
EthIKS: Using Ethereum to audit a CONIKS
key transparency log

Joseph Bonneau

Stanford University & Electronic Frontier Foundation

Abstract. CONIKS is a proposed key transparency system which en-
ables a centralized service provider to maintain an auditable yet privacy-
preserving directory of users’ public keys. In the original CONIKS design,
users must monitor that their data is correctly included in every pub-
lished snapshot of the directory, necessitating either slow updates or trust
in an unspecified third-party to audit that the data structure has stayed
consistent. We demonstrate that the data structures for CONIKS are
very similar to those used in Ethereum, a consensus computation plat-
form with a Turing-complete programming environment. We can take
advantage of this to embed the core CONIKS data structures into an
Ethereum contract with only minor modifications. Users may then trust
the Ethereum network to audit the data structure for consistency and
non-equivocation. Users who do not trust (or are unaware of) Ethereum
can self-audit the CONIKS data structure as before. We have imple-
mented a prototype contract for our hybrid EthIKS scheme, demonstrat-
ing that it adds only modest bandwidth overhead to CONIKS proofs and
costs hundredths of pennies per key update in fees at today’s rates.

1 Introduction

Distribution and verification of public keys for end-to-end encrypted communica-
tion remains a challenging problem. In terms of deployment, the most successful
model has been centralized services which serve as trusted public key directo-
ries [10], such as those used by iMessage and WhatsApp. This model is also
employed by security-focused messaging applications such as Signal (TextSe-
cure), Silent Circle, Telegram or Threema. These apps additionally allow users
to verify public keys manually, although experience suggests few actually do so.

These services might try to launch a man-in-the-middle attack by serving
keys maliciously. That is, instead of serving Alice’s true public key PKA to Bob,
the server might serve a public key PKS for which it knows the private key. Such
attacks are facilitated in centralized applications since the server typically routes
and/or stores all communication for efficiency, making it is straightforward to
decrypt traffic if the keys are known. Many applications also enable users to
register multiple public keys to support multiple devices, making it easy to add
an “interception key” which simply looks like an extra device.

An essential requirement of this attack is that the key directory interacts
inconsistently between Alice and Bob. If Alice queries her own public key, it



should respond with the correct result or else Alice’s device may automatically
detect the attack (since it knows which public keys it has uploaded). A key server
with global consistency would therefore be a significant security upgrade: as long
as Alice verifies that her own entry in the directory is correct, she can be sure
that she is not being attacked. Furthermore, if Bob trusts that Alice is regularly
monitoring her own entry, Bob can accept whatever public keys the directory
returns for Alice and trust that she will detect if an attack has taken place.
While this setup will only detect attacks (without preventing them), it is far
more lightweight for users than manually verifying all public keys out-of-band.

CONIKS [7] (CONsistent Identity Key Service) is a concrete proposal for a
key server with consistency while also protecting users’ privacy. This approach
is currently being adapted by Google and Yahoo! for use in their prototype end-
to-end encrypted email systems. The key data structure in CONIKS is a signed
hash chain of roots of Merkle prefix trees.

Ethereum [11] is a “secure decentralized transaction ledger.” Inspired by
Bitcoin [9], Ethereum adds support for long-lived, stateful “contracts” with a
Turing-complete scripting language. Under the hood, Ethereum uses data struc-
tures similar to CONIKS, including a blockchain with snapshots of the entire
Ethereum system using Merkle Patricia trees to store the state of each contract.

These similarities are not coincidental. While the two systems were designed
for very different purposes, both require a globally consistent data structure
supporting efficient updates and proofs of inclusion. In this paper we show that,
with minor modifications, a CONIKS directory can be “wrapped” inside an
Ethereum contract in a hybrid scheme we call EthIKS. This allows it to pig-
gyback on Ethereum’s consensus protocol to prevent equivocation, potentially
obviating the need for a separate gossip protocol to ensure consistency. It also
enables increased efficiency for clients willing to trust the Ethereum network.

We have implemented a prototype Ethereum contract to measure the cost of
EthIKS both in terms of transaction fees paid to the Ethereum network (“gas”)
and bandwidth overhead compared to the original CONIKS design.

2 CONIKS overview

We provide a brief overview of CONIKS here [7]. The key data structure in
CONIKS is a chain of directory snapshots, or signed tree roots (STRs). Each STR
commits to the entire directory, which is a binary Merkle prefix tree containing
the current mapping from users to public keys.

