
ar
X

iv
:1

80
3.

00
64

6v
1 

 [
cs

.C
R

] 
 1

 M
ar

 2
01

8

Data mining for detecting Bitcoin Ponzi schemes

Massimo Bartoletti, Barbara Pes, Sergio Serusi

University of Cagliari

Cagliari, Italy

Email: {bart,pes,serusisergio}@unica.it

Abstract—Soon after its introduction in 2009, Bitcoin has been
adopted by cyber-criminals, which rely on its pseudonymity to
implement virtually untraceable scams. One of the typical scams
that operate on Bitcoin are the so-called Ponzi schemes. These
are fraudulent investments which repay users with the funds
invested by new users that join the scheme, and implode when
it is no longer possible to find new investments. Despite being
illegal in many countries, Ponzi schemes are now proliferating on
Bitcoin, and they keep alluring new victims, who are plundered
of millions of dollars. We apply data mining techniques to
detect Bitcoin addresses related to Ponzi schemes. Our starting
point is a dataset of features of real-world Ponzi schemes,
that we construct by analysing, on the Bitcoin blockchain, the
transactions used to perform the scams. We use this dataset to
experiment with various machine learning algorithms, and we
assess their effectiveness through standard validation protocols
and performance metrics. The best of the classifiers we have
experimented can identify most of the Ponzi schemes in the
dataset, with a low number of false positives.

Index Terms—Bitcoin, data mining, fraud detection

I. INTRODUCTION

Bitcoin [1], [2] is decentralized cryptocurrency, which al-

lows secure transfers of money — the bitcoins — without the

intermediation of trusted authorities. All transfers of bitcoins

are recorded on the blockchain, an immutable public ledger

of transactions maintained by a peer-to-peer network through

a distributed consensus protocol.

Users can send and receive bitcoins without revealing their

true identity: rather, they use pseudonyms (called addresses),

which may even be generated fresh for each transaction.

Although several approaches to de-anonymise addresses have

been proposed [3], [4], [5], [6], [7], specular attempts to

strengthen the anonymity of Bitcoin [8], [9], [6], [10], [11]

reinforce the perception that criminal activities on Bitcoin are

easy to implement, and hard to detect.

Besides classic criminal activities like ransomware [7], [12],

[13] and money laundering [14], [15], Bitcoin is currently

being used as a payment infrastructure for Ponzi schemes [16].

These are financial frauds disguised as “high-yield” investment

programs: actually, a Ponzi scheme repays users only with

the funds invested by new users that join the scheme, and

so it implodes when it is no longer possible to find new

investments [17], [18].

Despite many victims are perfectly aware of their fraudulent

nature, and of the fact that they are illegal in many coun-

tries, Bitcoin-based Ponzi schemes are proliferating. A recent

study [19] inspects the posts on bitcointalk.org (a popular

discussion forum on Bitcoin), finding more than 1800 Ponzi

schemes from June 2011 to November 2016. Estimating the

economic impact of Bitcoin-based Ponzi schemes is more

difficult, due to the lack of datasets of Ponzi-related Bitcoin ad-

dresses: a conservative estimate for the period from September

2013 to September 2014 shows that Ponzi schemes operated

through Bitcoin have gathered more than 7 millions USD. The

absence of suitable prevention and intervention policies leads

us to believe that many other thousands of victims have been

cheated since then, and plundered of millions of USD.

Most of the existing approaches to the analysis of Bitcoin

scams require a laborious initial phase of manual or semi-

automated search on the web [14], [15], [16], [19], [20],

[21], [22] in order to collect Bitcoin addresses involved in

the scam. Only after this phase it is possible to automatize the

analysis, e.g. to quantify the impact of the scam by inspecting

the associated transactions on the blockchain. However, these

approaches are ineffective when the scam addresses are not

publicly available, e.g. because they are communicated pri-

vately to registered users, or published only through the deep

web or the dark web. In these cases it would be desirable to

have tools that automatically search the Bitcoin blockchain

for suspect behaviours, and identify the addresses associated

to fraudulent activities.

Given the ever-increasing volumes of data to be managed

(∼300 millions of transactions, and several millions of distinct

addresses) data mining techniques have become almost imper-

ative for automatically extracting meaningful patterns for fraud

detection. Outside the cryptocurrency realm, several works in

the literature have explored these techniques with data from

credit card operations, either in a supervised setting (which

requires a set of labelled observations from the past) [23],

[24] or through unsupervised approaches (which look for

anomalous data occurrences or outliers) [25], [26]. However,

despite an increasing amount of research in the field, practical

implementations are rarely reported, as recently pointed out

in [27]. Furthermore, the scarcity of publicly available datasets

leaves unanswered many questions about which is the best

strategy to deal with specific real-world scenarios [28].

The extension of existing fraud detection methods to cyber-

crime analysis in Bitcoin is an almost unexplored field. A

few attempts have been recently made to detect anomalies

in the Bitcoin transaction network by unsupervised learning

approaches [29], [30], but no work exists, to the best of our

knowledge, that investigates how to learn detection models for

specific types of scams (such as Ponzi schemes).

http://arxiv.org/abs/1803.00646v1
bitcointalk.org


Contributions: We investigate data mining techniques to

automatically detect and quantify Bitcoin Ponzi schemes,

following the supervised learning approach.

In the absence of publicly available datasets, our first step

is to retrieve from the web a collection of Bitcoin addresses

related to Ponzi schemes. To this purpose we manually search

the main discussion forums on Bitcoin (e.g., Reddit and

bitcointalk.org) for advertisements of “high-yield” investment

programs, that inevitably hide Ponzi schemes. Then, we

visit the websites through which Ponzi schemes are operated

(possibly recovering old snapshots through Internet Archive),

hunting for their Bitcoin addresses. We expand our collection

through a semi-automatic visit of the websites that are linked

to Bitcoin addresses on blockchain.info/tags. Following this

methodology, we collect 32 Bitcoin addresses which gather

deposits from investors of Ponzi schemes.

In many cases, Ponzi schemes use multiple addresses:

actually, some of them provide the deposit address only upon

registration, generating a fresh address for each new user. In

order to retrieve some of these addresses, we apply a clustering

procedure on the addresses in our collection, using the “multi-

input” heuristic [3]. By analyzing the obtained clusters, we find

that 19 out of 32 Ponzi schemes in our collection use more

then one address, for a total of 1211 addresses. Overall, these

clusters have received deposits for ∼10 millions USD.

We then devise a set of features that can be useful to

characterise Ponzi schemes. These features range from simple

statistics on the transactions to/from the clusters (e.g., over-

all transferred value, ratio between incoming and outgoing

transactions, etc.) to more complex ones, like measures of

inequality of the transferred values (e.g., Gini coefficients), and

measures of the activity of the scheme (e.g., lifetime, average

delay between incoming and outgoing transactions, maximum

number of daily transactions, etc.). We extract from the Bitcoin

blockchain the transactions of the clusters of addresses in our

collection, and we compute a dataset of features, which we

make publicly available. We complete this dataset with the

features of 6400 randomly-chosen addresses.

