
A Structural Analysis of Bitcoin

Clemens H. Cap

Department of Computer Science

University of Rostock

Albert Einstein Strasse 22

D-18059 Rostock, Germany

clemens.cap@uni-rostock.de

Abstract: There is no formal framework for describing the core structural concepts
of Bitcoin or for attempting a correctness proof of the algorithm. This contribution
presents several elements which may serve as building blocks. A distributed model for
describing the states enclosed in a Bitcoin network is provided. Concepts for modeling
the swarm behavior of Bitcoin are analyzed.

1 Introduction

The probably most famous and true quote on Bitcoin has been coined by DAN KAMINSKY

in [Kam11]: The first five times you think you understand it, you don’t.

Started on Januar 3, 2009, the Bitcoin peer-to-peer network has grown very quickly. It has

been run from 739,033 unique IP addresses over a three month period1 and currently has

between 20,000 and 60,000 running nodes at every moment2. So far, it has proven aston-

ishingly stable and resilient against actual and paper-and-pencil attacks. This success is

caused by a wealth of advanced cryptographic and networking concepts. Several incidents

with stolen Bitcoin sums, from which the layman could get a different opinion, were due

to security issues on the hosting server and misunderstandings by the user; they are not

caused by flaws of Bitcoin. Unfortunately, beyond the self-published white paper [Nak09]

of the pseudonym SATOSHI NAKAMOTO and a few general rules, message formats and

posts on bitcoin.org, there is no formal approach to Bitcoin from a conceptual point

of view, no specification and no correctness proof. Moreover, much conceptual elegance

is hidden inside of the C++ reference client.

This contribution attempts a structural analysis of some Bitcoin concepts. It is not meant

as formal specification and does not reflect all essentials of the algorithm, but contains

what the author regards as core building blocks3. The text is not meant as introduction;

a general understanding of Bitcoin is assumed. The intention is to ultimately develop a

formal foundation for Bitcoin, which is formally more precise, more abstract and more

1http://blogs.umb.edu/williamfleurant001/2012/01/13/bitcoin/
2https://en.bitcoin.it/wiki/Bitcoin_Map
3during what might qualify as his fourth attempt in understanding Bitcoin – as far as DAN KAMINSKY’s

quote is concerned.

51

http://blogs.umb.edu/williamfleurant001/2012/01/13/bitcoin/
https://en.bitcoin.it/wiki/Bitcoin_Map

flexible than the currently available descriptions. There is hope that this may help to a

better understanding and in the further evolution of the current algorithm.

2 A World of States and Transactions

2.1 Centralized Scenario

Imagine a world, the state of which is described by a key-value store, registry, or more

complex algebraic data structure [Wir90]. Examples are a bank (i. e. a key-value store

of account numbers with balances), a domain name system (i. e. a list of domain names

with IP-addresses) or an expert system (i. e. a consistent list of axioms and rules from a

logical system). The state of this world initially is empty (i. e. there are no accounts or

domain names; the list of facts and rules is empty). Transactions may change the state

(i. e. by creating or deleting accounts and transferring money; by CRUD-ing DNS-type

name resolutions; by modifying the list of logical formulae). Not every transaction may be

applied in every state (eg. if we transfer money from account a to b, the state in which we

apply this transaction must know accounts a and b and a must have a sufficient balance).

We model this by a set S of states and T of transactions, and a function4 ν : T × S →

S ⊕ {†}. If transaction t ∈ T is performed on state s ∈ S , the resultant state is ν(t, s) ∈ S .

If, however, ν(t, s) = †, then transaction t cannot be applied to state s. Two transactions

t1 and t2 commute on state s, iff ν(t1, ν(t2, s)) = ν(t2, ν(t1, s)) and all involved states

differ from †.

2.2 Distributed Scenario

A distributed scenario consists of a number of participants, each of which has a (local)

state, accessible only to the participant. The participants communicate asynchronously

(i. e. communication takes a certain, usually predictable, amount of time).

Initially, the local states are empty and all participants share the illusion of an identical

(empty) world. Soon the participants start issuing transactions and change their own local

state (eg. they open accounts and deposit money; they invent domain names and create

address-mappings; they describe objects by axioms, provide rules for reasoning, and apply

these rules). Thus the local states of our participants become inconsistent. For example,

in the state of ALICE a bank account might have a different balance than in the state of

BOB and the DNS-system might resolve domain name eg.com for ALICE and for BOB

to different addresses. A consistent unification of the individual local states to a single

(virtual) global state no longer exists. It is no longer possible to maintain the illusion of

a common world, of which the local states are (partial, time-delayed) views. However,

cooperative applications (such as banks, domain name systems, expert systems, but also

human communication) need this illusion: A distributed software layer must therefore

reproduce the artifact of a globally consistent state in order to be considered correct.

In Bitcoin, participants issue transactions to change their local state and broadcast transac-

tions to other participants using gossiping [EFLF07]: A node does not send its transactions

to all other participants but only to a subset to which it is connected; recipients forward

4The sum operator ⊕ denotes the disjoint union.

52

received transactions to their own peers unless they already knew the received transaction

themselves. Broadcast is not reliable (i. e. a number of transactions may not be delivered

to a number of nodes) and not ordered (i. e. the sequence in which transactions are re-

ceived may differ from node to node and from the sequence in which they were sent). This

is consistent with the failure model of Bitcoin, where a number of Byzantine5 nodes may

exhibit completely arbitrary or malicious behavior, and with the state of the art in totally

ordered broadcast [DSU04] (impossible in asynchronous models with crash failures, diffi-

cult in Byzantine settings or without additional assumptions, such as channel reliability or

trustworthy supernodes [RJ08], scaling badly if these assumptions are dropped).

This produces problems: A node may receive transaction t2 in a state where it cannot be

applied (eg. one node generates a bank account by t1 and then references it in t2; a differ-

ent node receives t2 before t1). In spite of unreliable broadcast, every transaction should

eventually be recognized by every node. If asked for their current state, different partici-

pants may report different states: There is no notion of global time and no mechanism to

have the participants report their state at the “same” time. The sequence of states seen by

a participant may depend on the participant. All this is due to the following reasons:

Latency: Some participants have not yet received all issued transactions or have not yet

applied them for updating their local state.

Unreliable Broadcast: Some participants did not receive a transaction.

Order of Transactions: Two participants X and Y may have seen two transactions ta and

tb in a different order. This may produce three conceptually different effects:

(1) Same final state, different path: X and Y are in the same (local) state s0. X sees the

sequence tatb and Y sees the sequence tbta. Assume that ta and tb commute on

state s0. This guarantees an identical final state ν(ta, ν(tb, s0)) = ν(tb, ν(ta, s0)),

but the intermediary states, ν(ta, s) at X and ν(tb, s) at Y, may differ.

(2) Different final states: In addition to case (1), iff ta and tb do not commute on state

s0, the final states at X and Y will be different.