Merkle prefix trees The tree in CONIKS maps arbitrary indices1 to data. It is a
radix tree; each branch of the tree represents either a “0” or “1” in the binary
representation of an index. Each leaf of the tree stores data mapped to the index
represented by its complete path from the root. To reduce the length of paths
in the tree, subtrees with only one non-null leaf are collapsed into a single leaf

1 The term “key” is avoided to prevent confusion with cryptographic keys.



marked with the unique suffix of this single non-null index. The data structure
is authenticated in that each non-leaf node includes the hash of its children. The
root of the tree thus uniquely commits to the entire data structure, assuming
the hash used is collision-resistant [8].

Private bindings To ensure privacy, CONIKS generates the index for each user’s
data using a verifiable unpredictable function (VUF). The CONIKS provider
generates a VUF private key which can be used to deterministically derive the
index for any username and provide a publicly-verifiable proof that this index
was generated correctly. Furthermore, each leaf in the CONIKS tree stores a
commitment to a user’s data rather than the data itself. Thus, to verify a (user-
name, data) binding in the CONIKS tree, one must verify both that that the
index produced by the VUF for that username is present in the tree and that the
commitment at that leaf commits to the claimed data. Without the VUF proofs
or commitment randomness, the CONIKS tree reveals no information about any
usernames or their data beyond the number of users in the tree.2

Key binding proofs To communicate in CONIKS, Alice requests Bob’s key bind-
ing from the CONIKS provider as of the latest STR. The provider responds with
Bob’s key data, a Merkle proof of inclusion in the STR’s tree root, the VUF proof
of Bob’s index and the randomness to open the commitment to Bob’s data.

Non-equivocation To assure that all users see a consistent version of the CONIKS
tree, the root is included in a chained sequence of STRs. Each STR commits to
the hash of the previous version of the tree (and hence the entire history of
the directory) as well as a timestamp and other metadata, and is signed by the
CONIKS provider. While the CONIKS provider is able to sign two inconsistent
versions of the tree, if they are ever discovered this will provide non-repudiable
proof that the provider is malicious. To discourage such equivocation, the original
CONIKS proposal assumes that users will participate in a gossip protocol to
share STRs they have observed. It also suggests that STRs might be embedded
in an external append-only log such as the Bitcoin blockchain.

Key updates and revocation By default, the CONIKS provider can change a
user’s key binding at any time. This enables recovery from lost or stolen keys
by traditional backup authentication means such as password reset questions or
telephone helplines. Optionally, CONIKS users may request that their leaf be
marked with a strict flag meaning that updates must be signed by a designated
user-controlled key. This option enables preventive (rather than purely detective)
defense against unauthorized key changes, at the price of burning the username
forever if the update key is lost. There is no special notion of revocation of
CONIKS: the old key is simply replaced in the next version of the tree.

2 The number of valid users in the system can be obscured by adding dummy users at
random indices with random data, which will be indistinguishable from real users.



Auditing and monitoring Each CONIKS user audits the provider for consistency,
checking that each STR forms a chain and potentially checking for equivocation
with third parties (i.e. gossip). Auditing can also be done by any third-party.
Each user also monitors their own entry in the tree for correctness based on the
key changes they have actually requested from the server. If an unexpected key
change occurs, the user’s software should show a warning message.3

Efficiency considerations In the process of auditing and monitoring, each user
must download every STR from the server and check that their binding is cor-
rectly included. While these checks are all logarithmic in the number of users,
if STRs are issued frequently users must download and verify a large number of
signatures. However, if STRs are issued slowly, the time to add a new key binding
(or equivalently, revoke an old one) will be long. The original CONIKS proposal
suggested STRs being issued on the order of hours, with a secondary system of
auditable “promises” to include data in the next STR to enable faster enrollment
(similar to signed certificate timestamps in Certificate Transparency [4]).

In development at Google and Yahoo!, promises were scrapped in favor of
faster STR updating times. To mitigate the cost of verifying that a user’s bind-
ing has stayed consistent in n consecutive STRs, an update count is added to
each leaf, enabling users to simply verify that their update count was not incre-
mented at in the most recent STR. However, this assumes the existence of third
party auditors to verify that update counts are incremented if and only if the
committed data is actually changed.

Our goal in wrapping CONIKS in an Ethereum contract is to maintain the
advantages of frequent STRs, while relying on the Ethereum network to audit
that update counts are incremented correctly. We also use Ethereum to gain
confidence in non-equivocation.

