
Anonymous Transactions with Revocation and Auditing in
Hyperledger Fabric

Dmytro Bogatov

Boston University

dmytro@bu.edu

Angelo De Caro

IBM Research, Zürich

adc@zurich.ibm.com

Kaoutar Elkhiyaoui

IBM Research, Zürich

kao@zurich.ibm.com

BjÃűrn Tackmann

DFINITY

bjoern@dfinity.org

Abstract
In permissioned blockchain systems, participants are admitted to

the network by receiving a credential from a certification authority.

Each transaction processed by the network is required to be autho-

rized by a valid participant who authenticates via her credential.

Use case settings where privacy is a concern thus require proper

privacy-preserving authentication and authorization mechanisms.

Anonymous credential schemes allow a user to authenticate

while showing only those attributes necessary in a given setting.

This makes them a great tool for authorizing transactions in per-

missioned blockchain systems based on the user’s attributes. As in

most setups of such systems where there is one distinct certification

authority for each organization in the network, the use of plain

anonymous credential schemes still leaks the association of a user

to her issuing organization. Camenisch, Drijvers and Dubovitskaya

(CCS 2017) therefore suggest the use of delegatable anonymous

credential schemes to also hide that remaining piece of informa-

tion. In this paper we extend the Camenisch et al. scheme with

revocation and auditability; two functionalities that are necessary

for real-world adoption. We also provide a production-grade open-

source implementation of the scheme and the proposed extensions,

ready to be integrated with Hyperledger Fabric. Our performance

measurements show that the integration of the scheme with Hy-

perledger Fabric, while incurring an overhead in comparison to the

less privacy-preserving ones, is practical for settings with stringent

privacy requirements.

ACM Reference Format:
Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and BjÃűrn Tack-

mann. 2020. Anonymous Transactions with Revocation and Auditing in

Hyperledger Fabric. In Orlando ’20: ACM Conference on Computer and Com-
munications Security, November 09–13, 2020, Orlando, NY. ACM, New York,

NY, USA, 17 pages. https://doi.org/10.1145/359340.359342

This is a technical report that is under review at ACM CCS 2020.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Orlando ’20, November 09–13, 2020, Orlando, NY
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/359340.359342

1 Introduction
Blockchain systems allow two or more mutually distrustful par-

ties to perform transactions by appending them to a shared ledger

without the need to rely on a trusted third party. The first and

still most prominent use of blockchains is in the area of cryptocur-

rencies where each transaction transfers fungible tokens between

two or more parties. Blockchain systems used for cryptocurren-

cies are usually permissionless, meaning that joining the system

does not require the parties to register their identity; everyone can

participate.

Many other application scenarios for blockchains, however, re-

quire the participants to be registered, and access to the blockchain

system to be permissioned. For instance, use cases in the finan-

cial domain are restricted by know-your-customer (KYC) or anti-

money-laundering (AML) regulations. Elections require the set of

eligible voters to be known in order to prevent illegitimate voters

from submitting votes or any voter from double-voting. Enter-

prise blockchain systems accelerate processing of transactions in

business networks with known participants. All aforementioned

use cases require the transactions to be properly authorized by a

member of the network. Note that permissioned does not mean

centralized: the trust is still distributed among the participants of

the network, the difference with permissionless networks is that

joining the network becomes an explicit operation. For example,

instead of a centralized certification authority for all participants, a

permissioned blockchain network uses multiple such authorities,

one per organization, resulting in a federated model.
Use cases that call for a transaction authorization often still re-

quire the identity of the transaction origin to be hidden. The most

salient example is elections, where re-voting (as a measure against

coercion [3]) inherently requires voters to be anonymous. Financial

use cases where the transaction history of a user can leak sensitive

personal information through usage patterns, are another good

example. In such cases, the use of anonymous credential systems

such as Identity Mixer [15] allows participants to submit transac-

tions while revealing only the attributes necessary to authorize that

particular transaction (such as being a registered voter or having

passed KYC checks), and keeping all other attributes (such as name,

address or age) hidden.

Unfortunately, even the use of anonymous credentials can be

insufficient. The reason is that each organization has its own cer-

tificate authority, and anonymity is only guaranteed relative to that

authority. In other words, the particular certificate authority that

https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342

Orlando ’20, November 09–13, 2020, Orlando, NY Bogatov et al.

issued a user’s credential still will be leaked from the authorized

transactions; in certain use cases, even this leakage is not accept-

able. A naïve approach to tackle this is to have one global certificate

authority issuing anonymous credentials. This, however, means

that all credentials are issued by the same central entity, essentially

eliminating the federated management model that permissioned

blockchains are supposed to bring.

As first observed by Camenisch et al. [13], this is where delega-
table credentials come in handy: in a delegatable credential scheme,

a root authority delegates issuance of credentials to intermediate

authorities in a way that using the credentials only reveals the

root authority. In particular, the issuance of credentials for each

organization can be delegated to a different certification authority.

This helps keeping the management largely decentralized, while

at the same time hides the particular authority that issued a given

credential.

In this paper, we follow the approach outlined in [13] and build

a production-grade delegatable credentials system for Hyperledger

Fabric [4], based on the core protocol of [13]. Our contributions are

four-fold:

• We extend the scheme of [13] by adding mechanisms for

credentials revocation and authorizations auditing. The pro-

tocols are efficient as they are based solely on ElGamal en-

cryption [22] and Schnorr proofs [35]. We provide a security

definition for delegatable anonymous credentials with revo-

cation and auditing in the UC framework, and prove the full

scheme secure.

• We provide a production-grade implementation of delega-

table anonymous credentials in Go, which includes a set of

optimizations over the core protocol of [13]. For the sub-

mission we made the library available in an anonymized

repository [1]. It is also publicly available as open source.

• We enable auditable and private transactions via delegatable

anonymous credentials in Hyperledger Fabric. This includes

both the design of the relevant protocol parts, and their im-

plementation, which we also plan to provide as open source,

based on the above library.

• In addition to performance numbers for the algorithms of the

scheme, we also show how the use of delegatable anonymous

credentials affects the overall performance of Hyperledger

Fabric.

2 Related work
The most immediately related work is [13], which our paper builds

on. That paper presents an instantiation of delegatable anony-

mous credentials, proves its security, and provides initial perfor-

mance numbers. It also discusses, but only on a general and con-

ceptual level, the use of anonymous credentials in permissioned

blockchains. Our paper extends [13] in three main directions: (a) we

provide a production-grade implementation as open source, which

includes multiple performance optimizations ([13] implemented

just enough to run a simple performance test); (b) we integrate

anonymous credentials in the Hyperledger Fabric protocols, which

in fact requires a different approach than described in [13]; (c) we

cover practically-relevant functionalities such as revocation and

auditing.

After the publication of [13], two further papers on delegatable

credentials were published, namely by Blömer and Bobolz [12]

and by Crites and Lysyanskaya [19]. Both claim stronger security

properties compared to [13] by also supporting an anonymous

delegation phase; this feature is however not required in our setting

where the user and the intermediate authority know each other.

On the flip side, the scheme in [12] supports only a fixed number

of attributes that is determined during setup, whereas we want to

be able to dynamically add attributes per intermediate authority.

Furthermore, the paper does not describe a full instantiation of the

protocol, which when instantiated, appears to be less efficient than

the one in [13]. The scheme in [19] does not support attributes,

which makes it unsuitable for our application.

Sovrin [38] also combines anonymous credentials with a permis-

sioned blockchain system. While we use anonymous credentials to

authorize transactions on a blockchain, the Sovrin platform instead

leverages the blockchain to produce anonymous credentials, in the

vein of previous work on decentralized anonymous credentials of

Garman et al. [23]. The two approaches thus serve two different

purposes. In the context of Sovrin, there is also an implementation

of [13] in Rust [27], which appears to be in its earlier stages.

A growing segment of the research literature on blockchain sys-

tems aims to improve the confidentiality of transactions using tech-

niques such as zero-knowledge proofs (e.g. [6, 10, 24, 34, 40]), differ-

ent types of state channels (e.g. [5, 21]) or multi-party computation

(e.g. [11]). While the underlying cryptographic machinery, particu-

larly in the work on zero-knowledge proofs, is similar to what we

use here, achieving confidentiality of transactions is orthogonal to

achieving privacy of participants, and eventually privacy-friendly

permissioned blockchain systems will have to combine both.

3 Background
The purpose of a blockchain is to implement an immutable append-

only ledger that is maintained by a network of mutually distrustful

parties. As a data structure, the ledger is a chain of blocks such that

each block refers to its predecessor by including its hash, enforcing

thus a total order on the blocks. The parties continuously extend

the chain by running a consensus mechanism (e.g., proof of work

or PBFT) to decide on the respective next block. Blocks contain

transactions that have been submitted by clients for inclusion in

the ledger.

Blockchains are either permissionless or permissioned. In a permis-

sionless blockchain such as Bitcoin [32] or Ethereum [39], anyone

can run a peer that joins the network, participates in consensus

and validates transactions. Clients can submit their transactions

anonymously (or rather: pseudonymously). Trust in such networks

is established via consensus mechanisms that are based on proofs of

work (e.g., [32, 39]) or proofs of stake (e.g., [17, 30]), which penalize

misbehaving parties either by requiring them to expend a lot of

computational power in the case of proof of work or losing their

money in the case of proof of stake.

Permissioned blockchains, on the other hand, leverage identity

management to counter misbehavior, foster trust and aid gover-

nance. Most permissioned blockchain systems build on variants

(e.g., [25, 37]) of the well-studied and efficient PBFT [16] to reach

consensus. Permissioned blockchains are particularly well-suited

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric Orlando ’20, November 09–13, 2020, Orlando, NY

for applications where participant identities are required either in-

herently or by regulation, or those with high performance require-

ments. This includes enterprise applications in logistics and supply-

chain management, but also use cases in the financial and govern-

mental domains. Examples of prominent permissioned blockchain

platforms include Hyperledger Fabric [4] and Quorum [28].

3.1 Hyperledger Fabric
Fabric is a permissioned blockchain platform developed under the

umbrella of the Hyperledger project within the Linux Foundation.

Fabric is widely known for its modular and scalable architecture.

We briefly describe it, focusing on those components relevant to

transaction authorization. We refer to the original paper [4] for a

detailed description of the complete protocol and system.

A Fabric deployment involves multiple mutually distrustful orga-

nizations. Each organization corresponds to one trust domain and

manages one complete stack of platform components. The compo-

nents that are online during transaction processing are orderers,

peers and clients. Clients invoke transactions and observe their

results; they constitute the link between the blockchain and the

outside world. Peers execute and validate transactions; they process
the application data. Orderers receive transactions, put them into

blocks, run a consensus algorithm to determine their order and

distribute the blocks to the peers. Orderers ignore the transaction

contents, they merely put them in order. Each organization also

runs a membership service provider (MSP), which maintains and

manages identities of all participants of that organization. This

includes issuing credentials for authentication and authorization

and their revocation when the need arises.