(3) Different sequence: X and Y are in the same state s0. Both see an infinite stream6

of the same set {t1, t2, t3, . . .} of transactions, but in different interleavings. Even if

we assume that every pair of transactions ti, tj commutes on every reachable state

s, it is possible that the common starting state s0 is the only state the sequences at X

and Y have in common. With infinite streams we face a significantly more complex

situation than with finite sequences (as seen in (1)). As an example we use a set

of transactions N and as state use the set of all transactions which the participant

has seen so far. Thus s0 = ∅. One possible development of the sequences for two

particular streams is illustrated in Fig. 1 and shows the phenomenon.

Byzantine Failures: Participants misbehave, by bad intent or by malfunction. They send

different transactions to some participants, tricking them into inconsistent states.

5Byzantine failure mode assumes that a node may exhibit completely arbitrary, random, even malicious be-

havior.
6Bitcoin is intended as a non-stop running system – there is no final state to be reached.

53

{1}
2
// {1, 2}

3
// {1, 2, 3}

4
// {1, 2, 3, 4}

5
// {1, 2, 3, 4, 5}

6
// {1, 2, 3, 4, 5, 6} · · ·

∅

1
>>

2

{2}
4
// {2, 4}

1
// {1, 2, 4}

5
// {1, 2, 4, 5}

7
// {1, 2, 4, 5, 7}

3
// {1, 2, 3, 4, 5, 7} · · ·

Figure 1: Two sequences of local states, which share only the initial local state.

Network Partitioning may happen without the participants noticing. This produces sev-

eral connected components, each of which is unaware of the transactions taking place in

the other components.

2.3 Distributed Applications and Swarm Behavior

Applications impose consistency criteria on the states of the participants. If ALICE wants

to pay 1$ to BOB, both parties must have the same view on the balances before and after the

transaction, reflecting that 1$ is moved between the accounts. MALLORY might attempt

fraud and engage ALICE and BOB in simultaneous transactions, trying to use the same

1$ to pay both parties. We must protect the users from such fraud: Some time after the

transaction is completed, the new owner(s) of the transferred coin(s) must be clear and

the sum of money in circulation must have stayed the same. For other applications, the

requirements are accordingly. Usually, centralized solutions implement consistency by

well-known transactional concepts, distributed architectures use serialization protocols.

Bitcoin takes a fresh approach. It rejects the idea of trust in a single entity. It assumes

a (very) large number of participants (∼ 106), which kills traditional serialization ap-

proaches. Furthermore, Bitcoin not even requires a common code base: Every node ex-

changes messages with other nodes, and it is by a probabilistic game theoretic incentive

that the swarm seems to pursue a common goal, which, hopefully, attracts a sufficient

number of cooperative nodes, which only in turn guarantee the incentive, which was the

reason to participate in the first run. In this sense, Bitcoin is a self-organized, emergent

and (hopefully) self-stabilizing network of communicating nodes.

In the Bitcoin community, a more traditional, governed understanding is prevailing: A

network of peer-to-peer nodes, running in their vast majority a recent version of the official

Bitcoin software. A few nodes may deviate from the “official” behavior, which is tolerated

by the probabilistic consensus as long as only a minority engages in counter-specification

behavior. In Bitcoin, minority does not refer to numbers of participants but computing

power, as demonstrated by a proof-of-work mechanism.

This more traditional interpretation may be due to social, economic and psychological ef-

fects: The active member of the community invests time, money (for running nodes) and

entrepreneurial expectations. This is easier, if it is based on a belief in a stable system,

well-governed by a solid architecture and endangered only by a small minority of malign

attackers. This belief might be an appropriate (and stabilizing) social model; from a struc-

54

tural point of view, however, Bitcoin is an anarchic network of interacting but completely

autonomous nodes, whose seemingly goal-directed behavior emerges from advantages the

participants expect from their predictions on the average behavior of a majority of nodes.

Network partitioning is dealt with by assuming that in contemporary Internet a long-term

partitioning into disconnected components will not go unnoticed by the participants and

by hiding conflict resolution upon rejoining in the resilience properties against malicious

minorities. Byzantine failures and unreliable communication are dealt with in a statis-

tical manner; the algorithm aims that states of nodes eventually converge to a consistent

world view.

3 Transaction Networks

For further formalization, we find the notion of a transaction network helpful. It replaces

consensus on state by eventual consensus on past history, and is able to accommodate a

“more” distributed perspective than a linear sequence of states. An extended version of

this formalism is suitable for modeling more general distributed and parallel processes,

see [Cap00].

3.1 Definition

A transaction network (tx-net) (Q, T ,→) consists of finite sets Q of anchors, T of trans-

actions and a relation7
→⊆ Q∗ × T ×Q∗.

In q1q2q3
t
→ p1p2 the anchors q· of the left side are inputs and the anchors p· on the right

side are outputs of t. We require that for every transaction t there is exactly one input word

q ∈ Q∗ and one output word p ∈ Q∗: ∀t ∈ T : ∃!(q, p) ∈ Q∗ ×Q∗ : q
t
→ p. We define

the set α(t) := {q1, . . . , qa} ⊆ Q of input-anchors and the set ω(t) := {p1, . . . , pb} ⊆ Q
of output-anchors of t. A transaction with empty input word ε has α(t) := ∅ and is called

a generating transaction8, a transaction with empty output word has ω(t) := ∅ and is

called a deleting transaction9. We may10 require that every anchor q ∈ Q must occur

in the output of exactly one transaction (which is the transaction generating this anchor).

Moreover every anchor may occur in the input of at most one transaction (which is the

transaction consuming this anchor). An anchor which does not occur in the input of any

transaction is unspent, otherwise it is spent. Finally, we require a tx-net to be cycle-free:

There is no k-tuple (t1, t2, . . . , tk) of transactions, k ≥ 1, such that ω(t1) ∩ α(t2) 6= ∅,

ω(t2) ∩ α(t3) 6= ∅, . . . ω(tk) ∩ α(t1) 6= ∅, transactions do not feed into themselves,

even after transitive closure. We may visualize tx-nets as in Fig. 4, illustrating transactions

a, b, c by boxes and anchors x, y, z by circles.

We define an immediate successor relation ⊲ ⊆ T ×T by t1⊲t2 :⇔ ω(t1)∩α(t2) 6= ∅,

which means that transaction t1 produces at least one anchor as output which serves as

7As usual, Q∗ := ∪∞

n=0Q
n and Q+ := ∪∞

n=1Q
n with Q0 =: {ε} and ε 6∈ Q.

8In Bitcoin terminology, this is called a coinbase transaction.
9Deleting transactions do not occur in the economic application of Bitcoin but could be useful in other sce-

narios.
10Equivalently, we may designate certain states as initial states; the difference is purely technical.

55

a

b
c

y
z

x

Figure 2: Single transaction network.

input to t2 (t1 feeds into t2). → is cycle-free, the reflexive-transitive closure ⊲
∗ of ⊲ is a

(partial) order ≤ := ⊲
∗ on T . t1 ≤ t2 indicates that t1 has occurred earlier than t2.

