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ABSTRACT

Blockchain systems are designed to produce blocks at a constant
average rate. The most popular systems currently employ a
Proof of Work (PoW) algorithm as a means of creating these
blocks. Bitcoin produces, on average, one block every 10 minutes.
An unfortunate limitation of all deployed PoW blockchain
systems is that the time between blocks has high variance.
For example, 5% of the time, Bitcoin’s inter-block time is at
least 40 minutes. This variance impedes the consistent flow
of validated transactions through the system. We propose an
alternative process for PoW-based block discovery that results
in an inter-block time with significantly lower variance. Our
algorithm, called Bobtail, generalizes the current algorithm by
comparing the mean of the k lowest order statistics to a target.
We show that the variance of inter-block times decreases as k
increases. If our approach were applied to Bitcoin, about 80%
of blocks would be found within 7 to 12 minutes, and nearly
every block would be found within 5 to 18 minutes; the average
inter-block time would remain at 10 minutes. Further, we show
that low-variance mining significantly thwarts doublespend
and selfish mining attacks. For Bitcoin and Ethereum currently
(k = 1), an attacker with 40% of the mining power will succeed
with 30% probability when the merchant sets up an embargo of
8 blocks; however, when k > 20, the probability of success falls
to less than 1%. Similarly, for Bitcoin and Ethereum currently,
a selfish miner with 40% of the mining power will claim about
66% of blocks; however, when k > 5, the same miner will find
that selfish mining is less successful than honest mining. The
cost of our approach is a larger block header.

1 INTRODUCTION

Blockchain systems are designed to produce blocks at a con-
stant average rate. The most popular systems currently em-
ploy a Proof of Work (PoW) algorithm as a means of creating
these blocks. Bitcoin [27] (and Bitcoin Cash [1]) produce, on
average, one block every 10 minutes, and will self-adjust the
difficulty of producing a block every two weeks if too many
or too few have been produced. Unfortunately, a limitation
of all deployed PoW blockchain systems is that the time
between blocks has high variance and the distribution of
inter-block times has a very long tail. For example, 5% of the
time, Bitcoin’s inter-block time is at least 40 minutes. This

variance impedes the consistent flow of validated transac-
tions through the system. As we show, high variance enables
doublespend [27, 28] and selfing mining [19] attacks.

The high inter-block time variance is a direct consequence
of the PoW algorithms that are at the core of blockchains,
including Bitcoin [1, 27], Litecoin [2], and Ethereum [17]. In
all these systems, generally, the miners repeatedly craft block
headers by changing a nonce until the hash of the header is
less than a target value t. In other words, the hash of each
header is a sample taken randomly from a discrete uniform
distribution that ranges between [0, S], where S = 2b 1
and typically b = 256. A block is discovered when the first
order statistic (i.e., the minimum value) of all sampled values
is less than target 0 < ¢t < S.

In this paper, we propose an alternative process for PoW-
based block discovery that results in an inter-block time with
significantly lower variance. Our algorithm generalizes the
current algorithm by comparing the mean of the k lowest
order statistics to a target. We show that the variance of
inter-block times decreases as k increases. For example, if
our approach were applied to Bitcoin, about 80% of blocks
would be found within 7 to 12 minutes, and nearly every
block would be found within 5 to 18 minutes; the average
inter-block time would remain at 10 minutes. The cost of
our approach is a larger block header. We call our approach
Bobtail' mining,

Problem Statement. Consider a fixed interval of time dur-
ing which the entire network produces 6 hashes generat-
ing a sequence of hash values Z = Zi,...,Zy. Let Z be an
arbitrary random variable from the sequence Z; note that
Z ~ Uniform(0, S). Define V; to be the ith lowest order statis-
tic of Z,ie. V; = Z(;) in standard notation. And let random
variable Wy be the mean of the k lowest order statistics:

k
1
Wk=E;Vi. (1)

Wi constitutes the collective mining proof (proof, for short)
for the entire network. Our Bobtail mining criterion says
that a new block is discovered when a realized value of Wy

meets the target ¢:
g wi < 1. (2

LA bobtail refers to an animal’s tail that is unusually short or is missing
completely [9].



Notably, this approach is a generalization of current systems,
which are the special case of k = 1.

Our primary goals are therefore to show, given values of
k > 1, that: (i) there is a significantly reduced inter-block
time variance; and (ii) the costs are relatively small, which
include an increase in block header size and a slight increase
in network traffic.

