
Tortoise and Hares Consensus: the Meshcash Framework for

Incentive-Compatible, Scalable Cryptocurrencies

Iddo Bentov Pavel Hubáček Tal Moran Asaf Nadler

Abstract

We propose Meshcash, a new framework for cryptocurrency protocols that combines a
novel, proof-of-work based, permissionless byzantine consensus protocol (the tortoise) that
guarantees eventual consensus and irreversibility, with a possibly-faulty but quick consensus
protocol (the hare). The construction is modular, allowing any suitable “hare” protocol to be
plugged in. The combined protocol enjoys best of both worlds properties: consensus is quick
if the hare protocol succeeds, but guaranteed even if it is faulty. Unlike most existing proof-
of-work based consensus protocols, our tortoise protocol does not rely on leader-election
(e.g., the single miner who managed to extend the longest chain). Rather, we use ideas from
asynchronous byzantine agreement protocols to gradually converge to a consensus.

Meshcash, is designed to be race-free: there is no “race” to generate the next block, hence
honestly-generated blocks are always rewarded. This property, which we define formally as
a game-theoretic notion, turns out to be useful in analyzing rational miners’ behavior: we
prove (using a generalization of the blockchain mining games of Kiayias et al.) that race-free
blockchain protocols are incentive-compatible and satisfy linearity of rewards (i.e., a party
receives rewards proportional to its computational power).

Because Meshcash can tolerate a high block rate regardless of network propagation de-
lays (which will only affect latency), it allows us to lower both the variance and the expected
time between blocks for honest miners; together with linearity of rewards, this makes pooled
mining far less attractive. Moreover, race-free protocols scale more easily (in terms of trans-
action rate). This is because the race-free property implies that the network propagation
delays are not a factor in terms of rewards, which removes the main impediment to accom-
modating a larger volume of transactions.

We formally prove that all of our guarantees hold in the asynchronous communication
model of Pass, Seeman and shelat, and against a constant fraction of byzantine (malicious)
miners; not just rational ones.

1

Contents

1 Introduction 4
1.1 Our Contributions . 4

2 Related Works 6
2.1 Leader-Election-Based Protocols . 7

2.1.1 Winner-takes-all . 7
2.2 Reward-sharing . 8
2.3 Leaderless Protocols . 8

3 Protocol Description 9
3.1 Informal Overview . 9
3.2 Modeling Generic BlockDAG Protocols . 9

3.2.1 Validity. 9
3.2.2 Total Order on Blocks. 10
3.2.3 Security Properties. 10

3.3 Weak Common Coins . 10
3.3.1 Implementing a Weak Common Coin Based on Proof-of-Work. 11

3.4 Modular (Tortoise) Protocol . 12
3.4.1 Overview. 12
3.4.2 Hare Protocol Requirements. 13
3.4.3 Tortoise Protocol Description. 13
3.4.4 Protocol Parameters. 14
3.4.5 Protocol Concepts. 15

3.5 Security Proof Overview for Tortoise Protocol . 16
3.5.1 Irreversibility. 16
3.5.2 Pure Tortoise Consensus. 16
3.5.3 Hare & Tortoise Consensus. 17
3.5.4 Race-Freeness. 17

3.6 Hare Protocols . 17
3.6.1 Simple Hare Protocol. 17
3.6.2 Byzantine-Agreement-Based Hare Protocols. 18

3.7 Communication/Storage Optimizations. 18
3.7.1 Efficient Verification Algorithm. 19

4 Proof of Security 19
4.1 Notation . 19
4.2 Bounding the Layer Interval and the Size of the Future Reserve 21
4.3 Consistency and Future Self-Consistence (Irreversibility) 23

5 Proof of Theorem 4.12 27
5.1 Proof Overview . 27
5.2 Bounding the quantity M∗i (A) . 27
5.3 Bounding the Actual Confirmation Margin . 31
5.4 Countermeasures against Freeloading . 31

6 Byzantine-Agreement-Based Hare Protocol 32
6.1 The ABA Protocol’s Environment . 32

6.1.1 Implementing the Environment. 33
6.2 Using the ABA Protocol . 34
6.3 Improving the Hare-Protocol Parameters using Multivalued ABA 35

2

6.4 Additional Potential Improvements . 36

7 Improving the Hare-Protocol Parameters using Multivalued ABA: Details 36

8 Incentive-Compatibility of Race-Free Protocols 38
8.1 Generalized Blockchain Mining Games . 38
8.2 Race-Free Games . 39

8.2.1 Properties of Race-Free Games. 39
8.2.2 Race-Free Blockchain Protocols. 40

8.3 Meshcash is Race-Free . 40
8.4 When Fees Dominate Coinbase . 41

A Nonlinear Rewards 44

B Some standard tail bounds for the Poisson distribution 46

3

1 Introduction

For a currency to be effective, it should satisfy several conditions:

• Limited Supply: The supply of new coins should be limited.

• No double spending: The total amount of money expended by a party cannot be more
than the amount received by that party. That is, Alice should not be able to pay Bob
and Charlie with the same coin.

• Liveness: If Alice wishes to pay Bob and has enough funds to do so, then she will be able
to.

• Consensus on history: All the participants must have an agreed upon history of the
transactions in the currency. That is, if Charlie believes that Alice paid Bob, then Dana
and Eve should not believe a contradicting claim.

• Irreversibility: Once a transaction is in the agreed history, it should stay there. That is,
if everyone agrees that Alice paid Bob today, they should also believe this tomorrow.

These requirements apply to all currencies, but are particularly problematic for digital curren-
cies. The “traditional” solution (e.g., as employed by the financial industry) is to rely on a
central authority in order to guarantee these properties (e.g., a government or a bank). The
main innovation of Bitcoin [31, 12, 32] is a method to distribute the trust requirements; instead
of having to trust entirely in a single authority, the underlying assumptions are about larger
groups. In Bitcoin, the assumption is that the majority of the active participants behaves
honestly, where majority is measured by computational power.

As described by Nakamoto [31], the core mechanism for achieving the above desiderata is
by constructing a distributed timestamping server. This allows all participants to agree on the
transaction history, and in particular on the order in which transactions occurred (ensuring that
if a party tries to spend the same coin twice, everyone will agree which of the two transactions
is valid). Loosely speaking, participants “vote” for the history they consider valid, and the
majority “wins”. In an ideal, democratic cryptocurrency, every participant would be allowed
the same number of votes. However, this seems impossible to enforce in the current Internet;
since there is no mechanism for identity verification, a malicious party can create many fake
identities. Instead of using a “one-person-one-vote” rule, Bitcoin enforces a “one-resource-
one-vote” rule, with the resource in question being computational work. That is, participants
generate Proofs of Work, with each proof corresponding to a “vote”. To reduce communication,
Bitcoin actually uses a lottery system, where each Proof of Work (PoW) corresponds to a lottery
ticket, and only the winning ticket gets to vote.

The decentralized nature of the Bitcoin protocol stems from the fact that it allows anyone
who contributes computational power to participate. In this sense, Bitcoin is regarded to be a
permissionless consensus protocol (cf. [3]).

Indeed, the Bitcoin network has been running without major setbacks since its launch in
January 2009. Yet, a significant volume of academic work has been done to analyze future
obstacles that Bitcoin may face: centralization of the mining power in the hands of few large
data centers [28, 9], scalability barrier w.r.t. high volume of commerce [7, 40, 20] or selfish
mining [11, 38].

1.1 Our Contributions

In this work, we describe our novel Meshcash framework, which aims to either solve or mitigate
the aforementioned risks that Bitcoin faces. The fundamental idea behind Meshcash is a novel
consensus protocol that is not based on leader-election. Instead of a race to be chosen as the

4

“leader” of the next round, in which only one party can be the winner (e.g., generate the next
block in Bitcoin), we use ideas from the byzantine agreement literature to achieve a consensus
on all generated blocks. In particular, this means that one miner’s success does not prevent the
success of another.

The construction is modular, combining our long-term “tortoise” consensus protocol (that
guarantees eventual consensus and irreversibility very robustly) with a short-term “hare” pro-
tocol that can achieve consensus quickly but is not robust (or irreversible). This allows us to get
the best of both worlds: fast, irreversible consensus if the hare protocol succeeds, and long-term
irreversible consensus under more extreme conditions.

Unlike most alternative cryptocurrency protocols, we prove our security guarantees with
regards to malicious adversaries and in an asynchronous communication model. This means
that our protocol is robust even against non-rational adversaries (as long as they do not have
too large a fraction of the computation power). At the same time, we can still show that the
protocol is incentive-compatible (under some simplifying assumptions).

Our protocol replaces the single chain of blocks (in which only one block can be next) with
a mesh—a layered directed acyclic graph (DAG) which allows multiple blocks to coexist in
parallel, while the rewards are still shared proportionally to the work performed. This offers
mitigating factors for the risks that Bitcoin faces:

• Greatly reduced incentives for pool mining. This risk stems from the simple fact
that the expected time and variance of solving blocks is too high for a hobbyist miner.
For example, if there are 100, 000 miners with equal hashrate, and the Bitcoin difficulty
dictates it takes 10 minutes on average to solve a block, then each miner will need to
wait for 1 million minutes (slightly less than 2 years) on average before solving a block.
This would obviously be unacceptable from the point of view of the individual miners, as
they have running expenses and their mining equipment may fail before they are ever re-
warded. Therefore, Bitcoin miners have a strong incentive to combine their resources into
centralized pools. This is unhealthy for decentralization, because pools tend to increase in
size over time. As a remedy against the centralization pressure, many more blocks would
get created per unit of time in Meshcash (e.g., we can easily support 200 blocks in every
10-minute period), and hence solo-mining or participating in small pools is more feasible
compared to Bitcoin.

• Improved scalability. One of the main barriers to scalability is the effect of larger block
sizes on the network propagation delay. By removing the “race” aspect of mining, the
propagation delay becomes much less relevant, allowing the system to support larger block
sizes. (See Appendix A for more details.)

• Incentive-compatible verification. When a Bitcoin miner verifies and includes certain
transactions in a block that she creates, she collects the transaction fees as her reward.
Other miners should also verify those transactions and thereby ensure that the chain
that they try to extend is valid, even though they do not collect any rewards for those
transactions. Thus, rational miners can do a cost-benefit analysis, and may decide to
skip the verification of transactions in prior blocks [23]. Indeed, this behavior appears to
be widespread among Bitcoin miners, as some miners lost a significant amount of funds
due to the BIP66 softfork [25]. In Meshcash this risk is mitigated because miners do not
engage in tight races against one another, therefore they have plenty of time to verify the
transactions that reside in the blocks that they endorse. Thus, it is less risky to have
transactions with complex scripts in Meshcash relative to blockchain protocols, though a
quantification of this claim requires analysis that we do not provide in this work.

• Incentive-compatible propagation. A rational Bitcoin miner may decline to re-
transmit transactions that were sent to her, thereby increasing the likelihood that she

5

will collect more fees when she eventually solves a block [2]. Such a behavior damages
the performance of the Bitcoin system from the point of view of its users, as transactions
would become confirmed at a slower pace overall. In Meshcash, the transaction fees are
divided among all miners who created blocks in the recent layers, and hence an individual
miner does not gain by keeping transactions secret.

• Resistance to bribe attacks. In Bitcoin, rational and malicious parties may benefit
from offering bribes to other miners, by sending in-band messages in an anonymous fashion
[4, 21]. A rational miner may fork a high-value block by collecting only some of its
transactions, thereby enabling the next miners to pick up the rest of the transactions
and earn extra fees. A malicious adversary may even put a “poisonous” transaction tx0
in the honest chain and then offer high fees for blocks that include another transaction
that conflicts with tx0, and thus incentivize rational miners to work on a fork. Similarly
to the rational miner, this adversary may also mine blocks that do not include all the
transactions that honest miners collected in their chain, and in effect incentivize rational
miners to work on her fork (without offering overt bribes). In Meshcash, the fees are
shared among all the blocks of a layer, and conflicting transactions do not invalidate
blocks that reference them (cf. Section 3.4.4), hence these kinds of bribe strategies are
ineffective.

• Resistance to forking. An important property of our protocol (and one that, to the
best of our knowledge, is not satisfied by any other cryptocurrency) is that forking the
mesh is hard even for an attacker with a constant fraction of the computational power.
This makes it much easier to argue about rational behavior—honest miners know that
with high probability their work will not go to waste. In particular, it makes the standard
selfish-mining attacks moot.

Informally, our Meshcash protocol achieves the following guarantees.

Theorem 1.1 (informal). If the hare protocol achieves fast consensus in the presence of adver-
saries controlling q < 1/3 fraction of the computational power then the combined tortoise/hare
protocol achieves consensus and irreversibility against the same adversary.

For the formal statement see Corollary 4.18.

Theorem 1.2 (informal). When the adversary controls q < 1
15 fraction of the computational

power, then the tortoise protocol achieves consensus and irreversibility irrespective of the initial
conditions and the properties of the hare protocol.

For the formal statement see Theorem 4.12.
Note that because the tortoise protocol guarantees consensus irrespective of the initial con-

ditions, it is extremely robust to temporary violations of our security assumptions. For example,
if the adversary normally has low computational power, but might be able to generate short
“spikes”, the tortoise protocol guarantees that the system will recover. Moreover, we expect the
security of the protocol in practice to be much better than our worst-case analysis shows—our
analysis is optimized for readability and asymptotic results rather than reducing the constants.

2 Related Works

The idea of replacing the blockchain with a DAG is not new; to the best of our knowledge the
earliest consideration of it was in [24], though the treatment there was rather abstract.

6

2.1 Leader-Election-Based Protocols

Protocols based on leader election have an inherent asymmetry: loosely speaking, consensus
is achieved by selecting some “special” party (the leader) in each round of the protocol. In
Bitcoin and several other permissionless protocols, the leader is the first party that successfully
to successfully solve a proof-of-work. Due to the possibility that more than one party will be
special in a round, these protocols all imply some sort of “race”. We note that this is a property
of the consensus protocol, not the reward mechanism; thus, in theory, a leader-election-based
protocol can still be completely race-free. We classify the protocols into those in which the
chosen leader receives all of the reward (these have an inherent race), and those in which
leaders have less power and the rewards are shared more equally between the parties.

2.1.1 Winner-takes-all

GHOST The GHOST protocol of Zohar and Sompolinsky [40] modifies the Bitcoin best-
chain rule to take into account valid blocks that are not on the longest chain. This means
that less honest mining power goes to waste, and therefore GHOST can support a shorter
interval between blocks without sacrificing security (cf. [16] for a formal analysis). The main
motivation behind GHOST is to increase the transaction throughput. While this is also a
secondary motivation for Meshcash, our main design goal is to make the cryptocurreny race-
free, so that incentive-compatibility is easier to achieve (and to prove). These concerns are not
addressed in the GHOST protocol (e.g., GHOST is vulnerable to selfish mining attacks). With
regard to frequent payouts to small miners, GHOST improves upon Bitcoin since it allows an
increase in the block generation rate, but the growth rate of the main chain (i.e., the payout
rate) is still bounded as a function of the network propagation time. In fact, the main chain
in GHOST grows at a slower pace than what the propagation time would imply, due to the
commonplace orphaned blocks. For example, if blocks are generated every 15 seconds on average
and network propagation time is 20 seconds, then the effective interval between blocks in the
main chain in GHOST is at least 55 seconds (this bound is implied by the tightness of [40,
Lemma 6]). That is, the payout rate is only about 10 times faster than Bitcoin. In Meshcash,
on the other hand, we can easily support (say) 200 times the Bitcoin payout rate by using a
layer width of 200. It should also be noted that GHOST exhibits the nonlinearity of rewards
phenomenon, implying that a fast chain growth is likely to result in centralization instead of
decentralization(see Appendix A).