A tx-net describes the evolution of state, i. e. how an initially empty state of a partici-

pant evolves into the current state. its more abstract view removes the superfluous details

encoded in a linear sequence of states and focuses on consensus beyond coincidental or-

dering. In Fig. 2, the tx-net abstracts away from the inessential fact that the current state z

could have been reached via the linear transaction sequence abc or via bac; it focuses on

the fact that it has been reached by executing one of several possible orderings of transac-

tions. A tx-net, however, still distinguishes more histories than necessary for a state-based

consensus. The tx-nets in Fig. 3 both produce the same state and thus allow for state-based

consensus; however they do not allow for history-based consensus. The same is true for

Bitcoin, where a different transaction history will always produce a conflict in the block

chain, although there might be consensus on the values of the various accounts.

Z=0 Z=2 Z=3

Z=4 Z=3

Figure 3: Upper and lower tx-nets produce the same current state.

To describe the evolution of tx-nets we define a (partial) order on the set of all tx-nets

N. A tx-net N1 evolves into another tx-net N2, if N2 is obtained by attaching a single

transaction to N1. This immediate successor relation ; ⊆ N×N on the set of all tx-nets

produces a (partial) order � := ;
∗ by taking the reflexive, transitive closure as above. If

N1 evolves into N2 (i.e. N1 ; N2) then tx-net N1 will also be a smaller network than

N2 (i.e. N1 � N2). Fig. 4 illustrates the immediate successor relation on four tx-nets.

Moreover, the figure shows how the centralized scenario (consisting of states r, s, t, u,

transactions a, b, c, d and ν(a, r) = s, ν(b, s) = t, ν(c, r) = u, ν(d, u) = t and † for all

other combinations) translates into a distributed scenario.

3.2 Convergence of Consensus

For two tx-nets N1, N2 we define the intersection or common core N1⊓N2 as the largest11

tx-net which may be extended into N1 and N2 (i.e. N1 ⊓N2 � N1 and N1 ⊓N2 � N2).

11It is not immediately evident that such an element exists, but can be shown by induction or by using results

from section 3.6 of [Cap00].

56

e

f

e

f

g

h

1

2

e

f

g1

e

f h2

a b

c d

r

s

u

t

Figure 4: Successor relation on transaction networks.

We assume a situation where two participants P,Q both start with the empty tx-net and

subsequently build “towards” the same tx-net, however in a manner where the order of

adding transactions may differ. Thus P will produce the sequence ε = p0 ; p1 ; p2 ;

. . . of tx-nets and Q will produce the sequence ε = q0 ; q1 ; q2 ; . . .

It may be the case that for every qn there exists a pm such that qn � pm; this means that

every state change (i. e. transaction) seen at Q will eventually be seen by P. If this holds

vice versa, then both participants follow the same sequence of transactions, just sometimes

one of the participants will know a bit different transactions than the other due to different

sequencing, but eventually both will catch up. The states on which both participants will

agree is given by the sequence of the common core, i. e. p0 ⊓ q0, p1 ⊓ q1, p2 ⊓ q2, . . .

To guarantee such a common limit for all participants is the task of the Bitcoin algorithm:

After a while all participants should have agreed on a common past (and on the produced

states); the moment might be earlier or later, depending on the communication latency.

We conjecture that this concept of a common limit may be substantiated with domain-

theoretic methods, where the order structures and infinite limits necessary for this approach

are already in place. We doubt, however, that such a description will be very useful for

a practical understanding of the algorithm, which at every finite time step will always

have produced finite tx-nets, whereas the approximated limit objects will have to be an

infinite variant of tx-nets and thus will never be seen on a real computer. The tools for

describing convergence, nevertheless may be helpful from a theoretical point of view and

could be helpful for proving properties of the algorithm. This speculation, however, has to

be substantiated in future work.

3.3 Backtracking

Unfortunately some problems remain. Fig. 5 shows a tx-net r which may develop into

tx-net s or into an incompatible tx-net u: It is no longer possible that these two tx-nets

57

become parts of a common larger tx-net and thus regain consensus at a later stage! This

is fundamentally different from Fig. 4, where r splits into s or u, but a later consensus is

possible in the form of tx-net t.

e

f

e

f
g1

e

f h2

r

s

u
Figure 5: Split in tx-net evolution.

Such a situation may arise when a node M sends a transaction t1 to one set Q1 ⊆ Q of

participants and a carefully chosen, different transaction t2 to another, disjoint set Q2 ⊆ Q

of participants, where t1 and t2 are chosen as12 in Fig. 5 and not as in Fig. 4. In Bitcoin,

a double spending attack is an example of such a situation.

Similarly, a node p1 might broadcast a transaction t1 and at nearly the same time node p2

might broadcast a transaction t2 leading to the described situation. This might be a result

of a malicious collusion between the two nodes, it could occur due to an (unintended)

application-level coordination failure of these nodes, or it could be part of (intended) ap-

plication behavior, where the application assumes that the problem will be fixed by the

block chain mechanism.

In all these cases, the desired convergence to a consistent view of the past is disrupted

and some nodes must undo parts of their transaction history. The goal is not to construct

the “correct” state of transaction history (we have no criterion what “correct” means), but

to ensure eventual convergence to one consistent transaction history. In Bitcoin this is

achieved by the block chain.

3.4 Regaining Consensus

In the interest of consensus the nodes exchange messages informing each other of what

they believe how the consensus should look like. For this purpose a node sends its entire

sequence of tx-nets to its peers13. From this information the receiving node can construct

12The intuitive meaning should be clear from the figures. A mathematically precise definition is straight

forward but needs additional formalism which we skip for lack of space.
13In Bitcoin this is implemented in a more efficient way using hashes and inventory control messages, whose

implementational details obscure the concepts.

58

a cycle-free graph of tx-nets, which includes its own tx-net sequence corresponding to its

local state. Fig. 6 shows an example of such an evolution structure. Moreover, Fig. 6 also

demonstrates why it is not enough when the other nodes only send transactions: It is not

obvious, whether a transaction attaching to z = 2 should be added to the upper or to the

lower evolution path of tx-nets; only if the nodes send entire sequences of tx-nets, this

question may be settled.

e

Z=0 Z=2eZ=0e

Z=2e

x

y

z u

Figure 6: Evolution structure of tx-nets.

A node thus has some14 information about how the local states of the other nodes are

evolving.

Every moment a node will have a notion which tx-net it considers to be “true”. To this end

it will chose a maximal element with regard to the � order on the tx-nets in its evolution

structure. Over time, a node will thus produce a sequence of such maximal elements.

Backtracking means that this sequence ε,m1,m2,m3, . . . will not be linearly ordered

ε � m1 � m2 � m3 . . . but may contain incomparable elements.

We again refer to Fig. 6: A node might start with an evolution structure consisting only of

x, selecting x to be its “true” tx-net. Due to communication, it may learn of the tx-nets z,

y and u (in this sequence). The node might then first decide to adopt z as its subsequent

truth, then it might switch over to y and later back again to u.