3 Ethereum overview

While it is often described as being “like Bitcoin with a Turing-complete scripting
language,” Ethereum [11] is perhaps more accurately described as a consensus
computer. Unlike Bitcoin, in which each block contains a set of transactions up-
dating an implicit global state, each block in the Ethereum blockchain explicitly
commits to the complete state of the system which includes both user accounts
and contracts, which represent a running process in the system with code, mem-
ory state and a monetary balance. Each contract’s code describes an API which
users of the system can call to cause the contract to execute some code which
may update its state and/or transmit money to other contracts or users. An API
call is called a transaction. Transactions must be signed by a specific sender and
may contain a payment and an arbitrary amount of data.

3 Note that in CONIKS, warning messages are only intended when the user’s own key
has changed unexpectedly at the server. If their peer’s keys change, this is ignored
as it is assumed the peer will monitor this change themselves.



A simple example is a game of chess between strangers with a binding mon-
etary bet. A contract representing a chess game can be sent to the network. Its
code should initialize the contract state to represent an empty board and no
players. Two players may then join by sending a message to the contract along
with a deposit equal to the betting stake. While the game is underway, the de-
posits will be owned by the contract itself. Each player will then submit moves
in turn, with the contract updating the board after each move and rejecting any
invalid moves. When one player wins the game, the contract would then send its
entire value to the winner and close.4

Programming Ethereum contracts correctly has already proven quite sub-
tle [2], requiring defensive programming and extensive sanity checks to ensure
no API calls can corrupt the contract state. For example, in the chess game, the
contract must implement a timeout rule where players lose by default if they
don’t submit a move within a required time, to avoid simply stalling a lost game
forever (sometimes called a “rage quit”).

Contract fees The state of every contract in the system (as well as each user ac-
count) must be tracked by every miner. Every miner must also validate all trans-
actions in every block to see that they execute each contract’s code correctly and
update the global state accordingly. This presents an obvious denial-of-service
avenue as contracts may contain infinite loops, allocate an arbitrary amount of
storage, or perform other resource-intensive computations. Thus, every instruc-
tion executed requires a fee, referred to as gas. Gas is the same currency used for
sending value between users and/or contracts in the system; it is simply called
gas when it is being used to pay for executing a transaction.

Simple instructions (e.g. addition) cost 1 gas whereas more complex instruc-
tions may cost significantly more (e.g. computing a SHA-3 hash costs 20 gas).
Writing to storage is particularly costly, at 100 gas per 256-bit word. Any trans-
action must send sufficient gas to pay for all of the instructions executes. If a
contract runs out of gas while executing a transaction, execution halts with all
changes to the state undone and the gas being kept by the miners. Thus it is
critical both to write programs which are efficient in their gas costs and to ensure
transactions contain sufficient gas to pay for the instructions they execute.

Storage model Each block in the Ethereum blockchain contains a “Merkle Pa-
tricia tree” with the state of each contract and user account stored in the leaves.
Each contract or user account is represented by a unique 160-bit address (either
the hash of the user’s public key or a hash of the contract’s code plus a nonce).
Unlike the prefix tree used in CONIKS, in Ethereum the Patricia tree is 16-ary
(hexary), although the suffix-compression is similarly applied.

Each leaf contains a hash of that addresses state, including its current balance
within the system. For addresses representing contracts (as opposed to simply
user accounts) the state also includes the root of a Merkle Patricia tree repre-
senting that contract’s persistent storage. The storage model is very simple: each

4 In Ethereum parlance, the contract closes by calling a special SUICIDE opcode which
enables the network to permanently delete its storage.



contract has a memory space of 2256 256-bit words, each representing a 256-bit
address. The contract’s storage is thus a function {0, 1}256 → {0, 1}256. Leaves
are inserted into the tree for any address with a non-zero word stored; addresses
which are not in the storage tree are interpreted to have a value of 0.

This storage model makes implementing hash tables extremely simple in
Ethereum: the value v associated to a key k is simply stored at the memory
address H(k), with the storage tree handling this efficiently under the hood.
Most high-level Ethereum languages (including Solidity) expose this {0, 1}256 →
{0, 1}256 map as a built-in type.

4 EthIKS

Given the contract execution model of Ethereum, we can implement a close
variant of CONIKS. The goal will be to ensure EthIKS is as secure as CONIKS
for clients which ignore Ethereum completely and interact directly with the
EthIKS log, while Ethereum-aware clients will gain greater trust and efficiency.