Bitcoin-NG The Bitcoin-NG protocol of Eyal et al. [10] seeks to improve upon Bitcoin by
offering faster confirmation time and better throughput. The incentive-compatibility aspects
of the Bitcoin-NG protocol are not analyzed in [10], and Bitcoin-NG may indeed suffer from
the same kind of problems that Bitcoin can potentially have. E.g., when a rational Bitcoin-NG
miner sees that the microblocks before the most recent leader L have collected a relatively high
amount of fees, she may opt to fork L by extending one of the intermediate microblocks that
preceded L, and thus offer more fees so that the next leader will prefer her fork. Moreover, due
to the chain structure, the scalability improvements of Bitcoin-NG require sending microblocks
of a smaller size as the transaction volume increases, otherwise the competing miners will be
discouraged from collecting too many transactions. This becomes impractical for microblock
sizes that are too small (the reported experiments in Bitcoin-NG were done with a transaction
volume that is at most 5 times greater than that of Bitcoin).

Blockchain as Bootstrap for Byzantine Agreement Hybrid Consensus [34], Solidus [1],
SCP [22], and Byzcoin [17] are protocols that harness the consensus guarantees of a PoW based
blockchain in order to select a committee of parties who would then use a Byzantine agreement
protocol (PBFT [6]) to achieve faster transaction irreversibility and higher throughput, in the

7

permissionless setting. Thus, the objective of these protocols is a mirror image of our hare
component in Section 3, i.e., we use an optional off-chain ABA protocol for a single bit (much
simpler than PBFT) in order to help the PoW based mesh achieve consensus in the first place.
These four protocols guarantee security only if 2/3 of every committee remains honest for at
least τ time. If this new assumption is violated, the committee can reverse history and create
unresolvable conflicts for a long period. Moreover, there is no definite cost for the adversary in
attempting a collusion attack, since a failure would not involve depletion of physical scarce re-
sources. In comparison, Meshcash relies only on a standard hashpower majority assumption for
security and is more robust against temporary adversarial “power spikes”, as even a completely
corrupt ABA committee can—at worst—slow down consensus.

2.2 Reward-sharing

Inclusive Blockchains The work of Lewenberg, Sompolinsky and Zohar [20] presents a cryp-
tocurrency protocol that is based upon a DAG instead of a chain, but unlike Meshcash it does
not provide a mechanism for cooperative sharing of the block rewards. In fact, [20] explicitly
states that it does not mitigate selfish mining attacks. Furthermore, [20] is still, in some sense,
a blockchain protocol; there is always a main chain, but parties will incorporate non-conflicting
transactions from off-chain blocks that do not appear on the main chain.

DagCoin and Braidcoin DagCoin [18] is another DAG-based proposal that focuses on possi-
ble improvements over Bitcoin in terms of faster security confirmations and greater throughput.
Braidcoin [26] is a more recent DAG-based cryptocurrency construction, that aims to support
more frequent blocks and thus faster payouts to small miners. However, neither [18] nor [26]
give a security analysis of their protocols.

FruitChain The FruitChain protocol of Pass and Shi [33] is a blockchain-based scheme in
which miners who create blocks are not rewarded, but the blocks incorporate “fruits” and
miners earn rewards for the fruits that they create. Similarly to Meshcash, FruitChain attains a
protocol that is ε-incentive-compatible, by employing a scheme that shares the rewards among
those who contributed to the recent ledger history. However, the analysis of [33] sidesteps the
potential freeloading risk by using a model in which verification complexity has a negligible
cost, and assuming that an honest majority follows protocol without having a clear rationale to
do so. Additionally, [33] does not claim to improve upon the scalability aspects of Bitcoin, and
FruitChain may potentially inherit the throughput limitations that chain-based protocols have.

2.3 Leaderless Protocols

Blockchain-free Ledger A recent work by Boyen, Carr and Haines [5] presents a cooperative
DAG-based cryptocurrency protocol, though it only considers security against a rational adver-
sary. While it is not based in leader-election, this protocol is not race-free—conflicts between
honest parties may occur due to network delays, in which case some of the honest parties will
not receive a reward.

SPECTRE The SPECTRE protocol of Sompolinsky, Lewenberg, and Zohar [39] is a DAG-
based construction, and hence it bears a resemblance to Meshcash in the way that each block
commits to a list of earlier blocks. However, SPECTRE only guarantees consensus on blocks
that were honestly generated, and makes no guarantees at all for maliciously-generated blocks.
This relaxed guarantee is enough to construct a crypto-currency supporting basic monetary
transactions, but is insufficient for more advanced uses (such as complex scripts), as they may
require consensus on a total ordering of the blocks in order to evaluate even honest transactions.

8

Meshcash, on the other hand, supports and in fact mitigates the potential risks that are asso-
ciated with complex scripts, due to its race-freeness. A major design goal of SPECTRE is fast
transaction irreversibility. While transactions are confirmed faster in Meshcash than in Bitcoin,
this is not an aspect that Meshcash excels in. Another main goal that SPECTRE seeks to
accomplish is high scalability. However, the SPECTRE protocol is not of a cooperative nature,
and is therefore more likely to exhibit the nonlinear rewards phenomenon when the transaction
volume increases.

3 Protocol Description

3.1 Informal Overview

Meshcash is a modular protocol combining a fixed “tortoise” protocol to guarantee long-term
consensus and irreversibility with an interchangeable “hare” protocol that can aid in getting
quick consensus. In terms of execution, miners in the combined Meshcash protocol behave
similarly to Bitcoin. As in Bitcoin, each Meshcash miner performs PoW computations to
generate blocks. Abstractly, the main distinction between Bitcoin and Meshcash is the structure
of the “blockchain”. In Bitcoin, each block points to one previous block, forming a chain. The
consensus rule is that the longest (heaviest) chain is the “correct” one. In Meshcash, the
structure is instead a layered DAG; each block belongs to a layer (it contains a layerid field
that declares the layer number) and points blocks previous layers. The consensus rule is slightly
more complex—for blocks that are in the recent past, Meshcash delegates consensus to the
hare protocol (i.e., deciding which blocks are part of the “correct” history depends on the
hare protocol rules). For blocks in the far past, we use the tortoise protocol rule, which takes a
weighted “vote” of all subsequent blocks to decide whether or not a block is part of the canonical
history.

The mining protocol is actually much simpler, and avoids much of the consensus rule com-
plexity: essentially, miners generate blocks pointing to every valid block they see in the previous
layers (the number of previous layers to include depends on the hare protocol). A detailed de-
scription of the protocol is specified in Section 3.4.

3.2 Modeling Generic BlockDAG Protocols

We generalize the model of Pass, Seeman and shelat [32] from blockchains to blockDAGs (this
can also be seen as a generalization of the Kiayas and Panagiotakos model [16] from trees to
DAGs, but using the asynchronous communication model of Pass et al.)

In the spirit of [32], we define a blockDAG protocol to be an interactive protocol where each
participant has a local state that contains a list of messages received (and the time at which
each message was received). Based on this state, each participant constructs a graph of blocks
with directed edges between them. In a blockDAG protocol, the graph is an arbitrary DAG (in
[32] only chains are permissible, while [16] also allows trees).

For timing purposes, we identify each block with one of the messages in the state. Each
block is uniquely labeled by (a collision-resistant hash of) its contents: these include the labels
of all blocks to which it points, as well as an arbitrary “content string” (which is interpreted in
a protocol-specific way; e.g., it can contain a list of transactions).

3.2.1 Validity.

A blockDAG protocol (like a blockchain protocol) defines a “validation function” for blocks;
given a state, the validation function labels every block in the graph as either valid or invalid.
We separate the validation function into two types of validity (both are required for a block to
be considered valid):

9

• Syntactic Validity: this can be computed based only on contents of block and its view
(the subset of the DAG that is reachable from that block).

• Contextual Validity: everything that is not syntactic.

For example, the hash proof validity in Bitcoin is syntactic, while the chain selection rule is
contextual (it depends on whether a longer chain that does not include the block exists in the
state, something that cannot be determined from the block’s view by itself).

A blockDAG protocol’s validation function may allow valid blocks to have invalid blocks in
their view (this is not allowed in existing blockchain protocols). We define the valid DAG to be
the DAG restricted to valid blocks (note that this subgraph may not be connected).

3.2.2 Total Order on Blocks.

Unlike a chain, a DAG does not guarantee a unique topological ordering of its blocks. Thus, the
“T last blocks” in the DAG may not be well-defined. To generalize the Pass et al. definitions,
we will require the blockDAG protocol additionally to define a unique total order on its blocks
that is consistent with the topological ordering of the DAG (that is, for every pair of blocks A
and B such that A < B, there does not exist a directed path in the DAG from A to B).

3.2.3 Security Properties.

Our basic security properties are exactly as in [32]:

• consistency : with overwhelming probability (in T), at any point, the valid DAGs of two
honest players can differ only in the last T blocks;

• future self-consistence: with overwhelming probability (in T), at any two points in time
r < s the valid DAGs of any honest user at r and s differ only in the last T blocks (as
they appear at time r);

• g-chain-growth: with overwhelming probability (in T), at any point in the execution, the
valid DAG of honest players grew by at least T blocks in the last g rounds, where g is
called the chain-growth of the protocol;

• µ-chain quality : with overwhelming probability (in T), for any T consecutive blocks in
any valid DAG held by some honest player, the fraction of blocks that were “contributed
by honest players” is at least µ.

3.3 Weak Common Coins

Our protocols rely on a weak common coin as a black box (this is used both in the ABA protocol
of Moustfaoui et al. [29] and to guarantee eventual consensus of the tortoise protocol when the
hare protocol does not achieve consensus). A weak common coin with parameter pcoin ≤ 1

2 is
a protocol with the following guarantees (probabilities are over the coins of the honest parties
and the adversary):

1. The probability that all honest parties have the same output and it is 0 is at least pcoin.

2. The probability that all honest parties have the same output and it is 1 is at least pcoin.

3. Before the beginning of the protocol, for every honest player P , the adversary cannot
guess the output of P with probability more than 1− pcoin.

10

Note that this definition does not prevent the adversary from completely controlling the output
of all honest parties with probability 1 − 2pcoin. Moreover, the results of the coin toss are not
required to be verifiable (i.e., an honest party might not be able to prove to another party that
its output was correct), and honest parties might not know whether they are in consensus on
their output or not.

3.3.1 Implementing a Weak Common Coin Based on Proof-of-Work.

We can implement a weak common coin based on any proof-of-work protocol (assuming the
PoW hashes are the output of a random oracle) in which block publication can be modeled as
a Poisson process with rate proportional to computational power. Assume blocks are generated
as a Poisson process with rate λ for an interval of length T , and that the network propagation
delay δ is defined as in Section 3.4.4. Our protocol is as follows, for party P starting at time t:

1. Wait until time t + T . Denote SP the set of fresh1 syntactically valid blocks received in
the interval [t, t+ T].

2. Sort the blocks in SP by their hash values. P outputs the LSB of the minimum block in
SP (according to the sort order).

Lemma 3.1 gives the resulting parameters for the weak coin.

Lemma 3.1. If the rate of blocks generated by the adversary is at most qλ, then for every
constant c > 1 our protocol generates a weak common coin with parameter pcoin ≥ c−2 · 1−q2 ·
T−2δ
T+2δ − neg(λ).

Proof. Denote S−P the set of blocks received by P in the interval [t + δ, t + T − δ] and S+
P the

set of blocks received by P in the interval [t− δ, t+ T + δ].
By our communication assumption, honest nodes will agree on the time at which they

received every message up to a difference of δ. Thus, for every pair of honest parties P.P ′, we
must have S−P ⊆ SP ′ and SP ⊆ S+

P ′ .
This means that if A is the minimum block of S+

P and A ∈ S−P , then for every honest P ′ it
must be the minimum block for SP ′ (if SP ′ contains a lower-weight block, then it would also
be in S+

P , contradicting the minimality of A). Let S∗P ⊆ S−P be the subset of blocks that were
honestly generated.

If the minimum block of S+
P is in S∗P , then the LSB (and hence the coin) is uniformly random,

even conditioned on the set of published blocks (formally, we assume the hashes are the output
of a random oracle; we can ignore the LSB in the sort order to make it fully independent).
Moreover, since S∗P ⊆ S−P , all honest parties agree on the coin. Let 2pcoin be the probability
that this occurs; then the protocol is a weak common coin with parameter pcoin.

To lower-bound pcoin, note that since the hashes are the output of a random oracle, we can
think of the sorting as a random shuffle of all the blocks in S+

P . So 2pcoin ≥ E
[
|S∗P |/|S

+
P |
]
.2

By our block rate assumption |S+
P | has a Poisson distribution with parameter λ+ = λ · T+2δ

T ,

while |S∗P | is Poisson with parameter λ∗ = λ · (1− q) · T−2δT . The ratio of the two parameters is

λ · (1− q) · T−2δT

λ · T+2δ
T

= (1− q) · T − 2δ

T + 2δ

1To ensure blocks are not pre-generated by the adversary, we require blocks to include a “freshness indicator”.
This can be, for example, pointers to all blocks received before time t, or a special transaction that is generated
just before time t.

2formally, we condition on |S+
P | > 0, but this event occurs with overwhelming probability so for clarity we

omit it.

11

For all c > 1, let pc−(λ) = PrX∼Pois(λ) [X ≤ λ/c] and pc+(λ) = PrX∼Pois(λ) [X ≥ c · λ]. Note
that for every constant c, both pc−(λ) and pc+(λ) are negligible in λ. Then

E
[
|S∗P |/|S+

P |
]
≥ Pr

[
|S∗P |/|S+

P | ≥ c
−2 λ

∗

λ+

]
c−2(1− q) · T − 2δ

T + 2δ

≥
(
1− pc−(λ∗)− pc+(λ+)

)
c−2(1− q) · T − 2δ

T + 2δ

≥ c−2(1− q) · T − 2δ

T + 2δ
− neg(λ) .

3.4 Modular (Tortoise) Protocol

3.4.1 Overview.

Our high-level construction combines a “tortoise” protocol (that we describe below) with an
arbitrary “hare” protocol. The long-term “tortoise” protocol guarantees consistency, regardless
of the hare protocol’s properties. For every block X on whose validity honest parties agree
at the end of the hare protocol, the tortoise protocol will ensure that all honest parties will
continue to agree (and will not change their opinion in the future).

1. If the hare protocol is race-free (i.e., honest blocks are always accepted as valid), the
composed protocol will also be race-free.

2. If the hare protocol guarantees agreement on all blocks with probability p, the composed
protocol will guarantee irreversible consensus by the end of the hare protocol with prob-
ability p− ε (for some negligible ε).

Our tortoise protocol has the property that the opinion of a node about the validity of any
block in its view depends only on the view itself (and not on additional private context). Thus,
given the node’s view, we can “simulate” its computation and reconstruct its opinion about any
block. To make this possible, when mining on a block, the block’s content will include “view”
edges to every other block in the node’s view that cannot be reached by existing edges (i.e.,
edges to the “heads” of the blockDAG).

Layers. The DAG defined by our tortoise protocol uses the notion of layers to partition
blocks into sets. Layers are sequentially numbered, and we require each block to include its
corresponding layer number as part of its content (i.e., this number is included in the PoW that
gives the block its “name”). We also require honest parties to maintain weak consensus about
a layer counter, signifying the current layer number. By weak consensus, we mean that if any
honest party increments its own layer counter at time t (according to its own local clock), every
other honest party will increment its counter to the same value by time t+ δ (according to the
first party’s local clock).

Note that the event that triggers the layer counter increment can be simply the passage of
time, but it can also depend on each party’s view (since we assume δ-bounded delays in the
network, this will still guarantee weak consensus). In our case, the layer counter will increment
whenever the node can see sufficiently many syntactically valid blocks in the current layer.

Block Weights. For the purpose of computing the “weight” of a set of blocks, we sum up
the weights of each block in the set. The weight of a block is the expected amount of work (e.g.,
number of hash evaluations) required to generate a block of the same difficulty. That is, if the
threshold for block generation is p for layer i, the weight of all blocks in layer i is exactly 1/p.