In the current Bitcoin implementation, the block chain is used to implement the evolution

structure. Every block corresponds to a tx-net. The block chain realizes a tree. This is no

additional limitation, since the unique addresses of the coinbase transactions will always

prevent the evolution structure from having additional, non-tree order relations; this is

specific for Bitcoin and need not be the case in different applications of the same consensus

mechanism. Moreover, Bitcoin always chooses the block with the highest proof-of-work

as the “true” tx-net. This is specific for the current Bitcoin implementation; there are other

approaches, which base this decision on a proof-of-stake maximum (see below).

14The information may be incomplete, since a node does not communicate with all the other nodes; due

to communication latency, it may not reflect the latest changes; moreover, some aspects might be lost, since

communication is not reliable.

59

4 Swarm Behavior

Bitcoin nodes receive, send and forward messages; in the mean time, they process in-

formation (the most common task is checking received blocks and solving proof-of-work

puzzles). A node does so due to one of the following reasons:

(1) Incentive: The node expects benefits from interacting with other nodes and attempts

to maximize this benefit.

(2) External motivation: The node disregards transactional benefits and pursues an

external motivation. For example, a participant might be interested in disrupting the

network.

(3) Failure: The node does not follow a predictable pattern but acts erroneously.

What is a good mathematical model for describing the behavior emerging from a decen-

tralized swarm of communicating (Bitcoin) nodes?

4.1 Bitcoin as a Game

The incentive mechanism suggests modeling Bitcoin by game theory [Web06]: A certain

(large) number of participants is playing a repeated number of rounds. In every round, a

participant may chose between a number of options, which in Bitcoin correspond to send-

ing messages of a specific content to other participants. Since Bitcoin is not operating in

synchronized rounds and with a fixed number of nodes, we include the option of not send-

ing a message. The random nature of a proof-of-work may be reflected by mixed strategies

and by placing constraints on the respective probabilities. From this perspective, a node

decides between sending a correctly found new block (with a probability constrained by

its hash performance), not sending a message, or sending an incorrect block. According to

game theory, the goal of a node is to select its behavior in such a manner as to maximize

the payoff in the game.

Unfortunately, there are serious problems with this approach. In repeated games, the pay-

off often is obtained by summing the payoffs of all rounds. However, in Bitcoin a payoff

is not connected with a single round, but evolves over time and retains a stochastic nature.

For example: An attacker might double spend to two different Bitcoin exchanges and

subsequently ask them to convert his Bitcoins into Dollars. There is a certain probability

that the attack succeeds and both exchanges will pay the appropriate amount in Dollar

before realizing the attack by a block chain reorganization. This probability depends on

the confirmation policy of the exchanges15. Thus, the payoff depends on a large number

of events, corresponding to many rounds in the game. Even worse: The probability that a

Bitcoin transaction will be undone and the block chain will reorganize never becomes zero.

The payoff becomes certain only when a participant finally crosses the boundary from

digital (Bitcoin) to real (Dollar) economy. It is generally believed that this probability is

so small that the impact can be neglected for practical purposes. However, when in search

of a modeling tool which is able to rigorously prove this property we must not base the

choice of the tool on the assumption we want to prove.

15i. e. how many blocks they wait until they do a bank transfer.

60

4.2 Bitcoin as Random Walk

A more suitable tool might be a random walk, where the length of the walk provides

a measure for the probability of reverting a transaction. This is the method chosen by

SATOSHI in the Bitcoin white paper [Nak09]. The reasoning employed is very simplified,

considers only two players and neglects various kinds of effects such as communication

latency, nodes joining and leaving the network, or evolutionary changes in the behavior of

the nodes. It provides a persuasive reason but not a stringent proof. As soon as other as-

pects are taken into account, the resulting stochastic process seems to become too complex

to obtain hard results.

Our main critique with this approach is as follows: The approach assumes that a majority

of nodes will adhere to the “official” Bitcoin protocol. It then argues in [Nak09] that a

minority16 of nodes, which deviate from the official protocol, will not be able to damage

the incentive, which is produced by the “official” protocol. This observation is important,

since it guarantees Bitcoin stability of a convinced majority against a malevolent minority.

For a completely decentralized system, this is not enough! There is no authority ensuring

a majority or even a notion of an “official” protocol version. Every participant is free to

switch to a modified protocol; he will switch, if this increases his payoff. The assumption,

that a majority of nodes will stick to the “official” protocol is not accounted for or, in other

versions of the debate, is explained (using circular reasoning) by refering to the incentive

generated by the “official” protocol. The reasoning does not explain, why a majority of

nodes would want to stick to the “official” or any other currently used version of the

protocol. The inherent dynamics of the protocol with regard to bounty-size and difficulty,

as well as the growing interest by the open source community, is likely to further drive this

issue by suggestions of new protocol variants. This discussion is important and at the core

of the future stability of the Bitcoin system.

4.3 Bitcoin as Social System

Both theories, game theory and random walks, assume a behavior where nodes attempt to

maximize their profit. A thought experiment may expose that this is not the only driving

force present in Bitcoin behavior.

Currently Bitcoin uses a bounty of 50 BTC for new blocks. Suppose, a node decides to

change this parameter to 500 BTC. In a maximum profit approach, all participants, at least

those operating in incentive mode, will adopt their behavior to maintain optimal profit.

An appropriate reaction for the other nodes would be to adopt this parameter change and

continue the block chain with modified constraints: For all mining nodes, the mining yield

would rise; the non-mining nodes would not see a difference.

Of course, there are numerous reasons why we do not see such a parameter change in

real-life Bitcoin networks: Higher mining yields might cause inflation and compensate the

increased Bitcoin payoff by a dip of the Bitcoin to Dollar conversion rate. Adoption of a

new parameter is not an immediate rational decision but requires the participants to reach

some form of social consensus. Finally, current Bitcoin software has the bounty encoded

16weighted by their hash computation performance

61

into the program – it cannot be changed easily. Thus, social effects and human inertia

currently play an important role in Bitcoin stability.

However, in principle parameters may be changed much faster: Users could be offered

option dialogues or optimization algorithms could choose them automatically. In such a

situation the current operative stability of Bitcoin could be less obvious. In stock trad-

ing, algorithmically induced course artifacts and crashes are a well-known and validated

phenomenon [JZH+12].

We therefore conjecture that a proper model of Bitcoin needs to include behavioral ele-

ments beyond rational profit maximization, a belief which is supported by results in human

decision making [GS02]. Conceptually, society17 introduce an element of centralized trust

into an otherwise completely decentralized architecture.

This leads to several interesting questions: How can these additional elements be mod-

eled in a rigid mathematical manner? How does swarm behavior emerge from interacting

nodes? Is an incentive sufficient? Does the incentive emerge in the swarm – or is an exter-

nal incentive (eg. convertibility into dollars) necessary? Is the behavior of the swarm stable

if the individual players are completely free to adapt their behavior in order to maximize

received incentives?