We use this dataset to experiment with various supervised

learning algorithms, in order to automatically detect Ponzi

schemes. We formalise the detection model as a binary clas-

sification problem, where the task is to distinguish between

‘Ponzi’ and ‘non-Ponzi’ class instances. One of the most

critical challenges we had to face is the class imbalance

problem, which is commonly encountered in fraud detection

systems [31]. In a supervised learning setting, as the one

here considered, this problem occurs when one class is very

rare compared to the other(s), thus making hard to discover

robust patterns for the minority class (like “finding a needle

in a haystack”). Indeed, classifiers are usually designed to

minimize the total number of classification errors, and tend

to be overwhelmed by the majority class.

In fraud detection applications, as in many domains with

imbalanced class distributions, a correct classification of the

rare class (i.e., the ‘Ponzi’ class in our problem) is far more

important than a correct classification of the majority class

(i.e., the ‘non-Ponzi’ class). The underlying assumption is that

the cost of misclassifying a fraudulent case is much higher

than the cost of misclassifying a legitimate case (as the latter

error can be corrected a posteriori through a further analysis).

In this work we experiment with the two main approaches

proposed in the literature, i.e. sampling-based approaches [32]

and cost-sensitive approaches [33].

A number of experiments across different settings resulted

in a detection model with good performance, which is finally

applied, with promising results, to an independent set of data.

The supervised method Random Forest proved to be the most

effective and most versatile one. In our dataset, containing

the features of 6432 clusters of addresses (proportion of one

fraud to 200 not fraud), Random Forest has obtained a Recall

of 0.969 for Ponzi schemes, and it has classified correctly 31

Ponzi schemes out of 32.

In summary, our main contributions are:

1) a public dataset of addresses and features of Bitcoin Ponzi

schemes (goo.gl/ToCho7);

2) an open-source tool that extracts the dataset from the

Bitcoin blockchain (github.com/bitcoinponzi);

3) a systematic evaluation and comparison of different learn-

ing strategies for classifying Bitcoin Ponzi schemes;

4) the evaluation of the best classifier (among those we have

experimented with) on an independent dataset, which

manages to identify most of the Ponzi schemes in the

dataset, with a low number of false positives;

5) an estimate of which are the most discriminating features

for detecting Ponzi schemes on Bitcoin.

The rest of this paper is organized as follows. Section II

gives a minimalistic introduction to Bitcoin. Section III il-

lustrates our methodology for collecting addresses of Ponzi

schemes, and for constructing a dataset of Ponzi-related fea-

tures. Section IV compares the effectiveness of various learn-

ing strategies. Finally, Section V draws some conclusions.

II. BITCOIN IN A NUTSHELL

In this section we give a short introduction to Bitcoin,

focussing on the notion that are needed later on for our

technical development.

Bitcoin is a peer-to-peer infrastructure which allow users to

transfer currency — the bitcoins (B). Each Bitcoin user owns

one or more pairs of asymmetric cryptographic keys: public

keys uniquely identify the user addresses, while private keys

are used to authorize payments. Transfers of bitcoins are de-

scribed by transactions. The log of all transactions, is recorded

on a public, immutable data structure (the blockchain), deter-

mining the balance of each address. Users can receive bitcoins

through different addresses: typically, addresses are generated

fresh for each transaction, to improve privacy.

The Bitcoin network is populated by a large set of nodes,

called miners, which collect transactions from users, and are

in charge of appending the valid ones to the blockchain. To

this purpose, each miner keeps a local copy of the blockchain,

and a set of transactions received by users. Appending a new

bitcointalk.org
https://archive.org/
blockchain.info/tags
https://goo.gl/ToCho7
https://github.com/bitcoinponzi


T

in1: · · ·

wit1: · · ·

out1(x): versig
A
(x)

val1: 1B

out2(y): versig
B
(y)

val2: 2B

TA

in1: (T, 1)
wit1: sig

A
(TA)

out1(x): versig
B
(x)

val1: 0.9B

out2(y): versig
A
(y)

val2: 0.1B

TB

in1: (T, 2)
wit1: sig

B
(TB)

in2: (TA , 1)
wit2: sig

B
(TB)

out1(x): versig
C
(x)

val1: 2.5B

Figure 1: Three Bitcoin transactions.

block of transactions to the blockchain requires miners to solve

a moderately-hard cryptographic puzzle, which involves the

transactions in the new block. The difficulty of the puzzle is

adjusted dynamically to ensure that the average mining rate

is of 1 block every 10 minutes. The miner which solves the

puzzle before the others receives a reward in newly generated

bitcoins (through the so-called coinbase transactions), and a

fee for each transaction included in the new block.

To explain how transactions work, we consider the example

in Figure 1, which graphically represents three transactions.

Each transaction has four (indexed) fields: in, wit, out, and val.

The in field (for input) contains a reference to the transaction

output to redeem. The wit field contains a piece of information

called witness, discussed below. The field out contains an

output script: intuitively, this is a predicate on one or more

arguments, the actual values of which are provided by the

witness of the redeeming transaction. Finally, the field val

determines the amount of bitcoins to be transferred.

Consider first the transaction T in our example, where we

neglect the fields in and wit (e.g., we could assume that T is a

coinbase transaction). The output at index 1 allows to transfer

1B to user A: namely, the output script versig
A
(x) verifies

the signature x of A on the redeeming transaction. Similarly,

the output at index 2 allows to transfer 2B to B. Assume that

the blockchain contains T, and that both its outputs are not

redeemed by subsequent transactions.

Transaction TA has one input, represented as the pair (T, 1),
meaning that it wants to redeem the output at index 1 of

transaction T. To do so, TA carries in its witness a signature

of A, which is computed on the whole transaction TA (except

for the wit field itself). This witness makes the output script

versigA(x) in T evaluate to true. Therefore, when A appends

TA to the blockchain, it redeems the first output of T, making

available 0.9B for B, and keeping 0.1B for herself.

The transaction TB has two inputs, meaning that it wants

to simultaneously redeem the second output of T and the first

output of TA . Since these outputs are still unspent, and the

witnesses in TB satisfy the corresponding output scripts, then

B can append TB to the blockchain, making available 2.5B

to user C. The difference of 0.4B between the the sum of the

values of all the inputs of TB and the sum of the values of its

outputs is paid as a fee to the miners.

Bitcoin transactions may be more general than the ones

illustrated by the previous example. For instance, the output

script is a program in a (not Turing-complete) scripting

language, featuring a limited set of logic, arithmetic, and

cryptographic operators. Transactions can also specify time

constraints on when they can be appended to the blockchain,

and also on when the redeeming transactions can be appended.

We omit a detailed presentation of these advanced features,

since they are not required in the following sections.

III. DATASET CONSTRUCTION

The first step of our work is to collect Bitcoin addresses

through which Ponzi schemes receive money from investors

(Section III-A). We apply a clustering algorithm to the col-

lected addresses, finding that some schemes use wallets of

hundreds of addresses (Section III-B). We then devise a set of

features that are relevant to the classification of Ponzi schemes

(Section III-C), and we compute the values of these features

on our clustered addresses, obtaining a dataset that we use

in Section IV to train classifiers (Section III-D).