12

3.4.2 Hare Protocol Requirements.

For simplicity, we will assume the hare protocol uses the same notion of layers and layer counter
(this is indeed the case for the protocols we propose in this paper). We have two main require-
ments from the hare protocol:

• Preventing pre-generation of blocks. To guarantee convergence, we need a bound on the
number of syntactically valid blocks the adversary can “pre-generate” (i.e., blocks whose
layer number is in the future). The tortoise protocol inherits its syntactic-validity rules
from the hare protocol, so these rules must ensure the bound. For simplicity, in this paper
we assume all hare protocols require a minimum out-degree rule: blocks in layer i are
syntactically valid only if they have at least Tmin syntactically valid layer i− 1 blocks in
their view.

• Limited [t, s]-consistency: ideally, we want that for every block X claiming to be in layer i,
all honest nodes whose layer counter is in the interval [i+t, i+s] are in consensus about the
validity of X, and this consensus does not change in the interval [starti+t, starti+s+1).

3.4.3 Tortoise Protocol Description.

Let Π be a qualifying hare protocol with output interval [t, s]. To construct the corresponding
tortoise protocol, we modify the validation function and graph construction for Π. Let i be the
current value of the layer counter:

• Add view and voting edges. In addition to the edges specified by Π, every block generated
by an honest player with DAG G will now include special edges:

– view edges: an edge to every “head” block in G (i.e., blocks that have in-degree 0).
These edges ensure that the view of a block generated by an honest party includes
the entire view of that party.

– voting edges: an edge to every valid block in layer i− s through i− t, where validity
is computed using Π’s validation function (note that if validity can be inferred from
the DAG itself, then explicit voting edges are not necessary).

Π will ignore the extra edges.

• Add coin bits. Every block adds a coin to its header. The value of the coin is determined
by a weak common coin protocol (cf. Section 3.3) that starts at time starti + δ. The
Coin bit is set to 1 if the coin was 1 and 0 otherwise;

• Add “before coin” bit. This bit indicates whether the block was generated before the coin
protocol ended (this is used to “abstain” from voting in cases where the coin bit matters).

• Add “early block” bit. Every block adds a additional bit to its header to specify whether
the block was generated within less than δ time after the start of the layer. (this is used
to abstain from voting in cases where the late blocks from the previous layer might make
a difference.)

• “Block Voting”. For every block A in layer i′ < i−s, the validity of A will be determined by
a simple “election”. Every syntactically valid block Y claiming to be in layers i′+1, . . . , i−1
is given a “vote”, in the set {−1, 0, 1}, as long as Y was received by time starti+δ. Block
A will be considered valid if the weighted sum of the votes for A is positive, where we use
the block weights derived from their PoW. The algorithm to determine how a block X
votes is recursive. Consider a block X in layer j > i′. The basic voting rules depend on
the distance (in layers) between X and A:

13

view edge

voting edge

A
B

+1

+1

Consensus
Interval

+1

-1

-1

Hare
Protocol (Π)

Tortoise
Protocol

i-s i-t ii-s-1

Π edge

i-2 i-1

Figure 3.1: In block voting, the validity of any block is determined by election. In the figure,
block A considers block B as valid because the sum of block votes in its view in favor of B is
positive

– If j < i′ + t, then X votes 0 (it is neutral with regards to A since it was generated
before the hare protocol guaranteed consensus about A).

– If j ∈ {i′ + t, . . . , i′ + s}, then X votes 1 if X has a voting edge to A and −1 if it
does not.

– Otherwise (j > i′ + s), consider all the blocks in X’s view and sum their weighted
votes; X votes 1 if the sum is positive, −1 otherwise.

To ensure convergence even if the hare protocol fails to achieve consensus between honest
nodes, we also add a randomized voting rule when there is not a clear majority in either
direction:

– If j > i′+ s and the weighted sum of votes for the blocks in X’s view is in the range
[−θ, θ], X votes 1 if the coin bit is set to 1 and -1 otherwise (unless “before coin” bit
is set to 1 in which case it votes 0).

3.4.4 Protocol Parameters.

The Meshcash protocol has several tunable parameters which are set globally and remain fixed
once the protocol has started:

1. Tmin: The minimum number of blocks in a layer. A higher number increases the robustness
of the protocol and decreases the interval between rewards for miners, at the cost of
increased communication overhead.

14

2. `: The average length of a layer interval. This is kept approximately constant by adjusting
the difficulty parameter according to estimates of the total hash rate (similarly to Bitcoin’s
mechanism for difficulty adjustment).

3. δ: A bound on the combined network propagation time/local clock differences between
honest nodes. If any honest node sees a block at time t according to its local clock, all
honest nodes are guaranteed to receive the block by time t+δ according to their own local
clocks. (Note that the actual network propagation delay is not tunable, but the bound
we use is.)

4. tcoin: Bound on the time required to execute the weak coin protocol (in multiples of δ).

5. θ: A threshold for using the randomized block-voting protocol. If the vote margin (sum
of the votes) for a block is less than θ (in absolute value) nodes will vote according to
the output of the weak coin (instead of using the majority). A larger θ will guarantee
convergence faster from arbitrary initial conditions, but will make it easier for the adver-
sary to invalidate honest blocks (if the honest block has less than θ margin it might be
invalidated by coin flip).

3.4.5 Protocol Concepts.

Syntactic Validity of Blocks. Syntactic validity of a block can be decided purely based on
the block’s visible mesh (i.e., it does not depend on “context”, such as the time it was received
or other blocks in the same or future layers). There are several conditions for a block to be
syntactically valid in layer i:

1. It is not pointing to a syntactically invalid block.

2. The block has a valid proof-of-work for layer i’s difficulty level (note that the difficulty
level is a function of the view).

3. Its view contains at least Tmin syntactically-valid blocks in layer i− 1.

4. Transactions included in the block are valid according to the block view.

Layer Boundaries. Honest nodes maintain a layer counter which determines the serial num-
ber of the “current layer”. The layer counter is initialized to 1 on receiving the genesis layer.
The layer counter is incremented to i + 1 when at least Tmin syntactically-valid blocks were
received in layer i.

The honest start for layer i, denoted starti, is the time at which the first honest node
increments its counter to i.

Transactions in Blocks. Each block contains a list of transactions. Unlike Bitcoin, however,
the same transaction may appear in multiple blocks; what matters for the purpose of considering
the transaction valid is whether it is included in a layer. We consider a transaction L to be
included in layer i (according to block A) if i is the first layer in which L appears in at least
one of the valid blocks of A’s view. There is a fixed cap on the number of transactions that
can be included in a block. The cap can be easily adjusted proportionally to the transaction
publication rate in the system, and can award a bonus. (cf. Section 5.4). Every miner selects
transactions to include in a block according to protocol 1.

Conflicting Transactions and Validity. There are no conflicts between blocks due to the
transactions included in them. However, the transactions themselves may conflict (e.g., double
spending). If two conflicting transactions are included in the same layer, the first one (according
to the total ordering of blocks) is considered valid and the second invalid.

15

Protocol 1 Honest Mining Algorithm (transaction selection)

Let i∗ be the latest layer about whose contents we are confident.
Let n be the cap for the number of transactions that can be included in a block.
Add a transaction L to the currently mined block up to the cap n if:

• L is not included in a layer j ≤ i∗ in our view.

• There does not exist a transaction L′ conflicting with L that is included in a layer j ≤ i∗
in our view.

After reaching the cap, swap a transaction L with a transaction L′ appearing in the currently
mined block if L is not included in any published block up to the current layer and L′ is.

Distributing Rewards We stress that the system for distributing the block rewards is com-
pletely independent of the security properties of Meshcash. In particular, we can choose any
method for allocating the rewards that maintains the race-free property while ensuring incentive
compatibility of Meshcash. We propose such as scheme in Section 8.4.

3.5 Security Proof Overview for Tortoise Protocol

In this section we give an informal overview of our security proof and intuitions.

3.5.1 Irreversibility.

At a high level, we can view the tortoise protocol as a voting process: every new block “votes” for
or against all previous blocks. The irreversibility of the tortoise protocol stems from the fact that
once consensus is reached, all honest users will vote in the same direction; this causes the margin
of votes (the difference between positive and negative votes) to increase linearly with time.
Similarly to the Bitcoin race analysis, an adversary can only reverse history by generating enough
votes to overturn the current consensus. However, since the adversary generates blocks at a
lower rate than the honest parties, the probability that this can be done decreases exponentially
with time.

The main wrinkle here is that the adversary might keep a “reserve” of unpublished blocks
and then publish them at a later date to reverse what seems like a consensus with large margin.
However, in order to reverse the honest users’ consensus about a block A, the adversary’s
reserve must contain “future” blocks (whose layer id is greater than that of block A)—since
only future blocks have a “vote” regarding A. We show this cannot happen by bounding the
adversary’s ability to keep a large reserve of “future” blocks. In Corollary 4.10, we show that,
irrespective of the initial conditions, there will be a layer in which the adversary’s future reserve
reaches a steady-state (see Definition 4.7). Additionally, we use the fact that with overwhelming
probability no layer is “too long” (see Lemma 4.6) to prove that once in a steady state, the
probability that the adversary leaves it is negligible; since in order to generate enough “future”
blocks, the adversary needs a long layer-interval (see Corollary 4.11).

Finally, in Theorem 4.13 we formalize the race-analysis and show that the vote margin will
grow linearly with the number of layers.

3.5.2 Pure Tortoise Consensus.

The harder part of the proof is to show that consensus will always (eventually) be achieved, even
under active attack. Intuitively, the difficulty of guaranteeing consensus is due to the adversary’s
ability to “play” with network latency. By sending blocks near the “edge” of a layer, some honest
parties would consider the block valid, while others would not. The voting scheme does not
help in this instance, since the honest parties now disagree on the votes themselves (each vote

16

is a block). Further complicating the analysis is that the adversary can generate and maintain
a “reserve” of valid blocks (for the current or future layers) that can be used strategically by
the adversary to cause disagreements among the honest miners on the contents of the layers.

Our main technical theorem, Theorem 4.12, shows that for any initial reserve of blocks
(here we do not care about whether they are in the future or the past), the tortoise protocol
will eventually arrive at consensus. We do this by a case analysis on the adversary’s strategy,
showing that the adversary has to “spend” her reserve in order to keep honest parties from
agreement. Since the adversary’s ability to generate new blocks is limited, either the honest
parties will reach consensus, or the adversary will exhaust her reserve (in which case the honest
parties will also reach consensus).

At a lower level, to show that the adversary must spend blocks from its reserve, we consider
basically the following cases:

Case 1: There is already a large vote margin. In this case, the adversary has to spend at least
that much blocks from her reserve to prevent consensus.

Case 2: The vote margin is small. In this case, some honest parties will use a coin-flip to choose
how they vote, while others might see a large enough margin that they vote disregarding
the coin. If the adversary spends too few blocks, we show that all parties that disregard
the coin will vote in the same direction, so if the adversary does not guess the outcome of
the coin correctly, all honest parties will agree.

3.5.3 Hare & Tortoise Consensus.

Theorem 4.12 does not use the hare protocol at all. Our bounds on the adversary’s ability to
pre-generate blocks (i.e., the bound on the future reserve) allow us to show that once we reach
the future reserve steady-state, any hare protocol assuring limited consistency combined with
a tortoise protocol will guarantee consistency and future self-consistency (see Corollary 4.14).
The idea here is straightforward—once we have achieved consensus in the hare protocol, the
honest parties all vote in the same direction;

3.5.4 Race-Freeness.

To show that honestly-generated blocks are always in the consensus, we need to lower-bound
the number of honest blocks in every layer (since honest blocks are “guaranteed” to vote for
other honest blocks). We can do this when the adversary is in a future reserve steady-state, by
showing that no layer is too short (since the adversary can only shorten a layer by “dumping”
blocks from its future reserve), which implies that the honest parties have enough time to
generate blocks in every layer (see Lemma 4.15).

3.6 Hare Protocols

We propose several different hare protocols. The first is almost trivial, but guarantees consensus
only when all participants are honest. The others are more complex, and use an off-chain
asynchronous byzantine agreement protocol (ABA) to achieve a more robust consensus, even
under malicious attack.

3.6.1 Simple Hare Protocol.

The simple hare protocol does not define additional edges (beyond the view and vote edges
from the tortoise protocol). Its contextual validity rule is: “a block A claiming to be in layer i
is valid iff it was received in the interval (starti − δ, starti+1 + δ)”.

Lemma 3.2. The simple protocol has [1, 1]-limited consistency for honestly-generated blocks

17

Proof. If all parties are honest, layer-i blocks are always mined in the interval (starti, starti+1),
so every honest party will receive them in the interval (starti − δ, starti+1 + δ) and consider
them valid.

Note that while there is guaranteed consensus about honestly-generated blocks within a
single layer, an adversary can create disagreement by publishing blocks near the layer-interval
boundary, so that some honest parties receive them before the boundary and some after. In
this case, we have to rely on the tortoise protocol to achieve consensus.

3.6.2 Byzantine-Agreement-Based Hare Protocols.

Overview. The basic idea behind the ABA-based hare protocols is to use the blocks published
in a layer to select a committee that will then run an off-chain “traditional” byzantine agreement
protocol to achieve consensus about the validity of each block in the layer. The off-chain protocol
can be performed using direct links, so can be quite fast; at the end of the protocol, the
committee will append digital signatures (using public keys provided in their published blocks)
testifying to each block’s validity. The contextual validity rule is now “a block A claiming to be
in layer i is valid iff it has valid signatures from a majority of the layer-i committee members”.

There are two main difficulties to overcome in using this paradigm: the first is that we do
not have consensus about the committee members; standard ABA protocols assume there is
agreement on the participants. We solve this problem by using an identity-free ABA protocol
(we use the protocol of Mostfaoui et al [29]) and a bound on the total number of participants.
Every party will interact with the committee members it recognizes, and consider any others
as faulty. The properties of the ABA protocol guarantee that security still holds as long as the
number of honest parties is 2/3 of the maximal number of participants.

The second problem is that the ABA protocol uses a “weak random coin”: this is usually
implemented via a cryptographic protocol that requires trusted setup, which we do not have.
However, there are some constructions that do not require setup. Alternatively, we can imple-
ment the weak-random coin using the blockchain itself (unfortunately, our coin implementation
has a minimum time per coin flip, so each round of the ABA protocol has a minimum time as
well. However, the ABA protocol we chose needs a very small number of rounds in expectation,
so with high probability the total time will still be less than one layer interval. We describe
several ABA-Based Hare protocols in Section 6 (which trade increasing complexity for better
security assumptions).

3.7 Communication/Storage Optimizations.

Note that the transmitted and stored transaction data does not need to grow linearly with the
number of blocks, because the miners can store each transaction once, regardless of how many
blocks it appears in; the blocks themselves need only contain a transaction id (computed as a
collision-resistant hash of the transaction data).

In Bitcoin, the average size of a transaction is about 525 bytes3 , while the transaction id
hash is 32 bytes, so this reduces the data size needed by a factor of ≈ 16. Notice that this
optimization reduces both the communication complexity and the computational complexity of
computing the hashes of blocks. Furthermore, miners can refer to transactions in their local
storage according to their index among all the transactions that they maintain, so the local
storage complexity (not communication complexity) can be 64 times smaller than the worst
case if we assume that each index is 8 bytes.

3The average size of a block is about 900 kilobytes and the average number of transactions in a block is about
1700, see also https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends and http://

p2sh.info/dashboard/db/non-standard-outputs-statistics.

18

https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
http://p2sh.info/dashboard/db/non-standard-outputs-statistics
http://p2sh.info/dashboard/db/non-standard-outputs-statistics

Note that in the current Bitcoin blockchain, transactions are the dominating factor in terms
of storage. By using this optimization, the communication overhead for a 100-fold increase
in block rate (compared to Bitcoin) will be about 6 times greater, while the storage overhead
factor can be less than 2.

3.7.1 Efficient Verification Algorithm.

Since all blocks should gain an overwhelming voting margin after O(1) layers (except when
the network is under an active attack), it is expected that irreversibility will take hold quickly.
Therefore, miners can maintain a separate structure only for tentative past blocks, i.e., old data
in the history can be pruned and nodes will record that the more recent blocks are valid without
actually storing the older blocks. However, in order to make sure that the adversary cannot
exploit the efficient verification algorithm, honest nodes need to be able detect that they pruned
too much old data and thus request missing data from peers that do not prune (similarly to
archival nodes versus nodes that maintain only the UTXO set in Bitcoin).