These questions are far from being purely philosophical since their answers are the tools

required to settle security questions currently debated in the Bitcoin community: Heard-of

Byzantine consensus lets the swarm chose “correct” behavior by a one-identity-one-vote

scheme and is susceptible to sybil attacks18. Proof-of-work improves this by counting the

votes according to node hash performance. Proof-of-stake19 counts the votes according

to the stake a node currently has in the Bitcoin system. The latter may be defined by the

bounty acquired through past mining activities or by the total wealth currently held. When

social aspects are a core aspect in Bitcoin stability, stake measured in real economic units

might prove more important that hash performance.

We conjecture that a suitable modeling discipline will contain game theoretic and evolu-

tionary elements; in contrast to the established discipline of evolutionary game theory it

should not limit evolution to a participant’s choice of strategies or to specific game param-

eters but would allow for wider modifications of the set of available game strategies and

connected payoff mechanisms. Some starting points might be found in [SF07].

5 Related Questions

It would be interesting to analyze Bitcoin from an algorithmic perspective in addition to a

structural one: Bitcoin attempts to solve a Byzantine consensus problem, which has been

well studied for decades.

Deterministic Byzantine agreement needs at least as many rounds of communication as

the number of faulty processors [BO83]. This is a show-stopper for all deterministic ap-

17For example, elements of consensus of the Bitcoin software developers when roling out new software.
18In a sybil attack multiple (fake) identities are generated by a single user and thus can bias the vote.
19See https://en.bitcoin.it/wiki/Proof_of_Stake for the algorithm and its implementation;

see https://bitcointalk.org/index.php?topic=37194.msg456773 for the debate.

62

https://en.bitcoin.it/wiki/Proof_of_Stake
https://bitcointalk.org/index.php?topic=37194.msg456773

proaches: Sybil attacks can simulate a large number of faulty processors and drive the

communication complexity. The probabilistic proof-of-work in Bitcoin allows an escape

from the deterministic complexity bounds and requires contributing nodes to make sub-

stantial investments in hash performance.

There is considerable state of the art on probabilistic consensus. [BO83] describes an

algorithm which is correct with probability 1 in the long run, tolerates less than n/5 faulty

processors20 but may require an exponential number of rounds; if the number of faulty

processors is O(
√
n), consensus can be reached in a protocol where the expected number

of rounds is independent from n.

Many authors build upon this approach and focus on improving complexity bounds [Bra87],

[ADH08], [Zam96], with [KS10] and [KKK+10] arguing that all essential complexity

bounds can be made polylogarithmic.

Other authors concentrate on specific algorithmic aspects, such as the number of tol-

erated faulty processors [CVL10], buffer requirements [BEV06], synchronicity require-

ments [DDS87], or varying numbers of participants in ad-hoc networks [ADGF08].

While Byzantine consensus is generally accepted as very important problem and numerous

algorithms exist, only a very small number of solutions have been rigorously or formally

verified; this is especially true for algorithms which do not use the heard-of model of

building consensus [CBDM11]. This is, unfortunately, also true of the Bitcoin idea.

All non-Bitcoin approaches to the agreement problem known to the author require limits

on the number of faulty processors. Therefore, they are an easy victim to Sybil attacks,

which simulate large numbers of faulty nodes. Sybil attacks in general may be prevented

by trust concepts or by singling techniques. Trust concepts connect a digital identity with

a real identity. They may be implemented by a trusted certificate authority or by identity-

based authentication [BNSnS04], both of which often use a single trusted third party.

They are in conflict with Bitcoin’s requirement of not relying on a single, centralized

element. They may be built on distributed mechanisms [ARH97], which need preparatory

steps in a network of mutually trusting users and are less suitable for ad-hoc scenarios.

Singling techniques guarantee that a person owns only one recognized handle and may be

implemented, for example, by pseudonym parties [FS08], which again require preparatory

steps and infrastructure, which is not yet existing. Sybil attacks and decentralized trust are

very active research areas; but most approaches are in conflict with Bitcoin requirements

(eg. no trusted third party, no central registry, some degree of anonymity), are essentially

equivalent to solving a consensus problem (and thus equivalent to the Bitcoin problem

itself), need additional infrastructure or have not yet left their research state.

Acknowledgement

Special thanks of the author go to the anonymous referees, especially to one referee who

provided a substantial list of suggestions, including typesetting remarks, all of which

helped to improve the quality of the paper.

20As usual, n denotes the number of all nodes.

63

References

[ADGF08] Mohssen Abboud, Carole Delporte-Gallet, and Hugues Fauconnier. Agreement and
consistency without knowing the number of processes. In Proceedings of the 8th inter-
national conference on new technologies in distributed systems, NOTERE ’08, pages
38:1–38:8, New York, NY, USA, 2008. ACM.

[ADH08] Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. An almost-surely terminating
polynomial protocol for asynchronous byzantine agreement with optimal resilience. In
Proceedings of the twenty-seventh ACM symposium on principles of distributed com-
puting, PODC ’08, pages 405–414, New York, NY, USA, 2008. ACM.

[ARH97] Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In Proceedings
of the 1997 workshop on new security paradigms, NSPW ’97, pages 48–60, New York,
NY, USA, 1997. ACM.

[BEV06] François Bonnet, Paul Ezhilchelvan, and Einar Vollset. Quiescent consensus in mobile
ad-hoc networks using eventually storage-free broadcasts. In Proceedings of the 2006
ACM symposium on applied computing, SAC ’06, pages 670–674, New York, NY,
USA, 2006. ACM.

[BNSnS04] Joonsang Baek, Jan Newmarch, Reihaneh Safavi-naini, and Willy Susilo. A Survey of
Identity-Based Cryptography. In Proc. of Australian Unix Users Group annual confer-
ence, pages 95–102, 2004.

[BO83] Michael Ben-Or. Another advantage of free choice (Extended Abstract): Completely
asynchronous agreement protocols. In Proceedings of the second annual ACM sympo-
sium on principles of distributed computing, PODC ’83, pages 27–30, New York, NY,
USA, 1983. ACM.

[Bra87] Gabriel Bracha. An O(log n) expected rounds randomized byzantine generals protocol.
J. ACM, 34(4):910–920, October 1987.

[Cap00] Clemens Heinrich Cap. A Calculus of Distributed and Parallel Processes. Teubner,
2000.

[CBDM11] Bernadette Charron-Bost, Henri Debrat, and Stephan Merz. Formal verification of con-
sensus algorithms tolerating malicious faults. In Proceedings of the 13th international
conference on stabilization, safety, and security of distributed systems, SSS’11, pages
120–134, Berlin, Heidelberg, 2011. Springer-Verlag.

[CVL10] Miguel Correia, Giuliana S. Veronese, and Lau Cheuk Lung. Asynchronous Byzantine
consensus with 2f+1 processes. In Proceedings of the 2010 ACM symposium on applied
computing, SAC ’10, pages 475–480, New York, NY, USA, 2010. ACM.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism
needed for distributed consensus. J. ACM, 34(1):77–97, January 1987.

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, December
2004.

