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Abstract. Incorporating the property of untraceability of payments 
into off-line electronic cash systems has turned out to be no easy matter. 
Two key concepts have been proposed in order to attain the same level of 
security against double-spending as can be trivially attained in systems 
with full traceability of payments. 
The first of these, one-show blind signatures, ensures traceability of 
double-spenders after the fact. The realizations of this concept that have 
been proposed unfortunately require either a great sacrifice in efficiency 
or seem to have questionable security, if not both. 
The second concept, wallets with observers, guarantees prior restraint of 
double-spending, while still offering traceability of double-spenders after 
the fact in case tamper-resistance is compromised. No realization of this 
concept has yet been proposed in literature, which is a serious problem. It 
seems that the known cash systems cannot be extended to this important 
setting without significantly worsening the problems related to efficiency 
and security. 
We introduce a new primitive that we call restrictive blind signatures. In 
conjunction with the so-called representation problem in groups of prime 
order this gives rise to highly efficient off-line cash systems that can be 
extended at virtually no extra cost to wallets with observers under the 
most stringent of privacy requirements. The workload for the observer 
is so small that it can be performed by a tamper-resistant smart card 
capable of performing the Schnorr identification scheme. 
We also introduce new extensions in functionality (unconditional pro- 
tection against framing, anonymous accounts, multi-spendable coins) 
and improve some known constructions (computional protection against 
framing, electronic checks). 
The security of our cash system and all its extensions can be derived 
directly from the security of the well-known Schnorr identification and 
signature schemes, and the security of our new primitive. 

1 Introduction 

It is clear that the level of efficiency and security attainable in an off-line elec- 
tronic cash system with fully traceable payments always outperforms that at- 
tainable in a system with the additional property of privacy of payments. This 
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is caused by the urgent need to  protect against account-holders who double- 
spend their electronic cash, since hardly anything is easier to  copy than digital 
information. 

In literature, various realizations have been proposed for untraceable off-line 
electronic cash. Untraceability is an important asset, but one should not ignore 
the fact that it is hard to realize at little cost. For this reason, we present in 
Section 2 an analysis of the cost it takes in terms of efficiency and security to  
incorporate untraceability of payments. We argue that known realizations of 
untraceable off-line cash systems offering only traceability of double-spenders 
after the fact already require a large sacrifice in either efficiency or (provability 
of) security, if not both. More seriously, no realizations of untraceable off-line 
cash systems have been proposed yet that can offer prior restraint of double- 
spending, whereas this property can be trivially attained in fully traceable off- 
line systems. Thirdly, various other useful extensions in functionality seem hard 
to  achieve in the known systems. 

To overcome these drawbacks, we propose in Section 4 the primitive of restric- 
tive blind signatures, and use it in combination with the representation problem 
in groups of prime order (described in Section 3) to  create untraceable off-line 
electronic cash systems that can offer not only traceability of double-spenders 
after the fact (Section 5 ) ,  but more importantly also prior restraint of double- 
spending under the most stringent of privacy requirements (Section 6).  These 
systems are almost as efficient as fully traceable off-line systems. 

In addition, three new extensions can be realized: unconditional protection 
against framing, anonymous accounts, and multispendable coins. We refer the 
interested reader to  [2,3] for this. The new approach also supports a better con- 
struction for two known extensions, computational protection against framing 
and electronic checks. The extension to  computational protection against 'fram- 
ing is incorporated in Sections 5 and 6, and we refer to  [2] for a description of 
the extension to  checks. 

All the statements we make in this extended abstract have been fully proven. 
We refer t o  [2, 31 for these proofs. 

2 The cost of incorporating untraceability 

2.1 Privacy-compromising systems 

An off-line electronic cash system with full traceability of payments can be simply 
realized using only the basic cryptographic concept of a digital signature. Each 
coin is represented by a unique piece of digital information with a correspond- 
ing digital signature of the bank.-If an account-holder ever double-spends then 
he will be' identified by the bank after the corresponding payment transcripts 
have been deposited, if only the bank conscientiously keeps track for each coin 
to  which account-holder it issued that coin. Since off-line-cash systems are a 
medium for low-value payments only (high-value paymentsdare made on-line), 
this traceability after the fact by itself will discourage many account-holders 
from double-spending. 
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If the bank in addition has the payment devices of its account-holders man- 
ufactured such that they are tamper-resistant, then a level of prior restraint of 
double-spending is attained that can only be withstood by an organization with 
the capabilities of a national laboratory. By maintaining the database concern- 
ing issued coins, the bank can still trace a double-spender after the fact in case 
he unexpectedly breaks the tamper-resistance of the payment device. 