Fabric has a unique three-phase transaction flow called Execute-
Order-Validate. Each chaincode (i.e., smart contract) identifies en-
dorsers, peers that execute this chaincode. The endorsement policy
associated with the chaincode specifies the minimum requirements

for replicated execution. A sample endorsement policy could spec-

ify that at least one peer from each organization participating in

the network must endorse.

In the Execute phase, a client invokes a chaincode by sending

a transaction proposal to the endorsers of that chaincode. The en-

dorsers execute the chaincode and sign the chaincode’s read/write

sets. After collecting enough endorsements (i.e., signatures on con-

sistent read/write sets), the client constructs a transaction that

contains the proposal, the read/write sets and the endorsements,

and signs it using its MSP identity (i.e., a credential obtained from

an MSP).

In the Order phase, the client sends the signed transaction to-

gether with some metadata to the ordering service, which orders

the transaction in a block and broadcasts the block to the peers in

the network.

In the Validate phase, the peers verify if each transaction in the

block received from the ordering service satisfies the endorsement

policy of its chaincode. The peers also update their local state

according to the write sets specified in valid transactions.

3.2 Authentication, authorization and Identity
Mixer in Fabric

The default Fabric MSP is based on X.509 certificates — an iden-

tity is an X.509 certificate and its validation/revocation follows the

X.509 standard. This approach is efficient, flexible and scalable —

organizations may have hierarchical CAs which translate to hierar-

chical MSPs. Each transaction (as a data structure) has two specific

fields for transaction authorization: the Creator (i.e., identity of the

client invoking the transaction) and the Signature (i.e., authoriza-
tion of the transaction). As each transaction carries the identity of

its origin as a certificate and a signature, the X.509 implementation

compromises the anonymity and the privacy of clients.

To remedy this issue, Fabric uses Identity Mixer (idemix for

short), an anonymous credentials scheme based on the protocols

in [14]. The idemix-based MSP protocol enables clients to sign

transactions anonymously. Instead of an X.509 certificate, an idemix

MSP issues a special credential containing a set of attributes. To

sign a transaction, the holder of an idemix identity generates a

non-interactive zero-knowledge (NIZK) proof that she received a

credential from idemix that certifies her attributes. More specifically,

if Alice is a member of an organization Org whose members are

authorized to submit certain transactions, then Alice proves that
she possesses an idemix credential from her MSP that attests that

she is a member of Org.
As discussed in the introduction, even the use of anonymous

credentials is sometimes not sufficient from a privacy perspective.

Namely, the current implementation of idemix leaks the identity

of the MSP that issued the anonymous credential. To mitigate this

leakage, we provide a Fabric-tailored implementation of delegatable

anonymous credentials based on the work of [13]. This implemen-

tation ensures that the only information leaked by a transaction

is the root CA common to all network participants. Additionally,

the implementation supports efficient revocation and comes with

auditing capabilities, which allows authorized parties to trace the

transactions back to their authors achieving some level of account-

ability.

3.3 Notation
Let Zq be the set of natural numbers in [0;q) where q is a large

prime. Let G1, G2 and GT be three groups of order q, such that

there exists an efficient bilinear pairing e : G1×G2 → GT . Let дi be
a random generator for Gi for i ∈ {1, 2}. Let fexp and t̂ be the final
exponentiation and Miller’s loop operations respectively, such that

e = fexp ◦ t̂ . Let ←$ describe the operation of random sampling.

Let sp denote the public parameters available to all algorithms in

the system. These include the description of the bilinear groups

and hash functions. Let NIZK{w : x} denote a non-interactive

zero-knowledge proof for statement x and witnessw (i.e., private

input).

4 Delegatable anonymous credentials
A scheme for delegatable anonymous credentials involves the fol-

lowing:

Root authority A trusted entity that provides credentials to inter-

mediate authorities.

Orlando ’20, November 09–13, 2020, Orlando, NY Bogatov et al.

Intermediate authority Each intermediate authority presents its

public key and its attributes to a parent (root or other inter-

mediate) authority. The latter verifies that the intermediate

authority knows the secret key and that it holds the pre-

sented attributes, and in turn provides the corresponding

credential. An intermediate authority is allowed to issue

credentials to other intermediate authorities or users.

Users A user requests credentials from the intermediate authority

of her organization. Prior to credential generation, the inter-

mediate authority checks the legitimacy of the user’s public

key and the attributes.

All participants (root, intermediate authorities and users) start by

generating their pairs of secret and public keys. A Level-1 delegatee

(usually an intermediate authority) contacts the root to obtain a

credential (i.e., signature) to bind its public key to its attributes.

Once a Level-1 delegatee gets its credentials, it becomes a delegator

itself and can thereafter issue credentials for Level-2 delegates. This

delegation process may continue for an arbitrary number of levels,

increasing the length of the credential chain.

The holder of a credential typically uses non-interactive zero-

knowledge (NIZK) proofs to sign messages anonymously. More pre-

cisely, signing a messagem consists of proving in zero-knowledge

that (1) the signer owns the credentials; (2) the Schnorr-like gener-
ated signature is valid for messagem; (3) inductively, all adjacent
levels are legitimate (one was delegated from the other); and (4) at
the end of the induction, the top-level public key is that of the root

authority. During the proof generation, the signer chooses which

attributes to disclose and which to keep secret. It is possible to

reveal or hide all attributes, albeit not very useful.

4.1 Algorithms
A delegatable anonymous credential scheme consists of the follow-

ing algorithms:

• KeyGen(sp)→$ (csk, cpk): this algorithm is called with the

system parameters to generate a pair of secret and public

keys for the caller.

We denote the public and the secret keys of the root authority

cpk
0
and csk0 respectively, and its credentials cred0 = cpk

0
.

• Delegate(cski , credi , cpki+1
, ®ai+1)→$ credi+1: a level i au-

thority invokes this algorithm with its secret key cski and
credentials credi to produce credentials of the next level i + 1

that bind attributes ®ai+1 to public key cpki+1
.

• Present(cskL , credL , cpk0
, ⟨ai, j ⟩(i, j)∈D ,m)→$Pcred: a user

calls this algorithm with her secret cskL , her credentials
credL , the root public key cpk

0
, attributes ⟨ai, j ⟩(i, j)∈D she

wishes to reveal and a messagem to be signed. (D is the set of

indices of attributes in the delegation chain that a user wishes

to disclose.) The algorithm returns a zero-knowledge proof

that (1) shows the validity of credL under cpk
0
; (2) proves

that secret key cskL matches credL and disclosed attributes

⟨ai, j ⟩(i, j)∈D ; (3) signsm.

• Verify(Pcred, cpk0
, ⟨ai, j ⟩(i, j)∈D ,m)→ {0, 1}: this algorithm

verifies the correctness of proof Pcred relative to disclosed

attributes ⟨ai, j ⟩(i, j)∈D , messagem and public key cpk
0
.

4.2 Instantiation of the scheme
Camenisch et al. [13] introduce a delegatable anonymous creden-

tial scheme that supports an arbitrary number of delegation lev-

els, thanks to a combination of Groth signatures [26] and non-

interactive zero-knowledge proofs. Groth signatures come with

two appealing features: (1) they sign vectors of messages efficiently;

and (2) they are structure preserving. The latter property is particu-
larly important as it enables the generation of certificate chains by

signing public keys without leaving the algebraic representation,

and proving in zero-knowledge statements about signed public

keys without necessarily knowing the underlying secret keys.

4.2.1 Groth signatures Groth signature [26] consists of the follow-

ing algorithms:

• Setup(n)→$ sp: on input of integern, output system parame-

ters sp = (Λ
⋆, {y2,i }

n
i=1

) wherebyΛ
⋆

= (q,G1,G2,Gt ,д1,д2, e)

and y2,i ←$G2 for 1 ≤ i ≤ n.
• KeyGen(Λ

⋆
)→$ (sk, pk): on input of group description Λ

⋆
,

output secret and public keys sk←$Zq and pk = дsk
1
.

• Sign(sk; ®m)→$σ : on input of secret key sk and vector ®m =

(m1, . . . ,mn) ∈ Gn
2
, do

ρ ←$Z⋆q r := д
ρ
1

s := (y2,1 · д
sk
2

)

1

ρ ti := (ysk
2,i ·mi)

1

ρ

and output signature σ = (r , s, t1, . . . , tn).

• Verify(pk;σ ; ®m)→ {0, 1}: on input of public key pk, signa-
ture σ = (r , s, t1, . . . , tn) ∈ G1 × G

n+1

2
and vector ®m ∈ Gn

2
,

output the result of

e(r , s) = e(д1,y2,1) · e(pk,д2) ∧
n∧
i=1

e(r , ti) = e(pk,y2,i) · e(д1,mi)

• Randomize(σ)→$σ ′: on input of signatureσ = (r , s, t1, . . . , tn) ∈

G1 × G
n+1

2
, do

ρ ′←$Zq r ′ := r ρ
′

s ′ := s
1

ρ′ t ′i := t
1

ρ′

i

and output randomized signature σ ′ = (r ′, s ′, t ′
1
, . . . , t ′n).

Notice that the public keys are in G1 whereas the messages are in

G2. To be able to support chaining (and thereby delegation) using

Groth signatures, we need to switch the key space and the message

space. That is, we move from one delegation level to the next by

swapping G1 and G2.

We call these schemes in the following Groth1 and Groth2

where Grothi signs messages in Gi , i ∈ {1, 2}.

4.2.2 Description Let L denote the length of the delegation chain,

i.e., the length of the path from the root authority to any user in

the system.

Letni for 1 ≤ i ≤ L denote the number of attributesa
(i,1)
, . . . ,a

(i,ni)
authorized at the i

th
delegation level.

Let N1 denote max

2≤i≤L
i even

ni whereas N2 denote max

1≤i≤L
i odd

ni .

Setup.
• Root authority calls

Groth1.Setup(N1)→$

(
Λ
⋆, {y1,i }

N1

i=1

)
Groth2.Setup(N2)→$

(
Λ
⋆, {y2,i }

N2

i=1

)

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric Orlando ’20, November 09–13, 2020, Orlando, NY

and sets sp =

(
Λ
⋆, {y1,i }

N1

i=1
, {y2,i }

N2

i=1

)
;

• announces its credential cred0 = cpk
0
whereby:

Groth2.KeyGen(Λ
⋆

)→$ (csk0, cpk0
)

Delegation.
• Groth1.KeyGen(Λ

⋆
)→$ (csk1, cpk1

) is called by an inter-

mediate authority to generate its secret and public keys;

• Intermediate authority requests Level-1 credentials from

the root authority by supplying its public key cpk
1
, a zero-

knowledge proof that it knows the corresponding secret key

csk1, and its attribute vector ®a1.

• Root authority verifies the zero-knowledge proof, and if it is

valid returns a Groth signature

Groth2.Sign(csk0; cpk
1
, ®a1)→$σ1

• Intermediate authority now has Level-1 credential cred1 =

(σ1, ®a1, cpk1
).

• To request a Level-2 credential, an intermediate authority

executes Groth2.KeyGen(Λ
⋆

)→$ (csk2, cpk2
) and sends a

credential request to a Level-1 authority. The credential re-

quest consists of public key cpk
2
, a zero-knowledge proof

that the requestor knows the corresponding secret key csk2,

and a vector of attributes ®a2.