[EFLF07] Patrick Eugster, Pascal Felber, and Fabrice Le Fessant. The “art” of programming
gossip-based systems. SIGOPS Oper. Syst. Rev., 41(5):37–42, October 2007.

64

[FS08] Bryan Ford and Jacob Strauss. An offline foundation for online accountable
pseudonyms. In Proc. of the 1st international workshop on social network systems
SocialNets, 2008.

[GS02] Gerd Gigerenzer and Reinhard Selten. Bounded Rationality: The Adaptive Toolbox.
MIT Press, 2002.

[JZH+12] Neil Johnson, Guannan Zhao, Eric Hunsader, Jing Meng, Amith Ravinadr, Spencer
Carran, and Brian Tivnan. Financial black swans driven by ultrafast machine ecology.
arXiv:1202.1448v1 [physics.soc-ph], February 2012.

[Kam11] Dan Kaminsky. Black Ops of TCP/IP 2011. Black Hat USA, http://

dankaminsky.com/2011/08/05/bo2k11/, 2011.

[KKK+10] Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast
asynchronous Byzantine agreement and leader election with full information. ACM
Trans. Algorithms, 6(4):68:1–68:28, September 2010.

[KS10] Valerie King and Jared Saia. Scalable byzantine computation. SIGACT News, 41(3):89–
104, September 2010.

[Nak09] Satoshi Nakamoto. Bitcoin: A Peer-toPeer Electronic Cash System. Self-published
white paper at http://bitcoin.org/bitcoin.pdf, 2009, 2009.

[RJ08] Benjamin Reed and Flavio P. Junqueira. A simple totally ordered broadcast protocol. In
Proceedings of the 2nd workshop on large-scale distributed systems and middleware,
LADIS ’08, pages 2:1–2:6, New York, NY, USA, 2008. ACM.

[SF07] György Szabó and Gábor Fáth. Evolutionary Games on Graphs. Elsevier Physics
Reports, 446:97–216, 2007.

[Web06] James N. Webb. Game Theory: Decisions, Interaction and Evolution. Springer, 2006.

[Wir90] Martin Wirsing. Algebraic Specification. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science (vol. B), pages 675–788, Cambridge, MA, USA, 1990.
MIT Press.

[Zam96] Arkady Zamsky. An randomized Byzantine agreement protocol with constant expected
time and guaranteed termination in optimal (deterministic) time. In Proceedings of the
fifteenth annual ACM symposium on principles of distributed computing, PODC ’96,
pages 201–208, New York, NY, USA, 1996. ACM.

65

http://dankaminsky.com/2011/08/05/bo2k11/
http://dankaminsky.com/2011/08/05/bo2k11/
http://bitcoin.org/bitcoin.pdf

	3020085 GI P_208 Inhalt.pdf
	Informatik 2012
	Vorwort
	Inhaltsverzeichnis
	Workshops GI
	Bitcoin.pdf
	Bitcoin.pdf
	01-01-vornberger
	01-02-becker
	01-03-cap
	Introduction
	A World of States and Transactions
	Centralized Scenario
	Distributed Scenario
	Distributed Applications and Swarm Behavior

	Transaction Networks
	Definition
	Convergence of Consensus
	Backtracking
	Regaining Consensus

	Swarm Behavior
	Bitcoin as a Game
	Bitcoin as Random Walk
	Bitcoin as Social System

	Related Questions

	Digitale Soziale Netze
	Digitale Soziale Netze.pdf
	03-01-funk
	03-02-hameed
	03-03-kneissl

	IT-Unterstützung im Emergency Management & Response
	IT-Unterstützung im Emergency Management & Response .pdf
	04-01-Coskun
	04-02-Han
	04-03-Reinke
	04-04-Maehler
	Developing user centered maps and map symbols in mass casualty incidents - a qualitative interdisciplinary approach.
	Mareike Mähler1, Eva Artinger2, Christian Stolcis3, Fabian Wucholt1, Tayfur Coskun4, Yeliz Yildirim-Krannig1
	1 Introduction
	2 The influence of culture on usability
	3 Maps and Maps symbols Perception Study
	3.1 Sample
	3.2 Structure and Expiration of the Study
	3.3 Findings
	3.3 Findings

	4 Emergency Map Symbols
	4.1 Requirements
	4.2 Realization
	Features of the symbol set:

	5 Map types and Architecture
	5.1. Map types
	5.2 Architecture of the map component

	6 Conclusion, Outlook and Future Work
	Literature

	04-05-Simon

	Informatik und Nachhaltigkeitsmanagement
	Informatik und Nachhaltigkeitsmanagement.pdf
	05-01-grimm
	Evaluation von Performance Measurement Systemen zur Konzeption eines geschäftsprozessorientierten Management-Cockpits für IKT-Energieeffizienz
	Daniel Grimm, Fabian Loeser, Koray Erek, Ruediger Zarnekow
	Fakultät Wirtschaft und Management, Fachgebiet I&K-Management Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin d.grimm@tu-berlin.de f.loeser@tu-berlin.de koray.erek@tu-berlin.de ruediger.zarnekow@tu-berlin.de
	1 Einleitung
	2 Performance-Measurement-Ansätze
	2.1 Traditionelle Kennzahlensysteme
	2.2 Moderne Performance Measurement Systeme
	2.3 Performance-Measurement-Ansätze mit IKT-Fokus

	3 Bewertung der Performance-Measurement-Ansätze
	4 Anpassungen für das Management-Cockpit
	5 Diskussion und Schlussfolgerungen
	Literaturverzeichnis

	05-02-schoedwell

	Deklarative Modellierung und effiziente Optimierung (MOC 2012)
	Deklarative Modellierung und effiziente Optimierung (MOC 2012) .pdf
	06-00-geske
	06-01-beierle
	06-02-prenzel

	VLBA12-Workshop
	VLBA12-Workshop.pdf
	07-01-Teuteberg
	07-02-Balloul
	07-03-Kassem
	07-04-Dreschel

	Informationssysteme mit Open Source (ISOS 2012)
	Informationssysteme mit Open Source (ISOS 2012) .pdf
	08-01-Schoenfeld
	08-02-Wickner
	Einleitung
	Einzelsysteme
	Versionsverwaltung
	Build-Automatisierung
	Continuous-Integration-Server
	Metrik-Dashboard

	Integration in bestehende Infrastruktur
	Fazit

	08-03-Flatscher
	08-04-Hummel
	08-05-Herden
	08-06-Loxen

	Sozio-technisches Systemdesign im Zeitalter des Ubiquitous Computing (SUBICO 2012)
	Sozio-technisches Systemdesign im Zeitalter des Ubiquitous Computing (SUBICO 2012).pdf
	09-01-Hoberg
	09-02-Vogt
	Micro Online Reverse Auctions für allgegenwärtige C2B-Koordination
	Simon Vogt
	Institut für Informatik Helmut-Schmidt-Universität Hamburg Holstenhofweg 85 22043 Hamburg simonvogt@hsu-hamburg.de
	1 Einführung
	2 Pervasive und Ubiquitous Computing
	2.1 Begriffsklärung
	2.2 Entwicklung sozio-technischer Anwendungen