A. Collection of Bitcoin addresses used by Ponzi schemes

We perform a manual search on Reddit and bitcointalk.org,

the main discussion forums on Bitcoin. In particular, we

focus on the subforum Gambling: Investor-based games of

bitcointalk.org, where fraudsters are used to advertise Ponzi

schemes as “high-yield investment programs” (HYIP), or as

gambling games. Only in a few cases these advertisements

explicitly include the Bitcoin address where to deposit money;

in all the other cases, to obtain the address we have to visit the

websites where the Ponzi schemes are hosted. However, many

of these websites are no longer online: in such case we try

to recover their snapshots through Internet Archive. For each

website (either live or snapshot), we manually search its pages

to find the deposit addresses (typically, different “investment

plans” use different addresses). Some websites only allow

registered users to read the deposit address: in these cases,

we create an account, providing fake data.

We extend our search by considering all the addresses

listed on blockchain.info/tags, a website which allows users

to tag Bitcoin addresses. Most of the tagged addresses also

contain a link to the website where they are mentioned. We

develop a crawler to automatically parse these websites, and

rank them according to the number of Ponzi-related words

contained in their pages. To this purpose we use a dictionary,

containing words like e.g. “Ponzi”, “profit”, “HYIP”, “multi-

plier”, “investment”, “MLM”. The crawler parses over 1500

websites (related to ∼3500 tags), finding that ∼900 of them

contain some Ponzi-related word. However, many of these

sites (∼600) are no longer accessible, even through Internet

Archive. For the remaining websites, we manually search for

deposit addresses, creating fake accounts when needed.

Overall, we find 32 deposit addresses of Ponzi schemes, that

we display in Table I. Note that, while some Ponzi schemes

use a single deposit address throughout their lives, some others

use multiple addresses, possibly generating a fresh address

for each user (or set of users). Address clustering, discussed

below, allows us to recover some of these addresses.

bitcointalk.org
https://bitcointalk.org/index.php?board=207.0
https://archive.org/
https://blockchain.info/tags
https://web.archive.org/


Table I: Collection of addresses of Bitcoin Ponzi schemes.

Ponzi scheme Deposit address

Nanoindustryinv.com 1Ee9ZiZkmygAXUiyeYKRSA3tLe4vNYEAgA
GrandAgoFinance 1MzNQ7HV8dQ6XQ52zBGYkCZkkWv2Pd3VG6
Cryptory 1FyedPPk923wRfmVphV1CLt3bVLGxHZXpK
Leancy 145SmDToAhtfcBQhNxfeM8hnS6CBeiRukY
Minimalist10 1FuypAdeC7mSmYBsQLbG9XV261bnfgWbgB
MiniPonziCoin 1F8ZKpjMDpnpF79mZ1pxZRoNKZgXm4Tf1d
120cycle 1E5MCTtXn7n2svpZ1bDHZXndY9K7qQeqZP
10PERCENTBTC 1BtcBoSSnqe8mFJCUEyCNmo3EcF8Yzhpnc
btcgains 1PayoutRrC8wxxZ9ygmeaRj3qTPug8tDYu
PonziIO 1ponziUjuCVdB167ZmTWH48AURW1vE64q
LaxoTrade 1LaxoTrQy51LnB289VmoSAgN6J6UrJbfL9
OpenPonzi 1BmZW65ZoeLa1kbL9MPFLfkS818mqFUSma
BTC-doubler.us 1AQp51H22WHDzLgK64NoUo3Bg3T183QR22
BTC-doubler.com 178BzARKjkszrTyx4TxBKHhzGLZijdE26e
investorbitcoin.com 1CpVAEg4BgVzjiHshgeZfitZLV1t1zo6Qg
Ponzi120 12PoNZiEtabwkCU4YFffshWNF1cRiAk5nq
RockwellPartners 139eeGkMGR6F9EuJQ3qYoXebfkBbNAsLtV
Twelverized 114Ap9G5nu78vESC648amPwSeqUorPtV5L
CRYPTOSX2 19YZYfMB3mfX8AixzV7aLqXuViDcntrfcK
1hourbtc.pw 1BsjsaHST2Qohs8ZHxNHeZ1UfWhtxoKHEN
bitcoindoubler.fund 1FNtgGsHhymmEUMXrMiFeMtZbuagnnS59c
doublebitcoin.life 1zmeu5BeWBprWyPv5ntNZKR7uThXaG9ic
bitcoincopy.site123.me 1EaSVdRuzcz4yjnTmibabyyrczvaQS8hAJ
bitcoinprofit2 1AXTqWYz1Bd3LZnq1Zf9vsgFBpqrKkHopx
invest4profit 1PZ8E5oT7EUVgEVz1Ggc7bjXe2byxr7wxG
1getpaid.me 1GetPaiDxjEuWN3KJTnY9Cbqv9QcR8zcME
Ponzi.io (change) 14ji9KmegNHhTchf4ftkt3J1ywmijGjd6M
igjam.com 1AQxcdPgMTTQghPXt1EXHU8vEjSn2kYrPQ
7dayponzi 195o79saDhUNHJ4DeMBYMekLmrQ848APxA
world-btc.online 1A88teD6QqXRHBMCyCkoxxBQHpJAztUz6e
bestdoubler.eu 13NZxtAnKk5mbCUHpxHqKwWTDJzFHMGHLh
bitcoindoubler.prv.pl 18Smkvyf3gJN4z59FhjJsCu6NhSYmZkNvG

B. Address clustering

Many techniques to break the anonymity of Bitcoin users

have been proposed in the literature. This is achieved either

by grouping together (“clustering”) the addresses controlled

by each user [3], [4], [5], or by using observations on the

underlying peer-to-peer network [34], [35], or by combining

both techniques [36].

Several heuristics for address clustering have been proposed

over the years. Besides analysing the shape of the transac-

tion graph, some heuristics also take into consideration the

behavior of standard clients [5]. To construct our dataset of

Ponzi-related addresses, we use the multi-input heuristic [3],

[4], the simplest and most efficient one. The key assumption

of this heuristic is that, in a multi-input transaction (like e.g.

TB in Figure 1), all the addresses referred to within the inputs

are controlled by the same user. These transactions occur, for

instance, when a user A wishes to transfer a certain amount of

vB to another user B, but none of the transactions in A’s wallet

has an unspent output of at least vB. In this case, to avoid

paying multiple transaction fees, A can perform the transfer

in a single shot, by putting on the blockchain a multi-input

transaction redeemable by B, where the sum of the values

redeemed by the inputs is at least vB. Typical Bitcoin clients

implement this by choosing the input transactions from A’s

wallet, satisfying the assumption of the multi-input heuristic.

We show in Table II some statistics on the clusters that

we obtain after applying the multi-input heuristic to the 32

addresses in our collection. The columns display the size of the

clusters, the overall number of transactions (either incoming

Table II: Top-10 Ponzi schemes by cluster size.

Ponzi scheme #Addr. #Tx In (B) In ($)

LaxoTrade 491 4798 1,580 570,106
Cryptory 232 22,823 9,439 4,658,008
1hourbtc 180 1262 36 42,668
120cycle 78 284 14 8263
bitcoindoubler.fund 63 1143 90 288,849
world-btc.online 41 302 1 2060
Ponzi.io 33 6311 370 258,368
btcgains 14 789 72 33,246
10PERCENTBTC 13 10,077 107 42,894
investorbitcoin.com 11 672 312 158,569

Total (32 schemes) 1211 107,637 17,910 9,509,050

or outgoing), and the overall inflow, both in B and in USD.