4 Proof of Security

4.1 Notation

For the proofs and analysis we introduce some additional notation.

Tortoise Protocol Variables. We define the following random variables:

• Yj : the number of maliciously-generated blocks in the interval [startj + δ, startj+1 + δ]

• Zcoin
j : the number of non-abstaining blocks in layer j. this is at least the number of

honestly-generated blocks in the interval [startj + tcoinδ, startj+1] (for tcoin definition,
see Section 3.4.4)

Tortoise Protocol Variables Bounds. We also define the bounds on these variables, such
that the following are guaranteed with overwhelming probability (in Tmin):

• `∗ε: an upper bound on the duration of a layer. ∀j : startj+1 − startj ≤ `∗ε. We choose

`∗ε = (1 + ε) · `
1−q + 2δ. We parameterize by ε; for every constant ε, Lemma 4.6 guarantees

that the probability of exceeding the bound is negligible. Note that using the assumption
section above, `∗ε < (1 + ε)1410`

• Y ∗ε : an upper bound on the number of maliciously-generated blocks ∀j : Yj ≤ Y ∗ε except
with probability Pr

X∼Pois
(
q· `
∗
ε
`
·Tmin

) [X ≥ Y ∗ε] (for this to be negligible, we take Y ∗ε ≥

(1 + ε)2 · q · (1
1−q + δ

`) · Tmin ≥ (1 + ε)q · `
∗
ε
` · Tmin for some constant ε).

• `−ε : a lower bound on the duration of a layer in which the adversary is in the future-
reserve steady-state. ∀j s.t. the adversary is in its future-reserve steady-state, startj+1−
startj ≥ `−ε (we choose `−ε ≤ (1− ε) · (Tmin−F ∗)

Tmin
` and apply Lemma 4.15 here).

• Z∗ε : a bound on the number of honestly-generated blocks in interval [startj+δ, startj+1].

∀j s.t. the adversary is in its future-reserve steady-state, Zcoin
j ≥ Z∗ε except with prob-

ability Pr
X∼Pois

(
(1−q) `

−
ε −tcoinδ

`
·Tmin

) [X ≤ Z∗ε] (for this to be negligible, we take Z∗ε ≤

(1− ε)(1− q) `
−
ε −tcoinδ

` Tmin for some constant ε).

19

Tortoise Protocol Assumptions. For our analysis, we assume the following:

• q < 1/15: a bound on the computational power of the adversary (the hash-rate of the
adversary is at most a q fraction of the entire network’s hash rate). This is required to
guarantee convergence by the tortoise protocol when the plugged-in hare protocol fails to
reach consensus.

• ` > 4δ: a lower bound on the expected layer time w.r.t. the network delay. Even if
assuming a large network delay time (e.g. δ < 30 seconds) resulting in ` > 2 minutes, it
still allows a faster confirmation time compared to Bitcoin.

Definition 4.1 (Adversary’s Reserve). The adversary’s reserve at time τ is the set of syntac-
tically valid blocks generated by the adversary that have not been published up to time τ . The
adversary’s reserve for a block A claiming to be in layer i is the subset of blocks in its reserve
whose vote for A is not neutral (i.e., blocks in layers after i + t). For j > i, we denote Rj(i)
the adversary’s reserve for blocks in layer i at time startj + δ (not including blocks that were
published at time startj + δ).

Definition 4.2 (Adversary’s Future Reserve). The adversary’s future reserve at time starti
is the subset of blocks in its reserve that claim to be in future layers (i or greater). We denote
Fi the adversary’s future reserve at time starti.

Definition 4.3 (Adversary’s Late-Published Blocks). The adversary’s late-published blocks,
∆j−1, is the number of blocks published by the adversary from its reserve at time startj + δ.

For any layer i < j, if the honest parties on layer j agree on a block A claiming to be in
layer i, the maximal number of blocks that can counter-vote their agreement on A is ∆j−1. We
assume w.l.o.g. that all of the adversary’s blocks are late-published.

Definition 4.4 (Visible Confirmation Margin). The ith (visible) confirmation margin for a
block A claiming to be in layer j < i is the sum of the votes for A from all syntactically valid

blocks in layers i′ ≥ j that were received by time starti + δ. We denote M
(P)
i (A) the ith

confirmation margin for block A as seen by party P (we may omit P when it is clear from the
context).

Informally the confirmation margin for a block is how confident we are about the block’s
validity (or invalidity).

Definition 4.5 (Actual Confirmation Margin). Let Pmax
i denote P such that |M (P)

i (A)| is

maximized and M
(max)
i (A) = M

(Pmax
i)

i (A). The ith actual confirmation margin for a block A

claiming to be in layer j < i is M †i (A) = M
(max)
i (A)−∆i−1 − |Ri(j)|.

If the actual confirmation margin is large enough (greater than θ), it means all honest
parties agree on the validity of A, and the adversary does not have enough blocks in its reserve
to change this opinion. This is used to bound any future attempts by the adversary to change
the validity of block A (see Theorem 4.13).

Lemma 4.6 states that with overwhelming probability in Tmin, we can bound the length of
any layer time interval by `∗ε = (1 + ε) · `

1−q + 2δ.

Lemma 4.6. For any layer i and ε > 0,

Pr[starti+1 − starti > `∗ε] ≤
(

2
(1+ε)−ln(1+ε)−1

ln 2

)−Tmin

(see Section 4.1 for `∗ε definition)

20

Proof. By definition,
[
starti, starti+1

]
describes the time interval between any honest party

knowing Tmin blocks on layer i− 1 and any honest party knowing Tmin blocks on layer i.
The honest parties must start generating layer i blocks before starti+δ. Since the adversary

cannot delay any honestly-generated block by more than δ, the best strategy it has for increasing
the layer interval is to refrain from publishing blocks. The difficulty adjustment for the protocol
ensures that the expected time for the entire network (including the adversary) to generate Tmin

blocks is `. Since the adversary controls at most a q fraction of the hash power, the honest
parties by themselves will generate at expected rate (1− q)Tmin per `, or Tmin in an interval of
length `

1−q . These Tmin blocks will be seen by the entire network at most δ time after generated.

Thus, the probability that any interval length is longer than `∗ε = (1 + ε) · `
1−q + 2 · δ can be

tail-bounded. According to Poisson tail bounds (cf. Appendix B), for all c > 1,

Pr
X∼Pois(cλ)

[X ≤ λ] ≤ 2−λ
c−ln(c)−1

ln 2 =
(

2
c−ln(c)−1

ln 2

)−λ
.

In particular, for c = (1 + ε), λ = Tmin

Pr
X∼Pois((1+ε)Tmin)

[X ≤ Tmin] ≤
(

2
(1+ε)−ln(1+ε)−1

ln 2

)−Tmin

.

4.2 Bounding the Layer Interval and the Size of the Future Reserve

Our tortoise consensus proof requires a bound on the size of the future reserve (otherwise the
adversary effectively has unlimited computational power, since publishing blocks from the future
reserve is “free” for the adversary).

Definition 4.7 (Future reserve steady-state). We say the adversary is in a future reserve
steady-state at time starti if |Fi| ≤ F ∗ = 3 · q

1−q · Tmin.

Lemma 4.8. For every ε > 0 and i > 0, if the adversary controls at most q-fraction of the
computational power, then

Pr

[
|Fi+1| > (1 + ε)

`∗ε
`
· qTmin

∣∣∣∣ Fi ∩ Fi+1 = ∅
]
< 2 ·

(
2

(1+ε)−ln(1+ε)−1
ln 2

)−min(1
q
, 1+ε
1−q+

2δ
`
)·qTmin

Proof. If Fi ∩ Fi+1 = ∅, the adversary cannot have any blocks of layer i + 1 in its reserve at
time starti (otherwise they would be in Fi ∩ Fi+1). Thus, Fi+1 can only contain blocks that
were generated in the interval [starti, starti+1].

We will bound Fi+1 by bounding the length of the layer interval, and then using a Poisson
tail bound to bound the number of blocks the adversary can generate in that interval. Let
Badlong be the event that starti+1 − starti > `∗ε (i.e., the layer-interval is “too long”). By
Lemma 4.6, Pr [Badlong] < neg(Tmin).

Let Badfast be the event that the adversary generated “too many” (more than (1 + ε) · `
∗
ε
` ·

qTmin) blocks’ in the interval [starti, starti+`
∗
ε]. Denote X the number of blocks generated by

the adversary in the interval . Since the adversary’s block generation is bounded by a Poisson
process with parameter `∗ε

` · qTmin for an interval of length `∗ε,

Pr [Badfast] = Pr
X∼Pois

(
`∗ε
`
·qTmin

)
[
X > (1 + ε) · `

∗
ε

`
· qTmin

]

≤
(

2
1+ε
ln 2

(1
1+ε

+ln (1+ε)−1)
)− `∗ε

`
·qTmin

=
(

2
1+ε
ln 2

(1
1+ε

+ln (1+ε)−1)
)−(1+ε

1−q+
2δ
`

)
·qTmin

21

(where the final identity follows from the definition `∗ε = (1 + ε) · `
1−q + 2 · δ).

Since |Fi+1| is a subset of adversary blocks created during [starti, starti+1], we must have

|Fi+1| < |X| < (1 + ε) `
∗
ε
` · qTmin unless either Badlong or Badfast occurred.

Thus, by the union bound,

Pr

[
|Fi+1| > (1 + ε)

`∗ε
`
· qTmin

∣∣∣∣ Fi ∩ Fi+1 = ∅
]
≤ Pr [Badlong] + Pr [Badfast]

≤
(

2
(1+ε)−ln(1+ε)−1

ln 2

)−Tmin

+
(

2
(1+ε)+ln(1+ε)−1

ln 2

)−(1+ε
1−q+

2δ
`

)
·qTmin

≤ 2 ·
(

2
(1+ε)−ln(1+ε)−1

ln 2

)−min(1
q
, 1+ε
1−q+

2δ
`
)·qTmin

which is negligible in Tmin

Theorem 4.9. For every initial future reserve Fi0, the adversary will have no far-future blocks
after |Fi0 | ·

1−q
(1−2q)Tmin

layers (in expectation).

Proof. First, note that since every syntactically valid block in layer j must point to Tmin syn-
tactically valid blocks in layer j − 1, if Fi includes any blocks from layer j ≥ i + 1 then it
must include at least Tmin blocks in each of the layers i, . . . , j − 1. Thus, if the adversary has
“far-future” blocks in Fi, its future reserve will shrink by at least Tmin blocks at every layer
boundary (since Fj does not contain any blocks in layers less than j).

Even if the adversary uses all of its hash power to increase its reserve, the expected layer-
interval length will be at most `

1−q ; thus, the adversary’s expected block-generation per layer-

interval is bounded by q
1−q · Tmin < Tmin (this is a very loose bound that ignores difficulty

adjustment). If the adversary has far-future blocks in Fi, the size of Fi will decrease, in expec-
tation, by at least Tmin − q

1−q · Tmin = 1−2q
1−q · Tmin at every layer-interval, so the adversary will

be left with no far-future blocks in expectation, within |Fi0 | ·
1−q

(1−2q)Tmin
layers.

Corollary 4.10 states that for any initial reserve, the adversary’s future reserve will eventually
shrink to the steady-state. The total number of layers until the adversary future-reserve is
bounded depends only on the size of its initial reserve and fraction of the total hash power).

Corollary 4.10. For every initial future reserve Fi0, with probability 1 there will be some i∗ > i0
such that |Fi∗ | < F ∗.

Proof. By Theorem 4.9, (in expectation) the adversary will have no far-future blocks after
|Fi0 | ·

1−q
(1−2q)Tmin

layers. Let i′ be the layer in which the adversary no longer has far-future
blocks. By Lemma 4.8 with overwhelming probability:

|Fi′+1| ≤ (1 + ε)
`∗ε
`
· qTmin

By definition, for any ε > 0, `∗ε = (1 + ε) · `
1−q + 2 · δ. Therefore,

|Fi′+1| ≤ (1 + ε)

(
(1 + ε) · 1

1− q
+

2δ

`

)
· qTmin

≤
(

(1 + ε)2 +
(1 + ε) · (1− q) · 2δ

`

)
·
(

q

1− q

)
Tmin

≤
(
(1 + ε)2 + (1 + ε)

)
·
(

q

1− q

)
Tmin

22

where the last bound is by Section 4.1 (δ < 4` and q < 1
15). By setting ε = 0.25 we get:

|Fi′+1| < 3

(
q

1− q

)
Tmin = F ∗

Corollary 4.10 proves that whatever the initial conditions, the adversary will eventually
reach steady state. Corollary 4.11 proves that once the adversary reaches steady-state, it will
stay there except with negligible probability:

Corollary 4.11. For any layer i, if |Fi| < F ∗, then

Pr [|Fi+1| > F ∗] <
(

2
(1+ε)−ln(1+ε)−1

ln 2
+1
)−(1+ε

1−q+
2δ
`

)
·Tmin

Proof. If |Fi| < F ∗ < Tmin, the adversary cannot have far-future blocks (at least Tmin layer
i blocks are required to generate layer i + 1 blocks). Since having no far-future blocks, by
Lemma 4.8

|Fi+1| ≤ (1 + ε)
`∗ε
`
· qTmin

except with negligible probability. Using the same analysis as in Corollary 4.10, when ε = 0.25

|Fi+1| < 3

(
q

1− q

)
Tmin = F ∗

.

4.3 Consistency and Future Self-Consistence (Irreversibility)

Theorem 4.12. If

q ≤ min

(
`

`∗ε
· 2θ

Tmin
· pcoin; 1− `

`−ε − tcoinδ
· 4θ

Tmin

)
then for every initial reserve Ri0(A) and every initial margin M

(max)
i0+1 (A), and every k > 0 there

exists i∗ > i0 such that with probability 1 it holds that M †i∗(A) > θ + k.

Since the proof of Theorem 4.12 is involved, we defer its presentation to Section 5. We use
the following parameters’ values:

1. By Section 4.1, `∗ε < (1 + ε)1410`. Thus, by setting ε = 1/14 we achieve

`∗ε
`
≤ 2

3
.

2. By setting pcoin = 1
6 and given our definition in Section 4.1, we get T > 6δ as a lower

bound on time for the weak coin protocol to terminate. Given q ≤ 1
15 , we can assume

θ
Tmin
≤ 1

12 , i.e. honest blocks will go to vote for a block A if there’s at least 1/12 of blocks
disagreeing on its validity. If ` > 24δ (roughly 10 minutes), then by expectation 3/4 of
honest blocks will see the weak coin’s value after termination. Thus, we set:

2θ

Tmin
· pcoin ≤

2

3
· 1

6
=

1

9

23

Therefore:

q ≤ 1

15
< min

(
2

3
· 1

9
, 1− 4

6

)
= min

(
2

27
,
1

3

)
.

Theorem 4.13 shows that if the actual margin for a block is positive at any point (by The-
orem 4.12, this must eventually happen), then with high probability the block’s validity is
irreversible.

Theorem 4.13. For i, i′ > i, k > 1 and every block A claiming to be in layer i, if M †i′(A) > θ+k
then

Pr
[
∃j > i′ : sign

(
Mj(A)

)
6= sign (Mi′(A))

]
<

(
q

1− q

)k
.

Proof. Since M †i′(A) > θ + k, all honest parties agree on A’s validity at time starti′ + δ, since

for any honest P , |M (P)
i′ (A) −M (max)

i′ (A)| ≤ Xi′ + ∆i−1. Moreover, this would be true even
if the adversary published all the blocks in its reserve. Thus, we can reduce the probability of
the adversary changing the validity of A to the Bitcoin analysis (cf. [37]): both the adversary
and the honest nodes generate blocks, with the honest nodes generating at rate (1− q) and the
adversary at rate q.

Denoting az the probability that the adversary will ever catch up when the honest party
has a head start of z blocks, we have

az = min(q/(1− q), 1)max(z+1,0) .

In our case, z ≥ k and q < 1− q so az =
(

q
1−q

)k
.