	3 Mechanismen für effiziente Markt-Koordination
	3.1 Phasen einer Markttransaktion
	3.2 Online Reverse Auctions

	4 Konzeption eines pervasiven Mikro-ORA-Systems
	4.1 Anforderungen und grundlegende Architektur
	4.2 System Design

	5 Implementierung und beispielhafte Anwendung
	Dieser Abschnitt präsentiert und beschreibt durch das Verfolgen eines beispielhaften Nutzungsszenarios jede Komponente des entwickelten Software-Artefaktes und demonstriert die Funktionalität der zuvor beschriebenen Implementierung. In den folgenden A...
	5.1 Fallbeispiel
	5.2 Das YoChoo Request Interface
	5.3 Die Message-Oriented Middleware
	5.4 Das „YoChoo Bidding Tool“

	6. Schlussbetrachtung
	Literaturverzeichnis

	09-03-Hoffmann

	1. Workshop zur Entwicklung Energiebewusster Software (EEbS 2012)
	1. Workshop zur Entwicklung Energiebewusster Software (EEbS 2012) .pdf
	10-00-Haerder
	10-01-Kramer
	10-02-Wilke
	10-03-Petrov
	10-04-Bunse
	Introduction and Motivation
	Principles of physics
	Measurement setup
	Evaluation showcase
	Summary, Conclusions, and Outlook

	10-05-Gottschalk
	10-06-Schirmer
	Introduction and Motivation
	Related Work
	Principles of physics
	Software-based Measurement
	Approach 1: Remaining Capacity Measurement
	Approach 2: Voltage and Discharge Current Measurement

	Evaluation
	Experimental Setup
	Results

	Summary and Outlook

	Softwarebasierte Methoden für robuste, eingebettete Systeme
	Softwarebasierte Methoden für robuste, eingebettete Systeme .pdf
	11-01-Sangchoolie
	11-02-Engel
	11-03-Jablkowski
	11-04-Axer
	11-05-Borchert

	Situation-Aware Assistant Systems Engineering Requirements, Methods, and Challenges
	Situation-Aware Assistant Systems Engineering.pdf
	12-01-wagner
	12-02-hein
	12-03-krueger
	12-04-kuhlmann
	12-05-lipaczewski

	Smart Grid
	Smart Grid.pdf
	14-01-Pruckner

	Hochschule 2020
	Hochschule 2020.pdf
	16-01-Zakhariya
	16-02-Sueptitz
	16-03-Schreiter
	16-04-Koenig
	16-05-Homrighausen
	16-06-Buehrig

	Kurzfristig entwickeln, langfristig konzipieren
	Kurzfristig entwickeln, langfristig konzipieren.pdf
	18-01-Grundmann
	18-02-Kraemer

	IT-Governance in Verteilten Sytemen (GVS)
	IT-Governance in Verteilten Sytemen (GVS) .pdf
	20-00-vorwort
	20-01-marekfia
	20-02-wulf
	20-03-will
	20-04-milicevic

	Automotive Software Engineering
	Automotive Software Engineering.pdf
	22-01-berger
	22-02-regler
	22-03-conrad
	22-04-hueger
	22-05-gerlach
	Evaluation der domänenspezifischen Sprache HMISL zur modellgetriebenen Entwicklung von Automotive HMIs
	Simon Gerlach
	HMI-Systemtechnik Volkswagen AG Brieffach 1588 D-38436 Wolfsburg simon.gerlach@volkswagen.de
	1 Hintergrund
	2 Ziele der Evaluation
	3 Prototyping
	4 Nutzerstudie
	4.1 Bewertungskriterien
	4.2 Methodik
	4.3 Ergebnisse
	4.4 Validität
	4.5 Interpretation

	5 Fazit
	Literaturverzeichnis

	22-06-pion
	22-07-janssen
	22-08-berger
	22-09-schneider

	Frühstudium 2012 - die Lebenswelt im Übergang Schule-Hochschule
	Frühstudium 2012 - die Lebenswelt im Übergang Schule-Hochschule.pdf
	23-01-Hunneshagen
	23-02-Draeger
	23-03-Schaarschmidt
	23-04-Eckardt
	23-05-Fehr
	ProInformatik
	Das Frühstudium Informatik an der Freien Universität Berlin
	Elfriede Fehr
	Fachbereich Mathematik und Informatik Institut für Informatik Takustr. 9 14195 Berlin elfriede.fehr@fu-berlin.de
	1 Einleitung und Motivation
	2 Das Konzept der ProInformatik
	2 Teilnehmerzahlen und Erfolgsbilanz
	4 Erste Ergebnisse
	5 Fazit
	Danksagung

	Literaturverzeichnis

	23-06-Geyer
	23-07-Neumann

	Gamification und Virtuelle Welten
	Gamification und Virtuelle Welten .pdf
	25-01-Hartmann
	25-02-Witt
	25-03-Pannicke
	Akzeptanz sozialer virtueller Welten am Beispiel Smeet
	Danny Pannicke, Rüdiger Zarnekow, Xiang Yan
	Technische Universität Berlin, Fachgebiet IuK-Management Straße des 17. Juni 135 10623 Berlin danny.pannicke@campus.tu-berlin.de ruediger.zarnekow@tu-berlin.de johnyan88@googlemail.com
	1 Einleitung
	2 Theoretische Einordnung
	3 Konzept-Analyse
	4 Methodisches Vorgehen
	4 Ergebnisse
	4.1 Auswertung der Interviews mit erfahrenen Benutzern
	Einstieg und relativer Vorteil
	Aktivitäten in der virtuellen Welt
	4.2 Auswertung der Berichte der studentischen Probanden

	5 Diskussion
	Literaturverzeichnis
	Anhang

	25-04-Witt
	25-05-Stieglitz

	Interaktion und Visualisierung im Daten-Web (IVDW 2012)
	Interaktion und Visualisierung im Daten-Web (IVDW 2012).pdf
	27-00-heim
	27-01-sack
	27-02-osterhoff
	27-03-Schlegel
	27-04-Haag

	Architekturen für Services Cloud Computing
	Architekturen für Services Cloud Computing.pdf
	28-01-Slawik
	Einführung: Motivation, Zielstellung und Aufbau
	Cloud-Architektur
	Einbindung der Cloud-Architektur in das Gesundheitswesen
	Fazit und Ausblick

	28-02-Irriger
	28-03-Jugel
	28-04-Falkenthal

	Trends und aktuelle Entwicklungen für die computerassistierte Neurochirurgie
	Trends und aktuelle Entwicklungen für die computerassistierte Neurochirurgie.pdf
	29-01-Gierhan
	29-02-Hoeller
	29-03-Roettger
	29-04-Merhof

	Interdisziplinäre Workshops GI
	Translationale und personalisierte Medizin - Einsatzfelder für SOA, Grid und Cloud.pdf
	Translationale und personalisierte Medizin - Einsatzfelder für SOA, Grid und Cloud .pdf
	38_01_balkenhol