Core data structure EthIKS implements the core data structure of CONIKS,
the tree mapping user indices to user data, in the persistent storage of a single
Ethereum contract. This contract allows the service provider to update the tree
by sending messages from a designated address. The service provider can send the
contract an index i and a commitment c, which will then be stored (or updated)
in the tree by simply writing the value c to memory address i. These values
will be the VUF-derived private index for a given user and the commitment
to the user’s public-key data. A side-effect of this design is that the Ethereum
blockchain will contain a record of each update to the tree, something that is
not normally published in CONIKS.

Key bindings As in plain CONIKS, a key binding will include the VUF proof that
an index i corresponds to a username u, as well as the randomness required to
open the commitment c to the user’s data. Because these values are now stored
in an Ethereum contract rather than a separate CONIKS-specific prefix tree,
the key binding must include the proof that the address c has the value i in the
contract’s persistent storage. This is simply a proof-of-inclusion for the contract’s
storage tree plus a proof-of-inclusion that this storage tree is currently mapped
to the contract as of the most recent block in the Ethereum block chain. Notice
that each Ethereum block is effectively a signed tree root (STR) in EthIKS.

Backwards-compatible proofs To maintain the normal CONIKS interface for
clients which wish to ignore Ethereum, the provider still publishes signed tree
roots after every update to the tree. In EthIKS the tree root to be signed is
the root of the Merkle Patricia tree representing its EthIKS contract’s storage
after each update. These tree roots are implicitly “signed” by the Ethereum net-
work through their inclusion in a block. The provider additionally signs the tree
root, combined with a pointer to the previous version of the tree and publishes



this chain of signatures separately. For non-Ethereum-aware clients, this chain
of signed roots functions exactly as in plain CONIKS.

Update frequency In CONIKS, the tree is updated (by publishing a new STR)
at a provider-chosen frequency. In EthIKS, the tree can be updated in every
Ethereum block. The Ethereum block frequency, targeted currently at one block
per 12 seconds, is a lower-bound on the epoch length. The provider may choose
to sign the tree less frequently than once per block to reduce the length of its
owned chain of signed tree roots. Legacy clients would only see updated versions
at this slower rate. However, Ethereum-aware clients would see new updates
rapidly (and may rapidly update their own entries).

Update counts The EthIKS contract maintains an update counter for each index
in the tree. Any update to this index’s data must increments the counter; the
contract’s code which allows no other API for updating the tree. The benefit of
this counter is that Ethereum-aware clients can be sure that their data in the
tree has not changed if their counter has not changed, allowing them to skip
monitoring every version of the tree and simply check the counter value in the
most recent version of the tree.

User-controlled addresses EthIKS supports a comparable feature to CONIK’s
strict mode: each leaf in the tree has an associated owner (by default the ser-
vice provider) which is the only address allowed to send updates to this leaf in
the tree. Updates may include changing the owner; the provider must do this
initially to create a new leaf and then transfer control to its owner if requested.
Security-conscious users may request the service provider change their leaf’s
owner address to a public key of their choosing.

Unlike in CONIKS, users who opt for control of their own leaf can then
update it directly by communicating with the Ethereum contract themselves,
they no longer need to route updates through the service provider. However,
if they update their data and don’t send the commitment randomness to the
provider, the provider can no longer answer queries about this user’s public key.

Revoked usernames EthIKS also retains CONIKS’ ability to permanently re-
move a user’s data by replacing it with a special tombstone value. In EthIKS,
tombstoned users simply have their owner set to a dummy address for which the
private key clearly does not exist (e.g. the public key whose hash equals zero).
Note that this is not the same as setting a user’s data to be zero; this removes
their data from the tree but enables this username to be later reincarnated.

5 Implementation and costs

We have implemented a prototype of EthIKS by modifying the prototype CONIKS
implementation [7] and writing an Ethereum contract to handle the core tree
updates. The EthIKS contract is contains fewer than 100 SLOC in Solidity,



gas cost
operation gas ether mBTC US dollar

create tree 367535 3.675 1.838 0.0036
insert new user 42042 0.420 0.210 0.0004
update mapping 12042 0.120 0.060 0.0001
delete user data 12042 0.120 0.060 0.0001
change ownership 17382 0.174 0.087 0.0002
tombstone user 17382 0.174 0.087 0.0002

Table 1: Transaction fees (gas costs) for different update types in EthIKS, along
with the current price in ether (the base currency of Ethereum), millibitcoin
(mBTC), and US dollars as of January 2016 exchange rates and the default gas
price of 1 gas = 5 · 10−8 ether. Ethereum transactions also incur an overhead
cost of 21,000 gas, but this can be amortized by batching multiple updates in a
single transaction so we ignore it here.