• The Level-1 authority checks the zero-knowledge proof, runs
Groth1.Sign(csk1; cpk

2
, ®a2)→$σ2 and returns a Level-2 cre-

dential cred2 = (σ1, ®a1, cpk1
,σ2, ®a2, cpk2

) to the requestor.

• This process can repeat, the resulting Level-L credential is

credL = (⟨σi , ®ai , cpki ⟩
L
i=1

).

Credential presentation. To sign a messagem while disclosing

attributes ⟨ai, j ⟩(i, j)∈D , a user generates the following NIZK proof:

Pcred ←$ NIZK{(σ1, ...,L , cpk1, ...,L , ⟨ai, j ⟩(i, j)/∈D ,σm) :

L∧
i=2,4, ...

Groth1.Verify(cpki−1
;σi ; cpki ,ai,1, . . . ,ai,ni)

L∧
i=1,3, ...

Groth2.Verify(cpki−1
;σi ; cpki ,ai,1, . . . ,ai,ni)

∧ Schnorr.Verify(cpkL ;σm ;m)}

In addition to proving the validity of the credential chain, the user

signs an input message m using a Schnorr-like procedure. This

allows the user to show that she knows the secret key corresponding

to the last-level credentials.

Verification. Upon receipt of proof Pcred, a verifier checks its

correctness with respect to public key cpk
0
of the root authority,

messagem and the disclosed attributes ⟨ai, j ⟩(i, j)∈D .
For more details on the implementation of the zero-knowledge

proofs interested readers can refer to Algorithm 3 in Appendix B.

This algorithm also includes details on how to integrate this instan-

tiation with Hyperledger Fabric.

Towards real-world adoption. Anonymous credentials provide a

generic solution to privacy-preserving transaction authorization

in permissioned blockchains. Nonetheless, on their own they fall

short of addressing the requirements of revocation and auditability.

For instance, the above instantiation does not allow a verifier of the

blockchain to tell if the credentials used to sign the transaction are

still valid (not revoked). Neither does it allow authorized parties

(e.g., auditors) to trace the origin of the transactions posted in the

ledger.

The following section extends the protocol in [13] to address

these shortcomings.

5 Auditable delegatable anonymous
credentials with revocation

Revocation. Classical mechanisms for revocation are at odds with

anonymous credentials, whereas privacy-friendly alternatives —

such as as zero-knowledge sets [31] or accumulators combined with

zero-knowledge proofs [8] — are too computationally prohibitive

to be integrated into Hyperledger Fabric.

To enable efficient and privacy-preserving revocation we couple

epoch-based whitelisting with signatures in a way that yields effi-

cient proofs of non-revocation. Namely, we divide the timeline into

epochs that define the validity periods of the credentials. For each

epoch, a non-revoked participant is issued an epoch handle (a sig-
nature) that binds her public key to the epoch. When a participant

presents her credentials, she provides along with them a proof of

non-revocation that consists of proving in zero-knowledge that

she holds a signature linking her public key to the current epoch.

Credentials that are valid for a certain epoch are automatically

revoked the moment the epoch expires. An epoch expires either

naturally (epoch elapses) or manually (authorized parties advance

the epoch by putting a special message on the ledger).

For ease of exposition, we assume that only the credentials of

users are revoked (i.e. Level-L credentials). We contend that such

an assumption is fair as organizations in Fabric will not be revoked

as frequently as users, who, on the other hand, may have their

authorization to submit transactions denied at any moment (e.g.,

a failure to pay a monthly subscription, an employee leaving her

company, etc.). We note though that the proposed mechanisms

can be generalized to accommodate settings in which intermediate

authorities are also revoked.

Audit. To enable auditing, the transaction author embeds her

identifier (the public key) encrypted under the auditor’s public key

into the transaction using a semantically secure encryption. For

this solution to be viable, it must ensure that the user (1) encrypts
her own public key and (2) uses the public key of the authorized

auditor. Zero-knowledge proofs such as [35] coupled with ElGamal

encryption [22] allow us to address these challenges relatively

efficiently.

For the sake of simplicity, we only focus on settings where just

a single auditor is present for all the users in the system. The

proposed solution could be easily enhanced to support scenarios

withmultiple auditors. Namely, userswill have their auditor’s public

key as an attribute and the proof of correct encryption will show

that the correct public key is being used.

5.1 Security definition
We define the security of our extended scheme based on the func-

tionality F
dac

from [13]. We model revocation by introducing a

message ADVANCE that can be input by a special party T , and

Orlando ’20, November 09–13, 2020, Orlando, NY Bogatov et al.

Let sid = (R,AU,T ,L,Param, sid ′) be the session identifier.

(1) Setup. On input (SETUP, ⟨ni ⟩i) from root R.

• Output (SETUP, ⟨ni ⟩i) to A and wait for response

(SETUP, pp′,Present,Verify, ⟨Ai ⟩i) from A.

• Store algorithms Present and Verify and parameters

⟨Ai ⟩i , ⟨ni ⟩i , initialize Lde
,Lp,Lau ← ∅. If AU is cor-

rupt set pp← pp′, else set pp← Param().

• Output SETUPDONE to R.

On input SETUP from AU, output (SETUP,AU) to A,

wait for response; output SETUPDONE to AU.

(2) Advance. On input ADVANCE from T , set Lp ← ∅,

L
de
← {⟨Pi , ®a1, . . . , ®al ⟩ ∈ Lde

: l < L}.
(3) Delegate. On input (DELEGATE, ssid, ®a1, . . . , ®al ,Pj) from

some party Pi , with l ≤ L and ®al ∈ A
nl
l .

• If l = 1: check sid = (Pi ,AU,T ,L, sid ′), else abort.
• If l > 1, check that ⟨Pi , ®a1, . . . , ®al−1

⟩ ∈ L
de
, else abort.

• Output (ALLOWDEL, ssid,Pi ,Pj , l) to A; wait for in-

put (ALLOWDEL, ssid) from A.

• Add an entry ⟨Pj , ®a1, . . . , ®al ⟩ to Lde
.

• Output (DELEGATE, ssid, ®a1, . . . , ®al ,Pi) to Pj .

(4) Present. On input (PRESENT,m, ®a1, . . . , ®aL) from some

party Pi , with ®ai ∈ (Ai ∪ {⊥})
ni

for i = 1, . . . ,L.
• Check that an entry ⟨Pi , ®a

′
1
, . . . , ®a′L⟩ exists in Lde

such

that ®ai ⪯ ®a
′
i for i = 1, . . . ,L.

• If AU honest, set p ← Present(pp,m, ®a1, . . . , ®aL ;

⊥), else p ← Present(pp,m, ®a1, . . . , ®aL ;Pi). Abort if

Verify(pp,p,m, ®a1, . . . , ®aL) = 0.

• Store ⟨m, ®a1, . . . , ®aL ,p⟩ in Lp and ⟨p,Pi ⟩ in Lau.

• Output (PROOF,p) to Pi .
(5) Verify. On input (VERIFY,p,m, ®a1, . . . , ®aL) from Pi .

• If ⟨m, ®a1, . . . , ®aL ,p⟩ ̸∈ Lp , R is honest, and for i =

1, . . . ,L, there is no corrupt Pj with ⟨Pj , ®a
′
1
, . . . , ®a′i ⟩

∈ L
de

and ®aj ⪯ ®a
′
j for j = 1, . . . , i , set f ← 0.

• Else, output (VERIFY,p) to A; expect response

(VERIFY,P). Set f ← Verify(pp,p,m, ®a1, . . . , ®aL). If

P corrupt ∧ f then add ⟨p,P⟩ to Lau.

• Output (VERIFIED, f) to Pi .

(6) Audit. On input (AUDIT,p) from AU, if ⟨p,P⟩ ̸∈ Lau,

output (AUDIT,p) toA. Upon obtaining (AUDIT,P) from

A, where P is corrupted, store ⟨p,P⟩ in Lau. If now there

is a valid record ⟨p,P⟩ in Lau, then output (RESULT,P)

to AU. Else, output ⊥ to AU.

Figure 1: Extended credentials functionality F
dac+

.

that effects in all last-level delegations as well as generated proofs

becoming invalid. This input models an epoch switch. We model

audit by providing an input AUDIT to an auditorAU, which upon

input of a credential proof p outputs the party P that presented

p. Properly modeling audit also requires to account for the case

where AU is corrupted. This is achieved by allowing A to input

the parameters pp′ so that Present can include the information in

each proof p, which is necessary since a corrupt auditor will be

able to decrypt this information from each proof. The complete

functionality F
dac+

is specified in Figure 1.

5.2 Revocation
We describe two alternative solutions that differ in their generality.

The first one is straightforward but requires that revocations are

handled by the same authorities that issue user credentials. The

second is more complex but allows revocations and credentials to

be handled by different authorities. See Section 8.2 for performance

analysis of the latter approach.

Epoch as an attribute We implement revocation using delegatable

credentials in such a way that users in the last level of delegation

have epoch identifiers as attributes. A user thus needs to request

new delegatable credentials from her issuer every time an epoch ex-

pires to be able to submit transactions. The proof of non-revocation

in this case uses the proof generation depicted in Algorithm 3 such

that one of the disclosed attributes is the identifier of the current

epoch.

Explicit proof of non-revocation The solution above requires no

additional cryptographic implementation, however, it suffers from

the limitation that the credential issuer must always be the same as

the revocation authority. To accommodate settings where credential

issuers are different from revocation authorities, we decouple the

credentials for user attributes from epoch credentials. To obtain

authorization for the current epoch, a user contacts the revocation
authority with a proof of her public key possession. The revocation

authority in turn responds with a Groth signature of the user’s

public key and the epoch identifier. When the user wishes to submit

a transaction, she generates a proof of non-revocation that shows

the knowledge of an epoch handle and the associated secret key.

Verifiers in the blockchain check the non-revocation proof and if

valid, verify the user’s signature on the transaction content. In more

formal terms, we augment the protocol in Section 4.2.2 with the

following.

Let д denote a generator of the bilinear group in which the public
keys of users (i.e., public keys associated with Level-L credentials)

reside, and let f denote a generator of the other bilinear group.

Revocation setup. The revocation authority computes its pair of

Groth secret and public keys (rsk, rpk = f rsk)←$ Groth.KeyGen(Λ
⋆

)

and publishes rpk.

Generation of non-revocation credentials. Upon receipt of a cre-

dential request for public key cpk and current epoch, revocation

authority verifies that the requestor knows the secret key matching

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric Orlando ’20, November 09–13, 2020, Orlando, NY

cpk, and computes

ε := дHash(epoch)

σ ←$ Groth.Sign(rsk; ε, cpk)

and returns non-revocation credentials (σ , cpk).

Proof generation. A user signs a messagem and proves that she

is not revoked during the current epoch by outputting a tuple

(m, ⟨ai, j ⟩(i, j)∈D ,P) such that:

P←$ NIZK{(σ1, ...,L , cpk1, ...,L , ⟨ai, j ⟩(i, j)/∈D ,σm ,σ) :

L∧
i=2,4, ...