Contributions.

e We derive the statistical characteristics of our ap-
proach and validate each empirically. For example,
we derive expressions for the expectation and vari-
ance of the Bobtail mining proof and the number of
hashes performed for any value of k. Using these
expressions, we quantify the reduction in variance
of inter-block time expected for values of k > 1.

e We show that the variance in block discovery time
from using k order statistics reduces by O(1/k), com-
pared to using k = 1.

e We derive a formula for adjusting the target values
of existing blockchains so that values of k > 1 can
be adopted without changing the mean inter-block
time. This formula allows our scheme to be adopted
as a patch, rather than deployed as a new system.

e We show that the rate at which Bobtail miners cre-
ate forks in the blockchain is no higher than Bit-
coin and Ethereum. Bobtail’s rate is larger when
applied to Ethereum but only if miners are purpose-
fully and dishonestly mining after receiving a new
block. Furthermore, we prove that Bobtail miners re-
ceive significantly lower rewards when attempting
to dishonestly fork, due to a split rewards formula
we’ve designed.

e We demonstrate that low-variance mining signif-
icantly mitigates the threats to security posed by
selfish mining and doublespend attacks. For Bitcoin
and Ethereum currently (k = 1), an attacker with
40% of the mining power will succeed with 30% prob-
ability when the merchant sets up an embargo of
8 blocks; however, when k > 20, the probability of
success falls to less than 1%. Similarly, for Bitcoin
and Ethereum currently, a selfish miner with 40%
of the mining power will claim about 66% of blocks;
however, when k > 5, the same miner will find that
selfish mining is less successful than honest mining.

e We quantify the byte overhead of our approach. It
will increase the size of the blocks by roughly 35k
bytes plus the cost of a k-output coinbase transac-
tion. For example, for k = 40, Bitcoin blocks would
increase by about 3KB (including the larger coinbase
transaction), which is still small compared to the 1-
8MB necessary to detail the transactions themselves

(depending on the version of Bitcoin used). We also
show that the additional network traffic is very small
by use of a simple filter we have designed.

2 RELATED WORK

Our approach is related to previous results in proof-of-work,
cryptographic puzzles, and improvements to blockchain ar-
chitectures.

Proof of work. A large number of papers have explored
applications of proof-of-work. Dwork and Naor [16] first
suggested proof-of-work in 1992, applying it as a method to
thwart spam email. A number of subsequent works similarly
applied PoW to thwarting denial of service attacks [5, 12, 14,
20, 22, 30]. Our approach can be adopted into many of these
past works to improve computational variance. Jakobsson
and Juels [23] and Jules and Brainerd [24] examine the secu-
rity properties of PoW protocols, and base their theorems
on the average work required; our approach would provide
stronger guarantees under their theorems since the variance
is lower. Laurie and Clayton [25] examine the practical limi-
tations in deploying PoW solutions in DoS scenarios.

Douceur [15] noted in 2002 that proofs of work can mit-
igate Sybil attacks. Also in 2002, Back [6] applied PoW to
cryptocurrencies. Back noted the high variance of computa-
tional PoW and regarded it as an open problem. Nakamoto’s
Bitcoin [27] built on these ideas.

In 2003, Abadi et al. [4] suggested memory-bound func-
tions as a better foundation for avoiding the variance in CPU
resources among users. Indeed, the ETHASH [3] PoW algo-
rithm in Ethereum [17] adopted a PoW function that requires
more memory than is economically profitable for custom
ASICSs. In contrast, our goal is to reduce the variance of
the entire network’s time to solve a PoW problem, and it is
not to increase egalitarianism or increase participation by
eschewing specialized hardware. In any case, our approach
is applicable to ETHASH.

Coelho [13] is the work is closest to ours in terms of goals.
That work proposes a PoW puzzle based on Merkle trees
that requires an exact number of steps and therefore has no
computational variance. The paper is focused on mitigating
denial of service attacks, and because it was not designed for
use in blockchains it has a number of disadvantages in that
context. Primarily, the amount of network traffic is on the
same order as the amount of computation. As an example, for
Bitcoin’s current difficulty of 8e18 hashes/second, the Coelho
proof of work would add 4.6 Mbytes to the blockheader. The
header size would increase further as Bitcoin’s difficulty
increases. While our variance is not zero, our increase to the
block header size is only a few kbytes and depends on only
the decrease in variance desired.



Bitcoin-NG [18] was designed to allow Bitcoin’s rate of
validated transactions per second to scale to a higher rate. To
do so, the miner of the most recent Bitcoin-NG block acts as
an elected leader until the next block is discovered. While the
leader, a miner will issue validated transactions with sole au-
thority in microblocks. The leader election time distribution
has the same large variance as other PoW-based blockchain
systems — though not the design goal, we note that Bitcoin-
NG can issue validated transactions with low variance. Un-
fortunately, Bitcoin-NG has never been deployed, perhaps
because of two of its limitations. First, Bitcoin-NG introduces
the possibility that transactions will stop altogether if the
elected leader is disconnected from the network (or elects
to maliciously stop), which is not a problem shared by Bit-
coin. Secondly, the position of authority allows the leader
to double spend more easily; this is mitigated in Bitcoin-NG
via a reporting mechanism that must be completed before
the leader spends the ill-gotten funds. These two limitations
are not present in our approach.

Bitcoin has not deployed Bitcoin-NG and instead has opted
to keep blocks small and cap the rate of validated transac-
tions per second; Bitcoin Cash has opted to deploy large 8MB
blocks. We note that if Bitcoin-NG were adopted in the fu-
ture, our results are complementary. The adoption of bobtail
mining into Bitcoin-NG would bound (with very high proba-
bility) the length of time that any miner is leader, therefore
also bound the length of time that a faulty miner could block
transaction validation.