Such a system can be realized very efficiently. In each of the three protocols 
for withdrawal, payment, and deposit of a coin, only one signed number has to 
be transmitted (in practice other information will be sent along as well, such as 
signatures that serve as receipts), and a computational effort for each type of 
participant to  verify the validity of the signature of the bank is required. The 
bank has to  compute a digital signature for each coin it issues, and maintain a 
database with information about the coins issued to  the account-holders. This 
database has to  be searched on a regular basis to  find out if double-spending has 
occurred. 

The level of security of the system is also very satisfactory. In principle, 
the bank can use a digital signature proposed by [I], which is provably secure 
against adaptively chosen message attacks (assuming the existence of one-way 
permutations). However, since these signatures grow in size, and require quite 
some computational effort, they are inefficient for practical use in systems such 
as cash systems, where enormous amounts of signatures are routinely produced 
and verified. In practice one hence must inevitably sacrifice some provability of 
security and use e.g. signatures of the Fiat/Shamir type ([13]), such as Schorr 
signatures ([15]). 

Although the system sketched thus far is highly satisfactory from both the 
efficiency and security points of view, it does not protect the interests of the 
account-holders. As we discussed, by the very nature of the system the bank has 
t o  maintain databases to  keep track of the information issued in executions of 
the withdrawal protocol and the deposited payment transcripts. Since a payment 
transcript encompasses the withdrawn coin, per definition the entire payment 
history of all account-holders is stored in computer files by the bank. Hence, 
not only is such a system not privacy-protecting, it in fact is the extreme oppo- 
site. This can have considerable social and political impact (see e.g. [5, 6, IS]). 
Henceforth, we will refer to  such a system as a privacy-compromising system. 

2.2 Privacy-protecting cash systems 

Two ingenious key concepts have been developed to enable the incorporation of 
full untraceability of payments while maintaining the level of security against 
double-spending of the privacy-compromising system. 

Concept I .  The first key concept is one-show blind signatwes, introduced in [8]. 
One-show blind signatures enable traceability of a payment if and only if the 
account-holder double-spent the coin involved in that payment. That is, trace- 
ability after the fact can be accomplished only for double-spenders. 
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Realizing this concept has turned out to  be no easy matter. For traceability, 
the identity of the account-holder must be encoded into the withdrawn infor- 
mation, whereas this information is not known to the bank by virtue of the 
blind signature property needed to  achieve untraceability of payments. If we 
forget about the even less efficient theoretical constructions proposed for this 
(although they seem to guarantee the same level of security as can be achieved 
in privacy-compromising systems), then only cut-and-choose withdrawal proto- 
cols seem to remain. These still cause an enormous overhead in computational 
and communication complexity that we believe is unacceptable. 

Our new primitive, restrictive blind signature schemes, in combination with 
the representation problem in groups of prime order, allows us to  construct a 
three-move withdrawal protocol (i.e. no cut-and-choose) in which the compu- 
tational effort required by the bank is almost equivalent to  that required to  
compute Schnorr signatures. In the payment protocol, only two (!) modular 
multiplications are required of the account-holder in order to  pay. The database 
that must be maintained by the bank is almost of the same size as that  in the 
privacy-compromising system. 

We refer to [3] for an overview of the cryptographic literature on untraceable 
off-line electronic cash systems. We confine ourselves here to the remark that in 
concurrent work ([ll]), a system offering traceability after the fact is proposed 
that also does not use a cut-and-choose withdrawal protocol. Unfortunately, its 
security seems highly questionable. This is caused by the use of many unspecified 
one-way hash functions, nested within one another up to  four levels deep, and 
a strange construction to  create an element with an order equal to the order of 
the multiplicative group modulo a composite. 

As we show, there is no need at all t o  resort to such “ad hoc” constructions. 
In fact, our approach allows for greater efficiency, security, and extendibility in 
functiondity. 