Groth1.Verify(cpki−1
;σi ; cpki ,ai,1, . . . ,ai,ni)

L∧
i=1,3, ...

Groth2.Verify(cpki−1
;σi ; cpki ,ai,1, . . . ,ai,ni)

∧ Schnorr.Verify(cpkL ;σm ;m)

∧ Groth.Verify(rpk;σ ; ε, cpkL)}

5.3 Audit
Our auditable anonymous delegatable credentials extends the scheme

described in Section 4.2.2 by adding an Audit setup and enhancing

the credential presentation with verifiable encryption.

Audit setup. The authorized auditor computes a pair of ElGamal

secret and public keys (ask, apk = дask) and then announces apk.
We assume there are mechanisms in place to verify that the auditor

is legitimate and knows the secret key ask.

Proof Generation. A user signs a messagem in an auditable man-

ner and outputs a tuple (m, ⟨ai, j ⟩(i, j)∈D , enc,P) such that:

P←$ NIZK{(σ1, ...,L , cpk1, ...,L , ⟨ai, j ⟩(i, j)/∈D ,σm ,σ , ρ) :

L∧
i=2,4, ...

Groth1.Verify(cpki−1
;σi ; cpki ,ai,1, . . . ,ai,ni)

L∧
i=1,3, ...

Groth2.Verify(cpki−1
;σi ; cpki ,ai,1, . . . ,ai,ni)

∧ Schnorr.Verify(cpkL ;σm ;m)

∧ Groth.Verify(rpk;σ ; e, cpkL)

∧ enc = (cpkL · apk
ρ ,дρ)}

If the auditor decides to learn the identity of the origin of a

messagem, all she needs to do is to decrypt ciphertext enc. This
process is guaranteed to succeed and correctly yield the right public

key thanks to the soundness of P.

Details on the implementation of this extension is provided in

Algorithms 4, 5, 6 in Appendix B. Algorithm 2 puts all the com-

ponents together and includes elements of the integration with

Fabric.

5.4 Security statement
In Appendix A, we prove that our extended protocol realizes the

functionality specified in Figure 1.

Theorem 1. Delegatable credentials protocol Π
dac+

securely re-

alizes F
dac+

in the (Fsmt,Fca,Fcrs,Fclock
)-hybrid model, provided

that

• SignNym is a strongly unforgeable signature,

• the auditing encryption is semantically secure,

• NIZK is a simulation-sound extractable non-interactive zero-

knowledge proof.

Unlike the result in [13], the theorem does not need the notion of

sibling signature as all delegation chains have the same length. Our

instantiated protocol is covered by the security statement since both

Schnorr (used in binding the pseudonym) and Groth signatures

are existentially unforgeable, ElGamal encryption is semantically

secure, and Schnorr proofs are simulation-sound extractable.

6 Optimized implementation
While implementing our extended protocol, we discovered several

simplifications and optimizations over the scheme in [13] that im-

prove the readability and performance of our code. This section

presents our improvements.

6.1 Refactored pseudocode
Following the pseudocode [13, Figures 4 and 5] precisely we have

found out that the verification always fails. We were able to spot

the mistakes and provide a corrected version in Algorithm 3. Addi-

tionally, we have refactored the pseudocode by adjusting д1, д2 and

y values on each loop iteration, simplifying the code and reducing

its size in half.

6.2 Parallelization
We have noticed that the most heavy operation in the code is

the computation of commitments. Moreover, we have found that

commitments can be computed independently of one another, and

therefore can be easily parallelized. Instead of computing the com-

mitments eagerly, our program schedules the computation and puts

it in a queue. Before hashing the commitments, the program waits

for the last computation to finish, signaling that the commitment

set is computed. We find this task granularity optimal in this sce-

nario as the computation takes long enough to neglect a cost of

spawning an extra thread and is small enough that the system can

uniformly disperse its load among available resources.

6.3 Miller’s loop and final exponentiation
Camenisch et al. [13] mention that when computing a product of

pairings it makes sense to compute Miller’s loop first on all pairs,

multiply them and only then apply final exponentiation. However,

the authors used this tactic only on a fraction of computations. We

have discovered a way to extend this optimization and apply it

globally.

The idea is to convert every pairing product to a set of Miller’s

loops and apply final exponentiation once per such a product. The

trick is to use bilinearity of Miller’s loop to put exponents inside the

pairings. For example, the following computations are equivalent:∏
i
e (ai ,bi)

ci
= fexp

(∏
i
t̂ (acii ,bi)

)
= fexp

(∏
i
t̂ (ai ,b

ci
i)

)
Since exponentiations are cheaper in G1 than in G2 (specifically,

when using AMCL library [36]), we decided to exponentiate ele-

ments in G1. See Algorithm 1.

Orlando ’20, November 09–13, 2020, Orlando, NY Bogatov et al.

Algorithm 1 e-product optimization

Require: ai ∈ G1, bi ∈ G2, ci ∈ Zq ∪ ⊥ for L = 1, . . . ,n
Ensure: eProduct(⟨ai ,bi , ci ⟩

n
i=1

) =

∏n
i=1

e(ai ,bi)
ci

1: procedure eProduct(⟨ai ,bi , ci ⟩ni=1
)

2: r := 1T ∈ GT ▷ an identity element
3: for i = (1, . . . ,n) do
4: if ci ̸= ⊥ then
5: ai := acii
6: for i = (1, 3, . . . ,n) do
7: if ai+1 ̸= ⊥ then
8: ▷ t̂2 is a more efficient version of t̂ · t̂
9: r := r · t̂2 (ai ,bi ,ai+1,bi+1)

10: else
11: r := r · t̂ (ai ,bi)

12: return fexp (r)

7 Integration with Hyperledger Fabric
This section explains how the building blocks defined earlier work

together within Fabric. We assume that all parties have access to

system parameters sp and public key cpk
0
of the root authority, and

that they have generated their pairs of secret and public keys. The

keys are always generated as sk←$Zq and pk := дsk where д is a

group generator of either G1 or G2 depending on the delegation

level.

7.1 Including pseudonyms in proof
In Fabric, a transaction has two special fields that are used in tan-

dem to establish its authenticity. A Creator field that contains the

identity of the transaction author, and a Signature field that holds a

signature of the rest of the transaction by its author. Fabric specifi-

cations require that Creator and Signature be validated individually.
Integrating delegatable credentials directly introduces two security

flaws: namely, if Creator is a NIZK of the credential validity and

Signature is a regular signature with the author’s secret key, then

(1) there is no guarantee that the keys used to generate the NIZK

and the signature are the same, and (2) the regular signature itself
would leak the identity of the signer by going through all users’

public keys and testing whether the signature verifies.

To solve the above problems, we generate a Pedersen commit-
ment (called pseudonym) to the secret key and place it in both

fields. This pseudonym ensures that the same secret key is used to

produce Creator and Signature fields. Notably, Creator contains a
modified NIZK proof that shows that the prover knows the secret

key used to construct the pseudonym and that it is the same secret

key underlying the credentials. Signature, on the other hand, is a

Schnorr-like proof of knowledge that leverages the content of the

transaction to compute the challenge and shows knowledge of the

secret key committed in the pseudonym.

The verifier first checks whether Creator and Signature include
the same pseudonym. If so, it verifies the validity of the content of

those fields independently; otherwise it rejects. See Algorithm 4

for more details.

7.2 Submitting transactions
A user authorizes the execution of a chaincode by providing a

NIZK proof and a linked signature on the proposal, as described in

Section 7.1. During this process, the user can decide to selectively

disclose attributes, which are made available to the chaincode so

access control can be implemented as needed by the application.

The protocol has the following global stages (see Algorithm 2).

At the setup stage (line 2), the parties generate their secret and

public keys.

The delegation stage starts by a credential request from the

delegatee to the delegator where the former proves that she knows

the secret key corresponding to her public key, using a classical

non-interactive Schnorr proof (see Algorithm 4). To ensure the

freshness of the proof the delegator (i.e., verifier) provides a nonce

that would be used to compute the challenge in the proof. If the

provided proof is valid, then the delegator signs, using Groth, the

public key and the attributes of the delegatee. We note that it is

up to the delegator to determine the delegatee’s valid attributes.

This process of credential issuance can be repeated an arbitrary

number of times increasing the length of the credential chain. In

more concrete terms, the first level of the delegation corresponds

to the root authority issuing credentials to intermediate authorities

that in turn delegate the credentials further down the hierarchy

(lines 2–5). On the last level of the credential chain, we find users

who submit transactions to Fabric.

The transaction stage (lines 13–23) has the user generate ran-

domized proofs and signatures to authenticate the content of her

transactions anonymously. Namely, the user generates a pseudo-

nym (i.e., Pedersen commitment) to commit to her secret key (see

Section 7.1). Then she generates a proof in which she discloses her

attributes as needed and shows the following: (1) the user knows
valid credentials, and (2) the pseudonym commits to the secret key

matching the credentials. As a part of transaction the user also

includes the proof of possessing a non-revocation handle (line 15)

and an encryption of her public key under auditor’s key, along with

the proof of its correctness (lines 13 and 16). If the user does not

have a non-revocation handle for the current epoch, she requests it

from the authority (lines 8–10). Finally, she signs the content of the

transaction with the secret key in the pseudonym (lines 14 and 18).

Verifiers consequently validate the transaction by first checking

that the proofs and signatures refer to the same pseudonym, then

verifying these proofs, then finally checking the disclosed attributes

(lines 20 and 23).

8 Benchmarks
We have provided the first production-ready open-sourced imple-

mentation of delegatable credentials scheme and our extensions. It

is generic and produces valid credentials and proofs for any number

of levels and attributes for both groups: G1 and G2, for odd and

even levels. The project is tested with over 450 tests and they cover

100% of the code. We note that this is a significant improvement

over the original code, which is only a prototype computing a single

hard-coded credential. We also note that the original code is not

open-sourced.

All benchmarks were run on c2-standard-60 GCE VM running

Ubuntu 18.04 (60 vCPU, Intel Cascade Lake 3.1 GHz, 240 GB RAM).

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric Orlando ’20, November 09–13, 2020, Orlando, NY

Algorithm 2 Delegation, revocation, auditing and transaction submission protocols

1 : Level-i CA Level-(i + 1) CA

. Repeated for L rounds of delegation (from the Root CA to Intermediate CAs to the User) .

2 : cski ←$Zq, cpki := дcski cski+1 ←$Zq, cpki+1
:= f cski+1

3 : nonce←$ {0, 1}λ
nonce

Ppk ←$ ProvePK(cski+1, cpki+1
, nonce)

4 : VerifyPK(Ppk, cpki+1
, nonce)

Ppk, cpki+1

5 : σi+1 ←$Groth.Sign(cski ; cpki+1
, ®ai+1)

σi+1 credi+1 := (σi+1, ®ai+1, cpki+1
)

6 : Revocation authority User

. On each epoch, user requests a non-revocation handle .

