Computer Networks 53 (2009) 2340-2359

Contents lists available at ScienceDirect

et

Computer Networks ik

journal homepage: www.elsevier.com/locate/comnet

Brahms: Byzantine resilient random membership sampling *

Edward Bortnikov®', Maxim GurevichP, Idit Keidar*, Gabriel Kliot “?, Alexander Shraer?

?Yahoo! Research Israel, Israel
b Department of Electrical Engineering, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
€ Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

ARTICLE INFO ABSTRACT

Article history:
Available online 26 March 2009

We present Brahms, an algorithm for sampling random nodes in a large dynamic system
prone to malicious behavior. Brahms stores small membership views at each node, and
yet overcomes Byzantine attacks by a linear portion of the system. Brahms is composed
of two components. The first is an attack-resilient gossip-based membership protocol.
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essentials. We study two representative attacks, and show that with high probability, an
attacker cannot create a partition between correct nodes. We further prove that each
node’s sample converges to an independent uniform one over time. To our knowledge,
no such properties were proven for gossip protocols in the past.

Byzantine faults
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1. Introduction

We consider the problem of sampling random nodes
(sometimes called peers) in a large dynamic system sub-
ject to adversarial (Byzantine) attacks. Random node sam-
pling is important for many scalable dynamic applications,
including neighbor selection in constructing and maintain-
ing overlay networks [23,32,35,37], selection of communi-
cation partners in gossip-based protocols [13,18,21], data
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sampling, and choosing locations for data caching, e.g., in
unstructured peer-to-peer networks [34].

Typically, in such applications, each node maintains a set
of random node ids that is asymptotically smaller than the
system size. This set is called the node’s local view. We con-
sider a dynamic system, subject to churn, whereby the set of
active nodes changes over time. Local views in such a sys-
tem must continuously evolve to incorporate new active
nodes and to remove ones that are no longer active. By using
small local views, the maintenance overhead is kept small.
In the absence of malicious behavior, small local views
can be effectively maintained with gossip-based member-
ship protocols [1,21,22,26,43], which were proven to have
a low probability for partitions, including under churn [1].

Nevertheless, adversarial attacks present a major chal-
lenge for small local views. Previous Byzantine-tolerant gos-
sip protocols either considered static settings where the full
membership is known to all [19,33,39], or maintained (al-
most) full local views [9,28] (i.e., views that include all the
nodes in the system), where faulty nodes cannot push correct
ones out of the view (please see Section 2 for more detailed
discussion of previous work). In contrast, small local views
are susceptible to poisoning with entries (node ids) originat-
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ing from faulty nodes; this is because in a dynamic system,
nodes must inherently accept new ids and store them in
place of old ones in their local views. In Section 3, we illus-
trate that traditional gossip-based membership is highly vul-
nerable to adversary attacks, which can quickly poison the
entire views of correct nodes.

It is even more challenging to provide independent uni-
form samples in such a setting. Even without Byzantine fail-
ures, gossip-based membership only ensures that
eventually the average representation of nodes in local
views is uniform [1,22,26], and not that every node obtains
an independent uniform random sample. Faulty nodes may
attempt to skew the system-wide distribution, as well as
the individual local view of a given node.

This paper addresses these challenges. In Section 4, we
present Brahms, a membership service that stores a sub-
linear number of ids (e.g., @(¥/n) in a system of size n) at
each node, and provides each node with independent ran-
dom node samples that converge to uniform ones over
time. The main ideas behind Brahms are (1) to use gos-
sip-based membership with some extra defenses to make
it viable (in the sense that local views are not solely com-
posed of faulty ids) in an adversarial setting; (2) to recog-
nize that such a solution is susceptible to attacks that
may bias the views, i.e., cause certain nodes to be over-rep-
resented in views while others are under-represented (we
precisely quantify the extent of this bias mathematically);
and (3) to correct this bias at each node. Specifically, each
node maintains, in addition to the gossip-based local view,
an unbiased sample list of nodes.

To achieve the latter, we introduce Sampler, a compo-
nent that obtains uniform samples out of a data stream
in which elements recur with an unknown bias. Sampler
uses min-wise independent permutations [14], and stores
one element of the stream at a time. In Brahms, the data
stream is comprised of gossiped ids, from which Samplers
obtain independent uniformly random id samples, and
store them in the sample list. By using such history samples
from the sample list to update part of the local view,
Brahms achieves self-healing from partitions that may oc-
cur with gossip-based membership. In particular, nodes
that have been active for sufficiently long (we quantify
how long) cannot be isolated from the rest of the system,
with high probability. The use of history samples is an
example of amplification, whereby even a small healthy
sample of the past can boost the resilience of a constantly
evolving view. We note that only a small portion of the
view is updated with history samples, e.g., 10%. Therefore,
the protocol can still deal effectively with churn.

In Section 5, we define the attacker’s goals and the cor-
responding attack strategies, under which we evaluate
Brahms. We consider two possible goals for an attacker.
First, we study attacks that attempt to maximize the repre-
sentation of faulty ids in local views at any given time. This
goal is achieved by a uniform attack, whereby the attacker
equally divides its power among all correct nodes. Second,
we consider an attacker that aims to partition the network.
The easiest way to do so is by isolating one node from the
rest [1]. Since samples help prevent isolation, we analyze
the most adverse circumstances, where an attack is
launched on a new node that joins the system when its

samples are still empty, and when it does not yet appear
in views or samples of other nodes. We further assume that
such a targeted attack on the new node occurs in tandem
with an attack on the entire system, as described above.

One of the important contributions of this paper is our
mathematical analysis, which provides insights to the ex-
tent of damage that an attacker can cause and the effec-
tiveness of various mechanisms for dealing with them.
Extensive simulations of Brahms with up to 4000 nodes
validate the few simplifying assumptions made in the anal-
ysis. We first show (in Section 6) that whenever the set of
nodes remains connected, the sample lists converge to
independent uniformly random selections from among all
nodes. We further show that if views are of size Q(v/n),
then the convergence rate is bounded independently of
the system size. Section 7 then analyzes the local views
generated by the gossip process and shows that under cer-
tain circumstances, they preserve the connectivity re-
quired for uniform samples.

Specifically, for the attack goal of maximizing the repre-
sentation of faulty ids (Section 7.1), we show that under cer-
tain conditions on the adversary, even without using history
samples, the portion of faulty ids in local views generated by
Brahms's gossip process is bounded by a constant smaller
than one. (Recall that the over-representation of faulty ids
is later fixed by Sampler; the upper bound on faulty ids in
local views ensures Sampler has good ids to work with.)

Next, we consider the goal of isolating a node (Section
7.2). The key to proving that Brahms prevents, with high
probability, an attacked node’s isolation is in comparing
how long it takes for two competing processes to com-
plete: on the one hand, we provide a lower bound on the
expected time to poison the entire view of the attacked
node, assuming there are no history samples at all. On
the other hand, we provide an upper bound on how fast
history samples are expected to converge, under the same
attack. Whenever the former exceeds the latter, the at-
tacked node is expected to become immune to isolation
before it is isolated. We prove that with appropriate
parameter settings, this is indeed the case.

Finally, we simulate the complete system (Section 8),
and measure Brahms’s resilience to the combination of
both attacks. Our results show that, indeed, Brahms pre-
vents the isolation of attacked nodes, its views never parti-
tion, and the membership samples converge to perfectly
random ones over time.

2. Related work

We are not familiar with any previous work explicitly
dealing with random node sampling in a Byzantine setting.
We next review previous work on Byzantine membership
(Section 2.1), node sampling and sampling from data streams
in benign settings (Section 2.2), and on the related problem
of Byzantine-resilient overlay construction (Section 2.3).

2.1. Byzantine membership

Most previous Byzantine-tolerant gossip based proto-
cols have either considered static settings where the full
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membership is known to all [19,33,39] or focused on main-
taining full local views [9,28] rather than partial samples.
The only exception we are aware of is the Secure peer sam-
pling service (SPSS) [27].

This paper considers an attack on gossip-based
membership, whereby the attackers send many faulty ids
to correct nodes. The proposed service, SPSS, mitigates
such attacks by gathering statistics about over-represented
node ids. Over-represented ids are deemed faulty, and are
removed from views. However, as the authors show, the
effectiveness of this approach is limited to a small number
of malicious nodes (in the order of the view size). In con-
trast, Brahms tolerates @ (n) Byzantine failures with views
of size ®(y/n). Moreover, SPSS is only evaluated in simula-
tions and no formal proofs of its properties are given.

2.2. Node sampling and sampling from streams

Gossip-based membership [1,21,22,26,43] is a robust
and efficient technique for maintaining small, (typically
logarithmic-size) local views in the presence of benign fail-
ures, ensuring a low probability for partitions [1], and an
eventual uniform average representation of nodes in local
views [1,22,26]. However, even in benign settings, it does
not ensure that every node eventually obtains a uniform
random sample as Brahms does. Furthermore, as we show
in Section 3, it is vulnerable to Byzantine failures.

Proven near-uniform node samples can be obtained
using a Random Walk (RW). Random walks are often used
for peer sampling and counting in peer-to-peer networks;
their outcome is used for overlay construction and for
the maintenance of partial local membership views
[23,32,36,10]. RWs have also been recently proposed to
combat Sybil attacks [44] (in which malicious nodes forge
identities in order to impose as multiple nodes). However,
the correctness of RW-based sampling depends on the net-
work topology. If the actual topology is different from the
assumed one, then the sample produced by the RW may
be far from uniform [23]. In contrast, Brahms does not as-
sume any specific network topology. Its sole assumption is
that the graph formed by correct nodes is connected.
Moreover, using RWs in a Byzantine setting is problematic,
because a faulty node anywhere along the path of a ran-
dom walk can render the information obtained in this walk
useless.

King and Saia [31] present a method for (proven) uni-
form sampling in a distributed hash table (DHT) like Chord,
which is not resilient to Byzantine attacks [15].

Uniform sampling is related to the problem of load-bal-
ancing data over nodes in a DHT [29,30], which strives to
achieve the following: given a data item, the node that
stores it should be chosen uniformly at random. Typically
in DHTs, all nodes use the same hash function for mapping
data to nodes, in order to facilitate data location. This ap-
proach results in an unbalanced load, which can be im-
proved by creating multiple virtual nodes for each real
node [29], or by dynamic re-balancing of the key space
[30]. In contrast, our application does not require all nodes
to agree on a common hash function. Brahms ensures bal-
anced sampling (i.e., that every correct node appears with
the same probability in every sample of a correct node), by

using random (or pseudo-random) hash functions, picked
independently by each node.

Various previous works have dealt with benign sam-
pling, e.g., from unbiased data streams [42] or from
biased data streams with a known bias [8,17]. Other
works have focused on unbiasing data samples from a
random access medium rather than a stream [11], or
counting the number of distinct elements in a (possibly
biased) stream, e.g., [2,12]. However, we are not aware
of previous work providing uniform samples from a data
stream with an unknown bias, as our Sampler compo-
nent does.

2.3. Byzantine resilient overlays

One application of Brahms is Byzantine-tolerant overlay
construction. Brahms’s sampling allows each node to con-
nect with some random correct nodes, thus constructing
an overlay in which the sub-graph of correct nodes is con-
nected. As noted above, previous Byzantine-tolerant gos-
sip-based membership solutions have maintained
(almost) full local views [9,28] or withstood only weak at-
tacks [27].

Several recent works have focused explicitly on secur-
ing overlays, mostly structured ones, also attempting to
ensure that all correct nodes may communicate with each
other using the overlay, i.e., to prevent the eclipse attack
[40,41], where routing tables of correct nodes are gradually
poisoned with links to adversarial nodes. These works typ-
ically assume that faulty nodes cannot control their ids,
which is implemented by using mechanisms such as a CA
[28,15,40] or a cryptographic random number generator
[5]. Brahms also assumes that the number of ids controlled
by faulty nodes is bounded, but does allow faulty nodes to
control their own ids.