Concept II. The privacy-compromising system offered prior restraint of double- 
spending. Using the second key concept (see [i’]), wallets with observers, this 
can also be achieved in privacy-protecting systems. In this setting, a tamper- 
resistant device that  takes care of prior restraint of double-spending, called an 
observer, is embedded into the payment device of the account-holder in such a 
way that  a payment can only be successfully executed if the observer cooperates. 
The ensemble of payment device and observer is called a wallet. In order to  
guarantee the untraceability of payments, the embedding must be such that any 
message the observer sends to  the outside world passes through the payment 
device. This enables the payment device to  recognize attempts of the observer 
t o  leak information (outflow) related to  its identity, and vice versa (inflow). 

If the observer stores all information it receives during the period it is em- 
bedded within the payment device, it might still be that  the bank can trace 
payments to  account-holders afterwards by comparing this information with the 
deposited payment transcripts (and possibly also its view in executions of the 
withdrawal protocol). Mutually known information which enables traceability is 
called shared information; it comprises both inflow and outflow. This concern, al- 
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though not specifically in the context of off-line cash systems, was raised in [lo]. 
Although it might seem unrealistic t o  worry about the development of shared 
information, it is not hard to  construct withdrawal and payment protocols with 
no inflow and outflow, whereas all payments can be traced virtually effortlessly 
by the bank once the observer is handed in. A trivial example of development 
of shared information without inflow or outflow is a payment protocol in which 
the observer and the payment device generate mutually at random a number, 
known to both, which the payment device sends to the shop. 

As in the privacy-compromising system, the 'bank should not rely solely 
on tamper-resistance. If an account-holder unexpectedly breaks the tamper- 
resistance of the observer and double-spends, then he should still be traceable 
after the fact. This implies that the first concept acts as a safety net, and hence 
a realization of the second concept must be an extension of a realization of the 
first concept. For this reason, we refer to a system realizing the first concept as 
a basic cash system. 

Contrary to  the first concept, no realizations of an untraceable off-line cash 
system satisfying these conditions have been proposed yet. It seems that the 
known cash systems that provide realizations of the first concept cannot be 
extended to  this important setting without worsening the problems related to  
efficiency and security. Our system can be extended to meet a,ll the requirements 
of the second concept at virtually no extra cost in efficiency and security. Only a 
minor modification of the basic system is required. The workload for the observer 
is so small that it can be performed by a smart card capable of performing the 
Schnorr identification scheme. 

Recently ([12]), Ferguson sketched how to extend his basic system ([ll]) to 
wallets with observers; however, this seems to significantly worsen the problems 
related to  security present in his basic system, as well as efficiency, As with the 
first concept, we show that there is no need for ad hoc constructions. 

3 The representation problem in groups of prime order 

All arithmetic in this article is performed in a group G, of prime order q for which 
polynomial-time algorithms are known to multiply, invert, determine equality of 
elements, test membership, and randomly select elements. There is a vast variety 
of groups known to satisfy these requirements. 

Definition 1. Let k 3 2. A generutorduple of length k is a k-tuple (gl, . . . ,gk) 
with 9i E G, \ (1) and gi # gj if i # j. For any h E G,, a representation of h 
with respect to a generator-tuple (91,.  . . , g k )  is a tuple (al,. . . ,ah), with a; E Zq 
for all 1 5 i 5 I c ,  such that  nfz1 gsi = h. 

Usually, it will be clear with respect to  what generator-tuple a representation 
is taken, and we will not mention it. If h = 1, one representation immediately 
springs to  mind, namely (0,. . . , 0). We call this the trivid representation. 

Proposition2. For all h E G, and all generator-tuples of length k there are 
exact19 qk-' representatiow of h. 
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This simple result implies that the density of representations of h is negligible 
with respect to  the set of size qk containing all tuples (al,. . . , ak). Therefore, 
any polynomial-time algorithm that  applies an exhaustive search strategy in 
this set to  find one has negligible probability l / q  of success. The following result 
shows that there is no essentially better strategy, assuming the Discrete Log 
assumption. 

Proposition3. Assuming that it is infeasible to compute discrete logarithms in 
G,, there cannot exist a number h E G, and a polynomial-time algorithm that, 
on input a randomly chosen generator-tuple (91,. . . , gk), outputs a (nontrivial if  
h = 1) representation of h with nonnegligible probability of success. 

Since the difference between two distinct representations of any number h E G, 
is a nontrivial representation of 1, we get the following important result. 