7 : rsk←$Zq, rpk := дrsk csk←$Zq, cpk := дcsk

8 : nonce←$ {0, 1}λ
nonce

Ppk ←$ ProvePK(csk, cpk, nonce)

9 : VerifyPK(Ppk, cpk, nonce)
Ppk, cpk

10 : σ ←$NRSign(rsk; cpk, epoch)
σ

11 : Verifier User

12 : (from the delegation stage) cred := (⟨σj , ®aj , cpkj ⟩
L
j=1

)

. User submits a transaction .

13 : enc, ρ := AuditEnc(apk, cpk)

14 : sknym, pknym ←$MakeNym(csk)

15 : Prev ←$NRProve(σ , csk, sknym, epoch)

16 : Paudit ←$AuditProve(enc, ρ, cpk, csk, pknym, sknym)

17 : (no need to sign a message) Pcred ←$CredProve(cred, D, sknym, csk, ⊥)

18 : σnym ←$ SignNym(pknym, sknym, csk, tx)

19 : (Pcred, Prev, Paudit, enc, tx, pknym) := m m, σnym m := (Pcred, Prev, Paudit, enc, tx, pknym)

20 : VerifyNym(pknym, tx, σnym)

21 : NRVerify(Prev, pknym, epoch)

22 : AuditVerify(Paudit, enc, pknym)

23 : CredVerify(Pcred, D, pknym, ⊥)

We have used Apache Milagro Cryptographic Library (AMCL) [36]

with a 254-bit Barreto-Naehrig curve [9] for low-level operations

such as pairings, exponentiations and PRG operations.

8.1 Anonymous and auditable delegatable
credentials with revocation

Wehave run extensive benchmarks of every operation of the scheme

in [13] and our extensions using multiple parameter values. We

stress that our evaluation results differ from the ones in the origi-

nal paper [13]. First, the implementations are written in different

languages and run on different processors. These differences are

significant when benchmarking cryptographic primitives, which

mostly involve bit manipulations. Second, we have obtained the

original code of [13] and we have noticed distinctions in bench-

mark methodologies. The original code pre-computes some values

(pairings) during the signature phase, and therefore this time is not

included in the proof generation and verification stages. Our bench-

marks involve no pre-computations to produce more fair results.

Third, our scheme includes pseudonym commitments, which add

noticeable overhead for small values of L and n. Overall, given that

our code is production-ready, generic and open-sourced, we want

our benchmarks to be treated independently of the previous work.

In the following, L stands for the number of delegation levels, n
stands for the number of attributes per level, which we set to be

the same for every level for simplicity. All benchmarked operations

were run 100 times. Note that the most sensitive overhead is due to

verification, since it is the operation that will be run by the entire

Fabric network. In Fabric, having L = 2 and n = 2 covers most

use-cases. We noticed that the overhead value is very sensible, thus

for fairness we present the results with the highest overhead.

8.1.1 Optimizations First of all, we wanted to demonstrate the im-

provement due to our optimizations. We have run the benchmarks

Orlando ’20, November 09–13, 2020, Orlando, NY Bogatov et al.

with all combinations of e-product and parallelization optimiza-

tions (see Table 1). Results show that for the most commonly-used

parameter values the improvement is almost fivefold.

e-product Parallelization

CredProve CredVerify

Big Small Big Small

disabled disabled 2 873 843 1 523 948

enabled disabled 1 312 341 853 372

disabled enabled 1 480 357 890 352

enabled enabled 890 191 391 197

Improvement (≈ times) 3.2 4.4 3.9 4.8
Table 1: Optimizations benchmark for L = 2 and n = 2 (small) and

L = 5 and n = 3 (big). The values are in milliseconds.

8.1.2 Different parameters With optimizations enabled we have

run the operations formultiple combinations of levels and attributes.

In Table 2 we put the proof generation and verification times along

with the generated proof size for L ∈ {1, 2, 3, 5, 10} and n ∈ [0; 4].

In all cases all attributes are hidden — the overhead difference

when all attributes are revealed is minimal. We can confirm that

the overhead and proof size grow linearly with L and n.

L
n

0 1 2 3 4

1

41 ms 51 ms 63 ms 72 ms 82 ms

89 ms 110 ms 116 ms 153 ms 173 ms

398 B 534 B 670 B 806 B 942 B

2

94 ms 138 ms 192 ms 255 ms 315 ms

124 ms 158 ms 198 ms 262 ms 310 ms

801 B 1.2 kB 1.6 kB 2.0 kB 2.4 kB

3

173 ms 273 ms 367 ms 516 ms 616 ms

188 ms 249 ms 329 ms 387 ms 427 ms

1.2 kB 1.7 kB 2.3 kB 2.8 kB 3.3 kB

5

333 ms 542 ms 661 ms 891 ms 1 146 ms

276 ms 342 ms 391 ms 500 ms 648 ms

2.0 kB 2.9 kB 3.9 kB 4.8 kB 5.7 kB

10

822 ms 1 177 ms 1 652 ms 2 115 ms 2 666 ms

457 ms 638 ms 860 ms 1 053 ms 1 234 ms

4.0 kB 6 kB 8 kB 10 kB 12 kB

Table 2: Parameters benchmark. In each cell the top value is a proof
generation overhead, the middle value is a proof verifica-
tion overhead and the bottom value is the proof size.

8.1.3 Extensions Table 3 depicts the performance results for the

helper methods. Each method was run in both G1 and G2 (judged

by the number of operations in a group). Note that operations inG2

are considerably slower in AMCL and that revocation routines are

relatively slower due to the use of pairing in proofs. Our future work

is to apply the optimizations we used with delegatable credentials

scheme to this procedure as well.

Also note that adding pseudonyms, enabling auditing and prov-

ing possession of the secret key incur little overhead relative to the

cost of credential proof generation.

Procedure

Time

Procedure

Time

G1 G2 G1 G2

Groth.KeyGen 1.6 4.7 Groth.Sign 16 41

Groth.Randomize 11 23 Groth.Verify 53 62

Schnorr.Sign 1.6 4.8 Schnorr.Verify 2 9.6

AuditEncrypt 3 9.4 NRSign 14 30

AuditProve 5.8 24 NRProve 66 88

AuditVerify 9.2 39 NRVerify 127 149

MakeNym 2.1 9.4 ProvePK 3.1 9.4

SignNym 2.2 9.9 VerifyPK 2 9.5

VerifyNym 3.5 14 KeyGen 1.5 4.2

Table 3: Running time of extensions in milliseconds.

8.1.4 Against older idemix We have run the benchmarks against

the non-delegatable idemix implementation currently in Fabric and

against the Fabric MSP with no anonymity (see Section 3.2). The

default (non-idemix) Fabric MSP simply uses X.509 certificates and

ECDSA algorithms [33] for signatures and verifications. The cur-

rent idemix implementation in Fabric [14] uses BBS+ signatures [7].

A user in this construction essentially proves knowledge of a signa-

ture on her attributes. This mechanism however, does not support

delegation.

We have run a simple workload — generating secrets, signing and

verifying identities — for all three mechanisms. For the default MSP

we have run ECDSA algorithms available in Go crypto module

using the P-384 curve — the most secure option available in Fabric.

For the Fabric idemix MSP we have run the entire workload against

the actual Go code in the official repository [18] using five attributes.

Lastly, we have run the workload with our solution using a single

level and five attributes.

Experimental results show the relative costs of usingmore privacy-

preserving solutions. Default MSP takes 21 ms, idemix MSP in Fab-

ric takes 108 ms and our solution takes 210 ms. Reasonably, themore

anonymity a solution offers, the more expensive it is. We believe

that this overhead is acceptable, given that privacy-preserving MSP

operations are tailored for applications that see value in trading

gains in performance for gains in privacy.

8.2 Revocation authority overhead
The revocation functionality requires a single (possibly distributed)

revocation authority. A legitimate concern is that the revocation

authority could become a bottleneck in a real-world deployment, as

at the beginning of each epoch users need to update their revocation

credentials to be able to submit transactions. We contend that in

most cases this will not be an issue for the following reasons. First,

since the users require the handle to submit transactions, we can

safely assume that they will only request it when they are about

to submit a transaction. Therefore, the load is more likely to be

distributed, especially for long epochs. For short epochs a user

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric Orlando ’20, November 09–13, 2020, Orlando, NY

may not even need the handle if she does not wish to submit a

transaction. Second, the overhead of issuing the non-revocation

handle is 15 ms to 30 ms, which is much smaller than the time

it takes to process an anonymous transaction. This means that

a faster revocation authority does not necessarily result in any

improvement on the perceived performance of the network (i.e.,

transaction throughput).

To validate our intuition, we designed a minimalistic server in

Go that uses our library to process requests for non-revocation

handles. We observed a stable 200 requests per second throughput

on our testing machine. We note that the real deployment will likely

use a replicated service, which will scale horizontally.

9 Fabric simulation
We have built a standalone Hyperledger Fabric simulator to empiri-

cally assess the computation and network overhead of our imple-

mentation. We believe that this new simulator is of independent in-

terest, and therefore, we open-sourced it together with a log parser,

an analyzer and plotting scripts [2]. We also note that although

our simulator faithfully mimics the processing and network com-

ponents of Fabric, it is still an idealized version of the latter. Thus,

the numbers we present here are a lower bound of the expected

integration cost.

9.1 Simulator
Our simulator integrates the cryptographic protocols of credentials

delegation and transaction processing (recall Algorithm 2). More

precisely, in the setup phase, root, revocation and auditing authori-

ties, intermediate organizations and users generate their secret and

public key pairs. The root delegates the credentials to organizations,

which delegate them further to their respective users. Peers are

spawned as processes waiting for events with event loops.

In the transactions phase, all users submit a configured num-

ber of transactions. Transactions are submitted sequentially for

a single user but in parallel among all users. Users wait a config-

urable amount of time, sampled from Poisson distribution, before

submitting the next transaction. Transaction processing requires

executing the chaincode and computing read/write sets, which in-

volves running a Docker container. We model this stage by waiting

50 ms — average time it takes to execute the simplest chaincode.

In the auditing phase, an auditor goes over all transactions de-

crypting the user public keys. For each transaction, simulator re-

ports the processing time — total and broken up into stages. It also

reports all network traffic for all transferred objects in a simulation.

Network log is further processed with scripts to produce statistics

and plots.

The network is composed of a global switch to which every party

is connected, and a local switch per each party. The bandwidth of

all switches is configurable — lower value for local and higher value

for global. Once a party schedules an object transfer, such as user

sending a transaction proposal to an endorser, the sender waits the

time it takes to transfer the object through the pipeline. A pipeline

consists of local switches of sender and receiver and a global switch.

If any switch is occupied the sender waits in a queue. This network

setup allows for a very fine-grained control and reporting.

When making design decisions, we chose very conservative

options to measure the worst-case overhead. For example, we wait

for all peers to validate a transaction, not for 50% + 1. We also

have organizations and users associated with two attributes each

to closely emulate typical Fabric deployment.

There are 14 parameters in the simulator, such as the number of

users and organizations, bandwidth, maximum number of concur-

rent operations at different stages, etc. We have run our simulator

with different arguments, and we report here the most relevant

results.

9.2 Results
We started by measuring the time it takes to distribute and validate

credentials for 10 organizations with 100 users in total (2 levels, 2

attributes each). The measurements show that this setup operation

takes 15 seconds.