Singh et al. [40,41] proposed a defense against eclipse
attacks in structured overlays, based on the observation
that when an eclipse attack is launched, the in-degree of
faulty nodes is likely to be higher than the average in-de-
gree of correct nodes. The idea is, therefore, to audit node
degrees, and choose neighbors whose degree is below
some threshold. Unlike Brahms, this does not result in a
uniform random selection of neighbors. Finally, this ap-
proach is not appropriate for unstructured overlays.

Other solutions for Byzantine-tolerant structured over-
lays maintain constrained routing tables, where faulty
nodes are not over-represented, in addition to the regular
routing tables, in which faulty nodes might by over-repre-
sented [15,16]. This approach resembles our unbiasing of
the local views. However, the constrained table is not pro-
ven to be a uniform sample of the nodes. Moreover, unlike
Brahms, these solutions require either frequent id re-
assignment [16] or a secure way of measuring network dis-
tances [15].

Awerbuch and Schiedeler propose Byzantine-tolerant
structured overlay constructions [4,6,7], with logarith-
mic-size views. However, unlike Brahms, they either re-
quire constant re-joining [4] or employ a complex
cryptographic random-number generator [5] and need id
re-distributions upon every join [6,7]. Moreover, these
solutions are much more complex than Brahms.
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Finally, unlike the works mentioned above, we present
a general sampling technique, one application of which is
building Byzantine-resilient unstructured overlays.

3. Model, goal, and challenges

We describe the system model, outline our design goal,
and illustrate the challenges in achieving it.

3.1. System model

We consider a collection U of nodes, each identified by a
unique id. We do not constrain the way in which node ids
are chosen. Nevertheless, nodes are not allowed to use
multiple ids, which rules out massive Sybil attacks [20]
(where one faulty node can impersonate as many nodes).
Such an assignment of identifiers can be implemented,
e.g, by a certification authority. Individual nodes do not
know the entire set of nodes U. Rather, each node has some
initial knowledge of a small set of other nodes, so that the
graph induced by this knowledge is connected.

The system is subject to churn, i.e., nodes can join and
leave (or crash) dynamically. A node that has joined and
did not leave or crash is active. A correct active node fol-
lows the protocol, whereas faulty active nodes may exploit
the protocol to attack other nodes. Every pair of nodes can
communicate with each other directly through bidirec-
tional reliable links, provided that they know each other’s
ids. We assume a mechanism, which we call limited send,
that limits the rate of sent messages by incurring a cost
to the sender. This can be implemented in different ways,
e.g., computational challenges like Merkle’s puzzles [38],
virtual currency, etc. A node can determine the source of
every incoming message, and cannot intercept messages
addressed to other nodes (this is the standard “unauthen-
ticated” Byzantine model [3]). For simplicity of the analy-
sis, we assume a synchronous model with a discrete
global clock, zero processing times, and message latencies
of a single time unit.

3.2. Design goal

Each node maintains a list of node ids called sample list.
Intuitively, each entry in the sample list should converge to
an independent uniform random sample of the active
nodes. However, the notion of a uniform sample is only
meaningful when applied to a fixed set, and not to an
ever-changing one. Therefore, for the sake of specifying
our protocol’s goal, we assume that there is a time T, at
which churn ceases, and require each entry in the sample
list to converge to an independent uniform random sample
of the nodes that are active from time Ty onward.

Similarly to some previous works, for the sake of the
analysis we assume that churn ceases at time To. However,
in a real deployed system, the churn may actually never
cease. Although we do not define sample distribution un-
der churn formally, intuitively, we expect that nodes that
have been around in the system “long enough” would be
uniformly represented in other node’s samples. New nodes
can be expected to be under-represented.

3.3. Design challenges - vulnerabilities of gossip-based
membership

Gossip-based protocols (e.g. [1,26]) are a well-known
mechanism for membership information dissemination in
the presence of churn. These protocols maintain at each
node a small subset of active node ids, called view. The pri-
mary goal of a gossip-based membership service is to pre-
serve connectivity of the overlay induced by the nodes’
views; that is, to avoid network partitions. Note that con-
nectivity is also a prerequisite for random sampling, since
nodes in distinct connected components have zero proba-
bility for learning about each other.

Nodes propagate membership information through two
primitives, push - unsolicited sending of a node’s id to
some other node in the sender’s view, and pull - request-
reply retrieval of another node’s view. Pushes allow new
active nodes to become represented in other nodes’ views,
whereas pulls spread knowledge about active nodes
throughout the system. Allavena et al. [1] have shown that
both are needed in order to avoid partitions and star-like
topologies with high probability. They have further shown
that in benign gossip that uses both pull and push, network
partitions are unlikely. That is, the expected time until a
partition is exponential in the view size and the isolated
component’s size. Thus, sufficiently large views guarantee
negligible partition probability. Extensive empirical stud-
ies [21,26] have validated that gossip-based protocols
maintain connectivity in benign setting in practice.

We now illustrate that traditional gossip is not resilient
to adversarial pushes and pulls. For example, an adversary
can choose to over-represent the faulty ids in the views of
some correct nodes. We illustrate how both push and pull
can be abused so as to lead to rapid poisoning of views at
all correct nodes.

For clarity of illustration, we first demonstrate simple
attacks on push-only gossip and on pull-only gossip sepa-
rately. We then comment on how the attack on a combined
push-pull algorithm also results in a rapid poisoning.

Push flooding. The adversary can flood correct nodes
with pushes of faulty ids, and thus to cause all views of cor-
rect nodes to quickly become poisoned with faulty ids. To
mitigate push flooding, we use the limited send mechanism
for push messages (described in Section 3.1). Although
employing limited send is necessary, it is not sufficient:
while such rate-limiting prevents the adversary from flood-
ing all correct nodes in parallel, an attacker can still target
correct nodes one by one. When a node is attacked by push
flooding, its view becomes fully poisoned, and as a result,
this node stops pushing its id to other correct nodes. Subse-
quently, the representation of the attacked node in correct
nodes’ views is exponentially decaying, and the node is iso-
lated in time which is logarithmic in the view size.

This process is illustrated in Fig. 1: first, the attacker fo-
cuses on one node u, and leads to complete poisoning of its
view (Fig. 1a). For simplicity, Fig. 1a shows the effect of this
attack on a push-only protocol; when pull and push are
combined, a similar degradation occurs, although it might
take longer, as we show in Section 7. Once the attacker suc-
ceeds in poisoning u’s entire view, all of u’s pushes are sent
to faulty nodes (Fig. 1b), and consequently, u disappears
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Fig. 1. Malicious attacks on traditional gossip protocols using push and pull requests. (a) Faulty nodes flood a correct node u with pushes, and totally poison
its view. (b) Node u with a totally poisoned view sends pushes only to faulty nodes, and ceases being represented in the views of other correct nodes. (c) Node
u pulls views from two correct nodes with 50% correct ids, and two faulty nodes. (d) The faulty nodes return only faulty ids, thus poisoning 75% of u’s view.

from the views of other correct nodes. Once this occurs, u is
isolated from the system, and the attacker can proceed to
attack additional nodes.

Skewed pull responses. Faulty nodes can return only
faulty ids in response to pull requests. Since pulls from cor-
rect nodes return faulty ids as well as correct ids, this
behavior leads to exponential decay in the representation
of correct nodes in the system.

The effect of this attack on a purely pull-based gossip
protocol is illustrated in Fig. 1c and d. In this example,
the system begins a gossip round in a state where 50% of
ids in all views are faulty, (Fig. 1c), and we see that at
the end of the same round, 75% of the ids in a typical node’s
view are faulty (Fig. 1d).

Push-pull gossip. Unlike in push-only gossip where the
whole view is updated with pushes only, in push-pull gos-
sip a constant part of each view is updated with pushes,
while the other part is updated with pulls. Despite the fact
that only a part of the view is updated with pushes, push
flooding in push-pull gossip will take a logarithmic time
in the view size to poison the view. This effect is even
worsened, since the other part of the view is updated with
pulls, suffering from an adverse effect of skewed pulls.

These scenarios demonstrate that an adversary can ex-
ploit traditional gossip to bias the distribution of ids in
the views of correct nodes. In the long run, an attacker
can disintegrate the entire overlay, thus precluding peer
sampling completely. Brahms adopts a two-layer approach
to this problem. As a first step, we guarantee, with high
probability, that the attacker cannot isolate correct nodes,
that is, the maximum bias to their views is bounded. As a
second step, we correct the incurred bias through local uni-
form sampling.

4. The Brahms protocol

Brahms has two components. The local sampling com-
ponent maintains a sample list S - a tuple of uniform sam-
ples from the set of ids that traversed the node (Section
4.1). The gossip component is a distributed protocol that
spreads ids across the network (Section 4.2), and maintains
a dynamic view V. We denote the size of V by ¢; and the
size of S by ¢,. Each node has some initial V (e.g., received
from some bootstrap server or peer node). V and S may
contain duplicates, and some entries in S may be unde-
fined (denoted ).

4.1. Sampling

Sampler is a building block for uniform sampling of un-
ique elements from a data stream. The input stream may
be biased, that is, some values may appear in it more than
others. Sampler accepts one element at a time as input,
produces one output, and stores a single element at a time.
The output is a uniform random choice of one of the unique
inputs witnessed thus far. For example, assume some id,
id,, appears only once in a certain input stream, while an-
other id, id,, appears 1000 times in the same stream; Sam-
pler’s output on this stream has an equal probability of
being id; as for being id,.

Sampler uses min-wise independent permutations [14]. A
family of permutations H over a range [1 ... |U|] is min-wise
independent if for any set X c [1...|U|] and any x e X,ifhis
chosen at random from A, then Pr(min{h(X)} = h(x)) = ‘}(—‘
That is, all the elements of any fixed set X have an equal
chance to have the minimum image under h. Pseudo-ran-
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dom functions (e.g., [24]) are considered an excellent prac-
tical approximation of min-wise independent permuta-
tions, provided that |U] is large, e.g., 21°°.

The pseudo-code of sampler appears in Fig. 2a. It selects
a random min-wise independent function h upon initiali-
zation, and applies it to all input values (in the next()
function). The input with the smallest image value encoun-
tered thus far becomes the output returned by the sam-
ple() function. The property of uniform sampling from
the set of unique observed ids follows directly from the
definition of a min-wise independent permutation family.

Brahms maintains a tuple of ¢, sampled elements in a
vector of ¢, Sampler blocks (see Fig. 2b), which select
hashes independently. The same stream of ids observed
by the node is input to all Samplers. Sampled ids are peri-
odically probed (e.g., using pings), and a sampler that holds
an inactive node is invalidated (re-initialized). Thus, when
churn ceases, each sample converges to an independent
uniform random selection from among the active nodes.

4.2. Gossip
Brahms’s view is maintained by a gossip protocol as

shown in Fig. 3. We denote list concatenation by o. By
slight abuse of notation, we denote both the vector of sam-

Id stream

: function Sampler.init()
h <« randomPRF(); ¢ <+ L

: function Sampler.next(elem)

if¢g=_1 Vv h(elem) < h(q) then
q «— elem

: function Sampler.sample()

return q

Nk e

plers and their outputs (the sample list) by S. Brahms exe-
cutes in (unsynchronized) rounds. It uses two means for
propagation: (1) push — sending the node’s id to some other
node, and (2) pull - retrieving the view from another node.
These operations serve two different purposes: pushes are
required to reinforce knowledge about nodes that are un-
der-represented in other nodes’ views (e.g., newborn
nodes), whereas pulls are needed to spread existing knowl-
edge within the network [1].