Ethereum’s most popular high-level language for writing smart contracts. The
contract exposes only a single API call (besides the constructor), updateMappings
which takes a list of indices, data values, and (possibly null) addresses. Each in-
dex is updated to the new data value and its counter incremented after checking
that the owner of this index is the party sending the message.

Gas costs The transaction costs (in gas) of updating the EthIKS tree through
the EthIKS contract are listed in Table 1. These are based on our Solidity im-
plementation, a hand-coded byte code might achieve better efficiency. The main
cost in all operations is writing to permanent storage; the current implementa-
tion of Solidity invokes several writes at 100 gas each for every update to the
tree. Still, the contract costs on the order of hundredths of pennies per update
to the tree. At current rates, these costs would be significant for a large provider,
which might be required to handle millions of key updates per day (costing tens
of thousands of dollars in gas). However, we note that the future value of gas
(and ether) is very difficult to project. The current Ethereum network (Frontier)
would not handle a provider with billions of users due to limits on the size and
number of transactions per block, but these limits are expected to be increased
in the future as Ethereum scalability improves.

Bandwidth costs EthIKS re-uses the same construction for the VUF and hash
commitment as plain CONIKS does. In our prototype implementation, we use
the elliptic-curve based VUF and signature scheme (EC-Schnorr) proposed with
CONIKS (CONIKS also can be implemented with RSA or BLS, but we ignore
these to match the cryptography used in Ethereum). We consider two cases for
EthIKS: clients which trust the Ethereum network and clients which ignore the
Ethereum network (legacy clients). We simulated the same scenario used as a
benchmark in CONIKS: N = 232 total users, n = 221 user updates per epoch
and k epochs per day.



CONIKS EthIKS
default legacy client light client full client

lookup (per binding) 1.2 4.0 7.9 7.9

monitor (per epoch) 0.7 2.6 5.0 5.2
monitor (daily) 17.6 62.4 7.9 1405

audit (per epoch) 0.1 0.1 0 60
audit (daily) 2.3 2.3 0 1400

Table 2: Client bandwidth requirements, in kB for EthIKS and plain CONIKS.
Sizes are given assuming a ≈ 232 total users, ≈ 221 changes per epoch, 24 epochs
per day, and ≈ 232 total Ethereum addresses. A legacy client ignores Ethereum
completely and simply uses the EthIKS provider’s signed tree roots. A light client
trusts Ethereum and relies on a third party to give it the latest Ethereum block
header when needed. A full client trusts Ethereum but downloads all Ethereum
block headers locally.

For legacy clients, the performance is asymptotically equivalent to that of
plain CONIKS. Each binding proof requires verifying one path in the tree, one
VUF, one commitment opening and one signature on the root which require a
constant 192 bytes. However, Ethereum’s Merkle tree structure is known to be
slightly inefficient in being hexary. Assuming N total users and n updates per
epoch (n ≤ N), the binary prefix tree in CONIKS requires a path of length
lg2 N with 256 bits of data per node to reconstruct the path. By contrast, the

Ethereum tree requires a path of length lg16 N = lg2 N
4 , but each node requires

up to (N − 1) · 256 bits of data per node. At our simulated size, this increases
the path representation from 1024 bytes to 3840 bytes, and the overall binding
proof size from 1216 bytes to 4032 bytes.

Ethereum-aware clients can save greatly on monitoring costs by only receiving
updated paths when their data actually changes (or at a sampling frequency
of their choice). If clients are tracking all of the block headers in Ethereum,
this requires downloading about 200 bytes per 12 seconds or 1.4 MB per day.
They might also get this data for selected blocks only by querying one or more
trusted sources. The complete proof will also require proof that the EthIKS
tree is correctly included in the current block, the size of which will depend on
the number of contracts in existence. Currently this is less than 1000 so this
proof is relatively short, but it might be considerably larger in the future. To be
conservative, we assume 232 Ethereum contracts exist, requiring an additional
3840 bytes of data.