COrOh1y4. Assuming that it is infeasible to compute discrete logarithms in 
G,, there cannot exist a polynomial-time algorithm that, on input a generator- 
tuple (gl, . . . , gk) chosen at random, outputs a numbet h E G ,  and two diflerent 
representations of h with nonnegligible probability of success. 

We next define the representation problem in groups of prime order (using a 
standard specification format). 

Name: Representation problem in groups of prime order. 
Instance: A group G,, a generator-tuple (gl, . . . , gk), h E G,. 
Problem: Find a representation of h with respect to  (gl, . . . ,gk). 

Although our electronic cash system can be implemented with any group G, that  
satisfies the listed conditions, and for which no feasible algorithms are known to 
compute discrete Iogarithms, we will for explicitness assume henceforth that G, 
is the unique subgroup of order q of some multiplicative group Zi, for a prime 
p such that ql(p - 1). 

4 Restrictive blinding in groups of prime order 

In order to  explain the notion of restrictive blinding, we give a high-level overview 
of the basic cash system, in which the primitive is put t o  use. In the following, 
(g1,gZ) is a randomly chosen generator-tuple, 

In setting up an account, the bank generates a unique number u1 E x  z, 
which is registered together with the identity of the account-holder with the 
newly created account. When the account-holder wishes to  withdraw a coin 
from his account, the bank multiplies I = &’ by g2. Hence, the account-holder 
knows the representation (u1,l) of the number m = 192 with respect to  (gl, 92). 
During the three-move withdrawal protocol, the account-holder will blind m to  
a number A, such that he ends up with a signature of the bank corresponding 
to  A. A and the signature will be unconditionally untraceable to  any specific 
execution of the withdrawal protocol. By construction of the payment protocol, 
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the account-holder at this stage must know a representation (XI, 22) of A with 
respect to  (g1,gZ) in order to be able to pay. 

Here, the role of the restrictive blind signature protocol becomes clear. 

DeAnition5. Let m E G, (in general, it can be a vector of elements) be such 
that the receiver at the start of a blind signature protocol knows a representation 
fall.. . : a k )  of m with respect to a generator-tuple (91,. . . ,gk). Let ( b ~ . .  . . , b k )  
be the representation the receiver knows of the blinded number A of m after the 
protocol has finished. If there exist two functions 11 and I2 such that 

11 (a1 , . * . , a,, ) = 4 (61 7 . . . , bk) , 
regardless of m and the blinding transformations applied by the receiver, then 
the protocol is called a restrictive blind signature protocol. The functions I1 
and I2 are called blinding-invariant functions of the protocol with respect t o  
(gl,... ,gk). 

Intuitively, one can think of it a.s being a protocol in which the receiver can blind 
the “outside” of the message m (and signature), but not its internal structure. 

For the application to untraceable off-line cash systems, in which the bank 
must be able to  identify a payer if and only if he double-spends, we construct 
the payment protocol such that the account-holder not only has to reveal A and 
the signature, but also some additional information about the representation 
he knows of A.  This additional information must be such that one such piece 
of information does not reveal any Shannon information about u1 (the internal 
structure), whereas knowledge of two such pieces enables the bank to extract 
this number in polynomial time. 

Clearly, if the account-holder in the payment protocol is able to also blind 
the internal structure of m, then he will not be identified after the fact when 
double-spending. Hence, it is absolutely essential that the receiver is restricted 
in the blinding manipulations he can perform, which explains the terminology 
restrictive blind signature scheme. 

5 The basic cash system 

In this section, we describe the most basic form of the cash system, involving 
only signed information (coins) of one value. We denote the bank by 0, a generic 
account-holder by U, and a generic shop by S. Although U will be a payment 
device (such as a smart card, palmtop or personal computer) in a practical 
implementation, we will often identify U with the account-holder. 

T h e  setup of t h e  sys tem.  The setup of the system consists of B generating at  
random a generator-tuple (g,g1, g2), and a number z ER Elf. 

23 also chooses two suitable collision-intractable (or even better, correlation- 
free one-way, as defined in [14]) hash functions ‘H, ’&, with 

7.t : G, x G, x G, x G ,  x G, + zi 
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and, for example, 

3-10 : G, x G, x SHOP-ID x DATE/TIME -+ Z,. 