To convert the amount of each transaction to USD, we use the

average exchange rate on the day of the transaction, obtained

from www.coindesk.com/price. Overall, the Ponzi schemes in

our collection gathered almost 10 millions USD; the scheme

that raised the most is Cryptory, with ∼ 4.6 millions USD.

C. Features extraction

We now introduce a set of features, which are relevant for

the classification of Bitcoin addresses.

• The lifetime of the address, expressed in number of days.

This is computed as the difference between the date of

the first transaction to the address, and the date of the

last transaction to/from the address.

• The activity days, i.e. the number of days in which there

has been at least a transaction to/from the address.

• The maximum number of daily transactions to/from the

address.

• The Gini coefficient of the values transferred to (resp.

from) the address. Gini coefficients are a standard repre-

sentation of the degree of inequality of wealth: 0 indicates

perfect equality, while 100 is perfect inequality [16].

• The sum of all the values transferred to (resp. from) the

address.

• The number of incoming (resp. outgoing) transactions

which transfer money to (resp. from) the address.

• The ratio between incoming and outgoing transactions

to/from the address.

• The average (resp. standard deviation) of the values

transferred to/from the address.

• The number of different addresses which have transferred

money to the address, and subsequently received money

from it.

• The minimum (resp. maximum, average) delay between

the time when the address has received some bitcoins,

and the time it has sent some others.

• The maximum difference between the balance of the

address in two consecutive days.

All the features above are defined “pointwise” on single

Bitcoin address. We extend them to clusters in the straightfor-

ward way: any feature on a cluster is the composition of the

pointwise features on the addresses included in the cluster.

https://www.coindesk.com/price/


As an additional “componentwise” feature, we consider the

number of addresses included in the cluster.

D. Dataset construction

We construct a binary dataset that contains two classes of

instances: Ponzi schemes (denoted as P) and others (denoted

as nP). Each instance in the dataset corresponds to a cluster

of Bitcoin addresses (computed as shown in Section III-B),

and it is represented as a tuple of features (the ones defined

in Section III-C, plus the class label P or nP). To compute

these dataset instances we exploit an open-source tool for

custom blockchain analytics [37].

We populate the dataset with 32 instances of the class

P (corresponding to our clusters of Ponzi schemes), and

with 6400 randomly-chosen instances of the class nP (which

are clustered with the multi-input heuristic as well). This

strong imbalance between the two classes (approximately, 1

Ponzi instance every 200 instances of non-Ponzi) is needed

to properly model the fact that Ponzi-related addresses are

extremely rare, compared to non-Ponzi ones. Although 1/200

is still much higher then the expected ratio between Ponzi

addresses and non-Ponzi ones, it is a necessary compromise

to meaningfully represent also the rare class in the dataset.

IV. DATA MINING FOR PONZI SCHEMES

We formalise the induction of a detection model for Bitcoin

Ponzi schemes as a binary classification problem, where the

task is to distinguish between ‘Ponzi’ and ‘non-Ponzi’ class

instances. The strategies for dealing with the imbalanced

distribution of the classes are discussed below (Section IV-A),

along with the learning algorithms applied to induce the model

(Section IV-B), the performance metrics and the validation

protocol (Section IV-C). A number of experiments across

different settings (Section IV-D) resulted in a detection model

with good performance, which is then applied, with promising

results, to an independent set of data (Section IV-E). Finally,

we investigate which are the most relevant features, among

those in our set, to detect Ponzi schemes (Section IV-F).

A. Class imbalance problem

The class imbalance problem is one of the most critical

issues faced by fraud detection systems [31]. In a supervised

learning setting, as the one here considered, this problem

occurs when one class is very rare compared to the other(s),

thus making hard to discover robust patterns for the minority

class. Indeed, classifiers are usually designed to minimize

the total number of classification errors, and tend to be

overwhelmed by the majority class.

In fraud detection applications, as in many domains with

imbalanced class distributions, a correct classification of the

rare class (i.e., the P class in our problem) is far more impor-

tant than a correct classification of the majority class (i.e., the

nP class), since the cost of misclassifying a fraudulent case

is usually higher than the cost of misclassifying a legitimate

case (as the latter can be corrected through ex-post analyses).

A number of approaches have been proposed in the lit-

erature for handling this problem, including sampling-based

approaches [32] and cost-sensitive approaches [33].

Sampling-based approaches: The basic idea is to modify

the distribution of instances so that the minority class is

adequately represented in the dataset used for model develop-

ment. The most common sampling technique is random un-

dersampling (RUS), which consists in removing observations

at random from the majority class. An alternative approach is

random oversampling (ROS), where some of the minority in-

stances are replicated, but with an increased risk of overfitting,

particularly with noisy data [28]. Though more sophisticated

(and expensive) approaches exist, they have not proved to be

superior in severe imbalance settings [38]. Furthermore, the

effectiveness of sampling techniques may be dependent on

the learning algorithm used (and on the adopted performance

measure); as well, the extent of sampling for best performance

may be domain-dependent.

Cost-sensitive approaches: Cost-sensitive learning involves

the use of a cost matrix which encodes the penalty of

classifying instances from one class as another. In a class

imbalance setting, where the focus is usually on rare instances,

a misclassification of the minority class is penalized more

than a misclassification of the majority class. For a given

classification model, penalty terms are then used to derive

an overall cost which reflects the “weight” of the different

types of classification errors, besides their total number. Cost-

sensitive classification techniques take this cost matrix into

consideration in the training phase, in order to generate the

classification model with the lowest overall cost.

In this work we consider both sampling-based and cost-

sensitive approaches. Furthermore, we experiment with learn-

ers whose inner design can cope, at least to some extent, with

imbalanced class distributions, as in the case of the RIPPER

algorithm proposed in [39].

B. Classifiers

In the induction stage of our detection model, we exploited

RIPPER, Bayes Network and Random Forest classifiers, which

are representatives of quite different learning strategies.

RIPPER is a propositional rule learner that relies on a

sequential covering logic [39] to extract classification rules

directly from training data. Rules are grown in a greedy

fashion, starting from empty rule antecedents and repeatedly

adding conjuncts in order to maximize the information gain

measure. An incremental reduced error pruning technique is

used the refine the resulting rules. Since the algorithm is

designed to give higher priority to the least frequent class,

this approach is particularly suited for dealing with imbalanced

classification tasks, as in the case of fraud detection.

Bayes Network is a probabilistic model that represents,

in the form of a directed acyclic graph, the relation of

conditional dependence among a set of variables (the features



and the target class, in the context of classification problems).

Probabilistic parameters are encoded in a set of tables, one

for each node of the network, in the form of local conditional

distributions of a variable given its parents. Both the network

structure and the probability values can be estimated from a

training set of labelled instances. Bayesian models have been

applied in the context of fraud detection systems, e.g. in [40].

Random Forest is an ensemble method that exploits mul-

tiple decision trees built from random variants of the same

data [41]. Although a single tree may be unstable and overly

sensitive to the specific composition of the training set, the

aggregation of the predictions made by the individual trees in

the forest has been shown to achieve much better performance.

Compared to other ensemble approaches, Random Forest is

computationally efficient and has proved to be a “best of class”

learner in several domains [42], including fraud detection [23].