Blockchains without PoW. Several newer blockchains are
not based on computational proof of work, and our solution
does not apply to them. These include proof-of-storage [26],
proof-of-stake [7, 8], and blockless [10] schemes. However,
almost all wealth stored in cryptocurrencies are in computa-
tional PoW blockchains that our approach does apply to,
including Bitcoin, Bitcoin Cash, Litecoin, Ethereum, and
Ethereum Classic.

3 LIMITING PROPERTIES OF ORDER
STATISTICS

Our goal in this section is to derive the distribution of Wy
(see Eq. 1); in Section 4, we use the distribution to derive the
reduction in inter-block time variance that results from a
given value of k.

Wg is simply the sample mean over the lowest k order
statistics V4, .. ., V. But unfortunately, the analysis below
is not straightforward because the V; are neither indepen-
dent nor identically distributed. We begin by deriving the
individual and pair-wise joint distributions for the V;, and
ultimately use those to find Wy. In doing so, we establish that
each order statistic is gamma distributed: V; ~ Gamma(v; i, f3).

3.1 Distribution of the kth Order Statistic

Here we show that the kth order statistic is gamma dis-
tributed. To begin, note that parameter 6, which is the num-
ber of hashes produced, can be expressed as a function of
S:

0=-

5 ®)
where f represents the expected minimum hash (i.e., ;) that
will arise from 6 hashes during interval I.

Next, we express a well-known result in our terms.

LEMMA 1: The probability density function (pdf) of the
ith order statistic, V;, from 0 samples (i.e., hashes) is

fa0 = s (5) (-5) o

PROOF: The ith order statistic of a continuous random sam-
ple X = X1, ..., X, is given by?

S = T A (1 1 = P (™
©)

where Fx (x) is the CDF and fx (x) is the PDF of the popula-
tion from which samples are drawn. In our case, the number
of samples is 6, the CDF is % and the PDF is % and the result

follows directly. O

Now consider how fy, (v | S) changes as S increases.

THEOREM 1: The pdf of the ith order statistic, V;, drawn
from a population of samples parameterized by [ is

fvi(; ) = g(v;, B). (6)

PROOF: Here we make use of Eq. 4 (Lemma 1) and Eq. 3:

fow:p) = lim fi,(:5.f)

i- S
= S}gﬁo%é (5)" (1-%)’

= lim (SIBY i

™)

2See for example, Casella and Berger [11], Theorem 5.4.4.



where g(v; i, B) is the pdf of the Gamma(v; i, f) distribution.
The second to last step follows from the fact that

(3 G-i+)_ () 1

fim, 5 BT TR
and the common limit
s
lim (1—E)B =e¥, ©)
S—oo S

which implies that

tm (1) = () am (- )] 0
1-e7 . (11)

[m]

3.2 Joint Distribution of Order Statistics

THEOREM 2: The joint distribution of the ith and jth
order statistic from a population parameterized by f is

Jvv, (w03 ) = gwsi, fg(v —wsj =i, p).  (12)

PROOF: It is well known® that the joint distribution of the
ith and jth order statistic is given by

fax, (e y3m) = et fx (0 fx (W) [Fx ()]

X [Fx(y) = Fx()V ™ 7'[1 = Ex()]"™. (13)
Thus, we have
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(15)
Finally, assuming j > i, and reasoning in the same manner
as in Section 3.1,

fviv; (w,v; B)

= limge0 fv, v, (u, 05 S, B)

i—1(,,_ o \j-l1-i _©v
_ 1w (o) ,,

= 5 Gog-1-r €

(16)
_ i-1 _u (.U_u)j—l—i _v-u
= w0t L g
= g(u’ l’ﬁ)g(v - u;j - l’/B)
O

3See Casella and Berger [11], Theorem 5.4.6.
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Figure 1: Eq. 17 versus simulation.

4 PROPERTIES OF THE K-OS CRITERION

We have established that V; ~ Gamma(v; i, ), and now wish
to determine the mean and variance of Wy, the mining proof.
Subsequently, we quantify how variance decreases as k in-
creases.

4.1 Expectation and Variance of Bobtail

Mining
THEOREM 3: The expectation of Wy, is
(k+1)
£plwi) = 2EXD. i

PROOF: Note first that since V; ~ Gamma(v; i, ), it follows
that E4[V;] = if. Taking the expectation of Eq. 1, we have

EgWe] = Eg [}, Vi]
k
= 1+ X Eplvi]
= (18)
Lk
= pXip
i=1
_ B+
- 2
[m]

Empirical Validation of Theorem 3. Figure 1 compares
Eq. 17 versus a result obtained through a small Monte Carlo
simulation of Bobtail mining run tens of thousands of times,
with k as the independent variable. In all cases, the results
match perfectly.
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Figure 2: Eq. 19 versus simulation.