Brahms uses parameters o > 0,8 >0, and y > 0 that
satisfy oo + 8+ y = 1, to control the portion of pushed ids,
pulled ids, and history samples in the new view, respec-
tively. In a single round, a correct node issues «¢; push re-
quests and B¢; pull requests to destinations randomly
selected from its view, possibly with repetitions (Lines
22-26). At the end of each round, V and S are updated with
fresh ids. While all received ids are streamed to S (Line 37),
re-computing V requires extra care, to protect against poi-
soning of the views with faulty ids. Brahms offers the fol-
lowing set of techniques to mitigate this problem.

Limited pushes. Since pushes arrive unsolicited, an
adversary with an unlimited capacity could swamp the
system with push requests. Then, correct ids would be
propagated mainly through pulls, and their representation
would decay exponentially [1]. The protocol employs lim-

init() next()

¢ A 4 ¢ A 4 ‘V ¢ A,

‘ Sampler ‘ ‘ Sampler ‘ ‘ Sampler ‘ ‘ Sampler ‘

sample()

h 4 A, h 4 h 4

Validator ‘ Validator ‘ Validator ‘ Validator ‘

Lo b

Fig. 2. Uniform sampling from an id stream in Brahms. (a) Sampler’s pseudo-code. (b) Sampling and validation of ¢, ids.

1: V :tuple[¢1] of Id
2: S :tuple[{2] of Sampler
3: Initialization(V): 21
4: V)V 22:
5: foralll <i</3do 23:
6: S[i].init() 24:
7:  updateSample()o) 25:
8: {Stale sample invalidation} 26:
9: periodically do 27
10 foralll <i < /> do 28:
11: if probe(S|i].sample()) fails then 29:
12: S[i].init() 30:
13: {Auxiliary functions} 31
14: function updateSample (V) 32:
15:  forallid € V, 1 <i</{ydo 33:
16: S[i].next (id) 34:
17: function rand(V, n) 35:
18:  return n random choices from V gg

19: {Gossip}

20: while true do

Vpush, — vpull —0
forall 1 <i < a/l; do

{Limited push}
send lim (“push request®) to rand(V,1)

forall1 <i < /1 do

send (“pull request*) to rand(V, 1)

wait(1)

for all received (“push request*“) from id do

Vpu.sh — vpush o {Zd}

for all received (“pull request) from id do

send (“pull reply“, V) to id

for all received (“pull reply“, V') from id do

if I sent the request, and this is the first reply then
Vpull — Vpull o V/

if(|vpush| S O461 A Vpush 76 @ A Vpull # @) then

V — rand(Vpush, @l1) o rand(Vpuur, 501) o rand(S, v41)

updateSample(Vpush © Vpuil)

Fig. 3. The pseudo-code of Brahms.
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Pushed ids

History

. samples
View al, ‘ Bl |yI1WSample

Fig. 4. View re-computation in Brahms.

ited sending of push messages (performed by send_1im),
hence the system-wide fraction of faulty pushes is
constrained.

Attack detection and blocking. While using limited
pushes prevents a simultaneous attack on all correct
nodes, it provides no solace against an adversary that
floods a specific node. Brahms protects against such a tar-
geted attack by blocking the update of V. Namely, if more
than the expected o#/; pushes are received in a round,
Brahms does not update V in that round (Line 35).
Although this policy slows down progress, its expected im-
pact in the absence of attacks is bounded (nodes recom-
pute V in most rounds). Thanks to limited pushes, the
adversary cannot block all correct nodes simultaneously,
i.e., some nodes make progress even under an attack.

Controlling the contribution of pushes versus pulls.
As most correct nodes do not suffer from targeted attacks
(due to limited pushes), their views are threatened by pulls
from neighbors more than by adversarial pushes. This is
because whereas all pushes from correct nodes are correct,
a pull from a random correct node may contribute some
faulty ids. Hence, the contribution of pushes and pulls to
VY must be balanced: pushes must be constrained to protect
the targeted nodes, while pulls must be constrained to pro-
tect the rest. Brahms updates V with randomly chosen o/,
pushed ids and B¢; pulled ids (Line 36).

History samples. The attack detection and blocking
technique can slowdown a targeted attack, but not prevent
it completely. Note that if the adversary succeeds to in-
crease its representation in a victim’s view through tar-
geted pushes, it subsequently causes this victim to pull
more data from faulty nodes. As the attacked node’s view
deteriorates, it sends fewer pushes to correct nodes, caus-
ing its system-wide representation to decrease. It then re-
ceives fewer correct pushes, opening the door for more
faulty pushes.®> Brahms overcomes such attacks using a
self-healing mechanism, whereby a portion y of V reflects
the history, i.e., previously observed ids (Line 36). A direct
use of history does not help since the latter may also be
biased. Therefore, we use feedback from S to obtain unbi-
ased history samples. Once some correct id becomes the at-
tacked node’s permanent sample (or the node’s id becomes a
permanent sample of some other correct node), the threat of
isolation is eliminated. Fig. 4 illustrates the view re-compu-
tation procedure.

3 This avalanche process can be started, e.g., by opportunistically sending
the target a slightly higher number of pushes than expected. Since correct
pushes are random, a round in which sufficiently few correct pushes arrive,
such that Brahms does not detect an attack, is expected to happen soon.

Parameter settings. Brahms’s parameters control a
tradeoff between performance in a benign setting and resil-
ience against Byzantine attacks. For example, 7 must not be
too large since the algorithm needs to deal with churn; on
the other hand, it must not be so small as to make the feed-
back ineffective. We show in Section 8 that y = 0.1 is en-
ough for protecting V from partitions. The choice of ¢; and
0, is crucial for guaranteeing that a targeted attack can be
contained until the attacked node’s sample stabilizes. We
study their impact in Section 7, where we show that choos-
ing ¢4, 4, = ©(+/n) suffices to protect even nodes that are at-
tacked immediately upon joining the system.

5. Analysis structure

In this section, we first present the definitions and the
assumptions used in the analysis of our protocol, and then
discuss the attack models and analysis structure.

5.1. Definitions

We study the asymptotical properties of a system of n
active nodes, after a point T at which churn ceases. The
subset of correct nodes is denoted C. The faulty nodes com-
prise less than some fraction f < 1 of n. We assume that
the system-wide fraction of pushes that all faulty nodes
can jointly send (using limited send) in a single round
(time unit) is at most p, for some p < 1.

We denote the view and the sample list at node u at
time t by V,(t) and S, (t), respectively. We define the over-
lay graph N (t), induced by the union of V and S at all cor-
rect nodes, which captures their knowledge about each
other at time t as follows:

N () & {¢, L v)lv e u(®) USu(t)) NCY.

ueC
We also define V(t), a subgraph of N (t) induced by V of
correct nodes (edges induced by S are omitted):

V(t) £ ¢, | J{w,v)lv e Vu(t) N C}}.
ueC

For a node u, the number of its incoming edges in a graph is
called its in-degree, and the number of outgoing edges is
called its out-degree. For example the in-degree of node u in
V(t) is the number of instances of u in views of correct nodes,
and its out-degree is the number of correct ids in its view. The
degree of u is the sum of its in-degree and out-degree.

Analysis assumptions. Brahms’s resilience depends on
the connectivity of the overlay graph N (t). We assume a
necessary condition for initial connectivity, namely, that
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the view of every joining correct node contains some cor-
rect ids (though the ratio of faulty ids in the view is not
necessarily bounded by f). We further assume that before
an attack starts, the in-degrees and out-degrees of all cor-
rect nodes are (roughly) equal. This property is an approx-
imation of reality - Jelasity et al. [26] have shown that
benign gossip leads to a low variance in in-degrees. Our
simulations demonstrate that our results, which use this
assumption, are valid.

5.2. Attack models and analysis structure

We start our analysis by evaluating two important prop-
erties of Brahms. First, we show an upper bound on the time
for a correct node’s sample to permanently contain at least
one correct id. Second, we show a lower bound on the time
to isolate a correct node from all other correct nodes in V(¢).

The key resilience property achieved by Brahms is that
under certain conditions on ¢;, ¢, and p, the upper bound is
smaller than the lower bound. Thus, an attacked node will
be permanently connected to at least one correct node
sooner than it can be isolated by the attack. Since the eas-
iest way an adversary can cause a partition in N (t) is by
isolating one correct node from the rest [1], this property
of Brahms implies that an adversary cannot cause a parti-
tion in A/(t). Notice that the lower bound is shown without
any utilization of the sample lists by correct nodes.

The upper bound. Assuming N (t) is connected, in Sec-
tion 6.1, we show that eventually, the sample S, is a uni-
form random sample. In Section 6.2, we analyze the time
it takes for S, to permanently include at least one correct
id, and in Section 6.3 we show that there exist ¢; and ¢, that
guarantee this time to be independent of the system size.

The lower bound. In Section 7 we analyze the time to
isolate a correct node in V(t). In order for some node to
be partitioned from the rest, its view needs to be filled so-
lely with ids of faulty nodes. Thus, we assume that faulty
nodes always prefer to increase their representation in
the views of correct nodes rather than decrease it. That
is, they push only faulty ids to correct nodes and always re-
turn faulty ids in pulls. Likewise, faulty nodes always re-
spond to probe requests, to avoid invalidation.

Due to the use of limited send in push messages, the
number of pushes each faulty node is able to send in a sin-
gle communication round is limited. In Appendix B.1 we
prove that the best strategy of faulty nodes for maximizing
their representation in the views of correct nodes is to dis-
tribute their pushes evenly among all correct nodes. We
call this a balanced attack. Section 7.1 analyzes this attack
and evaluates the system-wide portion of faulty ids in
the views of correct nodes as a function of time. We show
that this portion converges to a fixed-point, i.e., after some
time it remains a constant smaller than 1.

The use of blocking makes it counter-productive for
faulty nodes to flood a single victim node with too many
pushes. Thus, while some of the pushes sent by faulty
nodes are devoted to isolating the victim, other pushes
are used to increase the representation of faulty nodes in
the views of all correct nodes in the system. Hence, in order
to isolate a correct node, faulty nodes should focus their
pushes on a single target node as much as possible (i.e.,

without triggering blocking at that node) and at the same
time, perform a balanced attack on the other correct nodes
in the system. We call this a targeted attack. Section 7.2
presents the analysis of this attack.

The correctness of Brahms, i.e., that the shown upper
bound is smaller than the lower bound, is maintained only
under certain conditions on /1, ¢, and p. On one hand, when
¢ and ¢, grow as /n, the time for a correct node’s sample
to permanently contain a correct id is constant, as proven
in Section 6.3. On the other hand, the lower bound proven
in Section 7.2 depends only on «, 8,¢; and p. Thus, we can
choose ¢, so that the time to isolate a correct node becomes
arbitrarily large, independently of n. Section 8 illustrates
concrete values of ¢; and ¢, that meet these requirements.

6. Analysis - sampling

In this section we analyze the properties of a sample S,
of a correct node u. Let s = S,[i] be a sampler element for
some correct u and some i. Recall that s employs a permuta-
tion s.h, chosen independently at random. Let s(t) denote
the output of s at time t. We define the perfect id correspond-
ing to s, s*, to be the id with the minimal value of s.h among
all nids (we neglect collisions for the sake of the definition).
Note that s* can be either a correct or a faulty id. In Section
6.1 we show that s eventually converges to an independent
uniform random sample. In Section 6.2 we analyze how fast
anode obtains at least one correct perfect sample, as needed
for self-healing. Section 6.3 discusses scalability, namely,
how to choose view sizes that ensure a constant conver-
gence time, independent of system size. For readability,
some formal proofs are deferred to Appendix A, while this
section overviews the proof approach.