For the above classifiers, we leverage the implementation

provided by the Weka machine learning library [43].

C. Performance measures and validation

To evaluate the performance of our detection models, we

rely on best practices from the literature.

Specifically, in the context of binary problems with im-

balanced class distributions, as in the case here considered,

the rare class is denoted as the positive class, while the

majority class is denoted as the negative class. The following

terminology is then used to describe how the model performs

on a given set of test instances: a true positive (resp. negative)

is a positive (resp. negative) instance correctly classified by

the model; a false negative is a positive instance wrongly

classified as negative; a false positive is a negative instance

wrongly classified as positive.

Depending on the specific characteristics of the data at hand,

different metrics can be used for quantifying the extent to

which the model is able to recognize positive and negative

instances [43]. Hereafter, TP (resp. TN) refers to the number

of true positives (resp. negatives), while FP (resp. FN) refers

to the number of false positives (resp. negatives):

Accuracy ((TP + TN)/(TP + TN + FP + FN)) is the fraction

of test instances whose class is predicted correctly;

Specificity (TN/(TN+FP)) is the fraction of negative instances

classified correctly;

Sensitivity (TP/(TP+FN)), also called Recall, is the fraction

of positive instances classified correctly;

Precision (TP/(TP+FP)) is the fraction of instances that actu-

ally are positive in the group the model has predicted as

positive;

F-measure (2·Precision·Recall / (Precision+Recall)) is the

harmonic mean between precision and recall;

G-mean (Recall·Specificity)(0.5) is the geometric mean be-

tween specificity and recall;

AUC is the area under the Receiver Operating Characteristics

(ROC) curve, which shows the trade-off between true

positive and false positive rates (the better the model,

the closer the area is to 1).

Accuracy is the most common performance metric but,

alone, is not suited for evaluating models induced from im-

balanced datasets. In a fraud detection context, if 0.5% of the

instances are fraudulent (as in our dataset), then a model that

predicts every instance as non-fraudulent has an accuracy of

99.5%, even though it fails to detect any of the frauds. In

this situation, class-specific metrics (such as specificity, recall

and precision) can help to better describe and understand the

model behaviour. In particular, recall and precision are widely

used in applications where the successful detection of the rare

class is considered more interesting or important (as for the

‘Ponzi’ class in our problem).

To avoid building models that maximize one metric at the

expense of another, trade-off values such those expressed by

F-measure and G-mean are taken into account. In turn, AUC

is usually considered more significant than accuracy when

comparing the overall performance of different classifiers.

Instead of using a single test set to compute the above

metrics, we adopt an iterative cross-validation protocol, which

involves splitting the original dataset into K subsets of the

same size (folds). At each iteration, one of the folds is retained

as test data for evaluating the model performance, while the

remaining K − 1 folds are used as training data for building

the model. This procedure is repeated K times, using each

time a different fold as test set, and the results of the K runs

are finally aggregated to obtain TP, TN, FP and FN counts. In

our experiments, based on common practise in the literature,

we set K = 10.

D. Results

We now present the results obtained with RIPPER, Bayes

Net and Random Forest classifiers presented in Section IV-B.

Hereafter, we use the following acronyms: RIP for RIPPER,

BN for Bayes Net and RF for Random Forest.

First, we evaluate their performance without applying the

sampling-based and the cost-sensitive approaches (see Sec-

tion IV-A). The results are shown in Figure 2 in the form of

confusion matrices, where the row index refers to the actual

class, while the column index refers to the predicted class. As

we can see, the classification performance is not satisfactory,

due to the high number of Ponzi schemes not recognized.

Bayes Net classifies correctly the largest number of Ponzi

instances (23 out of 32), but the number of false positives

(i.e., non-Ponzi classified as Ponzi) is the highest as well.

These results confirm that learning from highly imbalanced

datasets is a very difficult task.

As a next step, we explore the effectiveness of the random

undersampling approach, which has proved to be useful to

deal with datasets where the fraud rate is comparable with the

one here considered [23]. Specifically, at each iteration of the

cross-validation procedure, we manipulate the training set to

reduce the extent of class imbalance: the original proportion

of 1 Ponzi instance every 200 instances of non-Ponzi (1:200)

is reduced to 1 Ponzi every 40 non-Ponzi (1:40), 1 Ponzi every

20 non-Ponzi (1:20), 1 Ponzi every 10 non-Ponzi (1:10) and

1 Ponzi every 5 non-Ponzi (1:5). Note that we do not modify



the class distribution of the test instances, to not introduce any

bias in the final performance estimate.

The results in Figure 3 show that the undersampling ap-

proach results in an improved true positive rate. In particular,

within the 1:5 setting, Random Forest recognizes the same

number of Ponzi as Bayes Net (25 out of 32), but with

a significantly lower number of false positives. Bayes Net,

indeed, produces too many false positives (266), even more

than RIPPER (226). Thus, while improving the true positive

rate (and hence the recall metric), the undersampling approach

is not quite satisfactory in terms of false positives (that affect

the precision metric). This difficulty of achieving an optimal

trade-off between recall and precision is a recognized issue in

the fraud detection literature [31].

As a further step, we investigate the effectiveness of the

cost-sensitive approach. When learning our detection models,

we use the cost matrices shown in Figure 4. In the matrix

CM5, the cost of committing a false negative error is 5 times

larger than the cost of committing a false positive error; it is

10 times larger in CM10, 20 times larger in CM20 and 40

times larger in CM40.

The results achieved by the cost-sensitive classifiers are

shown in Figure 5. As we can see from the confusion matrices,

RIPPER obtains the same results as in the original setting

(Figure 2). This is not surprising, since the algorithm is

designed to cope with the rare (i.e., positive) class and turns

out to be insensitive to further penalising a wrong classification

of the positive instances. In turn, Bayes Net does not seem

to take significant advantage of the cost-sensitive approach,

which results in 24 true positives (one more than in the original

setting), but with an increased number of false positives.

The best results are obtained with the Random Forest classi-

fier. Using the CM5 matrix, it recognizes 25 Ponzi schemes, as

Bayes Net in the 1:5 undersampling setting, but with a strong

reduction of the false positives (only 13). When penalising

more the false negatives, the number of the true positives

increases (29 using CM10 and 31 using CM20) and the number

of false positives increases in turn, but to an acceptable extent

(26 e 77 respectively). Increasing further the cost (CM40) is

not beneficial since the number of true positives remains the

same but the false positives increase to 132.

In Figure 6, we further detail the performance of the

cost-sensitive Random Forest classifier, that has shown to be

superior to the other approaches here explored. Different per-

formance metrics are computed as explained in Section IV-C).

In terms of accuracy, which simply expresses the fraction

of correctly classified instances (irrespective of their class),

the best result is achieved with the CM5 cost matrix. It also

ensures the highest true negative rate (specificity) and a good

trade-off between recall and precision (in terms of F-measure).

However, given the specific characteristics of the considered

domain, where the correct classification of Ponzi schemes is

of paramount importance, we consider especially relevant the

recall value, which is optimised using the CM20 cost matrix.

The G-mean value, that expresses a trade-off between recall

and specificity, is also better with CM20 and, in this setting,

Table III: Addresses of the alternative set of Ponzi schemes.