Now we prove our main result: an expression for the vari-
ance of the bobtail mining criterion, which decreases with

k.

THEOREM 4: The variance of Wy, is
(k+1)(2k+1)

Varg[Wi] = ok

B (19)
PROOF: Assuming that j > i, Equation 12 yields

EplViV}]

[ [ uvg(usi, B)g(v — us j - i, )dvdu
Jo ug(usi, By f;7 (w + w)g(wsj — i, f)dwdu
J5 ug(us i, B)IG = D) + uldu

BG =) [} ug(usi, f)du + [, uPg(usi, p)du
i — i)+ if*(1 +1i)

= i1 +j). (20)

Before continuing, we note that since V; ~ Gamma(v; i, f§), it
follows that Varg[V;] = if%. Now, assuming that j > i, and

using Eq. 20, it follows that

covg[Vi, Vi1 = Eg[ViV;] - Eg[Vi]Eg[V}]

iB*(1+j) = (iB)Gp)
ig?

Varg[V;].

Finally, we find the variance of Wy by substituting first Eq. 1
and then Eq. 21:

Varﬁ [Wk]

I
—_

I
<
S
=
—
ESN
: M
=
—,l—]

1l
X
<
Q
-
M
=

1l
—

1 kol
= k—(z Varg[V; ]+2}2“Z covg[V;, ])
k k j-1
= ﬁ(zw”zz Ziﬂz)
i=1 Jj=1i=1

2 [ k(k koo
= g(—<;l>+z,o—1>)
F=

_ P (k(k+1) k(k+1)(2k+1) k(k+1))
Kz 6 2

_ (k+1)(2k+1) 2
I (22)
O

Empirical Validation of Theorem 4. Figure 2 shows Eq. 19
versus our Monte Carlo simulation where k is the indepen-
dent variable. The results show an exact match.

Figure 3 shows the distribution of W, the block discov-
ery time. The top plot shows the probability distribution
function (PDF) and the bottom plot shows the cumulative
distribution function (CDF) based on the results of a Monte
Carlo simulation. Each plot’s x-axis is shown in terms of
the minutes per block for Bitcoin. As the plots illustrate,
the use of Bobtail mining results in a significant decrease in
variance for discovering new blocks. Below, we characterize
this reduction in variance due to the choice of k in a single
equation.

4.2 Reduction in Variance as k increases

We can derive a formula for adjusting the target values of
existing blockchains so that values of k > 1 can be adopted
without changing the mean inter-block time. This formula
allows our scheme to be adopted as a patch, rather than
deployed as a new system.

Target adjustment. Equation 3 relates the number of hashes
performed, 6, to the size of the hash space S and the minimum
hash value achieved, . Thus far we have interpreted 6 and
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Figure 3: The full PDF (top) of W} for a different k in each
facet, based on a Monte Carlo simulation. The same data
is shown as a CDF (bottom). Each plot’s x-axis is shown in
terms of the minutes per block for Bitcoin.

as fixed parameters, but it is equally valid to treat 6 as a ran-
dom function of Wy, where f remains fixed, but is rewritten
as % using Equation 17. Now noting that t; = Eg[Wj]
by definition, we can derive a functional expression for 6y
k:E:S(k+l):S(k+l). (23)
B 2Ep[Wi] 2tk
Equation 23 relates the number of hashes performed, 6, to
the size of the hash space S and the target t;. In this context,
Ok can be interpreted as the expected number of hashes
performed network-wide under the k-OS criterion, given
and ty. Thus in order to perform the same number of hashes
in expectation under both the 1-OS and k-OS criteria, i.e.
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Figure 4: Eq. 28 from Theorem 5 (in blue) versus simulation
(in red).

O = 61, we should adjust the targets such that
_ t(k+1)
k=T
Improvement in variance. We next turn our attention to
quantifying the improvement in mining time variance that is
realized by using the k-OS criterion over the 1-OS criterion.

(24)

THEOREM 5: As k increases, the variance in block dis-

covery time decreases by % = O(%)

PROOF: From the functional definition for the expected
number of hashes provided in Equation 23, we can infer the
following expression for @, a random variable representing
the number of hashes

_ S(k+1)
- 2Wy
where a fixed f is implicit. We seek to understand how
Varg[©y] changes with k; in particular we would like to de-
termine Varg[©]/Varg[©,], when Eg[0r] = Eg[©] (ie.,
expected hash rates are equal).

Because we have already developed a considerable set of
tools for analyzing statistics of Wy, our goal will be to express
Varg[©f] in terms of Wy. For arbitrary random variable X
having mean y, and for any differentiable function g, it is well
known* that Var, [9(X)] ~ [¢’(y)]*Var, [X]. In the context
of our problem, this implies that

Stk+1)] _ (S(k+1)\* Varg[Wi]
2We | ( 2 ) Eg[Wi]*
(26)

k , (25)

Varg[©r] = Varg

4See Casella and Berger [11], Equation 5.5.9.