The function 7f is used for the construction and verification of signatures of 8, 
and the function 3-10 specifies in what way the challenges must be computed in 
the payment protocol. B publishes the description of G, (which is p , q  in the 
specific case of G, C zi), the generator-tuple (g,gI,g2), and the description of 
7f, 3-10 as its public key. The secret key of B is 5. 

The format of 3-10 assumes that each shop S has a unique identifying num- 
ber Is (this can be its account number at  B) known to  at least B and S; we 
denote above the set of all such numbers by SHOP-ID. The input from SHOP- 
ID ensures that two different shops with overwhelming probability will generate 
different challenges. The input from the set DATE/TIME is a number repre- 
senting the date and time of transaction, which guarantees that the same shop 
will generate different challenges per payment. We stress that the format of 80 
is just exemplary; other formats might do as well. 

B also sets up two databases. One is called the account database and is used 
by the bank to  store information about account-holders (such as their name and 
address), the other is called the deposit database and is used to  store relevant 
information from deposited payment transcripts. 

A signature sign(A,B) of 23 on a pair ( A , B )  E G, x G, consists of a tuple 
( z , a ,  b , T )  E G, x G, x G, x Z, such that 

A coin is a triple A, B ,  sign(A, B) .  If an account-holder knows a representation 
of both A and B with respect to (gl, gz), then we will simply say that he knows 
a representation of the coin. 

Opening an account. When U opens an account at 23, B requests U to  identify 
himself (by means of, say, a passport). U generates at random a number u1 E R  z,, and computes I = g?'. If g;'g2 # 1, then U transmits I to B, and keeps 
u1 secret. B stores the identifying information of U in the account database, 
together with I .  We will refer to  I as the account number of U. The uniqueness 
of the account number is essential, since it enables B to uniquely identify U in 
case he double-spends. 

B computes z = (1g2)5,  and transmits it to  24. Alternatively, B publishes g: 
and gz as part of his public key, so that U can compute E for himself. 

The withdrawal protocol. When U wants to withdraw a coin, he first must prove 
ownership of his account. To this end, U can for example digitally sign a re- 
quest for withdrawal, or identify himself by other means. Then the following 
withdrawal protocol is performed: 

Step 1. B generates at random a number w ER Z,, and sends a = gw and 
b = ( 1 ~ ~ 2 ) ~  to U. 
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Step 2. U generates at random three numbers s ER z*, x1,xZ ER z,, and uses 
them to compute A = ( Igz ) ' ,  B = gT1g;2, and 3 = 2'. U also generates 
at random two numbers u,v ER z,, and uses them to compute a' = a'gv 
and b' = b""Av. He then computes the challenge c' = X ( A ,  B ,  L', u', b') ,  and 
sends the blinded challenge c = c'/u mod q to B. 

Step 3. 23 sends the response T = cx + w mod q to U, and debits the account 
of 24. 

U accepts if and only if g' = h"a and ( I ~ Z ) ~  = z C b .  If this verification holds, U 
computes T' = TU + v mod q. 

U B 

7 
g' & hea 

? 
(192)' 2 z C b  
T' t TU + 'u modq 

C 

r 
t--- T + c x + w  modq 

Proposition6. If U accepts in the payment  protoco2, then  A,  B ,  (z ' ,a ' ,b ' , r ' )  i s  
a coin of which h e  knows a representation. 

Proposition 7. A s s u m e  that it is infeasible to  existentially forge Schnorr  sig- 
natures, even when  querying the prover in the S c h n o w  identification protocol 
polynomialfy m a n y  times, T h e n  it is infeasible to existentially forge a coin, even 
when performing the withdrawal protocol polynomially m a n y  t imes  and with w- 
spect to diflerent account numbers. 

In other words, the number of coins in circulation can never exceed the number 
of executions of the withdrawal protocol. This obviously is an important fact, 
since one should iiot be able to  create his own money. In fact, as Lemma8 
shows, the task is even much more difficult, since one in addition has to know a 
representation of a coin in order to  be able to  spend it. 

Assumption 1. T h e  withdrawal protocol i s  a restrictive blind signature protocol 
(wi th  m = 1 9 2 )  with blinding invariant funct ions I1 and I2 with respect t o  (gl, 92) 
defined by  Il(a1,az) = I ~ ( I z ~ , u ~ )  = ul/az mod q. 
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Although this assumption is stronger than the Diffie-Hellman assumption, there 
are convincing arguments based on partial proofs that suggest that breaking it 
requires breaking either the Schnorr scheme or the Diffie-Hellman assumption. 
For an extensive discussion, we refer t o  [3]. 