The first simulation we have run is a hypothetical best-case sce-

nario: a single user, a single organization and a single endorser, all

with high bandwidth. The user sequentially submits 100 transac-

tions, each includes a proof of non-revocation and the encryption

for auditing. The time it takes to generate, validate and commit

a single transaction is just below a second on average (969 ms).

Disabling auditing and revocation saves additional 215 ms. Out of

this second, 187 ms is spent on endorsement, whereas validation

takes 451 ms. The rest is taken by user’s actions: credential proof

generation, signing, collecting and verifying endorsements, etc.

Auditing takes 937 ms, which corresponds to the decryption of

the ElGamal ciphertexts (100 decryptions).

The second simulation was run with two users and two peers and

each transaction requires two endorsements. In this setting, partici-

pants compete for resources and wait for each other to complete

their tasks. Simulation results show that on average a transaction

takes 1.8 seconds to complete.

Next, we have run a simulation with a larger set of users and

peers (5 users, 3 peers, 2 endorsements) to saturate our testing

machine. Note that real Fabric deployment uses more powerful

machines, typically, peers have 16 vCPU [4]. On average, the trans-

action flow takes 2.7 seconds to complete in this setting.

We have analyzed the simulation log and found that the trans-

action processing time is sensitive to the number of concurrent

transactions that are being processed. We have also rerun the sim-

ulation without auditing and revocation capabilities and observed

that the resulting improvement is insignificant (about 5%).

We also tuned the bandwidth of our virtual network switches.

Predictably, when the bandwidth is set to a high value, the network

imposes no overhead, whereas when the bandwidth is low, network

becomes the bottleneck. Simulation has shown that the largest and

most frequent object traveling in the network is a 4.9 KiB transac-

tion. By tuning the bandwidth parameters in a binary search fashion,

we found that approximately at 40 KiB/s locally and 100 KiB/s glob-

ally the network overhead stops affecting the transaction processing

time. Typical Fabric deployment uses at least a 1 GiB/s network,

which means that the increased object sizes of our idemix will have

no effect on network performance.

Orlando ’20, November 09–13, 2020, Orlando, NY Bogatov et al.

transaction transaction-proposal endorsement non-revocation-request non-revocation-handle credentials Real latency (ms) Ideal latency (ms)

Intervals (20 milliseconds each)
0

2

4

6

8

N
um

be
r

of
 o

bj
ec

ts
 in

 th
e

ne
tw

o
rk

 p
er

 in
te

rv
al

2⁰

2⁵

2¹⁰

2¹⁵ Latency of the slow
est object in m

illiseconds per interval

Figure 2: Network log visualization (subset is shown, 18 transactions). Interval size is 20 ms. Simulation involves 5 users, 3 peers, 2 endorse-
ments, 20 KiB/s and 50 KiB/s local and global bandwidths, and epoch length 5 seconds. Bars show objects in the network, lines show
latencies. Latency scale is logarithmic.

Lastly, we have studied the effect of revocation on the average

transaction processing time. On top of benchmarking the revoca-

tion server in isolation (see Section 8.2), we have run a simulation

with frequent revocations. We have set the epoch length to 5 sec-

onds and observed no significant change in the simulation results.

Non-revocation request is just a small stage in a transaction sub-

mission, and the transaction throughput is much smaller than that

of revocation processing.

To visualize network usage, we have plotted the network log

in Figure 2. The plot is generated from a 20 ms intervals, each bar

and tick represents data from a single interval. Bars on the bottom

show the objects traveling in the network in a given interval. Lines

on the top show the latency. Ideal latency is the time it takes to

transfer the object over an unsaturated network, i.e, object size over

bandwidth. Real latency shows how much time it actually took for

the slowest object in the interval. Among other things, the figure

shows that despite short epochs (5 seconds), revocation requests

do not result in any spikes in latency.

10 Conclusion
The possibility to perform transactions privately and anonymously

is crucial to the use of blockchain technology in many financial

and governmental use cases, as well as all use cases that involve

personal data. Anonymous transaction authorization, as achieved

through our implementation and extensions, is a key enabler for

blockchain technology in privacy-sensitive use cases.

The enhanced privacy guarantees incur a price in terms of com-

putational complexity in the transaction generation and achievable

throughput. For this reason, we identified points for optimization to

make the performance of delegatable credentials closer to practical.

The code of the cryptographic library implementing the anony-

mous credential scheme is already available as open source under

MIT license. The integration into Fabric is not yet publicly available.

Our goal is to make it a part of the standard Fabric distribution, and

we are working with the Fabric community toward this goal.

Future work
Our near-term future work will include improving the benchmarks

of the Fabric integration by running them in a fully distributed

setting with industry-standard compute nodes. We are also pursu-

ing open-sourcing the integration code, preferably as part of the

Hyperledger Fabric codebase.

While our work is an important step toward improving privacy

in permissioned blockchains, both security and performance of

our current solution can be further improved. In our current im-

plementation, the root certificate authority is still a central party.

Although it does not play an active role in the online protocols and

does not issue any certificates to users, we plan to implement a

threshold protocol in which the organizations participating in the

blockchain system jointly produce the first-level signatures, further

distributing the trust.

In Fabric, every transaction is executed (endorsed) only by a

subset of the peers, which allows parallel execution and addresses

potential non-determinism. A flexible endorsement policy specifies

which peers, or how many of them, need to vouch for the correct

execution of a given smart contract. Currently, the endorsement

policy reveals the identity of the involved peers. A future line of

work would be to remove this leakage. The idea is to equip the

peers with idemix credentials and use commitments to obfuscate

the endorsement policy. Then, after collecting all the required en-

dorsements, the client can prove in zero-knowledge the knowledge

of valid signatures that satisfy the obfuscated endorsement policy.

Acknowledgments
This work has been supported in part by the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No. 780477 PRIViLEDGE. We thank the authors of [13]

for giving us access to their source code. We also thank the program

committees of NDSS 2020 and USENIX Security 2020 for the deep

reviews. Finally, we thank George Kollios, Daria Bogatova and

Oleksandr Narykov for their early feedback.

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric Orlando ’20, November 09–13, 2020, Orlando, NY

References
[1] [n.d.]. Anonymized Repository for Delegatable Anonymous Creden-

tials library. https://anonymous.4open.science/r/1335dc45-3197-4d98-87b9-

6478edea78d0/. Accessed: 2020-02-12.

[2] [n.d.]. Anonymized Repository for Fabric Network and Crypto Simulator. https://

anonymous.4open.science/r/3238a9fe-0a23-4a8a-8bd0-08b26d1ee255/. Accessed:

2020-02-12.

[3] Dirk Achenbach, Carmen Kempka, Bernhard Löwe, and Jörn Müller-Quade. 2015.

Improved Coercion-Resistant Electronic Elections through Deniable Re-Voting.

In JETS ’15. USENIX.
[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-

perledger Fabric: A Distributed Operating System for Permissioned Blockchains.

In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18). 30:1–30:15.
https://doi.org/10.1145/3190508.3190538

[5] Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-

Kogias. 2018. Channels: Horizontal Scaling and Confidentiality on Permissioned

Blockchains. In ESORICS (LNCS, Vol. 11098), Javier Lopez, Jianying Zhou, and

Miguel Soriano (Eds.). Springer, 111–131.

[6] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar

Elkhiyaoui, and Björn Tackmann. 2019. Privacy-preserving auditable token pay-

ments in a permissioned blockchain system. Cryptology ePrint Report 2019/1058.

[7] Man Ho Au, Willy Susilo, and Yi Mu. 2006. Constant-size dynamic k-TAA.

In International conference on security and cryptography for networks. Springer,
111–125.

[8] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyanskaya, L. Reyzin, K.

Samelin, and S. Yakoubov. 2017. Accumulators with Applications to Anonymity-

Preserving Revocation. In 2017 IEEE European Symposium on Security and Privacy,
EuroS&P 2017, Paris, France, April 26-28, 2017. 301–315.

[9] Paulo SLM Barreto and Michael Naehrig. 2005. Pairing-friendly elliptic curves

of prime order. In International Workshop on Selected Areas in Cryptography.
Springer, 319–331.

[10] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In IEEE Symposium on Security and Privacy. IEEE, 459–
474.

[11] Fabrice Benhamouda, Angelo De Caro, Shai Halevi, Tzipora Halevi, Charanjit

Jutla, Yacov Manevich, and Qi Zhang. 2019. Initial Public Offering (IPO) on Per-

missioned Blockchain using Secure Multiparty Computation. In IEEE Blockchain.
IEEE.

[12] Johannes Blömer and Jan Bobolz. 2018. Delegatable Attribute-Based Anonymous

Credentials from Dynamically Malleable Signatures. In Applied Cryptography
and Network Security (LNCS, Vol. 10892). Springer, 221–239.

[13] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. 2017. Practical UC-

secure delegatable credentials with attributes and their application to blockchain.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 683–699.

[14] Jan Camenisch, Manu Drijvers, and Anja Lehmann. 2016. Anonymous Attestation

Using the Strong Diffie-Hellman Assumption Revisited. In Trust and Trustworthy
Computing. Springer International Publishing, 1–20.

[15] Jan Camenisch and Els van Heerweeghen. 2002. Design and implementation of

the idemix anonymous credential system. In ACM Conference on Computer and
Communication Security. ACM, 21–30.

[16] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

Third Symposium on Operating Systems Design and Implementation.
[17] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed

ledger. Theoretical Computer Science 777 (2019), 155–183.
[18] Hyperledger community. 2020. Hyperledger Fabric. https://github.com/

hyperledger/fabric.

[19] Elizabeth C. Crites and Anna Lysyanskaya. 2019. Delegatable Anonymous Cre-

dentials from Mercurial Signatures. In Topics in Cryptography — CT-RSA (LNCS,
Vol. 11405). Springer, 535–555.

[20] Manu Drijvers. 2018. Composable Anonymous Credentials from Global Random
Oracles. PhD thesis. ETH Zürich, Zürich, Switzerland.

[21] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina

Hostáková. 2019. Multi-party Virtual State Channels. In Advances in Cryptology
— EUROCRYPT (1) (LNCS). Springer, 625–656.

[22] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE transactions on information theory 31, 4 (1985),

469–472.

[23] Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-

mous Credentials. In NDSS. Internet Society.
[24] Christina Garman, Matthew Green, and Ian Miers. 2016. Accountable Privacy

for Decentralized Anonymous Payments. In Financial Cryptography and Data

Security (LNCS, Vol. 9603), Jens Grossklags and Bart Preneel (Eds.). Springer,

81–98.

[25] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.

SBFT: A Scalable and Decentralized Trust Infrastructure. In DSN. 568–580.
[26] Jens Groth. 2015. Efficient fully structure-preserving signatures for large mes-

sages. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 239–259.

[27] Lovesh Harchandani. 2019. Delegatable Anonymous Credentials in Rust. https:

//github.com/lovesh/signature-schemes/tree/delegatable/delg_cred_cdd.

[28] Oli Harris. [n.d.]. Quorum. https://www.goquorum.com/

[29] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Univer-

sally Composable Synchronous Computation. In Theory of Cryptography (LNCS,
Vol. 7785), Amit Sahai (Ed.). Springer, 477–498.

