
Fawkescoin
A cryptocurrency without public-key cryptography

Joseph Bonneau1 and Andrew Miller2

1 Princeton University
2 University of Maryland

Abstract. We present, Fawkescoin, a simple cryptocurrency using no
public-key cryptography. Our proposal utilizes the distributed consensus
mechanism of Bitcoin but for transactions replaces Bitcoin’s ECDSA sig-
natures with hash-based Guy Fawkes signatures. While this introduces
a number of complexities, it demonstrates that a distributed cryptocur-
rency is in fact possible with only symmetric cryptographic operations
with no dramatic loss of efficiency overall and several efficiency gains.

1 Introduction

Bitcoin [9] is a distributed, peer-to-peer digital currency system, which uses a
public append-only ledger to maintain consensus about the ownership history
of all coins in the system. The ledger is maintained by a community of mutu-
ally distrusting miners using economic incentives to maintain consensus. Bitcoin
has demonstrated the possibility that an append-only ledger can be maintained
in a decentralized manner. The consensus mechanism requires no public key
cryptography, utilizing only hash computations.

However, coins in Bitcoin are controlled by public-key signatures. Technically,
all bitcoins are controlled by a transaction script which indicates the conditions
under which they may be transferred to another script. Most often, this script
requires a signature from one or more designated public keys, so ownership of
the key entails ownership of the bitcoins assigned to the transaction script. The
only signature algorithm currently supported is Elliptic Curve DSA over the
NIST P-256 curve.

We propose a new cryptocurrency scheme called Fawkescoin which shows
that, surprisingly, it is possible to build a system with similar properties to
Bitcoin using no asymmetric cryptography at all. The only cryptographic prim-
itive required is a one-way, preimage-resistant3 hash function with no length
extension attacks. SHA-3 (Keccak) [2] is a candidate, or any Merkle-Damg̊ard
function with the length unambiguously prepended to the input [3]. Fawkescoin
is extremely simple for clients, with coin ownership controlled by knowledge of
a hash preimage instead of knowledge of a private key.

We could build a cryptocurrency without public-key operations in a very
straightforward manner by adapting a variant of Lamport’s one-time signature

3 Collision resistance is a more challenging property, but this is not necessary here.

2

scheme [5], as Bitcoin keys need only be used to sign one message. However,
even with compression techniques [8] these schemes result in signatures which,
at thousands of bits, are considered unwieldy by the Bitcoin community.

Instead our construction builds on the Guy Fawkes signature protocol [1],
demonstrated by Anderson et al. in 1998 to enable secure signatures using only a
hash function and a secure timeline service. Observing that Bitcoin’s block chain
must serve as a secure timeline service for the currency to work, we can replace
Bitcoin’s ECDSA signatures with Guy Fawkes-style signatures and achieve an
efficient digital currency with only symmetric cryptography.

2 Simplified Fawkescoin protocol

We assume the existence of a mechanism for maintaining global consensus on an
append-only log, which is usually called the block chain in Bitcoin. The block
chain imposes a partial ordering over transactions, which need not be a total
ordering. Transactions may be published in batches, usually called blocks.

In Bitcoin, this is achieved (with some issues [4,10] and objections [6]) by
a community of miners a solving a proof-of-work puzzle in exchange for newly
minted coins and a longest-chain rule in effect to establish consensus, but other
mechanisms would be suitable for our purposes. We assume, like in Bitcoin, that
the log may occasionally fork but consensus will eventually be re-established.
Temporary forks introduce a number of subtle issues to deal with, but we must
tolerate forks to be able to build on top of Bitcoin’s consensus model instead of
an ideal append-only log with no forks.

2.1 Minting

To mint coins, one inserts a special transaction into the ledger:

Mint : v; H (X)

A value of v now belongs to the address H (X), where X is a random, secret
value known only to the owner of the new address H (X) for a preimage-resistant
hash function H. The community must agree to rules about who has the right
to mint coins and with what values; this is outside the scope of our technical
definition. In Bitcoin, for example, miners may currently mint 25 new coins when
they find a new block, with this value scheduled to decline gradually over time.
A number of alternative cryptocurrencies have adopted different rules.

2.2 Transfer

To transfer coins from address H (X) to address H (Y), the owner publishes an
initial transfer message:

Transfer : H {X; H (Y)}

3

If this appears in the block chain in block i, this will serve as proof that whoever
crafted this message knew the value X at block i, which is crucial for establishing
that the coin was transferred by its proper owner. The owner of X must wait
until a sufficient number of subsequent blocks are published to ensure that this
message is permanently in the block chain before actually revealing X, so that
this proof of knowledge of X at time i is not overwritten by a block chain fork.