6.1. Eventual convergence to uniform sample

Consider a sampler s € S, of node u. The perfect id of s,
s*, samples ids uniformly at random by definition of min-
wise independent family of hash functions. Thus, our goal
is to prove that s eventually holds s*. Obviously, for s to
be able to sample some correct node v, the id of v has to
reach u. To allow for such reachability between all the cor-
rect nodes, we require the overlay graph A/ (t) to remain
weakly connected after Ty. That is, the undirected graph, ob-
tained from A/ (t) by replacing all of its directed edges with
undirected ones, is connected for all t > T,. The following
theorem shows that under this assumption each id eventu-
ally has the same probability to be sampled by s.

Theorem 6.1. If N (t) remains weakly connected for each
t > Ty, then, for all v € C,

Pr(s(t) = V)=t %

Proof. Let u be an active node at time T,. Then all active
nodes send pushes in every round > T, (recall that we
assume this also for faulty nodes, see Section 5). We now
consider a time ty > Ty, and study the number of ids
observed by u as a random process from time t, onward.
We denote by Visited,(t) the union of ids were included
in u’s local view between time ty and time t. That is,
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t
Visited, (t) = | J Vu(t').
=to

We will show that eventually, Visited, (t) includes all active
nodes. [

Proposition 6.2. For every t > to, if Visited,(t) does not
already contain all active nodes, there is a probability,
bounded from below by some positive constant b, for
Visited, (t + 3) to include a node that is not in Visited,(t).

Proof. By connectivity of AV (t), there is a path in A/(t) from
every node in Visited,(t) to every node that is not
in Visited,(t). Consider an edge between some u; €
Visited, (t) and some u, ¢ Visited,(t).

There is a positive probability for u; to be in V,(t) The
probability that u is the perfect sample of every sampler is
1/n, and hence, once u; is included in V,(t’), for some
to < t’ < t, it has a nonzero probability of being sampled in
Su(t"). Since a perfect id remains in S, forever, u; has a
nonzero probability of being added back to Vy,(t) as a
history sample.

We now show that u, has a positive probability to be
added to Visited, within at most 3 rounds. That is,
Pr(u, € Visited,(t +3)) > b. There are 4 possible cases,
depending on the type of edge between u; and u;.

(1) uy € Vy, (t). As we have shown earlier, u; has a non-
zero probability of being in V,(t). Thus, there is a
positive probability for u to pull from u; at round t,
and since u, € V,, (t),u; has a nonzero probability
of being returned in the pull and included into
Vu(t + 1), and we are done.

(2) uy € Vy, (t). There is a positive probability for u, to
push to u; at round t, leading to u, being in
Vy, (t+ 1), and the proof continues as case 1.

(3) uy € Sy, (t). There is a positive probability for u, to be
added to V,, (t+1) as a history sample, and the
proof continues as case 1.

(4) uy € Sy, (t). There is a positive probability for u; to be
added to V,,(t+1) as a history sample, and the
proof continues as case 2.

Let the probability of the least probable event (or a
sequence of at most 3 events) to be b. We conclude that for
every u and every t > to, Visited, (t + 3) contains a new id
that was not included in Visited,, (t) with probability at least b.

From Proposition 6.2, it follows immediately that with
probability at least b", Visited,(t + 3n) contains all active
nodes. That is, for every node u, and at every time tin the run
of the protocol after T, there is a positive probability for u to
observe every other node’s id in its stream by time t + 3n.
Since the event of u observing all the other ids by time t + 3n
has nonzero, bounded from below, probability of occurring
starting from every time t > Ty, eventually, with probability
1, there will be some t when this even will occur. Then, by
sampler properties, each id is sampled with probability 1/n.

Recall that we assumed (Section 5) that faulty active
nodes always seek to maximize their representation, and
therefore, send pushes to correct nodes and respond to
invalidation probes. Therefore, they appear in the gossip

streams, and are sampled with the same probability as
correct nodes. In a system where this assumption does not
hold, and faulty active nodes may refrain from responding
to pings, the probability that a correct id is sampled

n

converges to the range {%,Oj—f)n] or [l ﬁ} instead of
exactly to 1/n as stated above. O

The next lemma discusses the convergence rate of
samples.

Lemma 6.3. From Ty onward, for each correct node u, the
expected fraction of samplers in S, that output their perfect ids
grows linearly with the fraction of unique ids observed by u.

Proof. Let D(t) be the set of ids observed by u until time t,
for t > T,. Note that D(t) contains only ids that are active
after Ty, since inactive ids are invalidated and no invalida-
tions happen after T, (recall that at time Ty churn ceases).
Then, for each u’s sampler s, Pr(s* € D(t)) = &n')‘. Since for
each s such that s* € D(t),s(t’) = s* for each t/ > t, the
lemma follows. O

6.2. Convergence to first perfect sample

We show a lower bound on the probability that S, con-
tains at least one perfect id of an active correct node, as a
function of the set of ids that u observes, and system param-
eters. This provides an upper bound on the time it takes S,
to ensure self-healing and prevent u’s isolation. For the sake
of proving the lower bound, we made worst-case assump-
tion: we assume that u joins the system at time Ty, with
an empty sample. Let A(t) be the number of correct ids ob-
served by u from time T, to time t. Our analysis depends on
the number of unique ids observed by u, rather than di-
rectly on A. Obviously, it is unrealistic to expect our gossip
protocol to produce independent uniform random samples
(cf. [26]). Indeed, achieving this property is the goal of sam-
pler. In order to capture the bias in 4, we define a stream
deficiency factor, 0 < p < 1, so that a stream of length A(t)
produced by our gossip mechanism includes as many ran-
dom unique ids as a stream of length pA(t) in which correct
ids are independent and distributed uniformly at random.
This is akin to the clustering coefficient of gossip-based
overlays [26]. We empirically measured p to be about 0.4
with our gossip protocol (see Section 7.2).

In the following lemma we study the dependency be-
tween the probability of a sampler to output its correct per-
fectid, the number A(t) of (non-unique) correct ids streamed
into the sampler, and the stream deficiency factor p.

Proposition 6.4. Let s be a sampler. Then, for |C| > 1 and for
each t > Ty,

PA®)

Pr(s(t)#s*|s* € C) =e ™ .

Proof idea. A sampler does not output its correct perfect
id only if that id did not occur in the stream. We calculate
the probability of this event as a function of the effective
number pA(t) of independent and uniformly distributed
correct ids in the stream by time t. The full proof appears
in Appendix A.1.
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We define the perfect sample probability PSP,(t) as the
probability that S,(t) contains at least one correct perfect
id. The convergence rate of PSP is captured by the following
lemma.

Lemma 6.5. Let u be a random correct node. Then, for t > Ty,
AL ¢
PSP(t) > 1~ (1= e +f)

Proof. Since u has ¢, independent samplers, the probabil-
ity of each one to have a correct perfect id is
Pr(s* € C) > 1 — f. Similarly, Pr(s* ¢ C) < f. Based on Propo-
sition 6.4, the probability of s(t) not being a correct perfect
id is

Pr(s(t)#s" vVs* ¢ C) = Pr(s(t)#s"|s* € C)Pr(s” € C) + Pr(s" ¢ C)
<(1-fe e +f.

The perfect sample probability PSP,(t) equals 1 minus the
probability of each of ¢, samplers not outputting a correct
perfect id, that is:

pA(D) b
PSP,() > 1— ((1-fe & +f) .

Fig. 5 illustrates the dependence of PSP on the stream
size A(t) and on ¢,. For example, we see that when the
sample size is 40 = 4/n (for n = 1000,f = 0.2), and the
portion of unique ids in the stream is p = 0.4, a correct per-
fect sample is obtained, with probability close to 1, after
300 ids traverse the node. O

6.3. Scalability

From Lemma 6.5, we see that PSP depends on A and /5.
To get a higher PSP, we can increase either of them. While
increasing A is achieved by increasing ¢;, and consequently
the network traffic, increasing ¢, has only a memory cost.
We now study the asymptotic behavior of PSP,(t) as the
number of nodes, n, increases. When a node has ¢, sam-
plers, and fis fixed, 2(¢,) of them have correct perfect sam-

Perfect Sample Probability (PSP)

¢ © -0-1,=20
0280 I.=40
*0 *
o o - |2=60
0 100 200 300 400 500

Stream Size

Fig. 5. Growth of the probability to observe at least one correct perfect
sample (Perfect Sample Probability - PSP) with the stream size, for 1000
nodes, f = 0.2, and p = 0.4.

ple, s*, with high probability. Therefore, by Proposition 6.4,
the probability at least one of these Q(¢,) samplers output-
ting its perfect id satisfies, with high probability

psru0 > 01 (¢4)") = o1 e ).

For a constant ¢, A(t) = Q(£3) since there are Q(¢;) pulls,
2.
obtaining Q(¢;) ids each. Thus, PSP,(t) > Q(l - *11—12>,

For scalability, it is important that for a given t, PSP, (t) will
be bounded by a constant independent of the system size.
This condition is satisfied when ¢ - ¢, = Q(n), e.g., when
b, = ¢; = Q(¥/n), or when ¢ = Q(¥/n) and ¢, = Q(¥/n). To
reduce network traffic at the cost of a higher memory con-
sumption, one can set ¢; = Q(logn) and ¢, = Q(log%ﬂ)
When choosing parameter values for our simulations later
in the paper, we use ¢, = ¢; = c¥/n forc=2 and c = 3.

7. Analysis - overlay connectivity

We now prove that Brahms, with appropriate parame-
ter settings, maintains overlay connectivity despite the at-
tacks defined in Section 5, satisfying the prerequisite for
Theorem 6.1.

We study two possible adversary targets. The first tar-
get, addressed in Section 7.1, is increasing the global repre-
sentation of faulty ids. We prove that in any single round, a
balanced attack, which spreads faulty pushes evenly among
correct nodes, maximizes the expected system-wide frac-
tion of faulty ids at the end of the round, among all strate-
gies. (A similar approach of analyzing the adversary’s
damage in a single round was taken, e.g., in [33].) We pro-
ceed by analyzing the effect of this attack, namely the evo-
lution of the system-wide fraction of faulty ids at the end
of each round. We further show that under certain condi-
tions this fraction converges to a value that is strictly smal-
ler than 1. That is, this attack alone can not partition the
network.

We next consider an attack that attempts to partition
the network (rather than increase the faulty nodes’ repre-
sentation) by targeting a subset of nodes with more pushes
than in a balanced attack. Without prior information about
the overlay’s topology, attacking a single node can be most
damaging, since the sets of edges adjacent to single nodes
are likely to be the sparsest cuts in the overlay. Section 7.2
shows that had Brahms not used history samples, correct
nodes could have been isolated in this manner. However,
Brahms withstands such targeted attacks, even if they start
immediately upon a node’s join, when the node is not rep-
resented in other views and has no history. The key prop-
erty we prove is that Brahms’s gossip prevents isolation
long enough for history samples to become effective. This
section employs stochastic analysis backed by simulations.

Notation. We study time-varying random variables,
listed in Table 1. A local variable at a specific correct node
u is subscripted by u. When used without subscript, a var-
iable corresponds to a random correct node. The variable x
denotes the number of faulty ids in the node’s view (1 — x
is the node’s out-degree in the overlay of correct nodes)
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Table 1
Random variable definitions.

Random correct node
Number/fraction

Correct node u
Number/fraction

Semantics

Xu(6)/Xu(t) X(£)/X(t)
Yu()/Yu(t)

gsush (t)/gEUSh(t) gpush(t)/gpush (t)
TEUSh (t)/i,gush (f) rpush (t)/fpush ([)

gl (6)/gP (1)
rpul](t)/?pull(t)

g (0/g8 (6)
o/ @)

Faulty ids in the node’s view (complement to out-degree)
Occurrences of the node in views of correct nodes (in-degree)
Correct ids pushed to the node

Faulty ids pushed to the node

Correct ids pulled by the node

Faulty ids pulled by the node

and y denotes the number of occurrences of node’s id in the
views of correct nodes (the node’s in-degree). Their frac-
tions in views are denoted with ~ above. Correct (resp.,
faulty) ids propagated through pushes and pulls are de-
noted g (for green) (resp., r (for red)), with appropriate
superscripts for push and pull.