[30] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology — CRYPTO (LNCS, Vol. 10401), Jonathan Katz and Hovav Shacham

(Eds.). IACR, Springer, 357–388.

[31] S. Micali, M. Rabin, and J. Kilian. 2003. Zero-knowledge sets. In 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Proceedings. 80–91.

[32] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. https:

//bitcoin.org/bitcoin.pdf

[33] National Institute of Standards and Technology. 2013. FIPS PUB 186-4: Digital
Signature Standard. National Institute for Standards and Technology. https:

//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[34] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter

Wuille. 2018. Confidential Assets. In Financial Cryptography and Data Security
(LNCS, Vol. 10958), Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea

Bracciali, Federico Pintore, and Massimiliano Sala (Eds.). Springer, 43–63.

[35] Claus P. Schnorr. 1989. Efficient identification and signatures for smart cards.

In Advances in Cryptology — CRYPTO (LNCS, Vol. 435), Gilles Brassard (Ed.).

Springer, 239–252.

[36] Michael Scott. [n.d.]. The Apache Milagro Crypto Library. ([n. d.]). https:

//github.com/MIRACL/amcl

[37] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolić. 2019. Mir-BFT:

High-Throughput BFT for Blockchains. arXiv:1906.05552.

[38] Phillip J. Windley. [n.d.]. Sovrin. https://sovrin.org/

[39] Gavin Wood. [n.d.]. Ethereum: A secure decentralised generalised transaction
ledger. https://ethereum.github.io/yellowpaper/paper.pdf

[40] Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun. 2018. PRCash:

Fast, Private and Regulated Transactions for Digital Currencies. Cryptology

eprint archive: report 2018/412.

https://anonymous.4open.science/r/1335dc45-3197-4d98-87b9-6478edea78d0/
https://anonymous.4open.science/r/1335dc45-3197-4d98-87b9-6478edea78d0/
https://anonymous.4open.science/r/3238a9fe-0a23-4a8a-8bd0-08b26d1ee255/
https://anonymous.4open.science/r/3238a9fe-0a23-4a8a-8bd0-08b26d1ee255/
https://doi.org/10.1145/3190508.3190538
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/lovesh/signature-schemes/tree/delegatable/delg_cred_cdd
https://github.com/lovesh/signature-schemes/tree/delegatable/delg_cred_cdd
https://www.goquorum.com/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://github.com/MIRACL/amcl
https://github.com/MIRACL/amcl
https://sovrin.org/
https://ethereum.github.io/yellowpaper/paper.pdf

Orlando ’20, November 09–13, 2020, Orlando, NY Bogatov et al.

A Security analysis
Our theorem proving the security of the extended protocol builds

directly on the proof of the core protocol from [13]. A significantly

extended version of that proof appears in [20]. The main differences

are as follows. (1)Wewrite the scheme as a combination of standard

signatures and NIZK, instead of sibling signatures and NIZK as

used in [13, 20]. This is possible as we restrict ourselves to the case

where the length of each delegation chain is fixed. (2) We need the

NIZK to be non-malleable, as otherwise F
dac+

cannot identify the

correct credential owner during an auditing query. This, however,

is already implied by simulation-sound extractability. (3) We use

a clock functionality [29] to model the advancement of epochs

for the revocation scheme. We skip the parts of the description

of the protocol Π
dac+

and the proof that are identical to [13], and

only discuss the differences that appear due to the revocation and

auditing features.

Setup. In addition to root authority R, auditorAU creates a Diffie-

Hellman key pair and registers the public key. The auditor also

registers a proof-of-knowledge of the private key like root authority

R, at functionality Fca. We use the same scheme for AU as [13]

uses for R, so that we also achieve online extractability.

Advance. Upon input, the epoch counter T provides an input to

F
clock

, which advances the epoch.
1

Delegate. Delegation is almost the same, except for the last delega-

tion step (the one to the end user) where the delegator includes as

one attribute the current epoch obtained from F
clock

. In this step,

the delegator also deposits the delegate’s public key with AU.

Present. There are three modifications during presentation. The

first is that the user generates a new pseudonym and proves con-

sistency. The second is that a credential proof is only generated if

a relevant credential exists for the present epoch, and the attribute

that encodes the current epoch is always disclosed. The third one is

that, as explained in Section 5.3, the user encrypts their public key

under the auditor’s public key using AuditEnc and then proves

consistent encryption using AuditProve.

Verify. The changes are dual to the above ones. The receiver, in ad-

dition to the standard credential validation, checks the consistency

of the pseudonym, that the epoch attribute in the credential proof

is valid, and the consistency of the auditing proof.

Audit. Given a credential proof, the auditor first checks its valid-

ity. If the credential proof is valid, the auditor then extracts the

ciphertext that encrypts the user’s key and decrypts it.

Theorem 1. Delegatable credentials protocol Π
dac+

securely re-

alizes F
dac+

in the (Fsmt,Fca,Fcrs,Fclock
)-hybrid model, provided

that

• SignNym is a strongly unforgeable signature,

• the auditing encryption is semantically secure,

• NIZK is a simulation-sound extractable non-interactive zero-

knowledge proof.

The proof holds for static corruption of AU.

1
Other parties interact with F

clock
to read the epoch. They technically also provide

input to F
clock

, which is required for modeling a synchrony assumption such as epochs

in the otherwise asynchronous UC framework [29].

Proof. We extend the proof of [13] to the functionality we added

to the scheme. In Setup, the additional setup phase of auditor AU

is proved analogously to that of the root authority. This includes

the extraction of the private key if AU is corrupt; in that case the

simulator sets pp to include the auditor’s public key as well as public
keys for all parties. If AU is honest, algorithm Param provides a

fresh random key. Advance in F
dac+

means that all issued credential

proofs become invalid, and that the last-level delegations are deleted

from L
de
. The same effect appears in the protocol, where the epoch

advanced and inputs with old credential proofs to VERIFY will fail,

as will the presentation of credentials that have been issued in an

earlier epoch. Delegate behaves the same as before.

In the presentation phase, the credential proof p returned by the

functionality contains multiple additional elements (which in F
dac+

are generated by the algorithm Present). The first two are pknym
and σnym, the pseudonym generated for this presentation and the

signature onm. The next two are enc and Paudit, the encryption
of the user’s public key pk under the auditor’s public key apk, and
the NIZK proving the correctness of this encryption. Algorithm

Present generates the credential proof by building a fresh delega-

tion chain with fresh keys and only the specified attributes; the only

exception is that if AU is corrupt, then the correct user’s public

key, as indicated by the additional argument to Present, is chosen
from pp and encrypted under the auditor’s key. If AU is honest,

then Present includes an encryption of a random message under

the simulated auditor’s public key in p. Present sets the additional
values as follows: pknym and σnym are set to a fresh pseudonym

and a signature relative to pknym and the also fresh user public

key. If AU is corrupt then the encryption of the user public key

under apk and the corresponding zero-knowledge proof are com-

puted as in the scheme using the values from pp. If AU is honest,

then (as discussed) a random encryption is chosen and the proof is

simulated. This simulation requires that the encryption scheme is

semantically secure and the NIZK is zero-knowledge to ensure that

the consistency proof for the encryption is indistinguishable from

a real proof, and that as in [13] fresh delegations are indistinguish-

able from the real world where the same delegations are used for

multiple presentations.

In the verification phase, in both the real and the ideal cases,

the verification algorithm is used to verify p. While in the ideal

case with honest auditor the auditing proof is simulated, this will

also successfully verify in Verify. The main difference is that F
dac+

prevents forgeries ideally whereas the protocol merely relies on

the verification of the zero-knowledge proofs. The functionality

also ensures that, for credential proofs that are accepted, their

holders are known, therefore auditing will succeed. In the ideal

world, the simulator knows the private key of AU (since it is

chosen by the simulator if AU is honest, or extracted if AU is

corrupt), and can therefore obtain the public key of the credential

holder. This difference is indistinguishable by the simulation-sound

extractability of the zero-knowledge proofs and the unforgeability

of the signature scheme. Note that, in contrast with [13], we allow

verification to succeed only for credential proofs p that have either

been generated by F
dac+

or are valid for corrupt parties. This in

particular means that credential proofs are non-malleable, but non-

malleability is already implied by simulation-sound extractability.

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric Orlando ’20, November 09–13, 2020, Orlando, NY

Let sid = (R,AU,T ,L,Param, sid ′) be the session identifier.

(1) Setup. On input (SETUP, ⟨ni ⟩i) from root R.

• Output (SETUP, ⟨ni ⟩i) to A and wait for response

(SETUP, pp′,Present,Verify, ⟨Ai ⟩i) from A.

• Store algorithms Present and Verify and parameters

⟨Ai ⟩i , ⟨ni ⟩i , initialize Lde
,Lp,Lau ← ∅. If AU is cor-

rupt set pp← pp′, else set pp← Param().

• Output SETUPDONE to R.

On input SETUP from AU, output (SETUP,AU) to A,

wait for response; output SETUPDONE to AU.

(2) Advance. On input ADVANCE from T , set Lp ← ∅,

L
de
← {⟨Pi , ®a1, . . . , ®al ⟩ ∈ Lde

: l < L}.
(3) Delegate. On input (DELEGATE, ssid, ®a1, . . . , ®al ,Pj) from

some party Pi , with l ≤ L and ®al ∈ A
nl
l .

• If l = 1: check sid = (Pi ,AU,T ,L, sid ′), else abort.
• If l > 1, check that ⟨Pi , ®a1, . . . , ®al−1

⟩ ∈ L
de
, else abort.

• Output (ALLOWDEL, ssid,Pi ,Pj , l) to A; wait for in-

put (ALLOWDEL, ssid) from A.

• Add an entry ⟨Pj , ®a1, . . . , ®al ⟩ to Lde
.

• Output (DELEGATE, ssid, ®a1, . . . , ®al ,Pi) to Pj .

(4) Present. On input (PRESENT,m, ®a1, . . . , ®aL) from some

party Pi , with ®ai ∈ (Ai ∪ {⊥})
ni

for i = 1, . . . ,L.
• Check that an entry ⟨Pi , ®a

′
1
, . . . , ®a′L⟩ exists in Lde

such

that ®ai ⪯ ®a
′
i for i = 1, . . . ,L.

• If AU honest, set p ← Present(pp,m, ®a1, . . . , ®aL ;

⊥), else p ← Present(pp,m, ®a1, . . . , ®aL ;Pi). Abort if

Verify(pp,p,m, ®a1, . . . , ®aL) = 0.

• Store ⟨m, ®a1, . . . , ®aL ,p⟩ in Lp and ⟨p,Pi ⟩ in Lau.

• Output (PROOF,p) to Pi .
(5) Verify. On input (VERIFY,p,m, ®a1, . . . , ®aL) from Pi .

• If ⟨m, ®a1, . . . , ®aL ,p⟩ ̸∈ Lp , R is honest, and for i =

1, . . . ,L, there is no corrupt Pj with ⟨Pj , ®a
′
1
, . . . , ®a′i ⟩

∈ L
de

and ®aj ⪯ ®a
′
j for j = 1, . . . , i , set f ← 0.