Once this is achieved, the owner of X publishes a second message to finalize
the transaction:

Finalize : X; H (Y)

This message allows anybody to verify the initial Transfer message in block i
committed to a transfer from H (X) to H (Y) and knew the value of X at the
time. Security rests on that fact that the Transfer message was published before
X was public knowledge, so only the legitimate owner of the address H (X)
could have inserted the Transfer message. Note that, because X is public once
the Finalize message is sent, H (X) can never again be used as an address.

As with Bitcoin, the owner of H (Y) must wait an additional confirmation
period before accepting that they control the coins to guard against double-
spending, since the owner of H (X) may have published a different Transfer
message that could be opened in the case of a fork. After a suitable confirma-
tion period, the address H (Y) owns the value v, which can be transferred to a
subsequent address H (Z) using the exact same protocol.

3 Complete Fawkescoin protocol

The simplified protocol is limited to transferring indivisible coins that forever
retain their initial value from the time of minting. We can easily modify the
messages to enable arbitrary splitting and merging of values. We also want to
include block index numbers in messages to avoid searching the entire block
chain during transaction verification. The Mint transaction needs no changes.

The Transfer messages now contains a list of input and output addresses:

Transfer : H {[(X0, i0), (X1, i1)...], [(H (Y0) , v0), (H (Y1) , v1), ...]}

The input addresses Xj must all be known to craft this transaction. The indices
ij indicate in which block each Xj ’s receipt of funds was finalized. Each output
address H (Yk) receives some value vk, with the obvious constraint that the total
of the inputs is greater than or equal to the total of the outputs.

The Finalize message is now simply:

Finalize : i; [(X0, i0), (X1, i1)...], [(H (Y0) , v0), (H (Y1) , v1), ...]

with all of the information from the Transfer message repeated and, for efficiency,
the block i in which the Transfer message appeared.

As with Bitcoin, it is now possible to implement a transaction that transfers
some holdings to a new address H (Y) and keep the “change” at a new address.
Bitcoin clients already create fresh addresses for change to increase anonymity,
though with Fawkescoin the change address must be new to ensure security.

4

4 Preventing race-condition theft and DoS by miners

Without further mechanisms, the owner of a coin is vulnerable to a race-condition
after broadcasting their Finalize message. Anybody receiving this message (in-
cluding the miners, who must see it in the pending transaction pool) could
observe the value X and attempt to block the publication of the Finalize mes-
sage by quickly crafting and publishing their own Transfer and Finalize messages
sending the value held by X to their own address Z.

4.1 Earliest Transfer wins

One mitigation is an “earliest Transfer wins” rule, which specifies that if two
Finalize messages are published for the same X, then whichever one corresponds
to an earlier Transfer message wins. This ensures the legitimate owner can always
control transfer of the coin, since they can always publish a valid Transfer message
before anybody else.

However, this introduces a double-spending attack. The recipient of a coin can
never trust that their ownership is beyond dispute, because the legitimate owner
may have published an earlier Transfer message that remains latent in the block
chain. To prevent this we must establish a maximum time-limit ∆ beyond which
a Transfer message is considered invalid if not matched by a Finalize transaction.
A recipient can then be confident in their ownership of a coin if no other party
tries to claim it after ∆ have been passed since the Transfer message transferring
the coin to them.

4.2 Optimization via transaction tagging

The ∆ block waiting period for transaction confirmation can be removed by
tagging each Transfer message in a way that unambiguously ties the message to
X, so one can safely determine that there are no earlier valid Transfer messages in
the block chain that might correspond to X. To do so requires appending to each
Transfer message a tag H′ (X) computed using a tweaked hash function. This
portion of the Transfer message will be identical for any valid Transfer message
involving X but reveals no information about X.

4.3 Preventing DoS with Guy Fawkes multi-use signatures

The anti-theft mechanisms in turn introduces a potential denial-of-service attack:
if a coin owner relays a valid Finalize transaction but miners can prevent it from
appearing in the block chain within ∆ blocks, then they can use the revealed
secret value X to publish their own Transfer and Finalize messages to claim the
coin which can’t be overridden by the earlier Transfer. We would like a rule then
that if a Transfer message isn’t matched within ∆ blocks, the corresponding value
X can no longer be used to redeem the coin. Now miners can’t steal a coin by
delaying the Finalize message past the cutoff of ∆ blocks, but they can cause the
coin to be unspendable.

5

This can be prevented by using a modified Guy Fawkes algorithm which
enables multiple signatures per public address, giving the legitimate coin owner
multiple chances to overcome a denial-of-service attack. There are two potential
ways to implement this. One is by publishing an iterated hash Hn (X) as the
public address, with each preimage Hi (X) for 1 ≤ i < n serving as a secret which
can be revealed. The second is by using the root of a Merkle tree HMerkle (X)
with n leaves, each of which is a preimage that can be revealed. Either allows n
signatures from a single public address. The first scheme has signatures of size
Θ(1) that require Θ(n) hash computations to verify; the second scheme produces
signatures of size Θ(lg n) which require Θ(lg n) hash computations to verify. We
expect in practice the first scheme will be preferable.