For example, x,(t) is the number of faulty ids in node u’s
view at time t, whereas X(t) is the system-wide fraction of
faulty ids in all views at time t. gf®"(t) is the number of
correct ids pushed to the node u, whereas gPush(t) is the
system-wide fraction of correct ids pushed to all views at
time t.

Simulation setup. We validate our assumptions using
simulations with n = 1000 nodes or more. Each data point
is averaged over 100 runs. For simplicity, we always use
p = f. A different subset of faulty nodes push their ids to
a given correct node in each round, using a round-robin
schedule.

7.1. Balanced attack - increasing global representation of
faulty ids

We study the balanced attack, which shares the
adversarial pushes evenly among all correct nodes. Lem-
ma B.1 in Appendix B.1 shows that this attack is most
efficient in maximizing the system-wide representation
of faulty ids in a single round. Intuitively, this result is
explained as follows. The probability for an adversary’s
message to be accepted, (i.e., selected in rand on line
36 in Fig. 3), in a given round is maximized when the
message reaches a node that receives a minimal number
of pushes in that round; over-loading nodes only reduces
the adversary’s messages chances of being accepted.
However, the adversary has no information about the
number of correct pushes received by any particular cor-
rect node. Moreover, the expected number of received
pushes is the same at all the correct nodes. Therefore,
the adversary maximizes the number of faulty pushes ex-
pected to be accepted in a round by distributing them
evenly among correct nodes.

We now proceed and study the system dynamics when
a balanced attack is applied over multiple rounds. The
analysis makes two simplifying assumptions. First, we
ignore the effect of view blocking (Fig. 3, Line 35). Note
that this is a worst-case assumption, which only acceler-
ates the deterioration of correct views. Second, we assume
that the balanced attack preserves the in-degrees and out-
degrees of all correct nodes equal over time, since it does
not distinguish between correct nodes. Formally,

Assumption 7.1. For all u € C and all t > Ty : x4(t) = x(¢t),
and yu(t) =t — Xu(t)-

Our extensive simulations closely validate the theoreti-
cal results obtained using these two assumptions.

Throughout this section we assume 0 < p < 1. The other
cases (all pushes are faulty or no faulty pushes at all) are
not interesting.

7.1.1. The evolution of x(t)

We study the evolution of the ratio of faulty node ids in
views, x(t), over time. We show the existence of a param-
eter-dependent fixed point of X(t) and the system’s conver-
gence to it. Since the focus is on asymptotic behavior, we
assume t > Ty.

The following function y describes the evolution of the
expectation of X(t) with time: if at time t, the system-wide
portion of faulty ids in views is x(t) = x, then at time t + 1,
the expected portion of faulty ids in views will be y/(x).”

Definition 7.1. Assuming a fixed p € (0, 1) we define:

A p

e (T =y

Notice that y is the sum of three terms. The first, with
coefficient o, captures the contribution of faulty pushes.
The second, with coefficient g, captures faulty ids arriving
in pull messages. Finally, the term with coefficient y cap-
tures the faulty ids returned by history samples. The fol-
lowing lemma proves that  describes the evolution of
X(t) with time.

+ B((1 —x)x +x) + 9f.

Lemma 7.2. For t > Ty, and p € (0, 1), the expected system-
wide fraction of faulty ids evolves as

E(x(t+1)) = E((x(1))).

Proof. Consider the re-computation of V at a correct node
u at time t. The weights of pushes, pulls, and history sam-
ples in the recomputed view are o, f and 7, respectively.
Since the random selection process (Fig. 3, Lines 36 and
17-18) preserves the distribution of faulty ids in each data
source, the probability of a push- (resp., pull)-originated
entry being faulty is equal to the probability of receiving
a faulty push (resp., pulling a faulty id).

Fig. 6a illustrates the analysis of 7Push(t), the probability
of a received push to be faulty. Each correct node wastes an
expected fraction x(t) of its a¢; pushes because they are
sent to faulty nodes. The rest are sent with an equal
probability over each outgoing edge in V(t). Since out-
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Fig. 6. Fixed point analysis illustration.

degrees and in-degrees are equal among all correct nodes
(Assumption 7.1), each correct node u receives the same
expected number of correct pushes: E(gB"N(t)) =
(1 — X(t))outy.. The variable gB**"(t) is binomially distributed,
with the number of trials equal to the total number of
pushes among all nodes with an outgoing edge to u (i.e.,
nodes v s.t. u e Vy(t)). Since this number is large, the
number of received correct pushes is approximately equal
to its expectation at all correct nodes, i.e.,
gush(t) ~ (1 — x(t))oty, for all u.

The total number of correct pushes is a¢;|C|, which is a
portion 1 — p out of all pushes (by definition of p). Hence,
the total number of pushes is %M, and the number of
faulty pushes is %\CL Since faulty pushes are perfectly
balanced among the correct nodes, u receives exactly
rPush () = 125 41 faulty pushes, and their fraction among all
received pushes is:

fpush(t) — rPUSh (t) _ 1’%17 OCf] _
u 2Ot () 4+ ghush () ol + (1 = X(0))ouls
p

Tp+r(-pd-x@©)

Out of all push-received ids u stores a fraction of o in its
view. Hence, the expected ratio of push-originated faulty
ids in v, is am.

Fig. 6b depicts the evolution of pull-originated faulty
ids. Since all correct nodes have an equal out-degree
(Assumption 7.1), a correct node is pulled with probability
1 — x(t), while a faulty node is pulled with probability X(t).
A pulled id is faulty with probability x(t) if it comes from a
correct node, and otherwise, it is always faulty. Hence, the
expected fraction of pull-originated faulty ids is
BT —X(E)R(E) +X(D)).

Finally, since t >> Ty, all history samples are perfect (the
ratio of faulty ids in them is f). Hence, their expected
contribution to x(t + 1) is yf, and the claim follows. O

7.1.2. Fixed point existence

We now show that the system has a stable state. A va-
lue % is called a fixed point of x(t) if y(X(t)) = X(t) = k. To
find the potential fixed points, we substitute this into the
equation from Lemma 7.2. The following Claim immedi-
ately follows from our definitions.

Claim 7.3. For o, 8,7.f € [0,1] and p € (0,1), every real root
0 < % < 1 of the equation y(X(t)) = X(t) is a fixed point of X(t).

To shed more light on the balanced attack’s dynamics,
we study the fixed point values under specific combina-
tions of «, 8 and ). Simplifying the equation (x) = x, we
get h(x) = 0, where:

h(x) = B(1 — p)x® + (2pp — 38— p + 1)x*
+fp = 9f + 28— Dx+op +7f.

By Claim 7.3, the fixed point % is a root of h(k). We first
establish a number of useful observations regarding the
functions (x) and h(x) that will be used throughout our
analysis, here and in Appendix B.2. They can be shown
by straightforward calculus.

Observations

0.1 y(X) is monotonically increasing for x € [0, 1], since
both m and X + (1 — X)X = 2X — x?> are mono-
tonically increasing in this interval.

0.2 The absolute value of the first derivative of y/(x) for
x € [0,1] is bounded by a constant K.

0.3 limy_,_ h(x) = —o0,h(0) = ap +yf = 0,h(X) =0,
h(1) =p(o+ B+ 9pf — 1) < 0,and limy_, ., h(x) = +cc.
h(x) has a single feasible root 0 < X < 1 (since h(x) is
continuous and the other two roots lie outside
[0,1]). In addition, h(x) is increasing in (0,%) and
decreasing in (x,1).

0.4 y(x) > x for x € (0,%) and y(x) < x for x € (%, 1). This
is a straightforward application of the previous
observation.

We focus on valid roots 0 < X < 1. A fixed point X = 1 is
called trivial (any other value is nontrivial). The existence
of a nontrivial fixed point means that there is a stable sys-
tem state in which the representation of correct ids is non-
zero. On the other hand, if the system is at the trivial fixed
point X = 1, it means the views of all correct nodes hold
only faulty ids.

Fixed points with history samples. If y > 0 (i.e., history
samples are used), a trivial fixed point does not exist (1 is
not a root) and a single nontrivial fixed point always exists.
This is since h(0) > 0 and h(1) < 0 and by Observation 0.3
a single feasible root lies in 0 < X < 1.

Fixed points without history samples. If y = 0 (no his-
tory samples), then X = 1 is a root, i.e., a trivial fixed point
exists. This is easily explainable, since if the views of all the
correct nodes are totally poisoned, then neither pulls nor
pushes can help.
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By Observation 0.3 there is also a single feasible root
0<x<1. For example, if «=p=1 and y=0, then

k=Dl V(f:f”z, for 0 < p <1 In contrast, if the fraction of

faulty pushes exceeds 1, the only fixed point is 1.
Two more parameter combinations deserve special
interest:

(1) p=1,0 =7 = 0(pull only, no history samples). Both
roots X = 0 and X = 1 exist, for all p. This can be eas-
ily explained by considering the initial conditions.
Since faulty nodes cannot push their own ids, if none
of the views initially contain a faulty id, correct
nodes pull only from correct nodes and the faulty
nodes will remain unrepresented. On the other
hand, as shown in Fig. 1c and d, if X(To) > 0 (faulty
nodes are initially represented) the views collapse
tox=1.

(2) « =1, =7 = 0(push only, no history samples). The
only valid root is X = 32, for p < 3 (recall that p > 0).
That is, a nonzero fraction of correct ids can be main-
tained iff the majority of pushes are correct. This fol-
lows from the fact that a single correct push and a
single faulty push equally contribute to the view.

These results highlight the importance of using history
samples. Fig. 7 depicts a fixed point of x(t) for two combi-
nations of «, 8, and 7 and for various values of p. We see a
perfect match between theoretical analysis and
simulations.

7.1.3. Convergence to the fixed point

We conclude the analysis by showing convergence to a
nontrivial fixed point, if one exists.

The idea. We show (Appendix B.2) that the sequence of
expected values of X(t),{E(X(To +k))} for k > 0, can be
approximated by an auxiliary sequence {y*(%(To))}. The
latter sequence converges to %, i.e., so does the expected
value of X(t). We exploit the properties of y and use
well-known calculus techniques.

151
g — Theoretical: 0=p=0.5, y=0
> -l Simulation: a=B= 0.5, y=0, 1000 nodes
3 - - -Theoretical: 0=3=0.45, y=0.1
% -@- Simulation: o== 0.45, y=0.1, 1000 nodes
o 1
E
[
o
©
[}
>
S o5
c
©
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o
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0 0.2 0.4 0.6 0.8 1

Average ratio of faulty pushes (p)

Fig. 7. Fixed point X of the system-wide fraction of faulty ids in local
views, as a function of p, under a balanced attack.

7.2. Targeted attack

We study a targeted attack on a single correct node u,
which starts upon u’s join, which occurs at time T,. We
prove that u is not isolated from the overlay by showing
a lower bound on the expected time to isolation, which ex-
ceeds the upper bound on the time to a perfect correct
sample shown in Section 6 (a sufficient condition for
non-isolation).

Lower bound on expected isolation time. As we seek a
lower bound, we make a number of worst-case assump-
tions (formally stated in Appendix C). First, we assume that
the protocol does not employ history samples (i.e., 7 = 0),
so that S does not correct V's bias. Next, we assume an
unrealistic adaptive adversary that observes the exact
number of correct pushes to u, gf*"(t), and complements
them with oy — g8""(t) faulty pushes — the most that
can be accepted without blocking. At the same time the
adversary maximizes its global representation through a
balanced attack on all correct nodes v##u, thus minimizing
the fraction of correct ids that u pulls from correct nodes.
Finally, we assume that u is not represented in the system
initially, and u’s initial view is taken from a random correct
node. Hence, the ratio of faulty ids in this view is at the
fixed point, i.e., higher than p (Section 7.1).