Now if Eg[@] = Eg[©1], then Eg[Wi] = £ Eg[W;] and
Equation 26 can be used to show that

Varg[®]  (k+1)\2 Varg[Wi] Eg(wi]*
Varg[6;] 7 ( 2 ) Varg[Wi] Eg[W]*

_ 2 2 Varﬁ [Wi]
- (m) Varg[W] (27)

( 2 \2 (k+1)(2k+1)
m) 6k

4(2k+1)
ok (k+1) "

Thus, when E4[0f] = Eg[04],
Varg[Ok] 4(2k+1)  8k+4 (l) 28)
Varg[©] ~ 6k(k+1) ~ 6(k2+k)  \k

]

Therefore, when the 1-OS and k-OS mining criteria are cali-
brated to the same expected block time (6; = 6y), the variance
in the block time for the k-OS criterion is less than that of
the 1-OS criterion by a linearly decreasing factor.

Empirical Validation of Theorem 5. Figure 4 shows Eq. 28
versus our Monte Carlo simulation, showing an exact match.

5 INCREASING CONSENSUS

Even when all miners operate honestly, all current block-
chain systems suffer from forks during their operation that
delay consensus. Even when miners are acting honestly, forks
occur because the announcement of a new block take time to
propagate to all other miners. A second miner may produce
a valid block before the first miner’s block reaches her. At
that point, some fraction of the miners will attempt to build
on the first block, and the complementary fraction will build
on the second block. If the set of transactions in the two
blocks is not the same, then consensus is delayed. While the
chances of a fork in Bitcoin is relatively low, Ethereum’s use
of a 15 second average block discovery time increases the
fork rate significantly.

In this section, we examine the rate at which forks occur in
Bobtail mining compared to Bitcoin and Ethereum. We show
that if all miners are acting honestly, forks are no more likely.
However, if miners are purposefully trying to cause forks by
continuing to mine after a block has been announced and
received, Bobtail mining’s forking rate is higher in the case
of Ethereum’s parameters, but about the same for Bitcoin’s
parameters.

5.1 Thwarting Forks

In this section, we introduce two restrictions on Bobtail min-
ers that thwart forks. First, we require that all proofs are
tethered to a supporting proof, which should be the smallest
proof previously heard by the miner for the same prior block
(which may or may not be smaller than the primary proof).

Bobtail —— Existing System
Bitcoin
1.4%-
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0.8% -
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0.2% -
0.0%- i
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Chances that a fork is found within 6 seconds

Ethereum

40%-
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20%-
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Percentage of Mining power attempting fork
even after block announcement

Figure 5: The results from a discrete event simulation of ex-
isting systems and Bobtail mining. In the case of a Bitcoin-
like configuration, the forking rate is not higher (statisti-
cally speaking) until 50% of the mining power is dishonest.
In the case of an Ethereum-like configuation, the forking
rate is higher only if dishonest miners are present; because
Ethereum uses GHOST, the damage to consensus is limited.
(Points are means, error bars are 95% c.is.)

The use of supporting proofs thwarts proof reuse in new
block because we require that the proofs included in a block
must have a support proofs that are greater than or equal to
the block’s first order statistic.

As a second restriction, we require that miners delay their
creation of a new block if they know of a first order statistic
that they did not create. Proof announcements are small
compared to a full block and will propagate quickly; they are
placeholders for blocks that are to come and reduce forks. In
practice, a miner can acquire a reputation for following up
with a block after a proof is announced; any miner that has
not earned a good reputation could be ignored.



5.2 Performance

These mechanisms can be ignored by dishonest miners: they
might list the second order statistic as their supporting proof.
Or they may elect to reuse proofs in new blocks; similarly,
miners is existing blockchains may simply keep mining after
a block announcement to try and fork the blockchain.

To quantify the affect that dishonest miners have the net-
work, we ran a discrete event simulator. The simulation had
10 miners with equal mining power, with between 0 and 5 of
them acting dishonestly. Miners were connected in a simple
star topology. Proofs were received by other miners 1 second
after they were mined, and blocks were received 3 seconds
after they were mined. Honest miners kept mining until
they mined a block or received a block from another miner.
Dishonest miners kept mining for an additional 3 seconds
after the block was received (i.e., 6 seconds total since the
first block was found), unless they were in fact the miner of
the first block. We ran one Bitcoin-like configuration where
blocks appeared on average once every 10 minutes, and a sep-
arate set of simulations in an Ethereum-like network where
blocks appeared every 15 seconds. (All times were simulated
and mining occurred by sampling random numbers from a
uniform distribution.) We compare

Figure 5 shows the results for both configurations. In the
case of the Bitcoin, the simulation results show that while
Bobtail mining has slightly larger rate of forks, it is not statis-
tically significant until 50% of the miners are dishonest. For
the Ethereum configuration, Bobtail mining is more prone to
forking from dishonest miners. On the other hand, Ethereum
embraces forks by implementing the GHOST [] algorithm,
and unless they are coupled with some other attack, these
forks cause no damage.

In both cases, when miners act honestly, the forking rate
is no larger than the existing system.