The payment protocol. When U wants to  spend his coin at  S, the following pro- 
tocol is performed: 

Step 1. U sends A, B, sign(A, B)  to  S. 
Step 2. If A # 1, then S computes challenge d = l-lo(A,B,Is,date/time), 

where date/time is the number representing date and time of the transaction. 
S sends d to  24. 

S t e p  3. U computes the responses TI = d(u1s) + XI modq and r2 = ds + 
2 2  mod q, and sends them to S. 

S accepts if and only if sign(A, B )  is a signature on (A ,  B ) ,  and gyg? = A ~ B .  

U S 

b A +  1 
A, B ,  sign( A, B )  

d 
d t Ro(A, B , I ~ , d a t e / t i m e )  

< 
T~ c d(u1s) + 2 1  mod q 

T2  t ds + 22 mod q h T 2 )  + 
Verify sign(A, B )  

7 gygF & A ~ B  

If U has access to a clock and the capability of looking up the identifying 
information Is of S (which seems more plausible when the payment device is, 
say, a personal computer dialing in via a modem, then in the case where it is 
a smart card), this protocol can be collapsed to  one single move since U can 
then compute d himself. In any case, it is of no importance to  U whether d is 
correctly determined. This is only of concern to  S, since the bank will not accept 
the payment transcript in the deposit protocol if d is not of the correct form. 

L e m m a 8 .  If U in  the payment protocol can give conect responses with respect 
to two diflerent challenges, then he knows a representation of both A and B with 
respect to (s1,gz). 

Since Ho is a randomizing hash function, this result implies that the probability 
that  S accepts in the payment protocol, whereas U does not know a represen- 
tation of both A and B with respect to ( g I , g 2 ) ,  is negligible. Together with the 
completeness of the payment protocol this implies the following. 

Corollary 9. 2.4 can spend a coin if and only he knows a representation of i t .  
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The deposit protocol. After some delay in time (since the system is off-line), S 
sends the to  Z? the payment transcript, consisting of A, B ,  sign(A, B ) ,  ( T ~ , T Z )  and 
date/time of transaction. 

If A = 1, then B does not accept the payment transcript. Otherwise, B 
computes d using the identifying number of the shop Is sending the pay- 
ment transcript, and the supplied date/time of transaction. B then verifies that 
gy'gia = AdB and that sign(A,B) is a signature on ( A , B ) .  If not both verifica- 
tions hold, then 13 does not accept the payment transcript. Otherwise, B searches 
its deposit database to  find out whether A has been stored before. There are two 
possibilities: 

A has not been stored before. In that case, B stores ( A ,  date/time,rl, ~ 2 )  in 
its deposit database as being deposited by S, and credits the account of S. 
Note that not the entire payment transcript need be deposited. 
A is already in the deposit database. In that case, a fraud must have oc- 
curred. If the already stored transcript was deposited by S, and date/time 
are identical t o  that of the new payment transcript, then S is trying to de- 
posit the same transcript twice. Otherwise (the challenges are different), the 
coin has been double-spent. Since B now has at its disposal a pair ( d , r l , r z )  
from the new transcript and a pair (d' ,  T I  , r i )  from the deposited informa- 
tion (where B computes d' from the date/time of transaction of the stored 
information and the identifying number Is of the shop who deposited the 
transcript), it can compute 

B then searches its account database for this account number; the corre- 
sponding account-holder is the double-spender. The number ( T I  - T : ) / ( T z  - 
T ; )  mod q serves as a proof of double-spending; it is equal to  loggl I ,  with I 
the account number of the double-spender. 

Since not even B needs to  know a non-trivial representation of 1 with respect 
to  (g,gl,gz) in order to  perform the withdrawal protocol, there obviously cannot 
exist an adaptively chosen message attack that enables account-holders to  know 
more than one representation of a coin (assuming that there are polynomially 
many account-holders and shops), Therefore, we get the following: 

Proposition10. I f  A s s u m p t i o n  1 holds, then the computat ion that  B peTfOI7ns 
in the deposit protocol in case of double-spending, results in the account number 
of  the double-spender. 

We next prove, informally speaking, that the privacy of payments of account- 
holders who foUow the protocols and do not double-spend is protected uncondi- 
tionally. 