By Corollary 4.10, regardless of starting conditions, the adversary will eventually reach a
steady-state in terms of its future reserve, in which the number of blocks it can pre-generate is
bounded. When this occurs:

Corollary 4.14. If Π satisfies [t, s]-limited-consistency, and the adversary is in its future-
reserve steady-state, then the combined tortoise/Π protocol satisfies consistency and future self-
consistence.

Proof. First, since the all honest nodes agree on every block in layers (i − s, . . . , i − t), all
honestly-generated blocks in layer i will vote the same way for these blocks. With overwhelming
probability (in Tmin), the actual margin (the difference between the number of honest blocks
generated in these layers and the number of blocks generated by the adversary, together with
its future reserve), will be more than θ, by Theorem 4.13, this guarantees irreversibility (self-
consistency).

Lemma 4.15 states that no layer is “too short”. This will be used later to assure that in
each layer there is an honest majority if the adversary is in a future-reserve steady-state.

Lemma 4.15. For `−ε ≤ (1−ε) · (Tmin−F ∗)
Tmin

`, if the |Fi| < F ∗ and q ≤ 1/10, then for every ε > 0

Pr
[
starti+1 − starti < `−ε

]
≤
(

2
ε−ln(1+ε)

ln 2

)− 2
3
Tmin

.

Proof. Let Li be actual length of layer i i.e.

Li = starti+1 − starti .

We wish to represent the expected layer time w.r.t Fi, the adversary future-reserve. Li is at
least the time it takes to generate and publish Tmin − Fi blocks so for any i

E [Li] ≤ `
Tmin − Fi
Tmin

.

24

According to its definition, starti+1 is set to the time in which the first honest node first
sees Tmin blocks on layer i. Thus, for any L′, the probability of layer i being shorter than L′

is the probability of generating more than Tmin − Fi blocks within time L′. Since the block
generation process is a Poisson process with expectation Tmin in time `, the number of blocks
generated during an interval of length L′ is distributed Poisson with parameter Tmin · L

′

` . Thus,
the probability that Li < L′ can be bounded by the probability that a Poisson process with
parameter Tmin · L

′

` generates more than Tmin − Fi events. Taking L′ to be (1− ε)`Tmin−Fi
Tmin

we
get:

Pr

[
Li ≤ (1− ε)`Tmin − Fi

Tmin

]
= Pr

X∼Pois((1−ε)·(Tmin−Fi))
[X ≥ Tmin − Fi]

≤
(

2
ε−ln(1+ε)

ln 2

)Fi−Tmin

and if the adversary is on future-reserve steady-state on starti then Fi ≤ F ∗, thus

Pr

[
starti+1 − starti < (1− ε) · (Tmin − F ∗)

Tmin
`

]
≤
(

2
ε−ln(1+ε)

ln 2

)F ∗−Tmin

≤
(

2
ε−ln(1+ε)

ln 2

)− 2
3
Tmin

where the last inequality is since F ∗ = 3
(

q
1−q

)
Tmin ≤ 1

3Tmin if q < 1/10

Lemma 4.16. Except with negligible probability in Tmin, for every layer i if the adversary is in
future-reserve steady-state the difference between honest blocks and adversarial blocks in layer i
is at least Tmin − 2F ∗

Proof. For any layer i, let Li be defined as the actual layer i time that is:

Li = starti+1 − starti .

Let Xi be the number of honest blocks in layer i created in [starti, starti+1]. As all honest
nodes follow the protocol, the expected value of Xi w.r.t. Li is:

E[Xi] = (1− q)Tmin ·
E [Li]

`
.

Let Yi be the number of adversary blocks in layer i created in [starti, starti+1]. For any layer
i, by starti+1, the adversary is expected to have at most:

1. E [|Fi|] (her future-reserve blocks); and

2. qTmin · E[Li]` blocks created during Li

that is

E[Yi] ≤ E [|Fi|] + qTmin ·
E [Li]

`
.

Due to linearity of expectation, the expected difference between honest and adversary blocks
for any layer i is:

E [Xi − Yi] = E [Xi]− E [Yi] ≥ Tmin ·
E [Li]

`
− E [|Fi|]

which is monotonic decreasing for E [Li], thus a shorter E [Li] allows a smaller expected differ-
ence between honest and adversary blocks.

25

For any layer i,

E [Li] >
Tmin − F ∗

Tmin
`.

That is the expected number of honest blocks for any layer i has the following lower-bound:

E[Xi] ≥ (1− q)(Tmin − F ∗)

and if the adversary is in future-reserve steady-state, for any layer i it follows Fi ≤ F ∗

E[Yi] ≤ F ∗ + q(Tmin − F ∗) .

According to Lemma 4.15, Li > (1 + ε)Tmin−F ∗
Tmin

` with overwhelming probability so:

1. Denote λX = (1− q)(Tmin−F ∗) per Tmin−F ∗
Tmin

` as the rate of honest blocks generation. By
applying a Poisson tail bound,

∀i : Pr
X∼Pois(λX)

[Xi ≤ (1− ε)λX] ≤
(

2
ε−ln(1+ε)

ln 2

)−λX
.

2. Denote λY = F ∗ + q(Tmin − F ∗) per Tmin−F ∗
Tmin

` as the rate of adversary blocks generation.
By applying a Poisson tail bound,

∀i : Pr
X∼Pois(λY)

[Yi ≥ (1 + ε)λY] ≤
(

2
ε−ln(1+ε)

ln 2

)−λY
.

Therefore, except with negligible probability in Tmin for any layer i:

Xi − Yi > Tmin ·
Li
`
− F ∗

> (Tmin − 2 · F ∗)

= Tmin − 2 · 3 q

1− q
Tmin

since q ≤ 1
10 :

≥ Tmin − 2 · 3 · 1/10

9/10
Tmin

=
Tmin

3

Lemma 4.17. With overwhelming probability in Tmin, if

M †i (A) > θ + k

then for all i′ > i,

M †i′(A) > θ + k + (i′ − i) · θ
3
.

Proof. By Lemma 4.16, with overwhelming probability (in Tmin) any layer in which the adver-
sary is in a future-reserve steady-state will have at least Tmin

3 ≥ θ
3 more honest blocks than

adversary blocks (since trivially θ ≤ Tmin). Also, by Corollary 4.11 if the adversary is in steady-
state when the actual margin exceeds θ + k, she will remain with overwhelming probability.
Thus except with negligible probability in each layer, the margin grows by at least the number
of honest blocks minus the number of malicious blocks (which is at least θ/3).

26

Corollary 4.14 and Lemma 4.17 imply consistency:

Corollary 4.18 (Consistency). If |Fi| < F ∗, Z∗ε − (F ∗ + Y ∗ε) > θ and the requirements for the
hare protocol’s [t, s]-limited-consistency are met, then for every block A generated in the interval
[starti, starti+1), the probability that there exist two honest nodes who disagree on the validity
of A at time starti+t is negligible in t.

Proof. If the hare protocol satisfies [t, s]-limited-consistency, there will be consensus on every
block in the range of the tortoise protocol with probability that is negligible in the size of the
margin. By Lemma 4.17, the size of the margin is linear in the number of layers, hence the
disagreement is negligible in the number of layers.

5 Proof of Theorem 4.12

5.1 Proof Overview

In order to bound the actual confirmation margin, it will be useful to look at the quantities

R∗i (j) = 2|Ri(j)| −∆i−1

and
M∗i (A) = |M (max)

i (A)| −R∗i (j) .
If for any positive α, β we’ll be able to bound M∗i (A) s.t.

M∗i (A) =
i∑

j=0

(
M∗j+1(A)−M∗j (A)

)
≥ i · α− β ,

then for any c exists a layer ic in which M∗ic(A) > c. We prove the following by exhaustive case

analysis over the value of ∆i−1 and |M (max)
i (A)| in each layer between j to i.

We then show using a followup case analysis that by fixing c = θ+k+4Y ∗ε either the reserve
decreases or by Definition 4.5 :

M †i (A) = |M (max)
i (A)| − |Ri(j)| −∆i−1

= M∗i (A) + |Ri(j)| − 2∆i−1

≥ θ + k .

As the reserve is discrete, it must follow that after at most |Ric(A)| layers, M †i (A) ≥ θ + k.

5.2 Bounding the quantity M∗
i (A)

We will use the identity:

R∗i+1(j)−R∗i (j) = 2(|Ri+1(j)| − |Ri(j)|) + ∆i−1 −∆i

= 2(Yi −∆i−1) + ∆i−1 −∆i

= 2Yi −∆i−1 −∆i .

For any j < i, instead of bounding the actual margin, we will bound

M∗i+1(A)−M∗i (A) = |M (max)
i+1 (A)| − |M (max)

i (A)| − (R∗i+1(j)−R∗i (j))

= |M (max)
i+1 (A)| − |M (max)

i (A)| − 2Yi + ∆i + ∆i−1 .

We partition the layers according to two things: ∆i−1 (see Definition 4.3), the number

of blocks from Ri−1(A) published by the adversary at time starti + δ and M
(max)
i (A) (see

Definition 4.4). As we show below, depending on the relation between these values and θ (see
Section 3.4.4), we can bound the difference M∗i+1(A) −M∗i (A). Below is an exhaustive case
analysis:

27

Case 1: ∆i−1 < |M (max)
i (A)| − θ. Honest blocks on starti + δ may disagree only on ∆i−1. There-

fore, in this case for every honest party P it holds that

|M (max)
i (A)| − |M (P)

i (A)| ≤ ∆i−1 ,

implying that |M (P)
i (A)| > θ for every honest P . Thus, the vote of every honestly gener-

ated block after the weak coin protocol completes is sign
(
M

(max)
i (A)

)
. Thus, for every

non-abstaining honest P (of which there are, by definition, Zcoin
i) and in particular for

Pmax
i+1 :

|M (Pmax
i+1)

i+1 (A)| ≥ |M (Pmax
i)

i+1 (A)| ≥ |M (Pmax
i)

i (A)|+ Zcoin
i −∆i .

In this case

M∗i+1(A)−M∗i (A) ≥ Zcoin
i −∆i − 2Yi + ∆i + ∆i−1

≥ Zcoin
i − 2Yi

Case 2: |M (max)
i (A)| < θ. In this case, for every honest party P generating a block after the weak

coin protocol completes it follows:

|M (P)
i (A)| ≤ |M (max)

i (A)| < θ

that is every honest party will vote according to the result of the coin.

Case 2.1: (with probability at least pcoin): There is consensus on the weak coin for layer i and

it agrees with sign
(
M

(Pmax
i)

i (A)
)

so all honest parties will vote the same way on A.

Thus,

|M (Pmax
i+1)

i+1 (A)| ≥ |M (Pmax
i)

i+1 (A)| ≥ |M (Pmax
i)

i (A)|+ Zcoin
i −∆i .

Therefore

|M (Pmax
i+1)

i+1 (A)| − |M (Pmax
i)

i (A)| ≥ Zcoin
i −∆i .

In this case

M∗i+1(A)−M∗i (A) ≥ Zcoin
i −∆i − 2Yi + ∆i + ∆i−1

≥ Zcoin
i − 2Yi

Case 2.2: (with probability at most 1− pcoin): The adversary selects M
(max)
i+1 (A) arbitrarily. In

this case

M∗i+1(A)−M∗i (A) ≥ −|M (max)
i (A)| − 2Yi

≥ −θ − 2Yi

Case 3: |M (max)
i (A)|−θ ≤ ∆i−1 < 2θ (note that, together with the negation of case 2, this implies

θ ≤ |M (max)
i (A)| < 3θ). In this case, every honest P must be on the “same side” of the

[θ,−θ] interval; that is, for every P it holds that

|M (P)
i (A)| > θ ⇒ sign

(
M

(P)
i (A)

)
= sign

(
M

(max)
i (A)

)
.

28

Case 3.1: (with probability at least pcoin): There is consensus on the weak coin for layer i and

it is equal to sign
(
M

(max)
i (A)

)
, so all non-abstaining honest parties will vote the

same way on A. Thus,

|M (Pmax
i+1)

i+1 (A)| ≥ |M (Pmax
i)

i+1 (A)|

≥ |M (Pmax
i)

i (A)|+ Zcoin
i −∆i

In this case

M∗i+1(A)−M∗i (A) ≥ Zcoin
i −∆i − 2Yi + ∆i + ∆i−1

≥ Zcoin
i − 2Yi

Case 3.2: (with probability at most 1− pcoin): The adversary selects M
(max)
i+1 (A) arbitrarily. In

this case

M∗i+1(A)−M∗i (A) ≥ −|M (max)
i (A)| − 2Yi

≥ −3θ − 2Yi

Case 4: ∆i−1 ≥ max
{
|M (max)

i (A)| − θ, 2θ
}

. The adversary chooses how each honest party will

vote, so can fix M
(max)
i+1 (A) arbitrarily. In this case,

M∗i+1(A)−M∗i (A) ≥ −|M (max)
i (A)| − 2Yi + ∆i + ∆i−1

≥ −|M (max)
i (A)| − 2Yi + max

{
|M (max)

i (A)| − θ, 2θ
}

= −θ − 2Yi

For j ∈ {1, 2.1, 2.2, 3.1, 3.2, 4}, let Cj denote the set of rounds that fall under case j. To

bound M∗i (A), we sum the
(
M∗j+1(A)−M∗j (A)

)
differences from the layer in which block A

claims to be (w.l.o.g set to 0) up to current layer i.:

M∗i (A) =

i∑
j=0

(
M∗j+1(A)−M∗j (A)

)
≥
∑
j∈C1

(
Zcoin
j − 2Yj

)
+
∑
j∈C2.1

(
Zcoin
j − 2Yj

)
+
∑
j∈C2.2

(−θ − 2Yj)

+
∑
j∈C3.1

(
Zcoin
j − 2Yj

)
+
∑
j∈C3.2

(−3θ − 2Yj) +
∑
j∈C4

(−θ − 2Yj)

extracting 2Yj from all the sums:

=
∑
j∈C1

Zcoin
j +

∑
j∈C2.1

Zcoin
j +

∑
j∈C2.2

−θ

+
∑
j∈C3.1

Zcoin
j +

∑
j∈C3.2

−3θ +
∑
j∈C4

−θ

− 2 ·
i∑

j=0

Yj

29

using our bounds on Zcoin:

≥ (|C1|+ |C2.1|+ |C3.1|) · Z∗ε

+ (|C2.2|+ |C3.2|) · (−3θ) + (|C4|) · (−θ)− 2 ·
i∑

j=0

Yj

At this part, we wish to upper-bound the negative elements of the sum. Since
∑i

j=0 Yj is a sum

of independent Yj ∼ Pois(λ), then
∑i

j=0 Yj ∼ Pois(i · λ) and can be bounded using Poisson
tail bounds s.t.

Pr

 i∑
j=0

Yj > (1 + εY) · i · q · `
∗
ε

`
· Tmin

 ≤ (2
εY −ln(1+εY)

ln 2

)−i·q· `∗ε
`
·Tmin

The success of the weak coin protocol is independent for all layers (see Section 3.3). Therefore,
either case 2.2 or case 3.2 occur on any layer with probability at most 1−pcoin. Using Chernoff,
we bound the number of layers in which the weak coin protocol fails for all εpcoin > 0:

Pr [|C2.2|+ |C3.2| ≥ i · ((1− pcoin) · (1 + εpcoin))] ≤ exp

(
− εpcoin

2

2 + εpcoin
· (1− pcoin)

)
.