6 HONEST BEHAVIOR IS MORE
PROFITABLE

In contrast to the standard Bitcoin protocol, where only the
miner who successfully mines a block is required to publish
her work, the k-OS criterion requires k proofs from multiple
miners in order to mine a block. Therefore, we must incen-
tivize all miners producing these proofs to ensure that they
participate. Moreover, given our consensus mechanism de-
scribed in Section 5, we would also like to incentivize miners
to include the lowest known LOS at the time that they pro-
duce their proof. Note that for any fixed incentive provided
to any of the k lowest OSes, the natural tendency for miners
would be to include the highest known proof as LOS so that
they have the greatest possible chance of being include in
some mining package. Thus it is clear from this discussion
that each of the k proofs should receive some reward, but that

k Proof L.O.S. Reward
1 358325 —  4.55439431
2 1217458 358325 0.23809524
3 1721868 358325 0.11309524
4 1777139 358325 0.05357143
5 1995396 358325 0.02380952
6 3621245 358325 0.01041667
7 4582015 358325 0.00372024
8 4781376 358325 0.00148810
9 7277279 358325 0.00046503

10 3761724 1826037  0.00055804
11 4420661 1826037  0.00025577
12 6302668 1826037  0.00008138
13 7514262 1826037  0.00002325
14 7601030 1826037  0.00000872

15 1826037 3521660 0.00001017
16 4707122 3521660  0.00000436
17 3521660 3927808  0.00000182
18 7881560 3927808  0.00000036
19 3927808 6374495  0.00000027
20 6374495 9175814  0.00000009

Figure 6: Rewards payout for an example block where k =
20.

reward should be structured so as to encourage the proofs to
include the lowest possible LOS at the time of their creation.

Let B be the total block reward and consider the following
incentive structure. Each block lists k proofs: Py, . .., Pr. We
create an ordering of the proofs based on the LOS each ref-
erences, and we break ties by using each proof’s own values
(i.e., the value of their order statistic V;). For proof P;, func-
tion 7 (P;) returns the position for P; in the sort order. Note
that, by construction, it is always the case that 7z (P;) = 1.

As an example, suppose proofs Pjg, Py, and Pj; (corre-
sponding to order statistics Vg, Vio, and V;;) have respec-
tively chosen LOSes Vi, V;, and V;. Then the ordering is
(Vi) < 7(Viz) < w(Viy).

We provide the miner of a proof P; (for i < 1) according
to this reward function:
ik +1—max(i, 7(P;))

RiZZB(l—E) k(k+l)

(29)

where 0 < € < 1.

Figure 6 shows an example block with all rewards com-
puted.

We next argue that this reward structure provides the
desired incentives outlined above.

To begin, note that the miner producing proof P; is in-
centivized to include the lowest LOS possible in his proof
because that will tend to improve his rank in the sort order,
reducing 7 (P;), and increasing R; overall. Note also that if
all proofs point to the same LOS (that LOS being P;), then
the reward reduces to

k+1-1i

Ri :2B(1—e) —k(k+l)’ (30)



and,

Z§:1Ri = k(i_}il)z:i‘(:1(l_€)i[k+ 1_i]
< s (ke + 1) - 21 (31)
= B.

Therefore, the maximum possible cumulative reward is bounded

by B.

The last thing that we must check is that each miner is
incentivized to hash as much as possible (i.e. always aims
for achieving V; instead of V;, i > 1). We assume that the
miners have achieved an equilibrium where the target ¢, (and
therefore ) remains stable. Let 8(P;) be the expected number
of hashes devoted to producing proof P;. Using Theorem 1
and Equation 23, we can infer that

S S
0P;) = ——— = —. 32
(F:) Eig[W1] ip ()
Thus, the expected reward per hash for proof P;, E[R;|60(P;)],
is given by

E[R16(P)] = % (33)
3 ik+1-iif
= 2B(1 - €) EED S (34)

We next show that there exists a choice for € such that P;
offers a greater reward per unit hash than any other P;. Let
e=%andi>2,then

E[R,|0(P k
E[[Rli:HEPj))]] = kri-pa-g P
- k. (36)
ik +1-i) (%)’_1
> L (37)
ki (%)l_1
> 1. (38)

The mean reward for honest nodes is higher than attackers
and is statistically significant except when there is 1 attacker
out of 10, in which case the attacker earns a reward with a
lower average but is not statistically different. Notably, when
all miners are attackers, there is no difference in reward
compared to when all are honest.

Figure 7 shows the rewards given to miners following
honest or dishonest strategies, using the same simulation
as in Section 5. In all cases, dishonest miners suffer fewer
rewards from not using the first order statistic so that they
may mine their own block.

Ethereum Bitcoin
180% - I attacker
160% - I —— honest
140% - I I I
120%- I I
100%———-——-—-——-15- ———-——-—-——-I—E-

80% -

(per block) per miner

60% -

40% -

Average percentage of expected reward

20% -
0% =y e ey e
5 6 7 8 9 10 5 6 7 8 9 10
Number of honest miners out of 10

Figure 7: The average reward for miners when following
honest or attacker strategies. The dotted line is the expected
reward given mining power. Error bars show 95% confi-
dence intervals. In all cases, dishonest miners suffer fewer
rewards from trying to mine their own block.