Clearly, the time to isolation in V(t) is a lower bound on
that in V(t). We study the dynamics of u’s degree in V(t),
i.e., the sum of the out-degree (the number of correct ids
in view), ¢; — x,(t), and the in-degree, y,(t). We show in
Appendix C.2 that for every two values of x,(t) and y,(t),
the expected out-degree and in-degree values at t + 1 are

(et )= ()

where

(B0
22T\ ot B8 )

Note that the coefficient matrix does not depend on x,(t) or
¥, (t), and the sum of entries in each row is smaller than 1.
This implies that once the in-degree and the out-degree are
close, they both decay exponentially (initially, this does
not hold because u is not represented, i.e., y,(To) = 0, but
within a few rounds, u becomes represented and ¢; — x,
and y, are close). Hence, the expected time to isolation is
logarithmic with ¢;. Note that this process does not depend
on the number of nodes, since blocking bounds the poten-
tial attacks on u independently of the system-wide budget
of faulty pushes. Had blocking not been employed, the top
right coefficient would have been 0 instead of «, because
the adversary would have completely poisoned the push-
originated entries in V,. The decay rate would have been
much larger, leading to almost immediate isolation.

Fig. 8a depicts the dynamics of u’s expected degree (the
sum of u's in- and out-degrees) until it becomes smaller
than 1. Simulation results closely follow our analysis. The
temporary growth in u’s degree at t = 1 occurs because u
becomes represented in the system after the first round.
When the degree becomes 1, the node is isolated. For
example, the average time to isolation for ¢; = 2¥/n is 10
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Fig. 9. Dynamics within a targeted node (n = 1000,p = 0.2, = = 0.5 and y = 0): (a) Fraction of unique ids in the stream of correct ids, which is an upper
bound on the deficiency factor p. (b) Growth of Perfect Sample Probability (PSP) with time, p = 0.4. PSP becomes high quickly enough to prevent isolation.

rounds. Fig. 8b depicts the same results in log-scale,
emphasizing the exponential decay of u’s degree and the
logarithmic dependency between ¢; and time to isolation.

Upper bound on expected time to perfect correct
sample. For given values of the non-unique stream size
A(t) and the deficiency factor p (Section 6), Lemma 6.5
bounds PSP, (t), the probability for a perfect sample at time
t, from below. The expected number of correct ids observed
by u till the end of round T is A(t)= >/ "
(E(g5""(t)) + E(g8*!(t))); the expected values of gh™"(t)
and g?"!(t) are by-products of the analysis in Appendix C.
Fig. 9a depicts the deficiency factor p measured by our
simulations, which behaves similarly for all values of
4 : p = 0.4 for all t. The deficiency factor p was estimated
as a fraction of unique ids in the stream of correct ids. This
is actually an upper bound on p, by its definition.

Fig. 9b depicts the progress of the upper bound of Lem-
ma 6.5 with time, with A(t) computed as explained above
and p = 0.4. The corresponding simulation results show,
for each time t, the fraction of runs in which at least one
correct id in S, is perfect. For ¢, > 40, the PSP becomes

4100 t
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Fig. 10. Targeted attack: degree dynamics of an attacked node in
N(t),n=1000,p =0.2,00=f=045and y =0.1.

close to 1 in a few rounds, much faster than isolation hap-
pens (Fig. 8b). For ¢; = 20, it stabilizes at 0.5. The growth
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stops because we run the protocol without history sam-
ples, thus u becomes isolated, and ceases observing new
correct ids. A higher PSP can be achieved by independently
increasing ¢,, e.g., if 4, is 40, then the PSP grows to 0.8 (see
Fig. 5). Note that perfect samples only provide an upper
bound on self-healing time, as S, contains imperfect cor-
rect ids, and u also becomes sampled by other correct
nodes, with high probability. These factors coupled with
history samples (7 > 0) completely prevent u’s isolation,
as shown in Section 8.

8. Putting it all together

In previous sections we analyzed each of Brahms’s
mechanisms separately. We now simulate the entire sys-
tem. Fig. 10 depicts the degree of node u in A (t) under a
targeted attack. Node u remains connected to the overlay,
thanks to history samples (y = 0.1). The actual degree of
u in N (t) is higher than the lower bound shown in Section

7.2, due to the pessimistic assumptions made in the analy-
sis (no history samples, no imperfect correct ids, etc.).

We now demonstrate the convergence of S in the cor-
rect nodes. We simulate systems with up to n = 4000
nodes; ¢; and ¢, are set to 2+/n. To measure the quality of
sample S under a balanced attack, we depict the fraction
of ids in S that are indeed the perfect sample over time
in Fig. 11a. Note that this criterion is conservative, since
missing a perfect sample does not automatically lead to a
biased choice. More than 50% of perfect samples are
achieved within less than 15 rounds; for ¢, = ¢, = 3¥/n,
the convergence is twice as fast. Fig. 11b depicts the evolu-
tion of the fraction of faulty ids in S. Initially, this fraction
equals f, and at first increases, up to approximately the
fixed point’s value. This is to be expected, since the first ob-
served samples are distributed like the original (biased)
data stream. Subsequently, as the node encounters more
unique ids, the quality of S improves, and the fraction of
faulty ids drops fast to f. The protocol exhibits almost per-
fect scalability, as the convergence rate is the same for
n > 2000.

9. Conclusions

We presented Brahms, a Byzantine-resilient member-
ship sampling algorithm. Brahms stores small views, and
yet resists the failure of a linear portion of the nodes. It en-
sures that every node’s sample converges to a uniform one,
which was not achieved before by gossip-based member-
ship even in benign settings. We presented extensive anal-
ysis and simulations explaining the impact of various
attacks on the membership, as well as the effectiveness
of the different mechanisms Brahms employs.
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Appendix A. Analysis - sampling

A.1. Convergence to first perfect sample

Proposition 6.4 (Restated). Let s be a sampler. Then, for
|C] > 1 and for each t > Ty,

PA(E)

Pr(s(t)#s"|s" eC)—eTA

Proof. A sampler outputs its perfect id s* once that id
occurs in the sampler’s input stream. So the probability
of s(t)#s* is the probability that s* did not appear in the
stream of during the rounds Ty < t/ < t. Recall that A(t) is
the number of correct ids observed by the sampler from
time Ty to t, and that a stream of length A(t) includes as
many random unique ids as a stream of length pA(t) in
which correct ids are independent and distributed uni-
formly at random. Let G denote a random correct id
observed by the sampler, and note that for each
v € C,Pr(G=v) = . Then,

Pl‘(S(t)?ﬁs*|5* c C) — pr(G#S*|S* c C)pA([)
=(1-Pr(G=s"s" ¢ C))p/l(t)

1 )ﬂ/l(f)
=(1-— .
( IC|

Since g<l,weusel-—x~e™ (1 — x is the first order Tay-
lor expansion of e*, and is a good approximation for a
small x), and approximate the above as follows:

pA()

A(t)
Pr(s(t)#s’|s" € C) ~ (e’\lﬂ)p e

From now on, we assume

\f\ is small enough, so we use
equality. That is,

PA)
Pr(s(t)#s*|s* € C) =e W . O

Appendix B. Balanced attack analysis
B.1. Short-term optimality

We now prove that in any single round, a balanced at-
tack maximizes the expected system-wide fraction of
faulty ids, x(t), among all strategies. Consider a schedule
R:C — N that assigns a number of faulty pushes to each
correct node at round t. A schedule is balanced if for every
two correct nodes u and v, it holds that |[R(u) — R(v)| < 1.
Otherwise, the schedule is unbalanced. We prove that every
unbalanced schedule is suboptimal. All balanced schedules
are equally optimal, for symmetry considerations.

Lemma B.1. If schedule R is unbalanced, then there exists
another schedule that leads to a larger expected ratio of faulty
ids than R in round t + 1.

Proof. Since a schedule of faulty pushes in round t does
not affect the pulls or history samples in this round, it is
enough to prove the claim for the push-originated ids. Con-
sider two nodes, u and v, such that R(u) > R(v) + 1. Con-
sider an alternative schedule R that differs from R in

moving a single push from u to v. Consider the change in
the expected cumulative fraction of push-originated faulty
ids in V,(t+ 1) and V,(t + 1) following this shift (in the
other nodes, the ratio of faulty ids does not change).

The probability of a push-originated view entry at node
u being faulty, provided that R(u) faulty pushes were
received, is equal to the expected fraction of R(u) among all
pushes received by u. Note that R(u) is set in advance, i.e.,
without knowing the number of received correct pushes,
gPuN(t). The expected number of faulty pushes accepted
depends on the latter as follows:

#push|,-push _

[

) = > Prgl (1) = G i)
G=1

We need to show that

E(fEushh,Eush _ R(u) _ 1) + E(i.gush'rgush

> E(f.gush |r5ush

—RW)+1)
= R(w) + E(F*|ry*" = R(v)),

ie.,

S prigg () = Gl R ‘2‘: P (t) = G|
Prigh""(t) = + ) Prgh®
ot . u—l+G

R ‘C‘ us|
'R(u)? + Zpr[gp "(6) =G
R(v)
RV)+G

Since all correct nodes have the same in-degree in V(t)
(Assumption 7.1), g8""(t) and g8""(t) have identical (bino-
mial) distributions. Hence, it is enough to show that for all
G > 0and all R(u) >R(v) +1>0:

R(u) — Rv)+1 R(u) R(v)

R(u )—1+G+R( )+1+G~ Rw) +G Rv)+G

We simplify by switching sides:

Ru) -1 R(u) R(v) +1 R(v)

(R(u)—1+G*R(u)+c> * <R(v)+1 +G*R(v)+c> = 0.
-G G

RW+ORW -1+0) RV ICORW) +1+C) 0.

Since R(u) -1
indeed

>Rv)+1>0 and R(u)- R(v) >0,
e G
RwW 1 G)RW 116  (RW) 1 G)RV) +1+0)
e
RW) + G)RW) —1+0)
G
(R(u) -2+ G)(Ru) —1+06)
G 1 1
> . _
“Rw_-1+6G <R(u)—2+G R(u)+c>
G 2
TRW_-1+G RW+G)(RW) 216G
As needed. O

=

+
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We conclude by showing that all balanced schedules
are equally optimal for the adversary.

Proposition B.2. Every two balanced schedules lead to the
same expected fraction of faulty ids in round t + 1.

Proof. Consider two balanced schedule R and R'. R can be
transformed into R' by a sequence of moves of a single
push message from node u to node v, such that
R(u) =R(v) +1 whereas R (v) = R'(u) +1. For symmetry
reasons, neither of these moves alters the expected cumu-
lative fraction of faulty ids received by u and v. Hence, each
transformation produces a schedule that implies the same
X(t + 1) as the previous one. O

B.2. Convergence to the fixed point

To capture the dynamics of x(t), we define the sequence
{a,}, the expected system-wide fractions of faulty ids at
time Ty + k, as follows:

[ &(To), k=0,
k‘{mﬂn+k»:awﬂn+kfnn7k>o

We next define {b;}, which we use to approximate {a}.
{by} is defined as follows:

b = y*(x(To)), Vk = 0.

Equivalently, b, = y*(b;_). That is, {b;} is a sequence of
applying y on the expected system-wide fractions of faulty
ids in every cycle.

In order to prove convergence of {b,}, we define an aux-
iliary sequence {c,} below. We prove that {b;} is bounded
between X and {c,}. Finally, we show that the latter se-
quence converges to %, implying that so does {b;}. Since
{by} approximates {a,}, {ax} converges to X as well.