Propositionll. FOT any U, f o r  any  possible view of B in a n  execution of the 
withdrawal protocol in which U accepts, and f o r  any  possible view of s in a n  
execution of the  p a y m e n t  protocol in which the payer followed the protocol, there 
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is  exactly one set of random choices that U could have made in the execution 
of the withdrawal protocol such that the views of B and S correspond to the 
withdrawal and spending of the same coin. 

An immediate consequence of this proposition is the following. 

Corollary 12. Assuming the Discrete Log assumption, if U follows the protocobs 
and does not  double-spend, B cannot compute a proof of double-spending. 

That is, U is computationally protected against a framing. 
In [14], Okamoto described a signature protocol that is structurally equiva- 

lent t o  our payment protocol. Existential forgery of these signatures is a harder 
task than existential forgery of Schnorr signatures. 

Proposition 13. Existential forgery of payment transcripts is a harder task than 
existential forgery of Okarnoto signatures. 

The following two results imply that no additional encryption of messages that 
are transmitted is needed anywhere in our system. 

Proposition 14. wire  tapping an  execution of the withdrawal protocol does not 
result in a coin. 

Proposition 15. wire  tapping an execution of the payment protocol with s does 
not  result in a payment transcript that can be deposited to another account than 
that o j  S .  

6 Prior restraint of double-spending 

We describe how to extend our basic cash system to  the setting of wallets with 
observers in such a way that not even shared information can be developed. Even 
if the tamper-resistance is broken (and the account-holder can simulate the role 
of the observer), we still have the same level of security as in the original system, 
in fact the protocols reduce completely to  those of the basic system. In particular, 
if one breaks the tamper-resistance and, as a result, can double-spend, one will 
still be identified after the fact. 

The setup of the system. This is the same as in the basic cash system. 

Opening an  account. When U opens an account at B,  B requests U to  identify 
himself (by means of, say, a passport). U generates at random a number u1 z,, and computes 9:'. U transmits gyl to B, and keeps u1 secret. B stores the 
identifying information of U in the account database, together with 9:'. 

B then provides 2.4 with an observer 0, with stored in its (ROM) memory a 
randomly chosen number 01 E z: which is unknown to  U. We will denote gp 
by Ao.  B computes I = Aa(gyl) and z = (Igz)z, and transmits A0 and e to U. 
U stores u1, Ao, z. 

We will refer t o  I as the account number. This number will perform the role 
that  I performed in the basic cash system. Note that, contrary to the basic cash 
system, U by himself does not know loggl I .  
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The withdrawal protocol. When U wants to withdraw a coin from his account, 
he first must prove ownership of his account, as in the basic cash system. Then 
the following withdrawal protocol is performed: 

Step 1. 0 generates at random a number 0 2  E z,, and computes BQ = g:a. 
He then sends Bo to  U. Although this step is part of the protocol, 0 can 
send BCY to U at any time before Step 3. 

Step 2. 13 generates a t  random a number w ER z,, and sends a = gw and 

Step 3. U generates at random four numbers s ER zi, xl ,xz,e  E R  z,, and 
uses them to compute A = ( Igz ) ' ,  B = g ~ l g ~ f A ~ B ~ ,  and z' = z3.  U 
also generates at random two numbers u,v ER zq, and uses them to  com- 
pute a' = a'gu and b' = b""A". He then computes the challenge e' = 
R(A, B ,  z', a', a'), and sends the blinded challenge c = C'/U mod q t o  8. 

Step 4. B sends the response T = cx + w mod q to U, and debits the account 
of u. 

b = (Ig2)" to  U .  

U accepts if and only if g' = hca and (Igz)' = zCb. If this verification holds, U 
computes T' = TU + v mod q.  

0 U 8 

7 
gr L hca r t e x + w m o d q  

? (Ig2)P = t c b  
T' + m + u  modq 

If we concentrate on 0 and U as one party, then this is exactly the basic with- 
drawal protocol. Hence, Propositions 6 (with "0 and U together know" substi- 
tuted for "he knows") and 7 hold. 