We combine these numbers in Table 2 comparing a user in a plain CONIKS
system, a legacy user in an EthIKS system, an Ethereum-aware user in EthIKS
willing to trust a third party to deliver the current Ethereum block header (a
light client) and an EthIKS client which downloads all Ethereum block headers
locally. Note that this requires a large amount of bandwidth (1.4 MB per day)
but might be useful for other purposes.



6 Concluding discussion

Our analysis shows that EthIKS is a natural extension of CONIKS: it is simple
to implement and can be used by legacy clients with minor modifications and
only a small performance overhead compared with CONIKS. This performance
overhead would be reduced to near-zero by the adoption of a more efficient binary
Merkle prefix tree by Ethereum; the adoption of a hexary tree has already been
recognized as a regrettable design error [1] that may be fixed in future versions.

For Ethereum-aware clients, superficially additional bandwidth must be used
to track the chain of Ethereum block headers. However, this might be useful on
its own or be outsourced to a third party. These clients gain a significant ad-
vantage over plain CONIKS: keys can be updated very rapidly (bound only
by Ethereum’s 12 second block generation time). These updates are also inde-
pendent of the service provider for user-controlled bindings. Furthermore, these
clients gain the full security of the Ethereum consensus protocol against equivo-
cation of the provider’s state or corruption of the update counters. Overall, this
greatly simplifies the service as promises to update are no longer needed (due to
the fast update time) and a separate gossip protocol can be eliminated.

The idea of building a naming system on top of Ethereum or other cryptocur-
rencies is not new. Namecoin [5] was the first formal fork of Bitcoin, designed to
provide a distributed naming system, and the simplicity of implementing Name-
coin in Ethereum (requiring only a few lines of code in the simplest form) has
even been used as a “Hello world!” teaching example of Ethereum programming.
However, Namecoin has struggled to gain any significant use, with nearly all reg-
istered names currently held by squatters [3] and no clear economic model for
assigning valuable names. It also offers no privacy for users, making it difficult
to retrofit to existing communication services. CONIKS (and in turn EthIKS)
addresses these problems by assuming a centralized service, which controls the
assignment of names and maintains privacy by managing a secret VUF key to
obscure name-key bindings. However, the central provider in CONIKS is not
fully trusted to avoid inserting spurious keys or equivocating about the state of
the system. This is prevented by public monitoring and auditing.

Our contribution is EthIKS, which improves on this design by leveraging
the Ethereum network to do this checking. Assuming Ethereum proves to be a
secure consensus computer in practice [6], EthIKS can enable greatly improved
efficiency for clients willing to trust the integrity of Ethereum, while enabling
normal CONIKS-like operation for legacy clients. We have implemented this
and shown that it is possible today for small providers, costing hundredths of
pennies per update to the tree. While the current network may not scale to large
providers requiring millions of updates, our work shows that it is asymptotically
efficient and therefore possible as the Ethereum network itself scales.



References

1. Ethereum Design Rationale. https://github.com/ethereum/wiki/wiki/

Design-Rationale, 2016.
2. Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.

A Programmers Guide to Ethereum and Serpent, May 2015.
3. Harry Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and Arvind

Narayanan. An empirical study of Namecoin and lessons for decentralized names-
pace design. Workshop on the Economics of Information Security (WEIS), June
2015.

4. B. Laurie, A. Langley, E. Kasper, and Google Inc. RFC 6962 Certificate Trans-
parency, Jun. 2013.

5. Andreas Loibl. Namecoin. namecoin.info, 2014.
6. Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying in-

centives in the consensus computer. In ACM Conference on Computer and Com-
munications Security (CCS), 2015.

7. Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Michael J. Freedman,
and Edward W. Felten. CONIKS: Bringing Key Transparency to End Users. In
USENIX Security, August 2015.

8. Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated
data structures, generically. In ACM Conference on Principles of Programming
Languages (POPL), January 2014.

9. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http://

bitcoin.org/bitcoin.pdf, 2008.
10. Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Gold-

berg, and Matthew Smith. SoK: Secure Messaging. In IEEE Symposium on Secu-
rity and Privacy, May 2015.

11. Gavin Wood. Ethereum: A secure decentralized transaction ledger. http:

//gavwood.com/paper.pdf, 2014.

https://github.com/ethereum/wiki/wiki/Design-Rationale
https://github.com/ethereum/wiki/wiki/Design-Rationale
namecoin.info
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

	 EthIKS: Using Ethereum to audit a CONIKS key transparency log