We now explain why {b,} can be used to approximate
{ax}. Consider an element q; of {a}. Since a, is the expec-
tation of a random variable (namely x(T, + k)), it can be
written as a, = >_ p;X;, where Vi : p; = Pr[x(To + k) = x;]. By
Lemma 7.2, a,,; can be written as a1 = > piy ().

Since x is obtained as a combination of binomial distri-
butions with many trials (we assume n to be very large), it
has a small variance, and therefore all the significant con-
tributors to this sum are very close to each other, i.e., they
all lie within a small segment. Moreover, since  is contin-
uous, monotonic, and has a bounded derivative in (0,1), in
small segments, it can be approximated by a linear func-
tion. Therefore, a1 = 3~ pab(X;) ~ /(3" pixi) = Y/(@y).

Fig. 12 depicts the evolution of {b,} as a function of
time for various initial values of X(T). The figure also de-
picts the actual ratio of the faulty ids in the views in the
simulation study. We can see that {b,} well approximates
the actual faulty ids fraction. {b;}'s convergence is slightly
faster because the analysis ignores blocking.

We next prove that {c,} converges to X. This is done by
applying Hillam’s theorem [25]. We conclude by showing
that {b,} is bounded between X and {c}, thus proving
the convergence of {b;}.

Preliminary B.3. Liphschitz condition (simplified) [25]:
The function f : [a,b] — [a, b] satisfies the Liphschitz con-

dition with constant K iff for all x,y € [a,b] it holds that
fF(x) —f) < Klx = yl.

Preliminary B.4. Hillam’s theorem [25]: If f : [a,b] — [a, b]
satisfies the Liphschitz condition with constant K, then the
iteration scheme {x,.1 = 2x, + (1 — 2)f (xa)}, where 1 = .15,
converges to a fixed point of f.

Lemma B.5. The sequence {c,} converges to the fixed point

of Y(X).

Proof. Based on Observations O.1 and 0.2 and by the mean
value theorem, for all X;,X; € [0,1] (X; < X,), there exists
X' € [X1,X2] such that

V&) —pi) =

T ox

We can therefore find a constant K satisfying the Lipschitz
condition for  in [0,1]. Let K be such a constant, and let

/. = 5. We are now ready to define {c,}, as follows:

. _{x(m, k=0,
T e+ (1= 2ylar), k>0

(x) - (%2 = X1).

Therefore, by Hillam’s theorem (Preliminary B.4), the iter-
ation scheme {c, = Ac;_1 + (1 — A)y(cr-1)}, where 1 =L,
converges to a fixed point of y(x) for each

co=2Xx(Ty) € [07 ]] O

From now on, we separate the proof into two cases:

Lemma B.6. If X(Ty) < 1, then {c,} converges to X (and not
tox=1)

Proof. For the first case, recall that X is a single nontrivial
fixed point. By Observation 0.4, y(x) < x for x € (%,1). For
an arbitrary x € (x,1), it holds that ix + (1 — )y(x) <X,
i.e, the sequence {c;} is monotonically decreasing with t.
Hence, this sequence cannot converge to the trivial fixed
point (if one exists), i.e., it converges to X. The proof for
the second case is symmetrical. O

Lemma B.7. {b,} is bounded between % and {c}.

Proof. For the first part of the claim we need to prove that
X < by < ¢, (the second part’s proof is symmetrical). We
prove by induction on t. The basis is immediate by defini-
tion of by and co. Assume that x < by, < ¢, for k > 0. Con-
sider the following statements:

(1) W(ck) < cky1.  We  know  that  cq = A+
(1 — 2)y(cr) > w(ck) since y(c) < c (by Observation
04, y(x) < x for x € (%,1) and indeed ¢, € (%, 1)).

(2) w(by) < ¥(ck), since  is monotonically increasing for
x € [0, 1] (Observation 0.1) and based on the induc-
tion hypothesis (b < c).

(3) ¥(bk) = biy1 by definition of by 4.
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(4) w(x) < y(by), since ¥ is monotonically increasing for
x € [0,1] (Observation 0.1) and based on the induc-
tion hypothesis (% < by).

(5) X = y/(*) by definition of x.

Combining the above statements we get
X=y(&) < by = y(by) < (ck) < Cyr, thus  concluding
the induction step. O

Since the balanced attack does not distinguish between
correct nodes, the same result holds for X,(t), for each cor-
rect node u.

Appendix C. Targeted attack analysis

This section analyzes the dynamics of a targeted attack
on a single correct node.

C.1. Assumptions

We use the following assumptions on the environment
in order to bound the time to isolation from below.

Assumption C.1 (No history samples). y =0, which is
equivalent to the worst-case assumption that the expected
ratio of faulty ids in S at all times is equal to that in the id
stream observed by the node (i.e., history samples are
ineffective).

Assumption C.2 (Unrealistically strong adversary). In each
round t > Ty, the adversary observes the exact number
of correct pushes received by u, g?*"(t), and complements
it with faulty pushes to o/, (i.e., the maximal number of
faulty ids that can be accepted without blocking). Formally,

() £ max(oty — g8**"(¢), 0).

Assumption C.3 (Background attack on the rest of the sys-
tem). The adversary maximizes its global representation
through a balanced attack on all correct nodes v # u. At
time Ty, the system-wide expected fraction of faulty ids
is at the fixed point x. (Note that this attack minimizes
the fraction of correct ids that u can pull from correct
nodes.)

Assumption C.4 Fresh attacked node. u joins the system
at To. It is initially not represented in any correct node’s
view and u’s initial view is taken from a random correct
node.

We assume that the effect of u on the entire system'’s
dynamics is negligible. Hence, we assume that the out-de-
grees and the in-degrees of all correct nodes except u are
equal at all times (Assumption 7.1), and these nodes do
not block (Section 7.1 showed that the system-wide effect
of blocking is marginal).

C.2. Node degree dynamics

We study the dynamics of the degree of the attacked
node u V(t). Consider a set of triples {(X,Y,t)}, each stand-
ing for a state {x,(t)=X A y,(t)=Y}, for X€{O0,...,
4},Y €{0,...,|C|¢1}. Each t defines a probability space,

i.e, > Pr((X,Y,t)] = 1. Since u is initially not represented,
the only states that have non-zero probability for t = Ty are
those for which Y = 0. The probability distribution over
these states is identical to the distribution of x,(To). Since
u borrows its initial view from a random collection of cor-
rect nodes, x,(Ty) ~ Bin(¢,X).

We now develop probability spaces for each ¢t > T,. The
notation Pr[(X’,Y',t + 1)|(X, Y, t)] stands for the probability
of transition from state (X,Y,t) to state (X',Y’,t). That is,
PriX, Y, t +1)] = >y Pr{(X, Y, t+1)|(X, Y, )] - Pr{(X, Y, t)].
To analyze Pr{(X, Y, t + 1)|(X, Y, t)] we separately consider
four independent random variables: the number of push-
and pull-originated entries in V,, (denoted x2s®(t) and
xPull(t)), and the number of push- and pull-propagated in-
stances of u in the views of correct nodes (denoted y2"s"(t)
and y2*1(t)). The first two affect X’ whereas the last two af-
fect Y'. We now demonstrate how conditional probability
distributions for these variables are computed. For conve-
nience, we omit the conditioning on (X,Y,t) from further
notation.

yEui(¢): Since the system is at the fixed point, the prob-
ability of pulling from some other correct node is (1 — X).
Hence, y****(t+ 1) is a binomially distributed variable,
with the number of trials equal to the total number of cor-
rect pulls, (1 — X)3¢|C|, and the probability of success equal
to the chance of an entry in a random node’s view being u,
namelyh—y‘q SyRR(E+ 1) ~ Bin((l —X)pt|C| ) Note that
E(yg=(t+ 1) = B(1 - X)Y.

yeuh(t): By Lemma 7.2, the number of pushes that reach
correct nodes is ofy|C| X122, Denote the number of
pushes from u to correct nodes in round t by z,(t). This is
a binomially distributed variable with o/, trials and prob-

Y
> 4C]

ability of success equal to 1 —% 2 Zy(t) ~ Bin(oc[l,l —%)
For a given z,(t) = Z, since the total number of push-origi-
nated entries is o/¢;|C|, the number of push-propagated in-
H us o Z
stances of u is y?ush(t+1|Z) ~ Bin (ow] \C\,m .
Note that E(yz"s(t + 1|Z)) = Z 51557 Hence, since Z is
independent on p and X,
_ t-p
p+(1-p)(1-X)
1-p
X T A N4 A
S pra-p-%)

xpuil(t): A pull from a faulty node (which happens with
probability ﬁ) produces a faulty id with probability 1,
otherwise the probability to receive a faulty id is . Hence,

Eyp=(t+1)) =E@2)

= O((f] —

the probability of pulling a faulty id is % + (l - %) X. That s,
the number of pull-originated faulty ids in u’s view is
X4 1) ~ Bin(ﬁ(ﬁ,%+ (1 - %)x) (i.e., Exe(t 4+ 1)) =

BX + (&6 = X)%)).

We also compute the expected number of correct ids
(with duplicates) pulled by u, which we need for estimat-
ing the size of the id stream that traverses this node (Sec-
tion 7.2). Since u performs p¢; pulls, and the expected
number of correct ids pulled from a random node is
(1 =%,
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@ (0) = (1-3,) #- (1 -9 = (1- 062 (6 - X).

xrust(t): The number of push-originated ids, x2s"(t + 1),
depends on the number of correct pushes received by
u,g?""(t). The latter is a binomially distributed variable,
with the number of trials equal to the total number of cor-
rect pushes, o/;|C|, and the probability of success equal to

the chance of an entry in a random node’s view being u,
namely ;% 22" (t) ~ Bin (acél \C|,ﬁ> (Note  that
E(gP*"(t)) = aY. This value is of independent use for eval-
uating the size of the id stream that traverses u (Section
7.2)).

An expected representation of a correct node different
from u in the system is (1 — X)¢;. Since u is under-repre-
sented (Y < (1 — X)¢; with high probability), the probabil-
ity of receiving above o#; correct pushes is low, and
hence, we ignore the case of u being blocked by exceed-
ingly many correct pushes. On the other hand, faulty
pushes cannot block u either (Assumption C.2), and there-
fore, we assume that u never blocks. If G < af; correct
pushes are received, the adversary complements the num-
ber of pushes to the maximum allowed (Assumption C.2),
i.e., the fraction of faulty pushes to uis 1 — % Hence, the
number of push-originated faulty ids in u’s view is
xpush(t 4+ 1|G) ~ Bin (cx& 11— %) In other words,

E(x2""(t+ 1)) = oty (1 - E(g‘D’USh(t))> = ol (1 fg—y)

ol
= 06(61 — Y)

Putting it all together. Summing up, the expected values
of in-degree and out-degree can be written as
6 —E(xy(t+1)) 01 — (E(xzen(t + 1)) + E(x2L (¢ + 1))
< Ey,(t+1)) > - < E(ygesn(t+ 1)) + EQ (£ + 1)) )
(= (b = Y) + X+ (G = X)X))
- ( oty = X) 55l + B(1 = X) )

_(Ba-x (7% 0)
Uiy A=) v /)
Since we have shown that u does not block with high prob-
ability, and Section 7.1 demonstrated that the effect of
blocking on the rest of correct nodes is negligible, we as-
sume that all views are recomputed in each round.
That is,

Prix, (¢ + 1) = X|(X. Y, )
= 37 PriXR() = X3 (X, V. )] Prig ()

X{+X5=X'
=X,|(X,Y,1)]
and
Priy,(t+1) =Y'|(X,Y,t)]
= > PryRn(t) = Y|(X, Y, 0)] - Priys(£)

Y 4+Y, =Y
=Y5|(X,Y,t)].
Since the computations of X" and Y’ are independent, we
conclude:

PE[(X, Y, 6)[(X, Y, £)] = Prlxa(t + 1)
— X|(X.Y,0) - Pry, (¢ + 1)
= Y/|(Xv Y, t)}

References

[1] A. Allavena, A. Demers, J.E. Hopcroft, Correctness of a gossip based
membership protocol, in: ACM PODC, 2005, pp. 292-301.