• Else, output (VERIFY,p) to A; expect response

(VERIFY,P). Set f ← Verify(pp,p,m, ®a1, . . . , ®aL). If

P corrupt ∧ f then add ⟨p,P⟩ to Lau.

• Output (VERIFIED, f) to Pi .

(6) Audit. On input (AUDIT,p) from AU, if ⟨p,P⟩ ̸∈ Lau,

output (AUDIT,p) toA. Upon obtaining (AUDIT,P) from

A, where P is corrupted, store ⟨p,P⟩ in Lau. If now there

is a valid record ⟨p,P⟩ in Lau, then output (RESULT,P)

to AU. Else, output ⊥ to AU.

Figure 3: Extended credentials functionality F
dac+

.

When honest AU inputs a credential proof p, the embedded ci-

phertext is decrypted. For credential proofs generated by an honest

Pi this will always succeed. For those not generated by an honest

Pi , the functionality lets the adversary decide on the identity of

the holder; the adversary can choose any corrupted party. The sim-

ulator can decrypt the auditing field of the credential proofs using

the secret key of the auditor (which in case of a dishonest auditor

has been extracted during setup). Indistinguishability again follows

by the zero-knowledge property of the NIZK.

□

B Algorithms

Orlando ’20, November 09–13, 2020, Orlando, NY Bogatov et al.

Algorithm 3 Improved proof generation and verification. Green is refactored, red corrects mistakes in the original code.

1: procedure CredProve(⟨ri , si , ⟨ti, j ⟩
ni+1

j=1
⟩Li=1
, csk, ⟨cpki ⟩

L
i=1
, ⟨ai, j ⟩i=1, ...,L;j=1...,ni ,D, sknym,m)

2: for i = (1, . . . ,L) do

3: ρσi ←$Zq , r
′
i := r

ρσi
i , s ′i := s

1

ρσi
i

4: for j = 1, . . . ,ni + 1 do

5: t ′i, j := t
1

ρσi
i, j

6: ⟨ρsi , ⟨ρti, j ⟩
ni+1

j=1
⟩Li=1
, ⟨ρai, j ⟩(i, j)/∈D , ⟨ρcpki ⟩

L−1

i=1
, ρcsk, ρnym ←$Zq

7: for i = (1, . . . ,L) do
8: if i mod 2 = 1 then
9: д1 := sp.д1, д2 := sp.д2, y := sp.y1

10: else
11: д1 = sp.д2, д2 = sp.д1, y = sp.y2

12: comi,1 := e (д1, ri)
ρσi ·ρsi

[
·e

(
д−1

1
,д2

)ρcpki−1

]
i ̸=1

13: comi,2 := e (д1, ri)
ρσi ·ρti,1 · e

(
д1,д

−1

2

)ρcpki [
·e (y1,д2)

ρcpki−1

]
i ̸=1

14: for j = (1, . . . ,ni) do
15: if (i, j) ∈ D then
16: comi, j+2 := e (д1, ri)

ρσi ·ρti, j+1

[
·e

(
yj+1,д2

)ρcpki−1

]
i ̸=1

17: else
18: comi, j+2 := e (д1, ri)

ρσi ·ρti, j+1 · e
(
д1,д

−1

2

)ρai, j [
·e

(
yj+1,д2

)ρcpki−1

]
i ̸=1

19: comnym := д
ρcpkL
1

hρnym

20: c := Hash(sp.cpk
0
, ⟨r ′i , ⟨comi, j ⟩

ni+2

j=1
⟩Li=1
, comnym,⟨ai, j ⟩(i, j)∈D ,m)

21: for i = (1, . . . ,L) do
22: if i mod 2 = 1 then д := д1

23: else д = д2

24: psi := дρsi s ′ci ,
[
pcpki := дρcpki cpkci

]
i ̸=L

,

[
pcsk := ρcpkL + c · csk

]
i=L

,

[
pnym := ρnym + c · sknym

]
i=L

25: for j = 1, . . . ,ni + 1 do
26: pti, j := д

ρti, j t ′ci, j

27: for j : (i, j) /∈ D do
28: pai, j := д

ρai, j aci, j

29: return c, ⟨r ′i ,psi , ⟨pti, j ⟩
ni+1

j=1
⟩Li=1
, ⟨pai, j ⟩(i, j)/∈D , ⟨pcpki ⟩

L−1

i=1
,pnym,pcsk

30: procedure CredVerify(c, ⟨r ′i ,psi ⟨pti, j ⟩
ni+1

j=1
⟩Li=1
, ⟨pai, j ⟩(i, j)/∈D , ⟨pcpki ⟩

L−1

i=1
,pcsk, ⟨ai, j ⟩(i, j)∈D ,D, pknym,m)

31: for i = (1, . . . ,L) do
32: if i mod 2 = 1 then
33: д1 := sp.д1, д2 := sp.д2, y := sp.y1

34: else
35: д1 = sp.д2, д2 = sp.д1, y = sp.y2

36: comi,1 := e
(
psi , r

′
i

)
· e (y1,д2)

−c
[
·e

(
д−1

1
,pcpki

)]
i ̸=1

[
·e

(
д1, sp.cpk0

)−c]
i=1

37: comi,2 := e
(
pti,1 , r

′
i

) [
·e

(
y1,pcpki−1

)]
i ̸=1

[
·e

(
y1, sp.cpk0

)−c]
i=1

[
·e

(
pcpki ,д

−1

2

)]
i ̸=L

[
·e

(
д1,д

−1

2

)pcsk]
i=L

38: for j = (1, . . . ,ni) do
39: if (i, j) ∈ D then
40: comi, j+2 := e

(
pti, j+1

, r ′i

)
· e

(
ai, j ,д2

)−c [
·e

(
yj+1,pcpki−1

)]
i ̸=1

[
·e

(
yj+1, sp.cpk0

)−c]
i=1

41: else
42: comi, j+2 := e

(
pti, j+1

, r ′i

)
· e

(
pai, j ,д

−1

2

) [
·e

(
yj+1,pcpki−1

)]
i ̸=1

[
·e

(
yj+1, sp.cpk0

)−c]
i=1

43: comnym := дpcsk
1

hpnympk−cnym
44: c ′ := Hash(sp.cpk

0
, ⟨r ′i , ⟨comi, j ⟩

ni+2

j=1
⟩Li=1
, comnym,⟨ai, j ⟩(i, j)∈D ,m)

45: return c = c ′

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric Orlando ’20, November 09–13, 2020, Orlando, NY

Algorithm 4 Pseudonym and public key possession proof algorithms

1: procedure MakeNym(csk)
2: sknym ←$Zq

3: pknym := дcskhsknym

4: return sknym, pknym
5: procedure SignNym(pknym, sknym, csk,m)

6: ρ1, ρ2 ←$Zq
7: com := дρ1hρ2

8: c := Hash(com, pknym,m)

9: pcsk := ρ1 + c · csk
10: pskNym := ρ2 + c · sknym
11: return c,pcsk,pskNym

12: procedure VerifyNym(pknym,m, c,pcsk,pskNym)
13: com = дpcskhpskNympk−cnym
14: return c = Hash(com, pknym,m)

15: procedure ProvePK(csk, cpk, nonce)
16: ρ ←$Zq
17: com := дρ

18: c := Hash(com, cpk, nonce)

19: p := ρ + c · csk
20: return c,p

21: procedure VerifyPK(c,p, cpk, nonce)
22: com = дpcpk−c

23: return c = Hash(com, cpk, nonce)

Algorithm 5 Non-revocation proof generation and verification algorithms

1: procedure NRProve(σ , csk, sknym, epoch)
2: (r ′, s ′, t ′

1
, t ′

2
)←$ Groth.Randomize(σ)

3: ⟨ρ⟩1...4 ←$Zq

4: com1 := e
(
r ′,д

ρ1

2

)
· e

(
д−1

1
,д

ρ2

2

)
5: com2 := e

(
r ′,д

ρ3

2

)
6: com3 := д

ρ2

1
hρ4

7: c := Hash(r ′, s ′, com1, com2, com3, epoch)

8: p1 := д
ρ1

2
t ′
1

c

9: p2 := ρ2 + csk · c
10: p3 := д

ρ3

2
t ′
2

c

11: p4 := ρ4 + sknym · c
12: return c, ⟨p⟩1...4, r

′, s ′

13: procedure NRSign(rsk, cpk, epoch)
14: ε := Hash(epoch)

15: return Groth.Sign(rsk; cpk,дε)

16: procedure NRVerify(c, ⟨p⟩1...4, r ′, s ′, pknym, epoch)
17: if e (r ′, s ′) ̸= e (д1,y1) · e (rpk,д2) then
18: return false
19: ε := Hash(epoch)

20: com1 := e (r ′,p1) · e
(
д−1

1
,д2

)p2 · e (rpk,y1)
−c

21: com2 := e (r ′,p3) · e (rpk,y2)
−c · e

(
д1,д

ε
2

)−c
22: com3 := дp2

1
hp4pk−cnym

23: c ′ := Hash(r ′, s ′, com1, com2, com3, epoch)

24: return c = c ′

Algorithm 6 Auditing proof generation and verification algorithms

1: procedure AuditProve(enc, ρ, cpk, csk, pknym, sknym)
2: ⟨ρ⟩1...3 ←$Zq
3: com1 := дρ1apkρ2

4: com2 := дρ2

5: com3 := дρ1hρ3

6: c := Hash(com1, com2, com3, enc, pknym)

7: p1 := ρ1 + c · csk
8: p2 := ρ2 + c · ρ
9: p3 := ρ3 + c · sknym
10: return c, ⟨p⟩1...3

11: procedure AuditEnc(apk, cpk) ▷ ElGamal

12: ρ ←$Zq
13: enc := (enc1, enc2) := (cpk · apkρ ,дρ)
14: return enc, ρ

15: procedure AuditVerify(c, enc, ⟨p⟩1...3, pknym)
16: com1 := дp1apkp2enc−c

1

17: com2 := дp2enc−c
2

18: com3 := дp1hp3pk−cnym
19: c ′ := Hash(com1, com2, com3, enc, pknym)

20: return c = c ′

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Hyperledger Fabric
	3.2 Authentication, authorization and Identity Mixer in Fabric
	3.3 Notation

	4 Delegatable anonymous credentials
	4.1 Algorithms
	4.2 Instantiation of the scheme

	5 Auditable delegatable anonymous credentials with revocation
	5.1 Security definition
	5.2 Revocation
	5.3 Audit
	5.4 Security statement

	6 Optimized implementation
	6.1 Refactored pseudocode
	6.2 Parallelization
	6.3 Miller's loop and final exponentiation

	7 Integration with Hyperledger Fabric
	7.1 Including pseudonyms in proof
	7.2 Submitting transactions

	8 Benchmarks
	8.1 Anonymous and auditable delegatable credentials with revocation
	8.2 Revocation authority overhead

	9 Fabric simulation
	9.1 Simulator
	9.2 Results

	10 Conclusion
	Acknowledgments
	References
	A Security analysis
	B Algorithms