Ponzi scheme Deposit address

Longtermpaying 1MnuUkqvsyZdwd3xyM354kqVoPBhfBGE78
ebitinvest.com 1LkT3qubANxtSHvxokZ8Nkrv6k7EFi6F1
PonziCoin 1NcHirWVDfUAngWLjBzmPCQaeZaMPCceHC
CoinDoubleP2 15vr3X25cgfMBXpX8PQP3M6bQViFgqrm6U
CoinDoubleP1 1AA4A7cbVf3wMtG1RrhDoPkjAX2C1RJMjW
CoinDoubleP3 1NNSgNDU52W79QbXHGSBYHW874nQYb7oms
CryptoSplit2 1P5rm8YmufwfNdqg6Dy47boaeBCXvEDjUP
CryptoSplit 147MddkTvgHR2kEoEpj5fjx7MK71va54y5
TrustedBusinessInvestments 1NWdUDU4X91JTKEFJRKgmW4yYsUhWnaMJH
SmallProfit 133ySbYkiA7BTtau2v3Hs4GLoDgGZFNDbD
SmallProfit (2) 1Bb4JG51DizK6iSn4w4RqhRNXPUpkhacHx
MagicBitcoinDoubler 1QLbGuc3WGKKKpLs4pBp9H6jiQ2MgPkXRp
coin-generator.net 18Xiqg52FfgA43rqCyCU5iqq6KNBgjTBj8
MMM Global 1MxA5W1TKcMwLNh6EYL9QwAMLXtifHnxwb
BTC-flow (2) 1CjGx5ujxvzdbZqzzhPREXqvxoYSgDoAgd
WeeklyPonzi 1CHJArco4Qv6cmTZNF7Km7cuATCD1Z1NSu
DoubleBot 1LWadswFVXwCoVSKAeo3tuxWKqKr1EWFxR
ClearHash.net (1) 1AFjgfnUhAYp4eh2GhbbLkCXY5xK25qJmQ
ClearHash.net (2) 1DXxLzocfWXTHVYv4MTai4LLtXZgcJDknZ
ClearHash.net (4) 19g9exzmtJ2sQbBBB3x2PiY9pReVCm8HqA

the AUC value is the highest as well.

Taking these considerations into account, the Random For-

est model obtained using CM20 can be considered the most

effective for detecting Ponzi schemes.

E. Application of the induced model

In this section perform an ex-post validation of the best

classifier obtained so far, i.e. Random Forest with CM20. To

this purpose we collect other Ponzi schemes by searching the

web, with the same methodology of Section III-A. We report

their addresses in Table III. Overall, the 20 Ponzi schemes in

this collection have gathered more than 15 millions USD, in

large part with a single scheme, CryptoSplit (see Table IV).

We then construct an alternative dataset, comprising the fea-

tures of the clusters of the Ponzi schemes in the new collection,

and those of 4000 randomly-chosen Bitcoin addresses not in

the original dataset. By applying the Random Forest classifier

with CM20 to the alternative dataset, we obtain the following

confusion matrix:

P nP

P 18 2

nP 81 3919

Notably, the classifier recognizes 18 Ponzi schemes out of

20, producing 81 false positives. The 2 Ponzi schemes not

recognized by the classifier are marked with ✗ in Table IV.

F. Ranking and evaluation of features

We now study which features, among those listed in Sec-

tion III-C, are more relevant for the classification of Ponzi

schemes. To this purpose we exploit the feature selection

functionality of Weka [43], which implements several methods

for ranking features. Among them, we apply some univariate

methods (Information Gain, Gain Ratio, Symmetrical Uncer-

tainty, and OneR), and the multivariate method ReliefF.

Among the 32 features included in our datasets, we consider

those with the highest number of occurrences in the first

positions of these rankings, and thus can be considered as the

most discriminating ones. These features are the following:



Predicted

RIP P nP

A
ct

u
al P 19 13

nP 7 6393

Predicted

BN P nP

A
ct

u
al P 23 9

nP 99 6301

Predicted

RF P nP

A
ct

u
al P 11 21

nP 0 6400

Figure 2: Confusion matrices for RIPPER, Bayes Net and Random Forest.

RIP: 1:40

P nP
P 21 11

nP 44 6356

RIP: 1:20

P nP
P 23 9

nP 66 6334

RIP: 1:10

P nP
P 23 9

nP 97 6303

RIP: 1:5

P nP
P 24 8

nP 226 6174

BN: 1:40

P nP
P 23 9

nP 154 6246

BN: 1:20

P nP
P 23 9

nP 185 6215

BN: 1:10

P nP
P 24 8

nP 233 6167

BN: 1:5

P nP
P 25 7

nP 266 6134

RF: 1:40

P nP

P 17 15

nP 3 6397

RF: 1:20

P nP

P 19 13

nP 9 6391

RF: 1:10

P nP

P 21 11

nP 30 6370

RF: 1:5

P nP

P 25 7

nP 70 6330

Figure 3: Confusion matrices for RIPPER, Bayes Net and Random Forest across different undersampling in training data.

Predicted

CM5 P nP

A
ct

u
al P 0 5

nP 1 0

Predicted

CM10 P nP

A
ct

u
al P 0 10

nP 1 0

Predicted

CM20 P nP

A
ct

u
al P 0 20

nP 1 0

Predicted

CM40 P nP

A
ct

u
al P 0 40

nP 1 0

Figure 4: Cost matrices: CM5, CM10, CM20, and CM40.

RIP: CM5

P nP
P 19 13

nP 7 6393

RIP: CM10

P nP
P 19 13

nP 7 6393

RIP: CM20

P nP
P 19 13

nP 7 6393

RIP: CM40

P nP
P 19 13

nP 7 6393

BN: CM5

P nP
P 24 8

nP 136 6264

BN: CM10

P nP
P 24 8

nP 155 6245

BN: CM20

P nP
P 24 8

nP 192 6203

BN: CM40

P nP
P 24 8

nP 213 6187

RF: CM5

P nP

P 25 7

nP 13 6387

RF: CM10

P nP

P 29 3

nP 26 6374

RF: CM20

P nP

P 31 1

nP 77 6323

RF: CM40

P nP

P 31 1

nP 132 6268

Figure 5: Confusion matrices of RIPPER, Bayes Net and Random Forest across different cost-matrices.

Random Forest Accuracy Recall Specificity F-measure Precision G-mean AUC

CM5 : Using Cost 5 .997 .781 .998 .714 .658 .883 .890

CM10: Using Cost 10 .995 .906 .995 .667 .527 .949 .951

CM20: Using Cost 20 .988 .969 .987 .443 .287 .978 .978

CM40: Using Cost 40 .979 .969 .979 .318 .190 .973 .974

Figure 6: Performance of Random Forest across different cost-matrices.



Table IV: Alternative set of Ponzi schemes, by cluster size.