With either construction, we can provide reasonable guarantees against ex-
tended denial of service as in the worst case that the legitimate owner can’t
publish anything for ∆ blocks they will have n additional attempts to spend
their coin. We also must extend the tag to include the index of the preimage to
be revealed, so the transaction tag would be H′ (X||i) if the ith preimage must
be revealed.

4.4 Choosing an expiry delay

With a first-Transfer wins rule and tagging, we might recommend a Transfer ex-
piry delay of 12 blocks. This lets a client publish a Finalize message 6 blocks after
the Transfer message is published, allowing the standard confirmation period of
6 blocks to be confident the Transfer message is permanently in the block chain,
and still leaving 6 blocks to get a Finalize message placed in the block chain in
case of malicious miners. In the common case this will add no apparent latency
to the recipient(s) in the transaction as they will wait an additional 6 blocks’
confirmation period to accept the transaction anyways, at which point they can
accept that they have received funds.

This could be established as a global constant, or better yet embedded into
X itself. For example, we might reserve by convention the high-order 16 bits of a
256-bit X value to represent ∆. This value will then be publicly known as soon
as X is published.

5 Comparison to Bitcoin

We claim that Fawkescoin replicates the core functionality of Bitcoin as it is
used today, with no public-key cryptography. Some observations:

5.1 Cryptographic security

Bitcoin’s security inherently depends on the security of the hash function used
in its signature scheme. Therefore Fawkescoin is strictly more secure from a
cryptographic standpoint as it has no reliance on the security of elliptic curve
cryptography. This eliminates the risk of a catastrophic algorithmic break of

6

discrete log on the curve P-256 or rapid advances in quantum computing. It also
reduces the risk of implementation flaws, as it is considered far easier to securely
implement a hash function than asymmetric cryptographic primitives.

Fawkescoin also significantly reduces the risk of subtle entropy failures. Steal-
ing funds from Fawkescoin requires finding a second preimage for a hash output
of a random input X, the difficulty of which degrades gracefully as the strength
of the random number generator X degrades. With elliptic curves, there are a
number of subtle flaws arising from biased random numbers, particularly if a
key is used repeatedly with non-random nonces. In practice, the risk is much
lower in Bitcoin however if each signing key is only used once which is common
practice.

5.2 Forking security

Fawkescoin has much worse behavior than Bitcoin in the case of a long fork of
the block chain. In Bitcoin, an attacker capable of producing of a long fork (i.e.,
an attacker who temporarily wields a large amount of hash power) may perform
effective double-spending attacks; however, the attacker can only double-spend
their own coins which they actively relay transactions for in the blocks which
are overwritten by the fork. In Fawkescoin, however, after a fork the attacker
may steal the value of any transaction whose Transfer and Finalize message both
appear in the overwritten fork.

5.3 One-time addresses

In Bitcoin it is often recommended (and implemented in most clients) that fresh
addresses be used in every transaction for security and anonymity reasons. In
Fawkescoin, this is mandatory as addresses can only be used securely once.
This can be relaxed by using multi-use Guy Fawkes signatures, as proposed
in Section 4.3. Other workarounds exist: for example, a business can publish a
large number of addresses offline, or can transfer a new address to clients on
demand. It would be possible to modify Fawkescoin to allow multiple transfers
to an address H (X), but these would all need to be spent at once at which point
H (X) would need to be retired.

Ostensibly, storing one private key may be more compact than a large num-
ber of secret values in Fawkescoin. However, Fawkescoin clients can avoid this
by storing a single master-secret and deriving one-time addresses from it deter-
ministically using a PRNG.

5.4 Efficiency

Fawkescoin has a number of small efficiency advantages, for example, relieving
clients of the need to perform public-key operations. This might be of benefit
on highly constrained devices, though it’s unclear if this confers any practical
advantage, as in either scheme a device must be able to contact the network

7

and verify the integrity of the block chain. The block chain would also be more
compact in Fawkescoin due to the smaller sizes involved and lack of signatures,
though by less than a factor of two; we can implement Fawkescoin using a secure
hash function with 128 bits of output (since collision attacks are not a concern).
A major advantage is complete verification of the block chain; while this pro-
cess requires millions of signature verifications in Bitcoin, they are replaced by
millions of hash computations in Fawkescoin.

A major disadvantage for Fawkescoin is the need for 2 confirmation periods
during any transfer compared to 1 for Bitcoin, effectively doubling the latency
of the system.