[2] N. Alon, Y. Matias, M. Szegedy, The space complexity of
approximating the frequency moments, in: Proc. of the 28th
Annual ACM Symposium on Theory of Computing (STOC), 1996,
pp. 20-29.

[3] H. Attiya, ]J. Welch, Distributed Computing Fundamentals,
Simulations, and Advanced Topics, John Wiley and Sons, Inc., 2004.

[4] B. Awerbuch, C. Scheideler, Group spreading: a protocol for provably
secure distributed name service, in: ICALP, 2004, pp. 183-195.

[5] B. Awerbuch, C. Scheideler, Robust random number generation for
peer-to-peer systems, in: OPODIS, 2006, pp. 275-289.

[6] B. Awerbuch, C. Scheideler, Towards a scalable and robust DHT, in:
SPAA, 2006, pp. 318-327.

[7] B. Awerbuch, C. Scheideler, Towards scalable and robust overlay
networks, in: IPTPS, 2006.

[8] B. Babcock, M. Datar, R. Motwani, Sampling from a moving window
over streaming data, in: Proc. of the 13th annual ACM-SIAM
symposium on Discrete algorithms (SODA), 2002, pp. 633-634.

[9] G. Badishi, I. Keidar, A. Sasson, Exposing and eliminating
vulnerabilities to denial of service attacks in secure gossip-based
multicast, in: DSN, June-July 2004, pp. 201-210.

[10] Z. Bar-Yossef, R. Friedman, G. Kliot, RRWMS - random walk based
lightweight membership service for wireless ad hoc networks, in:
ACM MobiHoc, 2006, pp. 238-249.

[11] Z. Bar-Yossef, M. Gurevich, Random sampling from a search engine’s
index, in: Proc. of 15th WWW, 2006, pp. 367-376, Full version
available as CCIT Report #598, Department of Electrical Engineering,
Technion.

[12] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, L. Trevisan,
Counting distinct elements in a data stream, in: Proc. of the Sixth
International Workshop on Randomization and Approximation
Techniques (RANDOM), 2002, pp. 1-10.

[13] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, Y. Minsky,
Bimodal multicast, ACM Trans. Comput. Syst. 17 (2) (1999) 41-88.

[14] A.Z. Broder, M. Charikar, A.M. Frieze, M. Mitzenmacher, Min-wise
independent permutations, J. Comput. Syst. Sci. 60 (3) (2000) 630-
659.

[15] M. Castro, P. Druschel, AJ. Ganesh, A.LT. Rowstron, D.S. Wallach,
Secure routing for structured peer-to-peer overlay networks, in:
0SDI, 2002.

[16] T. Condie, V. Kacholia, S. Sankararaman, J. Hellerstein, P. Maniatis,
Induced churn as shelter from routing-table poisoning, in: Proc. of
the 13th Annual Network and Distributed System Security
Symposium (NDSS), 2006.

[17] M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining Stream
Statistics over Sliding Windows, SIAM ]. Comput. 31 (6) (2002)
1794-1813.

[18] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinehart, D. Terry. epidemic algorithms for replicated
database management, in: ACM PODC, August 1987, pp. 1-12.

[19] D. Malkhi, Y. Mansour, M. K. Reiter, On diffusing updates in a
Byzantine environment, in: SRDS, 1999, pp. 134-143.

[20] J.R. Douceur, The Sybil attack, in: Proc. of the First International
Workshop on Peer-to-Peer Systems (IPTPS), 2002, pp. 251-260.

[21] P.Th. Eugster, R. Guerraoui, S.B. Handurukande, P. Kouznetsov, A.-M.
Kermarrec, Lightweight probabilistic broadcast, ACM Trans. Comput.
Syst. (TOCS) 21 (4) (2003) 341-374.

[22] AJ. Ganesh, A.-M. Kermarrec, L. Massoulie, Peer-to-Peer
membership management for gossip-based protocols, IEEE Trans.
Comput. 52 (2) (2003) 139-149.

[23] C. Gkantsidis, M. Mihail, A. Saberi, Random walks in peer-to-peer
networks, in: IEEE INFOCOM, 2004, pp. 130-140.

[24] O. Goldreich, S. Goldwasser, S. Micali, How to construct random
functions, JACM 33 (4) (1986) 792-807.

[25] B.P. Hillam, A generalization of Krasnoselski’s theorem on the real
line, Math. Mag. 48 (1975) 167-168.

[26] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, M. van Steen,
Gossip-based peer sampling, ACM Trans. Comput. Syst. (TOCS) 25 (3)
(2007) 8.



E. Bortnikov et al./ Computer Networks 53 (2009) 2340-2359 2359

[27] G.-P. Jesi, M. van Steen, D. Hales, Identifying malicious peers before
it's too late: a decentralized secure peer sampling service, in: Proc. of
the First IEEE International Conference on Self-adaptive and Self-
organizing Systems (SASO), June 2007.

[28] H. Johansen, A. Allavena, R. van Renesse, Fireflies: scalable support
for intrusion-tolerant network overlays, in: Proc. of the 2006
EuroSys Conference (EuroSys), 2006, pp. 3-13.

[29] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, R. Panigrahy,
Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the world wide web, in: Proc. of the ACM
STOC, 1997, pp. 654-663.

[30] D.R. Karger, M. Ruhl, Simple efficient load balancing algorithms for
peer-to-peer systems, in: SPAA, 2004, pp. 36-43.

[31] V. King, J. Saia, Choosing a random peer, in: ACM PODC, 2004, pp.
125-130.

[32] C. Law, K. Siu, Distributed construction of random expander
networks, in: IEEE INFOCOM, April 2003, pp. 2133-2143.

[33] H.C. Li, A. Clement, E.L. Wong, ]. Napper, L. Roy, L. Alvisi, M. Dahlin,
BAR gossip, in: Proc. of the Seventh USENIX Symp. on Oper. Systems
Design and Impl. (OSDI), November 2006, pp. 45-58.

[34] C. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and replication in
unstructured peer-to-peer networks, in: Proc. of the 16th Intr.
Conference on Supercomputing (ICS), 2002, pp. 84-95.

[35] G. Manku, M. Bawa, P. Raghavan, Symphony: distributed hashing in
a small world, in: Proc. of the Fourth USENIX Symposium on Internet
Technologies and Systems (USITS), 2003.

[36] L. Massoulie, E. Le Merrer, A.-M. Kermarrec, AJ. Ganesh, Peer
counting and sampling in overlay networks: random walk
methods, in: ACM PODC, 2006, pp. 123-132.

[37] R. Melamed, I. Keidar, Araneola: a scalable reliable multicast system
for dynamic environments, in: IEEE NCA, 2004, pp. 5-14.

[38] R.C. Merkle, Secure communications over insecure channels, CACM

1(1978) 294-299.

[39] Y.M. Minsky, F.B. Schneider, Tolerating malicious gossip, Dist.
Comput. 16 (1) (2003) 49-68.

[40] A. Singh, M. Castro, P. Druschel, A. Rowstron, Defending against
eclipse attacks on overlay networks, in: ACM SIGOPS European
Workshop, 2004.

[41] A. Singh, T.-W. Ngan, P. Druschel, D.S. Wallach, Eclipse attacks on
overlay networks: threats and defenses, in: IEEE INFOCOM, 2006.

[42] J.S. Vitter, Random sampling with a reservoir, ACM Trans. Math.
Softw. 11 (1) (1985) 37-57.

[43] S. Voulgaris, D. Gavidia, M. van Steen, CYCLON: inexpensive
membership management for unstructured P2P overlays, J. Netw.
Syst. Manage. 13 (2) (2005) 197-217.

[44] H. Yu, M. Kaminsky, P.B. Gibbons, A. Flaxman, SybilGuard: defending
against Sybil attacks via social networks, IEEE/ACM Trans. Netw.
(ToN) 16 (3) (2008) 576-589.

Edward Bortnikov is a researcher at Yahoo!
Research Israel. He holds the Ph.D. degree in
Electrical Engineering (2008) and the M.Sc.
(1998) and B.A. (1995, summa cum laude)
degrees in Computer Science from the Tech-
nion, Israel Institute of Technology. His
research interests broadly span networking
technologies, and distributed computing, and
large-scale information processing. Dr. Bor-
tnikov authored multiple papers and US pat-
ents, and received many awards for excellence
in research. He has a seven-year track record
in many technical leadershlp positions in the software industry.

Maxim Gurevich received the B.Sc. (2001,
cum laude) and M.Sc. (2006) degrees from the
Department of Electrical Engineering of the
Technion, Israel Institute of Technology. He is
currently a Ph.D. student with the Depart-
ment of Electrical Engineering at the Tech-
nion. His research interests include search
engine mining and distributed and P2P sys-
tems. He is a recipient of the Levi Eshkol Fel-
lowship awarded by the Israeli Ministry of
Science.

Idit Keidar is a faculty member at the
Department of Electrical Engineering at
Technion. She holds Ph.D., M.Sc. (summa cum
laude), and B.Sc. (summa cum laude) degrees
from the Hebrew University of Jerusalem. She
was a postdoctoral research associate at MIT’s
Laboratory for Computer Science, where she
held post-doctoral fellowships from Roths-
child Yad-Hanadiv and NSF CISE. Her research
interests include distributed computing, fault
tolerance, and concurrency.

Gabriel Kliot currently works in Microsoft
Research, Redmond, WA. He holds the Ph.D.
degree in Computer Science (2009) and the BA
(2003, cum laude) degree in Computer Sci-
ence from the Technion, Israel Institute of
Technology.

Gabriel’s Ph.D. dissertation focused on Prob-
abilistic Middleware Services for Wireless
Mobile Ad-Hoc Networks. His research inter-
ests include various aspects of distributed
systems and computer networks, such as
3 distributed middlewares, fault tolerance, large
scale (P2P) systems and mobile ad hoc networks. He was awarded the
Wolf fund excellence award for graduate students and he is a recipient of
Israel Internet Association scholarship for Ph.D. students.

Alexander Shraer received the B.Sc. (summa
cum laude) and M.Sc. (cum laude) degrees in
computer science from the Technion, Haifa,
Israel, in 2004 and 2006, respectively. He is
currently a Ph.D. student in the Department of
Electrical Engineering, Technion. His research
focuses on fault tolerance in distributed sys-
tems. He is a recipient of the Levi Eshkol Fel-
lowship, awarded by the Israeli Ministry of
Science.



	Brahms: Byzantine resilient random membership sampling
	Introduction
	Related work
	Byzantine membership
	Node sampling and sampling from streams
	Byzantine resilient overlays

	Model, goal, and challenges
	System model
	Design goal
	Design challenges – vulnerabilities of gossip-based membership

	The Brahms protocol
	Sampling
	Gossip

	Analysis structure
	Definitions
	Attack models and analysis structure

	Analysis – sampling
	Eventual convergence to uniform sample
	Convergence to first perfect sample
	Scalability

	Analysis – overlay connectivity
	Balanced attack – increasing global representation of faulty ids
	The evolution of  \tilde{x}(t)
	Fixed point existence
	Convergence to the fixed point

	Targeted attack

	Putting it all together
	Conclusions
	Acknowledgements
	Analysis – sampling
	Convergence to first perfect sample

	Balanced attack analysis
	Short-term optimality
	Convergence to the fixed point

	Targeted attack analysis
	Assumptions
	Node degree dynamics

	References