Ponzi scheme #Addr. #Tx In (B) In ($)

CryptoSplit 1763 126,245 35,654 15,124,204
PonziCoin 243 3226 229 132,158
MagicBitcoinDoubler 135 49,239 404 77,049
coin-generator.net 36 468 2 3608
TrustedBusinessInvest 22 91 4 11,361
DoubleBot 21 298 0.35 97
WeeklyPonzi 5 827 13 6724
CoinDoubleP1 ✗ 3 90 3 1422
CoinDoubleP3 2 10 4 1680
CoinDoubleP2 2 167 3 1238
CryptoSplit2 2 292 1 336
ClearHash.net (2) 2 30 0.5 142
BTC-flow (2) 2 308 0.08 34
ClearHash.net (4) 2 13 0.01 5
SmallProfit 1 8518 32 19,961
ebitinvest.com 1 414 16 39,861
Longtermpaying 1 1504 13 3698
MMM Global ✗ 1 22 7 1663
ClearHash.net (1) 1 801 5 2094
SmallProfit (2) 1 1991 0.29 185

Total (20 schemes) 2246 194,515 36,398 15,427,373

(i) the Gini coefficient of the outgoing values; (ii) the ratio

between incoming and total transactions; (iii) the average and

standard deviation of the outgoing values; (iv) the number of

different addresses who have transferred money to the cluster,

and subsequently received money from it; (v) the lifetime of

the cluster, and the number of activity days.

V. CONCLUSIONS

Criminal activities that accept payments in bitcoins damage

the reputation of Bitcoin, and eventually may be detrimental to

the diffusion of cryptocurrencies for legitimate uses. However,

since all currency transfers are recorded on a public ledger,

surveillance authorities can analyse them, trying to detect

anomalous or suspect behaviours.

Despite the transparency of the blockchain, tracking illicit

financial flows is a challenging problem, for several rea-

sons. First, many illicit activities involve hundreds, or even

thousands, of transactions — thus making manual inspection

impracticable. For instance, the Ponzi schemes in our dataset

use ∼1400 transactions on average: this number is sufficiently

large to discourage any attempt at manual inspection. Second,

the number of illicit flows is overwhelmed by that of legitimate

ones, making the task of surveillance authorities similar to

finding “the needle in the haystack”. Another difficulty is that

smart cyber-criminals exploit techniques to make analysing

their activities more difficult, e.g. by using mixing services to

hide the actual provenance of illegal money. All these obser-

vations highlight the pressing need for automated techniques

to detect illegal activities on cryptocurrencies.

In this work we have proposed an automatic analysis

of Ponzi schemes on Bitcoin, based on supervised learning

algorithms. Ponzi schemes are a classic fraud masqueraded as

“high-yield” investment schemes. However, in a Ponzi scheme

the investors are repaid only with the funds invested by new

users, hence eventually the scheme implodes, as at a certain

point it will no longer be possible to find new investments.

After a preliminary phase of manual search, we have iden-

tified 32 Bitcoin addresses used by Ponzi schemes. Address

clustering allowed us to extend our collection to 1211 ad-

dresses, which overall received investments for ∼ 10 millions

USD. We have devised a set of features of clusters, that we

have used to create a dataset containing the features of all

the addresses of Ponzi schemes, and those of other 6400

randomly-chosen addresses. We experimented with data min-

ing tools to evaluate different supervised learning strategies.

The best classifier we have found correctly classifies 31 Ponzi

schemes out of 32, producing ∼ 1% of false positives.

An obvious extension of this work is to apply this classifier

to all the addresses in the Bitcoin blockchain. This kind of

analysis poses serious efficiency issues, since several dozens

of millions of distinct Bitcoin addresses have been used so

far. Although the number of false positives is quite low

(comparable to that of other successful approaches in the fraud

detection literature [23]), automated techniques to check the

false positives are in order. To this purpose one could exploit

auxiliary information sources, e.g. web discussion forums, and

the IP addresses collected by monitoring the traffic on the

Bitcoin network.

Our classifier can also be used to detect Ponzi schemes

implemented over other cryptocurrencies, like e.g. Ethereum.

To this purpose we could exploit public datasets of Ethereum-

based Ponzi schemes [44], which collect addresses and other

relevant data of 152 Ponzi schemes. In the case of Ethereum,

the precision of the classifier could be improved by exploiting

more specific features, like e.g. the distribution of gain among

users, and the correlation between the timings of inflows and

outflows observed in [44].

The approach we have followed in this work can be ex-

ploited for the detection of other cryptocurrency-based frauds

besides Ponzi schemes, like e.g. ransomware, money launder-

ing, etc. This would require, as in our case, a preliminary phase

of dataset construction. The dataset could take into account,

besides the features used in Section III-C, further features that

better capture specific behaviours of the fraud under analysis.

A relevant question is what interventions can be devised

after an illegal activity has been detected. The ex-post san-

itization of fraudulent activities is hampered by the current

fungibility of the Bitcoin currency. This means that Bitcoin

users and exchanges are not selective in which bitcoins to

accept, and which ones to reject. Hence, even if we set up

risk scores for Bitcoin transactions as proposed in [21], e.g. by

marking as “bad” all the bitcoins flowing out a Ponzi scheme,

it would not be possible to take countermeasures to the use of

“bad” bitcoins until they leave the Bitcoin ecosystem through

an exchange service.

REFERENCES

[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,”
https://bitcoin.org/bitcoin.pdf, 2008.

https://bitcoin.org/bitcoin.pdf


[2] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “SoK: Research perspectives and challenges for Bitcoin and
cryptocurrencies,” in IEEE S & P, 2015, pp. 104–121.

[3] F. Reid and M. Harrigan, “An analysis of anonymity in the Bitcoin
system,” in Security and privacy in social networks. Springer, 2013,
pp. 197–223.

[4] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: characterizing payments
among men with no names,” in Internet Measurement Conference.
ACM, 2013, pp. 127–140.

[5] ——, “A fistful of Bitcoins: characterizing payments among men with
no names,” Commun. ACM, vol. 59, no. 4, pp. 86–93, 2016.

[6] M. Möser and R. Böhme, “Anonymous alone? measuring Bitcoin’s
second-generation anonymization techniques,” in EuroS&P Workshops,
2017, pp. 32–41.

[7] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting intelli-
gence from the Bitcoin network,” in Financial Cryptography and Data

Security, ser. LNCS, vol. 8437. Springer, 2014, pp. 457–468.

[8] E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in Bitcoin,” in Financial Cryptography and

Data Security, ser. LNCS, vol. 7859. Springer, 2013, pp. 34–51.

[9] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.
Felten, “Mixcoin: Anonymity for Bitcoin with accountable mixes,”
in Financial Cryptography and Data Security, ser. LNCS, vol. 8437.
Springer, 2014, pp. 486–504.

[10] M. Möser and R. Böhme, “The price of anonymity: empirical evidence
from a market for Bitcoin anonymization,” J. Cybersecurity, vol. 3, no. 2,
pp. 127–135, 2017.

[11] J. H. Ziegeldorf, R. Matzutt, M. Henze, F. Grossmann, and K. Wehrle,
“Secure and anonymous decentralized Bitcoin mixing,” Future Genera-

tion Comp. Syst., vol. 80, pp. 448–466, 2018.

[12] K. Liao, Z. Zhao, A. Doupé, and G. Ahn, “Behind closed doors:
measurement and analysis of cryptolocker ransoms in Bitcoin,” in APWG
Symposium on Electronic Crime Research (eCrime), 2016, pp. 1–13.