5.5 Transaction fees, priority, and anti-DoS countermeasures

Transaction fees can be realized in Fawkescoin exactly as they are in Bitcoin by
having the total output value of a transaction be less than the total input value
and allowing miners to claim the difference. However, this presents some difficulty
since two messages are necessary. It would be possible for the transaction to
include fees for both miners (the one who mines the block containing the Transfer
message and the one who mines the block containing the Finalize message).
However, until the Finalize message is published, there is no way to tell a valid
Transfer message from an invalid one. At the moment, Bitcoin prevents spam
transactions in two ways. The first is by transaction fees, and the second is by
transaction priority based on age. Although fees are optional, the standard miner
policy is to require fees for transactions without sufficient age/priority. This
means the Transfer message carries no priority or fee, so it would not be relayed
due to existing anti-DoS measures. There are several potential approaches:

Out-of-band payments In order to post a transaction, a user must make some
arrangement out of band with a miner, who includes the Transfer message based
on some form of trust that the Transfer message contains a commitment to an
actual fee.

Split transaction fees Transaction fees might be split evenly between the
miner including the Transfer message in a block and the miner including the
Finalize message in a block. This incentivizes miners to include Transfer mes-
sages on the hope that they will eventually lead to fees if a Finalize message is
published. The transaction owner still needs to convince a miner to include the
transaction even though it is not evident that the transaction will be finalized.
One approach is a proof in zero knowledge that the transfer message has a preim-
age paying the miner a useful amount. This negates some of the performance
benefits of Fawkescoin, but would leave block chain validation very efficient.

Merkle tree of Transfer messages Finally, miners might place all Transfer
messages in a Merkle tree and only include the root in their block. The Finalize

8

message would need to include a proof-of-inclusion for the Transfer message. This
reduces the need to limit spam, since spam Transfer messages won’t increase the
size of each block. However, Finalize messages will grow as the proof-of-inclusion
will be logarithmic in the number of Transfer messages included in a block. This
approach also removes the possibility of the tagging optimization.

5.6 Multi-sig transactions

Transactions with multiple possible input addresses controlled by untrusting par-
ties are possible (though not widely used) in Bitcoin. For example, the CoinJoin
protocol [7] uses them to mix funds for anonymity purposes. There doesn’t ap-
pear to be a simple way to achieve this in Fawkescoin, as any party finalizing a
transaction risks leaking their private key if their counter-party doesn’t publish
a Finalize message.

5.7 Scripting functionality

The scripting functionality in Bitcoin is not included in this simple presentation
of Fawkescoin. In principal, arbitrary scripts could be included in Fawkescoin
transfers just as in Bitcoin. The main difficulty is that Fawkescoin transactions
are inherently a one-shot proposition. If a script fails for whatever reason during
verification, it effectively destroys the value associated with any input addresses
as they will have their secret revealed.

6 Conclusion

Bitcoin itself is something of a curiosity from an academic standpoint in that it
was discovered decades after the requisite cryptographic primitives were avail-
able. Our work shows that it was in fact possible even before the discovery of
public-key cryptography. The subtleties with double-spending and spam transac-
tions support that a public-key based approach is preferable given the efficiency
of elliptic-curve operations on modern hardware and their strong security track
record. However, Guy Fawkes signatures could be implemented as an alternative
option within a cryptocurrency such as Bitcoin. This is not a simple addition
which can be trivially bolted on to Bitcoin’s existing scripting language given
the required validation rules introduced in this paper to prevent double-spending
and spam. However, it might be worthwhile as an alternative allowing very sim-
ple clients to participate or as a hedge against a catastrophic break of the discrete
log problem in elliptic-curve groups.

9

References

1. Anderson, R., Bergadano, F., Crispo, B., Lee, J.H., Manifavas, C., Needham, R.: A
new family of authentication protocols. ACM SIGOPS Operating Systems Review
32(4), 9–20 (1998)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submission to NIST (Round 2) 3 (2009)

3. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Advances in Cryptology–CRYPTO 2005. pp.
430–448. Springer (2005)

4. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Financial
Cryptography (2014)

5. Lamport, L.: Constructing digital signatures from a one-way function. Tech. rep.,
Technical Report CSL-98, SRI International Palo Alto (1979)

6. Laurie, B.: Decentralised currencies are probably impossible but let’s at least make
them efficient (2011)

7. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. https://bitcointalk.
org/index.php?topic=279249.0 (August 2013)

8. Merkle, R.C.: A certified digital signature. In: Advances in Cryptology. pp. 218–
238. Springer (1990)

9. Nakamoto, S.: Bitcoin: A peer-to-peer electionic cash system (2008)
10. Sompolinsky, Y., Zohar, A.: Accelerating Bitcoin’s Transaction Processing. Fast

Money Grows on Trees, Not Chains. Cryptology ePrint Archive, Report 2013/881
(2013), http://eprint.iacr.org/

https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
http://eprint.iacr.org/

	Fawkescoin A cryptocurrency without public-key cryptography