The payment protocol. When U wants to  pay with the withdrawn information 
at S, the following protocol is performed: 
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Step 1. U sends A, B, sign(A,B) to  S. 
Step 2. If A # 1, S computes challenge d = Ho(A, B ,  Is, date/time), and sends 

Step 3, U computes d' = s(d + e) mod q, and sends this t o  0. 
Step 4. If 02 is still in memory, then 0 computes the response T!  = d'ol + 

02 mod q and send it to  U. (If 0 2  has already been erased, then 0 e.g. locks 
up.) Then 0 erases 02 from its memory. 

Step 5.  U verifies that  9:: = A$&. If this verification holds, he computes 
TI = T ;  + d(u1s) + x1 mod q and ~2 = ds + 2 2  mod q. He then sends ( T I , T Z )  

t o  s. 

it to  U. 

S accepts if and only if sign(d, B) is a signature on (A, I?), and gFg7 = AdB. 

0 U S 

Verify sign(A, B) 
7 rl 1.2 L. 91 s2 - A d 3  

As in the basic system, if U has a clock and the capability of looking up the 
identifying information I s  of S, the protocol can be collapsed to  one move from 
u t o  s. 

Since U by himself does not know a representation of I, it is easy to prove that 
he cannot know a representation of the coin by himself if the basic withdrawal 
protocol is a restrictive blind signature protocol. From Lemma 8 we hence get: 

Proposition 16. Assuming the tamper-resistance of 0 cannot be broken, U can- 
not spend a coin without cooperation of 0. 

Due to  the important fact that 0 in the ensemble of withdrawal and payment 
protocols in effect performs exactly the Schnorr identification protocol, proving 
knowledge of loggl Ao, this result should hold even after polynomially many 
executions of the protocols. 

We next investigate the privacy of the account-holders in this system. 
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Proposition 17. If U fol lows the protocols, and does not  double-spend, t h e n  n o  
shared i n f o m a t i o n  can be developed between 0, B, and all shops S in executions 
of the  withdrawal and payment  protocols he  takes part  in. 

Informally speaking, the privacy of payments of an account-holder who follows 
the protocols and does not double-spent is unconditionally protected, even if 
his observer’s contents can be examined afterwards by the bank. If we encode 
denominations in 92, then the property of no shared information even relates to 
the value of the coin. 

T h e  deposit protocol. This is exactly the same it5 in the basic system. In case 
the coin was double-spent, the number ( T I  - T : ) / ( T ~  - T ; )  - 01 mod q serves as 
a proof of double-spending. 

Proposition 18. If the tamper-resistance of 0 is broken (enabling U to  simulate 
i t s  role), then  s t d l  the s a m e  level of security as in the basic cash s y s t e m  is 
guaranteed. In particular, i f  U double-spends, he  will be identified after the fac t .  

This follows immediately from the fact that the protocols in that case reduce to 
those of the basic cash system (view U and 0 as one entity). 

7 Concluding remarks 

In practice, the random number generator of U can be a quite simple pseudo- 
random bit generator. In that case, it might be preferable to reconstruct A, B ,  
ZI,, 22, s at payment time from the intermediary state of the generator. 

The random number generators of 0 and L3 on the other hand must be 
cryptographically strong, since U can heavily analyze their outputs; preferably, 
B’s pseudo-random numbers should be combined with numbers obtained from 
physical randomness (e.g. noise generators). 

Certain security aspects can be straightforwardly strengthened by using the 
idea of [4]. However, this modification does not seem to increase the plausibility 
of Assumption 1, whereas it requires more computations of the payment device. 

The only thing left open in mathematically proving the security of our sys- 
tem and its extensions to as great an extent as the current state of knowledge in 
cryptography seems to  allow, is proving that the particular blind signature pro- 
tocol we used is a restrictive one, without assuming non-standard assumptions. 
We do not know how to do this, although there are convincing partial proofs 
(see [3]) that suggest that breaking it requires breaking the Diffie-Hellman key 
assumption. 

Nevertheless, this is not a serious problem; recently ([3]), we have come up 
with various other (even more efficient) restrictive blind signature schemes in 
groups of prime order, of which we can rigorously prove for fixed m that the 
security is equivalent t o  that of the Schnorr signature scheme. As should be 
obvious, any restrictive blind signature scheme can be substituted for the par- 
ticular one used in this abstract, requiring only some minor modifications to the 
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protocols, In [3], we also describe similar constructions based on the representa- 
tion problem in RSA-groups and restrictive blind signature schemes related to 
the Guillou/Quisquater signature scheme. 
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