As for case 4, in each round where it occurs the adversary “spends” at least 2θ blocks. Given
Ri0(A), the adversary initial reserve and Y ∗ε , the bound for maliciously generated blocks in each
round,

|C4| ≤

Ri0(A) +
i∑

j=0

Yj

 · 1

2θ

Since i = |C1|+ |C2.1|+ |C2.2|+ |C3.1|+ |C3.2|+ |C4|,

|C1|+ |C2.1|+ |C3.1| ≥ i · (1 + εpcoin) · pcoin −

Ri0(A) +

i∑
j=0

Yj

 · 1

2θ

≥ i · pcoin −

Ri0(A) +

i∑
j=0

Yj

 · 1

2θ

Putting it all together,

M∗i (A) ≥

i · pcoin −
Ri0(A) +

i∑
j=0

Yj

 · 1

2θ

 · Z∗ε − 2 ·
i∑

j=0

Yj

≥

(
i · pcoin −

(Z∗ε − 4θ) ·
∑i

j=0 Yj

Z∗ε · 2θ

)
· Z∗ε −

Ri0(A) · Z∗ε
2θ

≥

(
i · pcoin −

(Z∗ε − 4θ)

Z∗ε
·
∑i

j=0 Yj

2θ

)
· Z∗ε −

Ri0(A) · Z∗ε
2θ

if q < 1− `
`−ε −tcoinδ

· 4θ
Tmin

, except with negligible probability Z∗ε > 4θ:

≥

(
i · pcoin −

∑i
j=0 Yj

2θ

)
· Z∗ε −

Ri0(A) · Z∗ε
2θ

30

with overwhelming probability
∑i

j=0 Yj ≤ (1 + εY) · i · q · `
∗
ε
` · Tmin:

≥ i ·
(
pcoin −

(1 + εY) · qTmin

2θ
· `
∗
ε

`

)
· Z∗ε −

Ri0(A) · Z∗ε
2θ

Note that if

q ≤
(

2θ

Tmin
· `
`∗ε
· pcoin

)
the expression in the parenthesis is a positive constant thus for any constant c

∃ic s.t. ∀i > ic : M∗i (A) > c .

5.3 Bounding the Actual Confirmation Margin

By fixing c = θ + k + 4Y ∗ε , for any i >= ic,

1. if ∆i−1 < 2Y ∗ε then

M †i (A) ≥M∗i (A) + |Ri(j)| − 2∆i−1 ≥ θ + k

and we are done;

2. otherwise, for every ∆i−1 s.t. ∆i−1 > 2Y ∗ε , w.h.p. |Ri+1(A)| < |Ri(A)| (adversary had to
use blocks from her reserve).

As there are at most |Ric(A)| consecutive rounds at which the last case applies, there must
exists a layer i∗ > ic s.t.

M †i∗(A) ≥ θ + k .

5.4 Countermeasures against Freeloading

Per protocol 1, it is possible to give a small bonus to miners who reach the cap in the blocks
that they creates. The bonus can be awarded by increasing the proportional amount (out of
the total amount of transaction fees that were collected in the layer) that blocks that reach the
cap receive, at the expense of blocks that are below the cap.

The rationale for the small bonus is due to possible freeloading behaviors:

• Without a bonus, rational miner may opt to forgo the work of collecting and verifying
transactions. This concern has merit because verification of a large amount of transaction
data is costly, and a single syntactically invalid transaction would cause the entire block
to be invalidated.

• If the bonus is large, rational miners may duplicate transactions that previous blocks col-
lected (albeit at the risk that an adversarial block included a poisonous invalid transaction
on purpose, in order to invalidate other blocks in the layer).

As a middle ground, it is thus sensible to set the cap to a small amount relative to the average
size of transaction data that is collected by an entire layer, and set the bonus to be small relative
to the average block reward. This way, each individual miner will reach the cap by performing
a relatively minor amount of computations, and the benefit in duplicating the transactions of
prior blocks is less likely to be worth the risk of encountering a poisonous transaction. As our
proposed reward allocation is smooth (cf. Section 8.4), transactions that already appeared in
the previous layer should also count towards the cap, and hence miners are not disincentivized
from creating blocks at the beginning of a layer.

For honest miners, the rules for selecting transactions to include in a block can involve both
randomness and prioritization according to freshness. As a concrete example, let us consider

31

the simple rule that picks transactions at random. Suppose that in a typical layer there are
n blocks that accumulate m transactions in total. Let β denote the cap, and assume that our
objective is that the n blocks will cover all of the m transactions. Let us simplify by assuming
that the m transactions are available at the start of the layer (note that the required cap size
will be significantly smaller with a rule that picks at random only among the transactions that
have not yet been included in blocks). Since transactions are picked randomly, it is equivalent
to assume that there are βn blocks such that each blocks collects a single transaction. Thus,
this is the classical coupon collector’s problem, implying that βn < m(ln(m) + 0.578) is enough
for covering the m transactions in expectation. Additionally, a standard tail bound entails that
Pr [{cover} > d ·m ln(m)] ≤ md−1, hence d = 2 is already more than enough practice (since
a layer that failed to cover all the available transactions is of no particular significance). To
substitute concrete numbers: if m = 106, n = 200, d = 2, then a cap of β ≈ 14

100 ·106 will cover all
the transactions of the layer with more than 1−10−6 probability, and a cap of β ≈ 7

100 ·106 will
cover the m transactions in expectation. Note that m = 106 represents a transaction volume
that is ≈ 500 greater than that of Bitcoin (cf. Section 3.7), i.e., it is the equivalent of a 500
megabytes (instead of 1 megabyte) Bitcoin block.

6 Byzantine-Agreement-Based Hare Protocol

Our first ABA-based hare protocol uses a binary byzantine agreement protocol that must satisfy
some specific properties:

1. Asynchronous Communication: the protocol should allow for messages to be arbitrarily
delayed (up to our communication latency bound)

2. Name-independence: The protocol should not rely on consistent names for parties. That
is, it should allow each party to use its own labels for the other parties. Note that a party
can identify where a message originated; it just might not agree with other parties on the
originators name.

Formally, we will describe the ABA protocol as an interactive program P implementing the
following interface:

• The party running P maintains an “event queue”, initialized to (init, n).

• It repeats the following loop until P outputs a bit b and halts:

1. Invoke P with the next event from the event queue (if there are no events, wait until
one occurs).

2. At every invocation of P , it may perform any of the following actions (possibly
multiple actions sequentially):

– Send a message to another party j ∈ [n] (the parties are referenced by index).

– Request a random coin bit i. In this case P will sleep until the bit i becomes
available.

– Output a bit b and halt (this should be the consensus bit)

3. When a message m arrives from party j, add the event (msg, j,m) to the event
queue (and invoke P if it was waiting)

6.1 The ABA Protocol’s Environment

The ABA protocol may make the following assumptions about its environment:

32

• Reliable, ordered, point-to-point channels. For all i ∈ [n], and every message m sent to
P by party i (according to P ’s indexing), P it will (eventually) be invoked exactly once
with (msg, i,m). Messages from a single party will be received in the order they were
sent by that party. Moreover, only a message m sent by i will cause P to be invoked
with (msg, i,m) (i.e., the network does not duplicate, create or reorder, modify or delete
messages).

• Weak common coin (with parameter pcoin). The coin gives the following guarantees:

1. No corrupt party will receive coin i until at least one honest party requested coin i.

2. For all i, with probability at least pcoin, all honest parties will receive 0 in response
to a request for coin i.

3. For all i, with probability at least pcoin, all honest parties will receive 1 in response
to a request for coin i.

6.1.1 Implementing the Environment.

We will choose m∗ to be a bound on the number of blocks in a layer that satisfies, for every
layer i, two properties:

1. The probability that more than m∗ syntactically-valid layer-i blocks that were published
before starti + δ is negligible.

2. The probability that the number of honestly-generated blocks in layer i is less than 5
6m
∗

is negligible.

Note that if one of the two properties does not hold, the ABA protocol might fail, but the
Tortoise protocol will still guarantee eventual consensus.

Our hare protocol implements the environment expected by the ABA protocol in the fol-
lowing way:

• Participating parties. For the hare protocol to work, every miner must add the following
information to their blocks:

– A verification key for a public-key signature scheme (this will be used to make our
communication channels reliable).

– (Optional) An address that allows direct point-to-point communication (e.g., an IP
address). This can be used to make the point-to-point channels much more efficient.
Alternatively, the parties can use the underlying gossip network to communicate.

Every party that generated a block in layer i participates in the ABA protocol for layer
i (in fact, the parties will run multiple ABA protocols in parallel—one for each block
generated in layer i).

Let party P be one of the parties that generated a block in layer i. At time starti+1 + δ,
P makes a list of all the (syntactically-valid) blocks it received in layer i. Let m be the
actual number of blocks received. It orders them arbitrarily from 1 to m, then adds
“placeholder” parties indexed m+ 1, . . . ,m∗. It then initializes an ABA protocol with m∗

parties. If it receives messages from parties that were not in the list, it treats them as
faulty parties (and ignores the messages).

• Point-to-point messages. If m is the kth message P sent to party j (who has verification
key vkj), P signs the tuple (vkP , vkj , k,m) with P ’s signature key, and sends it to the
address specified in j’s block. When receiving a message of the form (vki, vkP , k,m), P
verifies that the signature is valid, and that vki appears in one of the blocks generated in

33

block i. If there is some k′ < k such that a message of the form (vki, vkP , k
′,m) has not

yet been received (i.e., messages were reordered), the message is held until all previous
messages have been delivered. Otherwise, this message is delivered to the queue (as the
event (msg, j,m)). Note the bound on network latency guarantees that all messages from
honest parties will eventually be delivered.

• Weak coin. We can implement the weak coin as described in Section 3.3, based on the
blockmesh itself. To satisfy the assumption that no corrupt party will receive coin i
until at least one honest party requested coin i, we have to assume that the latency of
communications in the ABA protocol is small enough that the coins are requested by
honest parties before they actually become available (this is reasonable, since they can
use actual point-to-point connections).

Alternatively, we can use an off-chain coin based on unique signatures, such as the idea
suggested by Micali [27]. Micali’s construction gives a weak coin with pcoin = 1/3 that
does not require proof-of-work; briefly, the idea is that to generate coin i, for all j ∈ [m],
party j will compute and publish σj = Signskj (vkj ||i). Each party sorts {H(σj)}mj=1 for
all valid messages, and takes the LSB of the first to be the coin value (this is similar to
what we do with the proof-of-work-based coin). If 2m∗/3 of the parties generating blocks
are honest, there will be agreement on the value w.p. 2/3 (and hence pcoin = 1/3).

Because the ABA protocol does not rely on consistent naming, the fact that different parties
see a different set of blocks will not matter—the honestly generated blocks will be in the inter-
section of all the honest parties’ lists, and so every honest party will be considered a participant
by every other honest party. By our assumptions about m∗, there are more than 2m∗/3, so
even if we count the parties m+ 1, . . . ,m∗ as faulty the honest parties are still a 2/3 majority.

6.2 Using the ABA Protocol

We require the following guarantees from the ABA protocol:

• Consensus: All honest parties should agree on a bit b for every execution of the ABA
protocol. If all honest parties have the same input b′, then b = b′.

• Termination: The ABA protocol should terminate in a small (constant) number of rounds
(we count rounds as the number of weak coin flips) except with negligible probability.

Our ABA-hare protocol executes an instance of the ABA protocol for every block generated
in layer i.

Block Propagation. For party P , denote G = (vk1, . . . , vkm) the ids of the parties(blocks)
that P received before starti + δ.

1: Initialize SP = {vk1, . . . , vkm} // the set of blocks to validate
2: for all j ∈ [m] do // Update round 1
3: Send SP to j
4: Receive Sj from j
5: Update SP ← SP ∪ Sj
6: end for

ABA Execution.

1: for all vkj ∈ SP do // In parallel
2: if vkj ∈ G then // We received the block before starti + δ
3: b′ = 1
4: else

34

5: b′ = 0
6: end if
7: Execute the ABA protocol with input b′. Let b be the output of the protocol.
8: if b = 1 then // Consensus on the block being included
9: Sign vkj using skP and publish the signature to the blockmesh.

10: end if
11: end for

ABA Hare Protocol Consensus. The hare protocol specifies that a block in layer i is valid
iff it has 5

6m
∗ signatures from parties that generated a layer-i block.

Claim 6.1. Every honestly-generated block is considered valid by the ABA hare protocol.

Proof. Every honestly-generated block will be received by every honest party before starti+δ.
Thus, all honest parties will participate in the ABA for confirmation of this block, and they
will all agree that the block is valid. By the consensus guarantee of the ABA protocol, the
consensus outcome will be that the block is valid, so all honest parties will sign it. Since the
number of honest parties is more than 5

6m
∗, the hare protocol will consider this block valid.

Claim 6.2. Every block that was not received by any honest party before starti + δ will be
considered invalid by the ABA hare protocol.

Proof. No honest party will initiate an ABA protocol to validate such blocks. However, the ma-
licious parties may send such a block to a subset of the honest parties in the Block Propagation
phase. If the block is sent to less than 2

3m
∗ honest parties, even the outcome of the consensus is

that the block is valid, there will not be enough signatures to make it valid (since the malicious
parties have at less than 1

6m
∗ blocks). If the block is sent to more than 2

3m
∗ honest parties, the

honest parties will have a 2/3 majority in the ABA protocol and they all agree that the block
is invalid, hence the consensus result will be that the block is invalid.

Lemma 6.3. The hare protocol will reach consensus on every block.

Proof. By Claim 6.2, there will be consensus on every block that was not received by any honest
party before starti + δ. If a block was received by at least one honest party, then all honest
parties will receive the block in the Block Propagation phase, so they will all participate in the
ABA protocol for that block. Since there is a 2/3 majority of honest blocks, the ABA protocol
will reach consensus on that block. If the consensus is valid, all honest parties will sign the
block, so it will be considered valid by the hare protocol. Otherwise, no honest party will sign
the block, so it will be considered invalid by the hare protocol.

6.3 Improving the Hare-Protocol Parameters using Multivalued ABA

In order to guarantee consensus using the binary ABA protocol, we need the number of honestly-
generated blocks to be at least 5

6 of the maximum number of blocks generated in a layer interval.
This implies that the fraction of the hashpower controlled by the adversary cannot be more than
q < 1/6. If a 1/2 majority (rather than 2/3) suffices for the ABA protocol, we can relax the
assumption to q < 1/4 (this might be possible with cryptographic assumptions). However, if
we are willing to use a more “heavy-duty” protocol that guarantees consensus on strings rather
than bits, we can use it to improve parameters. Due to space restrictions, we describe the
detailed algorithm in Section 7.

35

6.4 Additional Potential Improvements

Our ABA and Multivalued-ABA Hare protocols solve the “participant consensus” problem (i.e.,
agreeing on who is participating in the protocols) by using a preset bound m∗ on the number
of blocks in a layer. However, the adversary can influence the number of blocks in a layer (e.g.,
by withholding generated blocks until honest parties already generate the minimum number).
This leads to restrictions on the adversary’s hashpower that are not optimal (e.g., we cannot
support an adversary with 1/3 the hashpower).

However, it may be possible to use the underlying ABA protocols more efficiently: instead
of using a bound on the number of parties, each honest party will just run the ABA protocol
with the parties it sees. Note that if all the honest parties see the same number of blocks, even
if disagree on which blocks, this will already work with our existing analysis. The reason is
that all honest parties see each other—the only blocks they can disagree on are the malicious
blocks—but the ABA protocols already allow arbitrary malicious behaviour for corrupt parties,
so we can treat two different malicious parties as a single party sending different messages to
the honest parties.

Unfortunately, the honest parties may not agree on the number of blocks. However, for
specific ABA protocols this can still be secure. In particular, a close look at the analysis of the
ABA protocols of Mostéfaoui et al. [29, 30] shows that they use the total number of parties for
achieving properties such as “if a message m was received from t + 1 different parties, it must
have been sent by at least one honest party” and “if a message was received from n−2 different
parties, it must have been sent by at least t+ 1 honest parties”—these statements still hold in
our setting even when there is disagreement on n and t (as long all the honest parties see each
other, and in the local execution of each honest party there is a 2/3 honest majority).

7 Improving the Hare-Protocol Parameters using Multivalued
ABA: Details

We will require a multivalued ABA protocol with the same properties as the binary ABA pro-
tocol (asynchronous, name-independent), that is also intrusion-tolerant. That is, it guarantees
that if all honest parties have v as their input, the consensus value output by honest parties at
the end of the protocol must be v. We note that Mostéfaoui and Raynal show how to construct
a multivalued ABA protocol with the desired propeties based on any binary ABA protocol [30].
Their multivalued protocol has a constant number of rounds and is secure when less than 1/3
of the parties are malicious.