[13] S. Bistarelli, M. Parroccini, and F. Santini, “Visualizing Bitcoin
flows of ransomware: WannaCry one week later,” in ITASEC, ser.
CEUR Workshop Proceedings, no. 2058, 2018. [Online]. Available:
http://ceur-ws.org/Vol-2058/#paper-13

[14] C. Brenig, R. Accorsi, and G. Müller, “Economic analysis of cryp-
tocurrency backed money laundering.” in European Conference on

Information Systems (ECIS), 2015.

[15] M. Möser, R. Böhme, and D. Breuker, “An inquiry into money laun-
dering tools in the Bitcoin ecosystem,” in eCrime Researchers Summit
(eCRS), 2013. IEEE, 2013, pp. 1–14.

[16] M. Vasek and T. Moore, “There’s no free lunch, even using Bitcoin:
Tracking the popularity and profits of virtual currency scams,” in
Financial Cryptography and Data Security, 2015, pp. 44–61.

[17] M. Artzrouni, “The mathematics of Ponzi schemes,” Mathematical

Social Sciences, vol. 58, no. 2, pp. 190–201, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.mathsocsci.2009.05.003

[18] T. Moore, J. Han, and R. Clayton, “The postmodern Ponzi scheme:
empirical analysis of high-yield investment programs,” in Financial

Cryptography and Data Security, vol. 7397. Springer, 2012, pp. 41–56.

[19] M. Vasek and T. Moore, “Analyzing the Bitcoin Ponzi scheme ecosys-
tem,” in Bitcoin Workshop, 2018, to appear.

[20] T. Moore, “The promise and perils of digital currencies,” IJCIP, vol. 6,
no. 3-4, pp. 147–149, 2013.

[21] M. Möser, R. Böhme, and D. Breuker, “Towards risk scoring of Bitcoin
transactions,” in Financial Cryptography and Data Security Workshops,
2014, pp. 16–32.

[22] T. Slattery, “Taking a bit out of crime: Bitcoin and cross-border tax
evasion,” Brook. J. Int’l L., vol. 39, p. 829, 2014.

[23] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support

Systems, vol. 50, no. 3, pp. 602–613, 2011.

[24] C. Whitrow, D. J. Hand, P. Juszczak, D. Weston, and N. M. Adams,
“Transaction aggregation as a strategy for credit card fraud detection,”
Data Mining and Knowledge Discovery, vol. 18, no. 1, pp. 30–55, Feb
2009.

[25] J. T. Quah and M. Sriganesh, “Real-time credit card fraud detection
using computational intelligence,” Expert Systems with Applications,
vol. 35, no. 4, pp. 1721–1732, 2008.

[26] D. J. Weston, D. J. Hand, N. M. Adams, C. Whitrow, and P. Juszczak,
“Plastic card fraud detection using peer group analysis,” Advances in
Data Analysis and Classification, vol. 2, no. 1, pp. 45–62, Apr 2008.

[27] N. Carneiro, G. Figueira, and M. Costa, “A data mining based system for
credit-card fraud detection in e-tail,” Decision Support Systems, vol. 95,
no. Supplement C, pp. 91–101, 2017.

[28] A. D. Pozzolo, O. Caelen, Y. L. Borgne, S. Waterschoot, and G. Bon-
tempi, “Learned lessons in credit card fraud detection from a practitioner
perspective,” Expert Systems with Applications, vol. 41, no. 10, pp.
4915–4928, 2014.

[29] T. Pham and S. Lee, “Anomaly detection in Bitcoin network using
unsupervised learning methods,” CoRR, vol. abs/1611.03941, 2016.

[30] P. Monamo, V. Marivate, and B. Twala, “Unsupervised learning for
robust Bitcoin fraud detection,” in 2016 Information Security for South

Africa, ISSA, 2016, pp. 129–134.
[31] A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system:

A survey,” Journal of Network and Computer Applications, vol. 68, no.
Supplement C, pp. 90–113, 2016.

[32] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: special issue
on learning from imbalanced data sets,” SIGKDD Explorations, vol. 6,
no. 1, pp. 1–6, 2004.

[33] N. Thai-Nghe, Z. Gantner, and L. Schmidt-Thieme, “Cost-sensitive
learning methods for imbalanced data,” in International Joint Conference
on Neural Networks, IJCNN 2010, Barcelona, Spain, 18-23 July, 2010,
2010, pp. 1–8.

[34] A. Biryukov and I. Pustogarov, “Bitcoin over tor isn’t a good idea,” in
IEEE Symposium on Security and Privacy. IEEE Computer Society,
2015, pp. 122–134.

[35] J. Dupont and A. C. Squicciarini, “Toward de-anonymizing Bitcoin by
mapping users location,” in Proc. of the 5th ACM Conference on Data

and Application Security and Privacy (CODASPY). ACM, 2015, pp.
139–141.

[36] T. Neudecker and H. Hartenstein, “Could network information facilitate
address clustering in Bitcoin?” in Financial Cryptography Workshops,
ser. LNCS, vol. 10323. Springer, 2017, pp. 155–169.

[37] M. Bartoletti, S. Lande, L. Pompianu, and A. Bracciali, “A gen-
eral framework for blockchain analytics,” in Proc. 1st Workshop on

Scalable and Resilient Infrastructures for Distributed Ledgers (SE-
RIAL@Middleware). ACM, 2017, pp. 7:1–7:6.

[38] J. V. Hulse, T. M. Khoshgoftaar, and A. Napolitano, “Experimental
perspectives on learning from imbalanced data,” in Proc. 24th Int. Conf.
on Machine Learning (ICML), 2007, pp. 935–942.

[39] W. W. Cohen, “Fast effective rule induction,” in In Proceedings of

the Twelfth International Conference on Machine Learning. Morgan
Kaufmann, 1995, pp. 115–123.

[40] S. Maes, K. Tuyls, B. Vanschoenwinkel, and B. Manderick, “Credit
card fraud detection using bayesian and neural networks,” in Proc. 1st

International NAISO Congress on Neuro Fuzzy Technologies, 2002.
[41] L. Breiman, “Random forests,” Machine Learning, vol. 45,

no. 1, pp. 5–32, Oct 2001. [Online]. Available:
https://doi.org/10.1023/A:1010933404324

[42] L. Rokach, “Decision forest: twenty years of research,” Information
Fusion, vol. 27, pp. 111––125, 2016.

[43] I. Witten, E. Frank, M. Hall, and C. Pal, DATA MINING: Practical

Machine Learning Tools and Techniques. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2016.

[44] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting Ponzi
schemes on Ethereum: identification, analysis, and impact,” arXiv

preprint arXiv:1703.03779, 2017.

http://ceur-ws.org/Vol-2058/#paper-13
http://dx.doi.org/10.1016/j.mathsocsci.2009.05.003
https://doi.org/10.1023/A:1010933404324

	I Introduction
	II Bitcoin in a nutshell
	III Dataset construction
	III-A Collection of Bitcoin addresses used by Ponzi schemes
	III-B Address clustering
	III-C Features extraction
	III-D Dataset construction

	IV Data mining for Ponzi schemes
	IV-A Class imbalance problem
	IV-B Classifiers
	IV-C Performance measures and validation
	IV-D Results
	IV-E Application of the induced model
	IV-F Ranking and evaluation of features

	V Conclusions
	References

