, M., Gunter, D., Canon, R.S., Ramakrishnan, L.: Perfor-
mance evaluation of a MongoDB and Hadoop platform for scientific data analysis.
In: Proc. 4th ACM workshop on Scientific cloud computing. pp. 13–20. ACM (2013)

8. Donet, J.A.D., Pérez-Solà, C., Herrera-Joancomart́ı, J.: The Bitcoin P2P network.
In: Financial Cryptography Workshops. LNCS, vol. 8438, pp. 87–102. Springer
(2014)

9. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis
and applications. In: EUROCRYPT. LNCS, vol. 9057, pp. 281–310. Springer (2015)

10. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: ACM SIGSAC
Conference on Computer and Communications Security. pp. 3–16. ACM (2016)

11. Harrigan, M., Fretter, C.: The unreasonable effectiveness of address clustering. In:
UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld. pp. 368–373. IEEE (2016)

12. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Capkun, S.: Misbehavior
in Bitcoin: A study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. 18(1), 2 (2015), http://doi.acm.org/10.1145/2732196

13. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Bitcoin
Workshop (2017)

14. Liao, K., Zhao, Z., Doupé, A., Ahn, G.: Behind closed doors: measurement and
analysis of CryptoLocker ransoms in Bitcoin. In: APWG Symp. on Electronic
Crime Research (eCrime). pp. 1–13. IEEE (2016)

15. Lischke, M., Fabian, B.: Analyzing the Bitcoin network: The first four years. Future
Internet 8(1), 7 (2016)

16. Luu, L., Saha, R., Parameshwaran, I., Saxena, P., Hobor, A.: On power splitting
games in distributed computation: The case of Bitcoin pooled mining. In: IEEE
Computer Security Foundations Symposium. pp. 397–411. IEEE (2015)

http://doi.acm.org/10.1145/2732196

17. McCorry, P., Shahandashti, S.F., Hao, F.: Refund attacks on Bitcoin’s payment
protocol. In: Financial Cryptography and Data Security. LNCS, vol. 9603, pp.
581–599. Springer (2016)

18. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with
no names. In: Internet Measurement Conference. pp. 127–140. ACM (2013)

19. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of Bitcoins: characterizing payments among men with
no names. Commun. ACM 59(4), 86–93 (2016)

20. Möser, M., Böhme, R., Breuker, D.: An inquiry into money laundering tools in the
Bitcoin ecosystem. In: APWG Symp. on Electronic Crime Research (eCrime). pp.
1–14. IEEE (2013)

21. Möser, M., Böhme, R.: Trends, tips, tolls: A longitudinal study of Bitcoin trans-
action fees. In: Financial Cryptography Workshops. LNCS, vol. 8976, pp. 19–33.
Springer (2015)

22. Möser, M., Böhme, R.: Anonymous alone? Measur-
ing Bitcoin’s second-generation anonymization techniques.
http://informationsecurity.uibk.ac.at/pdfs/MB2017_AnonymousAlone.pdf

(2017)
23. Möser, M., Böhme, R., Breuker, D.: Towards risk scoring of Bitcoin transactions.

In: Financial Cryptography Workshops. LNCS, vol. 8438, pp. 16–32. Springer
(2014)

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf (2008)

25. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the Bitcoin
transaction graph. Future Internet 5(2), 237–250 (2013)

26. Pappalardo, G., di Matteo, T., Caldarelli, G., Aste, T.: Blockchain in-
efficiency in the Bitcoin peers network. CoRR abs/1704.01414 (2017),
http://arxiv.org/abs/1704.01414

27. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Security
and privacy in social networks, pp. 197–223. Springer (2013)

28. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph. In:
Financial Cryptography and Data Security. LNCS, vol. 7859, pp. 6–24. Springer
(2013)

29. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of Bitcoin mining pool reward functions. In: Financial Cryptography and Data
Security. LNCS, vol. 9603, pp. 477–498. Springer (2016)

30. Spagnuolo, M., Maggi, F., Zanero, S.: Bitiodine: Extracting intelligence from the
Bitcoin network. In: Financial Cryptography and Data Security. LNCS, vol. 8437,
pp. 457–468. Springer (2014)

31. Vasek, M., Moore, T.: There’s no free lunch, even using Bitcoin: Tracking the
popularity and profits of virtual currency scams. In: Financial Cryptography and
Data Security. LNCS, vol. 8975, pp. 44–61. Springer (2015)

32. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of Denial-of-Service attacks
in the Bitcoin ecosystem. In: Financial Cryptography Workshops. LNCS, vol. 8438,
pp. 57–71. Springer (2014)

http://informationsecurity.uibk.ac.at/pdfs/MB2017_AnonymousAlone.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1704.01414

	A general framework for Bitcoin analytics