Let ABA(v) denote an execution of the multivalued ABA protocol with input v, and BBA(b)
denote an execution of the binary ABA with input b.

For party P , denote G = (vk1, . . . , vkm) the ids of the parties(blocks) that P received before
starti + δ. Our Multivalued ABA Hare protocol can be described in two parts. A main loop,
that runs until agreement is reached to terminate, and a message-processing procedure that
handles incoming messages (the protocol is asynchronous, so does not wait for messages to
arrive unless such a message is guaranteed to arrive). Think of the process as single-threaded
(i.e., if a message arrives, it finishes executing the current line in the main loop, executes the
ProcessMessage procedure and then returns to the next line in the main loop).

1: procedure MainLoop
2: Initialize SP ← G, sorted lexicographically
3: Initialize V alid← ∅.
4: loop // Main Loop
5: Let vk be the first (smallest) element in SP
6: Let vk∗ ← ABA(vk)
7: if vk∗ 6= ⊥ then

36

8: Let V alid← V alid ∪ {vk∗} // Add vk∗ to valid block set
9: SP = SP \ {vk∗} // Remove vk∗ from SP

10: if vk < vk∗ then
11: Send vk to all parties
12: end if
13: else // Some party proposed to terminate
14: Set b = 1 iff SP 6= ∅.
15: Let b∗ ← BBA(b)
16: if b∗ = 0 then // At least one honest party agreed to terminate
17: return V alid and terminate
18: else // At least one honest party does not want to terminate
19: if SP 6= ∅ then
20: Send the first element in SP to all parties
21: else
22: Wait until SP 6= ∅
23: end if
24: end if
25: end if
26: end loop
27: end procedure
28: procedure ProcessMessage(vk)

// Called whenever a message vk is received if the party has not yet terminated
29: if vk /∈ V alid then
30: Set SP = SP ∪ vk
31: end if
32: end procedure

Lemma 7.1. An honest party running the protocol will always terminate

Proof. Let Tr = bigcupiSi be the set of blocks in the union all honest parties’ sets Si at the
start of iteration r of the main loop . Let Qr be the set of blocks that are not in I ∪ V alid at
the start of iteration r of the main loop. Note that |Q1| ≤ m∗/3 (since all honest blocks are in
I1).

Consider iteration r of the main loop for an honest party P .

Case 1: The outcome of the ABA protocol was vk. Then vk is added to V alid, so |Tr+1∪Qr+1| <
|Tr ∪Qr|.

Case 2: The outcome of the ABA protocol was ⊥

Case 2.1: The outcome of the BBA protocol was 0. In this case the party terminates and we
are done.

Case 2.2: The outcome of the BBA protocol was 1. In this case for at least one honest party
Si 6= ∅ (otherwise all honest parties would have input 0 to the BBA protocol). Let
vk∗ be the minimal element in Tr. In this case, vk∗ will be the minimal for any
honest party that has it, Since each honest party for which SP 6= ∅ sends its minimal
element, it will be sent in Line 20 by some honest party. Since all messages sent
by honest parties are eventually received by all honest parties, it will eventually be
received by all honest parties. Let r′ be the first round at which it was received by
all honest parties.

Case 2.2.1: If vk∗ ∈ V alidr′ then |Tr′ ∪Qr′ | < |Tr ∪Qr|
Case 2.2.2: Otherwise, if there exists vk† ∈ Tr′ such that and vk† < v∗, then Qr′ < Qr (since

vk† could only have come from Qr).

37

Case 2.2.3: Otherwise, vk∗ must be minimal in Tr′ , so all honest parties will use it as input
to the ABA in call. By the intrusion-tolerance property of the ABA, the output
must be vk∗ 6= ⊥, hence |Tr′+1 ∪Qr′+1| < |Tr′ ∪Qr′ |

We showed that in every iteration, either |Tr ∪Qr| decreases, or |Qr| decreases, or there will be
a future round r′ in which one of those occurs. Since they are both non-increasing, eventually
|Tr ∪Qr| must reach 0. When that happens, every honest party will have Si = ∅, so all honest
parties will use input ⊥ to the ABA, guaranteeing the output will be ⊥. All honest parties will
then use input 0 to the BBA, guaranteeing output 0, so they will all terminate.

Claim 7.2. All honest parties will terminate in the same iteration of the main loop.

Proof. The parties terminate only if the ABA protocol returns ⊥ and then the BBA protocol
returns 0. Since all honest parties agree on the outputs of the ABA and BBA protocols, they
will all terminate at the same iteration.

Lemma 7.3. Every honest party will agree on the value of V alid after termination.

Proof. The only blocks added to V alid are output from the ABA protocol. Since all honest
parties agree on the outputs of the ABA protocol and terminate at the same time, they will
agree on the sequence of blocks added.

Lemma 7.4. Every honestly-generated block will be included in V alid

Proof. All Honestly-generated blocks appear in I = bigcapiGi, the intersection of all honest
parties’ “good sets”, and hence appear in the intersection of the sets Si. Blocks are removed
from the set Si only if they enter V alid. For the protocol to terminate, at least one honest
party must have an empty Si, therefore all honest blocks must have been added to V alid.

8 Incentive-Compatibility of Race-Free Protocols

8.1 Generalized Blockchain Mining Games

In this section, we extend the Blockchain Mining Game described in [15] to allow for analysis of
protocols based on blockDAGs in addition to blockchains. The Generalized Blockchain Mining
Game is a stochastic game of complete information played among n players called miners.

Public State. The public state of the game is a layered DAG rather than a rooted tree as
in [15]. A predefined initial set of nodes in the DAG is called the root. The nodes of the DAG
represent mined blocks and each node is labeled by a miner who mined it and a number of layer
it belongs to.

Private State. Similar to the public state but may contain more blocks (private blocks). The
private and public states must share the same root. Since the game is played with complete
information, the private state of all miners is visible. However, a player cannot mine on blocks
not contained in its private state.

Stages. The game proceeds in stages. At each stage, some player mines a block, i.e., a new
block is created such that its label is i with probability pi (it holds that

∑n
i=1 pi = 1 and each

pi corresponds to the computational power of player i). The miners then decide whether they
wish to release any subset of their private states into the public state.

38

Strategies. The strategy of player i consists of two functions (µi, ρi):

1. Mining function µi: selects a subset of the private state to mine on and a layer number
j. If the player succeeds in mining a block then the newly mined block has directed edges
to all the blocks selected by µi and is labeled by layer j.

2. Release function ρi: selects when to move parts of the private state to the public state.

Block Validity. The validity is decided by a function f of the state that outputs the public
state restricted to accepted blocks.

Utility. The utility of each miner is the fraction of its valid blocks in the blockDAG.

Immediate vs. Strategic Release. Similarly to [15], we consider the immediate release
model in which the players release their newly mined blocks into the public state right after
mining them (i.e., the release function is fixed for all the players). We also consider the strategic
release model, where the parties can decide on when their blocks become part of the public
state.

8.2 Race-Free Games

In this section, we introduce the game-theoretic definition of race-free strategy profiles and games
and show how race-freeness relates to incentive compatibility in blockchain mining games.

Definition 8.1 ((ε, q)-Race-free strategy profile). Let σ̂ = (σ̂1, . . . , σ̂n) be a strategy profile in
a blockchain mining game. We say that σ̂ is (ε, q)-race-free if for every player i, and for every
C ⊆ [n] \ {i} such that

∑
j∈C pj ≤ q, it holds that

∀σC : ui(σ̂[n]\C , σC) ≥ ui(σ̂) · (1− ε) .

That is, the strategy σ̂i of player i guarantees, up to a multiplicative factor, at least the
payoff achieved in σ̂ irrespective of the actions of any coalition of other players controlling at
most a q-fraction of computational power. We say that a strategy profile is q-race-free if it is
(ε, q)-race-free for ε = 0.

Definition 8.2 (Race-free game). A blockchain mining game is race-free if it has a race-free
strategy profile.

8.2.1 Properties of Race-Free Games.

We prove that following a race-free strategy is not only a low-risk behavior but it is also incentive-
compatible. In particular, any (ε, q)-race-free strategy is also an ε-Nash equilibrium equilibrium
if every player controls at most a q-fraction of the computational power.

Theorem 8.3. For all ε ≥ 0. If σ̂ is an (ε, q)-race-free strategy profile in a blockchain mining
game and pi ≤ q for every i then σ̂ is an ε-Nash equilibrium.

Proof. Let σi be any strategy of player i ∈ [n]. Since pi ≤ q, it follows from the (ε, q)-race-free

39

property of σ̂ and the fact that any blockchain mining game is a constant-sum game that:

ui(σi, σ̂−i) ≤ 1−
∑

j∈[n]\{i}

uj(σ̂)(1− ε)

=
∑
k∈[n]

uk(σ̂)−
∑

j∈[n]\{i}

uj(σ̂)(1− ε)

= ui(σ̂) +
∑

j∈[n]\{i}

uj(σ̂)ε

≤ ui(σ̂) + ε .

Where the first and last inequalities follow, since all utilities in the game are non-negative and
their sum is equal to 1.

8.2.2 Race-Free Blockchain Protocols.

We now formally define the race-free property of a blockchain protocol. Our definition is based
on the blockchain mining game as described in Section 8.1.

Definition 8.4 (ε-Race-free blockchain protocols). A blockchain protocol is ε-race-free if in
the corresponding blockchain mining game, the strategy profile in which all the players follow
the protocol is ε-race-free. A blockchain protocol is race-free if it is an ε-race-free blockchain
protocol for ε = 0.

8.3 Meshcash is Race-Free

We show that in the setting with constant rewards per block, the Meshcash protocol is race-free.
We need to specify the blockchain mining game corresponding to Meshcash, and in particular
the validity function. Recall, that a block in layer j is considered valid if it has at least Tmin

outgoing edges to blocks in layer j. The utility function is then simply the fraction of player’s
valid blocks in the valid blockDAG.

Immediate Release Model. In the immediate release model, the players’ strategies are
restricted to publishing newly mined blocks at the stage of their creation. The players can only
select the subset of the public state to mine on. Any block of player i in layer j must have at
least Tmin outgoing edges to blocks in layer j − 1 for it to be considered valid. Hence, rational
players are restricted to strategies that correspond to the honest behavior. Note that in the
model of blockchain mining games, there are no delays and all the players see published blocks
immediately, and the players are in consensus about the contents of the layers of the public
state at every stage. Also, no coalition of players can invalidate blocks of any player by not
pointing to them. Thus, the honest strategy profile is race-free.

Although the immediate release model is rather restrictive, we stress that it allows to capture
interesting strategies of players. In particular, Kiayias et al. [15] demonstrated that for players
controlling at least 41.8% of the computational power in the system, the honest behavior in
Bitcoin is not incentive-compatible even with immediate release (cf. Section 3.2 in [15]).

Strategic Release Model. In the strategic release model, the players can withhold their
blocks from the public state. This allows them to create valid blocks in layers ahead of the layer
corresponding to the contents of the public state (in case player’s private state contains at least
Tmin blocks in the current layer).

Proposition 8.5. Meshcash is a race-free protocol with respect to coalitions controlling up to
1/3 of the computational power.

40

Proof. It follows from the future self-consistence of the protocol that the blocks of every honest
party cannot be with overwhelming probability invalidated by an adversary controlling up to
1/3 of the computational power. Thus, the fraction of the valid blocks of any honest party
cannot be decreased and the utility remains at least the same irrespective of the actions of the
other players (controlling at most 1/3 of the computational power).

8.4 When Fees Dominate Coinbase

In the previous section, we used the model of [15] to analyze the properties of Meshcash in the
setting where the coinbase reward dominates over the reward gained from the transaction fees.
However, the major strategic considerations in Meshcash seem to be in place when the system
reaches the steady-state and no new coins are created, i.e., when the real incentive for miners
comes from the transaction fees.

For example in Bitcoin, when the miners can include transactions in their blocks depending
on the fees, it is possible to mount the following “bribery” attack. When the last published
block contains many transactions with high fees, an attacker can try to extend the second last
block instead of the last one. If he succeeds in mining a block and includes in it only a few
of the transactions with high fees, then he creates a situation in which it is advantageous for
the rest of the network to mine on his block. In particular, the other parties can now include
the remaining transactions with heavy fees that would have otherwise been already claimed by
the original block. The adversary “bribes” the rest of the network to prioritize his block by
splitting some of the transaction fees with them.

Reward Allocation. We suggest a reward allocation scheme where the transaction fees col-
lected in layer i are divided among the last k layers (i.e., layers i − k, . . . , i) proportionally to
the actual number of blocks in each layer. Formally, let πi denote the transaction fees collected
in layer i, and for m ≤ n, let χm,n be the total number of blocks mined in layers m, . . . , n. The
reward for block A block in layer i is:

ri = coinbasei + c∗A ·
i+k∑
j=i

πj
χj−k,j

,

where c∗A ∈ [0, 1] is the fraction of included transactions in A compared to the adjustable
transaction cap.

When coinbasei = 0, a player might have an incentive to deviate from the protocol speci-
fications in order to increase the amount of transaction fees split among layers containing his
blocks. We discuss in particular the following Temporal Robin Hood attack.

The “Temporal Robin Hood” attack. The name of the attack comes from the fact that
an adversary can “steal” transaction fees from a future layer and split them among the blocks
in the past layers. Assuming a constant rate of fees over time, on each layer i, the attacker
continues mining on the layer until time starti+1 + δ. By doing so, a miner risks not finding
a block but if he does, he manages to steal rewards from the next layer and splits the rewards
between the past layers. Note that the expected stolen reward is at most a δ

k·` -fraction of fees
accumulated over the expected layer time `.

References

[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solidus: An
incentive-compatible cryptocurrency based on permissionless byzantine consensus,” 2016.
[Online]. Available: http://arxiv.org/abs/1612.02916

41

http://arxiv.org/abs/1612.02916

[2] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar, “On Bitcoin and red balloons,” in ACM
Conference on Electronic Commerce, 2012, pp. 56–73.

[3] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin, “Secure computation without
authentication,” in CRYPTO, 2005.

[4] J. Bonneau, “Why buy when you can rent? - bribery attacks on bitcoin-style consensus,”
in Financial Cryptography Bitcoin Workshop, 2016.

[5] X. Boyen, C. Carr, and T. Haines, “Blockchain-free cryptocurrencies. a rational framework
for truly decentralised fast transactions,” Cryptology ePrint Archive, Report 2016/871,
2016, http://eprint.iacr.org/2016/871.

[6] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” OSDI, 1999.

[7] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,
E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer, “On scaling decentralized blockchains,”
in Financial Cryptography 3rd Bitcoin Workshop, 2016.

[8] C. Decker and R. Wattenhofer, “Information Propagation in the Bitcoin Network,” in 13th
IEEE International Conference on Peer-to-Peer Computing (P2P), 2013.

[9] I. Eyal, “The miner’s dilemma.” in IEEE S&P, 2015.

[10] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, “Bitcoin-NG: A scalable blockchain
protocol,” in NSDI, 2016.

[11] I. Eyal and E. Sirer, “Majority is not enough: Bitcoin mining is vulnerable.” in Financial
Cryptography, 2014.

[12] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone protocol: Analysis and
applications,” in Eurocrypt, 2015, http://eprint.iacr.org/2014/765.

[13] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with the delivery of
blocks and transactions in bitcoin,” in 22nd ACM CCS, 2015.

[14] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on bitcoin’s peer-to-
peer network,” in 24th USENIX Security, 2015.

[15] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis, “Blockchain mining
games,” in Proceedings of the 2016 ACM Conference on Economics and Computation,
EC ’16, Maastricht, The Netherlands, July 24-28, 2016, 2016, pp. 365–382.

[16] A. Kiayias and G. Panagiotakos, “On trees, chains and fast transactions in the
blockchain,” p. 545, 2016. [Online]. Available: http://eprint.iacr.org/2016/545

[17] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford, “Enhancing
bitcoin security and performance with strong consistency via collective signing,” in USENIX
Security Symposium, 2016.