7 THWARTING DOUBLESPEND AND
SELFISH MINING

Doublespend [27, 28] and selfing mining [19] attacks are
the two most fundamental attacks on blockchains [21, 29].
In both, attackers attempt to mine a fork of the blockchain
that is longer than the honest miners’ branch. Because the
attacker has a minority of the mining power, in expectation,
the attacker cannot not create a longer branch than the hon-
est miners’ branch. However, just like a person visiting a
casino, the attacker is seeking a short-term win. The attacker
is attempting to get lucky and find a series of blocks quickly
while the honest miners are relatively unlikely and discover
blocks slowly, despite the larger amount of mining power.
Intuitively the attacks’ success is leveraging the inherent
variance of mining.

In this section, we demonstrate quantitatively that Bobtail
thwarts both doublespend and selfish mining attacks because
of its lower variance.

Figure 8 shows a Monte Carlo simulation of the double-
spend attack. The merchant has setup an embargo period of
z blocks. The attacker’s strategy is to mine until its branch is
longer than the honest miners, or until the honest branch is
ahead by 3z + 5. Each facet of the plot represents a value of
k. As the results show, as k increases and variance decreases,
the probability of attacker success significantly decreases.
For example, an attacker with 40% of the mining power will
succeed with 30% probability when z = 8 currently in Bit-
coin and Ethereum; however, when k > 20, the probability
of success falls to less than 1%.
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Figure 8: Doublespend attack success given k for various val-
ues of attacker mining power (each line) and merchants em-
bargo period z (on the independent axis). Error bars show
95% c.i’’s.

Figure 9 shows a similar result for selfish mining via a
Monte Carlo simulation. The attacker follows the selfish
mining strategy and it is assumed that the attacker’s blocks
propagate to miners always before any honest miners’ blocks.
The figure shows the proportion of blocks on the main chain
won by attackers. The dashed line represents the proportion
that would be won by honest mining. For example, a selfish
miner with 40% of the mining power will claim about 66% of
blocks with Bitcoin and Ethereum currently; however, when
k > 5, the same miner will find that selfish mining is less
successful than honest mining.

8 HEADER FIELD LOGISTICS AND
OVERHEAD

In this section, we detail changes that are required of block-
chain systems to adopt our low variance block discovery
algorithm. Primarily, changes are required for (i) block head-
ers and (ii) block announcements.

8.1 Block Headers

In deployed blockchain systems, including Bitcoin and Ether-
eum, a large number of bytes are included as input to the
PoW algorithm. For example, in Bitcoin the 80-byte header
is hashed and compared against the target. Ethereum uses
the ETHASH algorithm and is larger still. A naive strategy
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Figure 9: Selfish mining attack success given k (different
linesa) for various values of attacker mining power (on the
independent axis). The dashed line shows the results of hon-
est mining. Error bars show 95% c.i’s.

for deploying our system would be to concatenate k block
headers in one package; we propose instead the following
much more efficient approach.

Our deployment strategy works with any POW blockchain
system. Let {p1, p2, . . .} be the set of values in a block header
that act as input to a proof of work algorithm in the original
blockchain algorithm. For example, in Bitcoin those values
are a version number, the prior block’s hash, the merkle root
hash, the time, the target, and a nonce. In existing systems,
a block is valid if H(ps, p2,...) < t.

We adjust the PoW algorithm as follows. For a miner
i, let pi1, pi2, . . . be the set of values normally in a block
header excluding the hash of the prior block, and let P; =
H(pi1, pizs - - -)- Let A; correspond to the coinbase address of
the miner of P;. Let Y be the hash of the prior block. Let
L; be the hash of current first order statistic announced to
date (for the same prior block), a requirement explained in
Section 5. Let Q; = H(P;, A;, Y, L;). A miner announces all
four values together if Q; is less than one of the k lowest Q
values announced to date. (Below, in Theorem 6 we prove
that only those values Q; < kt need be announced.)

A new block is discovered if the following two require-
ments hold:

k k

1 1

130 (1 e an) <
i=1

i=1

(39)
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Figure 10: A header that includes values needed by Bobtail.

and
H(P;,A,Y,0) < L;, for all i, (40)

where the comma represents concatenation. The require-
ment for all L; is designed to keep the orphan rate low, as
described in Section 5. Because a miner’s address is included
with the hashed value, the associated coinbase reward can-
not be reassigned by a third party. Similarly, because the
hash of the prior block is included, work cannot be reused
in later blocks.

Block header size. Fig. 10 shows the new header if applied
to Bitcoin as an example. Block headers in our system include
each value P,, ..., Pg. The value of P; can be determined
from the other header fields. In this case, Py=H(Time, Diffi-
culty, Prior, Merkle Root, Nonce). The coinbase transaction
is a part of the header because the addresses Ay, .. ., Ay are
required to validate the block. The merkle root hash does
not include the coinbase transaction.