[18] S. D. Lerner, “Dagcoin: a cryptocurrency without blocks,” 2015, https://bitslog.wordpress.

com/2015/09/11/dagcoin/.

[19] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosenschein, “Bitcoin
mining pools: A cooperative game theoretic analysis,” in International Conference on
Autonomous Agents and Multiagent Systems, 2015.

42

http://eprint.iacr.org/2016/871
http://eprint.iacr.org/2014/765
http://eprint.iacr.org/2016/545
https://bitslog.wordpress.com/2015/09/11/dagcoin/
https://bitslog.wordpress.com/2015/09/11/dagcoin/

[20] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block chain protocols,” in Finan-
cial Cryptography and Data Security, 2015, pp. 528–547.

[21] K. Liao and J. Katz, “Incentivizing double-spend collusion in bitcoin,” in Financial Cryp-
tography Bitcoin Workshop, 2017.

[22] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, and P. Saxena, “SCP: A
computationally-scalable byzantine consensus protocol for blockchains,” in CCS, 2016.

[23] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives in the consensus
computer,” in 22nd ACM CCS, 2015.

[24] “Maged”(pseudonym), “Re: Unfreezable blockchain,” 2012, https://bitcointalk.org/index.

php?topic=57647.msg686497#msg686497.

[25] G. Maxwell, 2015, https://bitcointalk.org/index.php?topic=1108304.msg11786046#

msg11786046.

[26] B. McElrath, “Braiding the blockchain,” 2015, https://scalingbitcoin.org/hongkong2015/

presentations/DAY2/2 breaking the chain 1 mcelrath.pdf.

[27] S. Micali, “Byzantine agreement made trivial,” 2016, https://people.csail.mit.edu/
silvio/Selected%20Scientific%20Papers/Distributed%20Computation/BYZANTINE%
20AGREEMENT%20MADE%20TRIVIAL.pdf.

[28] A. Miller, A. E. Kosba, J. Katz, and E. Shi, “Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions,” in 22nd ACM CCS, 2015.

[29] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asynchronous binary
byzantine consensus with t < n/3, O(n2) messages, and O(1) expected time,” J.
ACM, vol. 62, no. 4, p. 31, 2015. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01176110/file/JACM.pdf

[30] A. Mostéfaoui and M. Raynal, “Signature-free asynchronous byzantine systems: From
multivalued to binary consensus with t < n/3, o(n2) messages, and constant time,” in
Structural Information and Communication Complexity - 22nd International Colloquium,
SIROCCO 2015, Montserrat, Spain, July 14-16, 2015, Post-Proceedings, 2015, pp.
194–208. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-25258-2 14

[31] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bitcoin.org, 2008.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[32] R. Pass, L. Seeman, and abhi shelat, “Analysis of the blockchain protocol in asynchronous
networks,” Eurocrypt, 2017, http://eprint.iacr.org/2016/454.

[33] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” Cryptology ePrint Archive, Report
2016/916, 2016, http://eprint.iacr.org/2016/916.

[34] ——, “Hybrid consensus: Efficient consensus in the permissionless model,” Cryptology
ePrint Archive, Report 2016/917, 2016, http://eprint.iacr.org/2016/917.

[35] J. Poon and T. Dryja, “The bitcoin lightning network,” https://lightning.network/

lightning-network-paper.pdf.

[36] P. Rizun, “A transaction fee market exists without a block size limit,” 2015, https:

//scalingbitcoin.org/papers/feemarket.pdf.

43

https://bitcointalk.org/index.php?topic=57647.msg686497#msg686497
https://bitcointalk.org/index.php?topic=57647.msg686497#msg686497
https://bitcointalk.org/index.php?topic=1108304.msg11786046#msg11786046
https://bitcointalk.org/index.php?topic=1108304.msg11786046#msg11786046
https://scalingbitcoin.org/hongkong2015/presentations/DAY2/2_breaking_the_chain_1_mcelrath.pdf
https://scalingbitcoin.org/hongkong2015/presentations/DAY2/2_breaking_the_chain_1_mcelrath.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Distributed%20Computation/BYZANTINE%20AGREEMENT%20MADE%20TRIVIAL.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Distributed%20Computation/BYZANTINE%20AGREEMENT%20MADE%20TRIVIAL.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Distributed%20Computation/BYZANTINE%20AGREEMENT%20MADE%20TRIVIAL.pdf
https://hal.archives-ouvertes.fr/hal-01176110/file/JACM.pdf
https://hal.archives-ouvertes.fr/hal-01176110/file/JACM.pdf
http://dx.doi.org/10.1007/978-3-319-25258-2_14
http://www.bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/916
http://eprint.iacr.org/2016/917
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://scalingbitcoin.org/papers/feemarket.pdf
https://scalingbitcoin.org/papers/feemarket.pdf

[37] M. Rosenfeld, “Analysis of hashrate-based double spending,” http://arxiv.org/abs/1402.2009,
2014.

[38] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining strategies in Bit-
coin,” in Financial Cryptography, 2016.

[39] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and scalable cryptocurrency
protocol,” 2016, https://eprint.iacr.org/2016/1159.

[40] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in bitcoin,” in 19th
Financial Cryptography and Data Security, 2015.

[41] P. Wuille, “Mining centralization pressure from non-uniform propagation speed,” 2015,
http://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg08161.html.

A Nonlinear Rewards

In a blockchain based cryptocurrency of the Bitcoin mold, scaling the system to support a larger
amount of transactions per second can be done in two ways:

1. Increasing the maximal block size, meaning that the blocks are allowed to contain more
transactions.

2. Decreasing the expected interval between blocks, i.e., allowing blocks to be solved more
frequently by having the network re-adjust the PoW difficulty according to a lower diffi-
culty target value.

Both of these methods imply that the network propagation latency becomes greater relative
to the expected interval between blocks. With the first method, this would be the case because
larger blocks take longer time to propagate. With the second method, the propagation latency
remains unaffected but blocks are solved at shorter intervals.

However, there exists a conflict between a decentralized blockchain-based cryptocurrency,
and a system that should scale to support an increasing rate of transactions per second. A
scalable system is useful because growth in the level of popularity of the cryptocurrency implies
that more commerce takes places as a result. This conflict manifests itself in what we refer to
as the “nonlinearity of rewards” problem, meaning that if one miner has x fraction of the total
hashrate and another miner has y < x fraction of the total hashrate, then the amount of rewards
that the first miner obtains is expected to be larger than that of second miner by a factor that
is strictly greater than x

y . At the intuitive level, the nonlinearity phenomenon occurs because a
miner who solved a block at the current moment gets a head-start over the rest of the miners,
because she is aware of the longest chain and can start to extend it immediately, while the other
miners have to wait until the longest chain propagates to them. Since this event happens more
frequently to miners who have larger amounts of the hashrate, the overall result is that block
rewards are distributed in a nonlinear manner. The problem becomes more amplified either
when the propagation latency is greater, or when the interval between blocks is shorter.

To describe the nonlinearity of rewards phenomenon in a more precise fashion, let us consider
a simple model with two honest miners M1,M2 who possess p and q = 1−p of the mining power.

At the starting point, the longest chain that M1 is aware of consists of X blocks, and the
longest chain that M2 is aware of consists of Y blocks. Both M1 and M2 try to extend that
longest chain that they are aware of, and whenever each of them succeeds in extending her
chain she transmits the extended chain to the other miner. When a miner receives a chain that
is strictly longer than the chain that she was aware of, she switches to this received chain and
tries to extend only that chain from now on.

44

http://arxiv.org/abs/1402.2009
https://eprint.iacr.org/2016/1159
http://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg08161.html

●

●

●

●
●

●
●

speed ratio: 2

propagation latency: 40 seconds

1 2 3 4 5 6 7 8 9 10
minutes

2.2

2.4

2.6

2.8

advantage

Figure A.1: Effective rewards as a function of the blocks interval and network latency.

Denote by L the average time until a new block is solved by either M1 or M2 at the current
difficulty level. Denote by δ the network propagation latency, meaning that it takes δ time to
transmit a chain from M1 to M2 and vice versa. Suppose that M1 successfully solves her next
block at time t. Now,

• If X ≥ Y then M1 will switch only if M2 solved X − Y + 1 blocks between time 0 and
time t− δ.

• If Y > X then M1 will switch if t > δ, or t ≤ δ and no more than Y −X − 1 blocks were
solved by M2 between time −δ and −δ + t, as otherwise M2 did not transmit a chain of
length at least X + 1 on time.

The solved blocks ofM2 are given according to exponential distribution with parameter λ = q/L.
In a symmetric fashion, M2 will switch to a longer chain that M1 created according to the
same conditions, except that the solved blocks of M1 are generated according to exponential
distribution with parameter λ = p/L.

When a miner switches to a longer chain that was transmitted to her at greater frequencies,
this in a sense represents a bigger loss of her share of the rewards, because a larger portion of
the work that she does goes to waste.

We ran computer simulations according to the above conditions, and the results are sum-
marized in Fig. A.1. The parameters in our simulations are p = 1

3 , q = 2
3 , δ = 40 seconds (in

accord with [8, 7]), and a variable L. In particular, for L = 10 minutes we get that the amount
of block rewards that M2 obtains is larger than that of M1 by a factor of 2.085, for L = 3
minutes this factor is 2.285, and for L = 1 minute this factor is 2.81.

Let us note that similar results were obtained in [19], and experiments in a more comprehen-
sive model that deals with various coalitions of miners and even takes computational superiority
into account were done in [41].

Of course, the simplified two-miners model serves only as a demonstration for the basis of
the tension. In the real world, the unfair rewards problem is likely to manifest itself in the form
of small miners who would be hesitant to include a large amount of transactions in the blocks
that they prepare, as it lowers their probability to win the race to create the next block [36].

The implications of the nonlinearity problem can be quite severe. Miners who posses a
relatively small fraction of total hashrate may become less inclined to continue their participa-
tion, which would diminish the decentralized nature of the cryptocurrency. Furthermore, each
individual miner may wish to run his mining equipment in a geographical location that is closer
to large concentrations of the total hashrate, which would make it easier for an adversary to
mount network isolation attacks [13, 14].

45

In Bitcoin, the expected interval between blocks is 10 minutes, and a network propagation
latency of δ = 40 seconds can be considered to be a reasonable estimate [8, 7]. For now, the
block size limit of Bitcoin is 1 megabyte, implying that the Bitcoin economy currently supports
a maximum of about 7 transaction per second. The scalability concerns [7] in Bitcoin have
led to the controversial Bitcoin Classic4 and Bitcoin XT5 forks by some of the earliest Bitcoin
developers, as well as other forks such as Bitcoin Unlimited6. Let us note that keeping the 7
transactions per second limit is also problematic, since the miners will need to either prune or
keep an ever-growing amount of extra transaction in their local storage (a.k.a. local memory
pool) in case the users of Bitcoin broadcast an average of more than 1 megabyte of transaction
data per 10 minutes. Thus, it may well be the case that an increased popularity of a blockchain-
based cryptocurrency can ultimately be accommodated either via technology advancements with
regard to the speed of network transmission, or via different kinds of performance and trust
trade-offs (cf. [35]).

In Meshcash, the unfairness problem that the nonlinearity of rewards phenomenon implies
is significantly less severe. This is due to the cooperative nature of Meshcash: each miner who
solves a block in the current layer will be rewarded, irrespectively of the other miners who also
currently solve blocks. Hence, Meshcash can continue to operate in a decentralized mode while
accommodating blocks with a higher size limit relative to Bitcoin, since the effect of a higher
network propagation latency does not cause a nonlinear distribution of rewards to the Meshcash
miners. Still, a higher propagation latency would improve the prospects of an active attack on
Meshcash, cf. Section 3.4.

B Some standard tail bounds for the Poisson distribution

We will use the following standard tail bounds on the Poisson distribution:

Pr
X∼Pois(λ)

[X ≤ x] ≤ e−λ (eλ)x

xx
, for x < λ (B.1)

Pr
X∼Pois(λ)

[X ≥ x] ≤ e−λ (eλ)x

xx
, for x > λ (B.2)

These imply for c > 1:

Pr
X∼Pois(λ)

[X ≤ λ/c] ≤ e−
λ
c
(c−ln c−1) = 2−λ

c−ln c−1
c ln 2 (B.3)

Pr
X∼Pois(λ)

[X ≥ cλ] ≤ e−cλ(
1
c
+ln c−1) ≤ 2−λ

c
ln 2

(1
c
+ln c−1) (B.4)

or equivalently

Pr
X∼Pois(cλ)

[X ≤ λ] ≤ 2−λ(c−ln c−1)/ ln 2 (B.5)

Pr
X∼Pois(λc)

[X ≥ λ] ≤ 2−λ(
1
c
+ln c−1)/ ln 2 (B.6)

4See https://bitcoinclassic.com/.
5See https://bitcoinxt.software/.
6See https://www.bitcoinunlimited.info/.

46

https://bitcoinclassic.com/
https://bitcoinxt.software/
https://www.bitcoinunlimited.info/

For c = 2 the approximations are:

Pr
X∼Pois(λ)

[
X ≤ 1

2
λ

]
≤ 2−

1
5
λ (B.7)

Pr
X∼Pois(2λ)

[X ≤ λ] ≤ 2−
2
5
λ (B.8)

Pr
X∼Pois(λ)

[X ≥ 2λ] ≤ 2−
1
2
λ (B.9)

Pr
X∼Pois(λ/2)

[X ≥ λ] ≤ 2−
1
4
λ (B.10)

Nomenclature

M †i (A) The ith actual confirmation margin for a block A claiming to be in layer j < i, page 20

δ A bound on the combined network propagation time/local clock differences between
honest nodes, page 15

∆j−1 the number of blocks published by the adversary from its reserve at time startj + δ,
page 20

Rj(i) the adversary’s reserve for blocks in layer i at time startj + δ (not including blocks that
were published at time startj + δ), page 20

θ If the vote margin (sum of the votes) for a block is less than θ (in absolute value) nodes
will vote according to the output of the weak coin (instead of using the majority), page 15

Fi the adversary’s future reserve, subset of blocks in its reserve that claim to be in future
layers (i or greater), at time starti, page 20

` The average length of a layer interval, page 15

`∗ε an upper bound on the duration of a layer, page 19

`−ε a lower bound on the duration of a layer in which the adversary is in the future-reserve
steady-state, page 19

M
(P)
i (A) the ith confirmation margin for block A as seen by party P , page 20

tcoin Time for weak coin protocol (in multiples of δ), page 15

Tmin The minimum number of blocks in a layer, page 14

Yj the number of maliciously-generated blocks in the interval [startj + δ, startj+1 + δ],
page 19

Y ∗ε an upper bound on the number of maliciously-generated blocks, page 19

Z∗ε a bound on the number of honestly-generated blocks in interval [startj + δ, startj+1],
page 19

Zcoin
j the number of non-abstaining blocks in layer j, page 19

47

	Introduction
	Our Contributions

	Related Works
	Leader-Election-Based Protocols
	Reward-sharing
	Leaderless Protocols

	Protocol Description
	Informal Overview
	Modeling Generic BlockDAG Protocols
	Weak Common Coins
	Modular (Tortoise) Protocol
	Security Proof Overview for Tortoise Protocol
	Hare Protocols
	Communication/Storage Optimizations.

	Proof of Security
	Notation
	Bounding the Layer Interval and the Size of the Future Reserve
	Consistency and Future Self-Consistence (Irreversibility)

	Proof of thm:margin-or-reserve
	Proof Overview
	Bounding the quantity iA
	Bounding the Actual Confirmation Margin
	Countermeasures against Freeloading

	Byzantine-Agreement-Based Hare Protocol
	The ABA Protocol's Environment
	Using the ABA Protocol
	Improving the Hare-Protocol Parameters using Multivalued ABA
	Additional Potential Improvements

	Improving the Hare-Protocol Parameters using Multivalued ABA: Details
	Incentive-Compatibility of Race-Free Protocols
	Generalized Blockchain Mining Games
	Race-Free Games
	Meshcash is Race-Free
	When Fees Dominate Coinbase

	Nonlinear Rewards
	Some standard tail bounds for the Poisson distribution