We shorted each L; values to (i) a byte representing the
number of leading zeros, followed by (ii) the next most signif-
icant 2 bytes of the hash. These three bytes are sufficient to
validate the block. When a value P; is announced and there
is not yet a lower Q value, then all zeros are used for L;.

Bitcoin’s header is 80 bytes and has a 205 byte coinbase
transaction, typically. Assuming SHA-256, our header will
grow as follows. Each P; value is 32 bytes. Each L; value is 3
bytes. And the coinbase transaction will grow from a single
output to k outputs. For example, in Bitcoin, a coinbase script
with k outputs has very roughly 170 + 35k bytes. Hence the
header in our system will grow to 80+35(k—1) +170+ 35k =
215 + 70k bytes.

For example, when k = 40, block headers would contain
3,015 bytes of header and coinbase, compared to 285 bytes
now. This is quite an increase but still small considering
Bitcoin’s 1MB blocks and Bitcoin Cash’s 8MB blocks, or
about 0.3% and 0.04%, respectively.

Ethereum’s header is 508 bytes. Hence, bobtail mining
would increase by 35k, plus the cost of a transaction with k
outputs. For k == 40, headers would grow to 508+35(39)=1873
bytes plus the cost of a 40-output transaction. Blocks are
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about 22KB, so this increase is more than 1873/(22*1024)=8%
not including the transaction cost.

8.2 Network Overhead

When the mining criterion is k-OS, it is not efficient for each
miner to send proof of work every time she finds a hash
value lower than her previous best. A slight improvement to
that scheme is for her to send proof of work only when her
hash value is better than the lowest k hashes produced by
all miners cumulatively. But even this approach will result
in a large amount of network traffic early in the mining pro-
cess because, initially, most hash values will be significantly
higher than the target t; (see Eq. 24).

To improve network efficiency significantly we require
that miners do not send proof of work unless their achieved
hash value falls below k¢ as the following simple theorem
shows.

THEOREM 6: The largest order statistic Vi, of any valid
block is bound by Vi < kty.

PROOF: Even if the first k — 1 order statistics Vi, ..., Vi_;
are all zero, a valid proof against a target would require that
Vi < kty to ensure that Wy, < t. Note that this bound holds
absolutely, regardless of the actual value of order statistics

Vi foralli < k. o

Bound on the number of messages. Currently, bitcoin
blocks are the result of about § = 8e18 hashes, and so we
do not possess the resources to simulate the process of real
block creation. To evaluate our approach, we simulate block
creation for significantly small theta, and we derive a bound
on the number of hashes below Eq. 6 produced by miners;
the number of network messages will be strictly smaller.

THEOREM 7: The number of hashes per block produced
by the network that fall below the threshold kt;. assuming
a k-OS mining criterion and threshold ty is

E[Mp, 1 ] = Mer D

5 (41)

PROOF: We now seek to estimate My ;,, the number of
hashes per block produced by the network that fall below
the threshold kt; assuming a k-OS mining criterion and
threshold ;. For each block, miners generate a series of

hashes Z;, . .., Zy, with
S S Sk +1)
9 == — = — 42
p 2 2ty (42)

k+1
Because the mining process generates a hash value uniformly
at random from the interval [0, S], we know that P[Z; <
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Figure 11: The number of messages sent as a block is mined.
The naive approach (in blue) sends every mining proof that
is smaller than the lowest k sent. Our proposed approach
has dramatically fewer mesages (in red): mining proofs are
sent only if they are lower than k * t. The dashed red line
shows the upper bound for this method from Equation 41;
notably it does not depend on 0 or difficulty. Bitcoin is cur-
rently parameterized to about 6 = 8e18.

= kﬁ for every Z;. It follows that

Okt
ZPZ <kty] = k:

kt]

k(k +1)

Mk l‘k 2

(43)

]

E[Mg, ] is an upper bound on the number of hashes actually
propagated through the network. This is because miners will
also avoid sending a hash if it is not one of the k lowest
order statistics observed thus far, even if it falls below the
threshold k.

Empirical validation. Fig. 11 shows the number of mes-
sages send for various 0 from our Monte Carlo simulation.
As the figure illustrates, all simulations were well below the
bound.

9 CONCLUSION

We have designed and characterized a novel method of low-
variance blockchain mining. We have derived expressions for
the expectation and variance of the Bobtail mining proof and
the number of hashes performed for any value of k. Using
these expressions, we have shows that Bobtail reduces vari-
ance by a factor of O(1/k), compared to using k = 1. We have
shown that forks are created by Bobtail miners no more often
than existing systems, and that dishonest miners receive sig-
nificantly lower rewards due to a split rewards formula we’ve
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designed. We have demonstrated that low-variance mining
significantly reduces the effectiveness of doublespend and
selfish mining attacks. Finally, we have quantified header
overhead and network traffic and shown them as low-cost
tradeoffs for reducing mining time variance.
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