	Mobile Informationstechnologien in der Medizin (Mocomed 2012) - Innovation in der Pflege
	Mobile Informationstechnologien in der Medizin (Mocomed 2012).pdf
	39-01-Alsbach
	39-02-Ahrndt
	39-03-Radzuweit
	39-04-Schenk
	39-05-Schwab
	39-06-Egbert
	39-07-Zentek

	Betrachtung der Medizinischen IT und Medizintechnik als Gesamtprozess Synergien und Chancen
	Betrachtung der Medizinischen IT und Medizintechnik als Gesamtprozess.pdf
	43-01-swoboda
	43-02-dirnberger
	43-03-birkle

	Interdisziplinäre Workshops GMDS
	Metadaten und Integrationslösungen für die Klinische Forschung
	Metadaten und Integrationslösungen für die Klinische Forschung.pdf
	45-01-Fette
	45-02-Ganslandt
	Integrated Data Repository Toolkit: Werkzeuge zur Nachnutzung medizinischer Daten für die Forschung
	Ganslandt T1, Sax U2, Löbe M3, Drepper J4, Bauer C2, Baum B2, Christoph J5, Mate S5, Quade M2, Stäubert S3, Prokosch HU5
	1 Medizinisches Zentrum für Information & Kommunikation, Uniklinik Erlangen
	2 Abteilung Medizinische Informatik, Universitätsmedizin Göttingen
	3 Institut für Medizinische Informatik, Statistik und Epidemiologie, Universität Leipzig
	4 TMF e.V., Berlin
	5 Lehrstuhl für Medizinische Informatik, Universität Erlangen-Nürnberg thomas.ganslandt@uk-erlangen.de ulrich.sax@med.uni-goettingen.de
	1 Einleitung
	2 Methoden
	3 Ergebnisse
	4 Diskussion
	5 Schlussfolgerungen und Ausblick
	Danksagung
	Literaturverzeichnis

	45-03-Schleinkofer
	45-04-Rimatzki
	45-05-Ngouongo
	45-06-Loebe

	Kundeninduzierte Orchestrierung komplexer Dienstleistungen
	Kundeninduzierte Orchestrierung komplexer Dienstleistungen.pdf
	47-01-Sillaber
	Introduction
	Related work
	Motivation and definitions
	CoSeRMaS and the BDSG: a case study
	CoSeRMaS
	Deriving requirements from the BDSG
	Managing BDSG compliance from within CoSeRMaS
	CoSeRMaS along the service chain

	Conclusion and future work

	47-02-Ried

	Selbstbestimmtes Leben mit AAL-Technologien – Probleme, Perspektiven, Praxisbeispiele
	Selbstbestimmtes Leben mit AAL.pdf
	48-01-Steiner
	48-02-Saborowski
	48-03-Nitschke
	48-04-Lamprecht
	48-05-Pramann
	1 Einleitung
	2 AAL-Anwendung als Medizinprodukte
	3 Haftungsrisiken

	Literaturverzeichnis

	Gestaltung altersgerechter Lebenswelten - Technologien des Ambient Assisted Living für das selbstständige Leben im Alter
	Gestaltung altersgerechter Lebenswelten.pdf
	49-01-Helmer
	49-02-Spehr
	Introduction
	Depth Sensor
	Human Behavior Patterns (HBPs)
	Model for HBPs
	Calibration of Extrinsic Sensor Parameters
	Local Features
	Gaussian Feature Maps
	Learning of Gaussian Feature Maps
	Recognition of HBPs

	Experimental Results
	Anomaly Detection Results

	Conclusion
	Acknowledgements

	49-03-Lipprandt
	49-04-Wist
	49-05-Buesching
	Einleitung
	Motivation und Anwendungsfall: Unterbrechungstoleranz in medizinischen Sensornetzen
	Analyse der Datenraten
	Datenrate auf dem Funkkanal
	Generierte Datenrate beim Überwachen von Aktivitäts- und Vitalparametern

	Kapazität von unterbrechungstoleranten Netzen
	Spezielle Lösung
	Allgemeine Lösung

	Zusammenfassung und Schlussfolgerung

	49-06-Rau

	Datenmanagement und Interoperabilität im Gesundheitswesen
	Datenmanagement und Interoperabilität im Gesundheitswesen.pdf
	52-01-Vorwort
	52-02-Goldacker
	52-03-Deserno
	52-04-Preissner
	52-05-Pommerening
	52-06-Abels

	4. Workshop über Daten in den Lebenswissenschaften Datenbanken als Kommunikationszentrum
	4. Workshop über Daten in den Lebenswissenschaften.pdf
	53-01-Vorwort
	53-02-Werner
	53-03-Thiele
	53-04-Henkel
	53-05-lange
	53-06-prasser
	53-07-shoshi
	KAIS: Ein webbasiertes System zur patientenindividuellen Arzneimittel-Interaktionsprüfung
	Alban Shoshi1*, Arben Shoshi2 und Ralf Hofestädt1
	1Bioinformatik/Medizinische Informatik, Universität Bielefeld, Bielefeld, Deutschland 2EDV-Abteilung, Franziskus Hospital Bielefeld, Bielefeld, Deutschland alban.shoshi@uni-bielefeld.de arben.shoshi@franziskus.de ralf.hofestaedt@uni-bielefeld.de *Ko...
	1 Einleitung
	2 Methoden
	2.1 Aufgabenstellung und Ziele
	2.2 Implementierung
	2.2.1 Systemarchitektur und Datenbankstruktur
	2.2.2 Benutzeroberfläche

	3 Zusammenfassung
	Literaturverzeichnis

	IT Governance und Strategisches Informationsmanagement in Gesundheitswesen und Öffentlicher Verwaltung
	IT Governance und Strategisches Informationsmanagement in Gesundheitswesen und Öffentlicher Verwaltung .pdf
	55-00-Einleitung
	55-01-Obermeier
	55-02-Haller
	55-03-Krey
	55-04-Walser

	CCESigG Workshop Der Weg zur rechtssicheren elektronischen Dokumentation, Kommunikation und Archivierung im Gesundheitswesen
	CCESigG Workshop „Der Weg zur rechtssicheren elektronischen Dokumentation, Kommunikation und Archivierung im Gesundheitswesen“ .pdf
	56-01-Huehnlein
	56-02-Huehnlein
	1 Einleitung
	2 Grundlegende Betrachtungen zur Authentisierung und Signatur
	2.1 Begriffliche Abgrenzung und Verbindung von Authentisierung und Signatur
	2.1.1 Authentisierung und Authentifizierung
	2.1.2 Authentisierung von Daten – (Qualifizierte) elektronische Signatur
	2.1.3 Authentisierung von Entitäten – Elektronischer Identitätsnachweis

	2.2 Synergiepotenzial und gemeinsame Regulierung
	2.3 Eignung von Authentifizierungsverfahren

	3 Die Referenzarchitektur für die Authentisierung und Signatur
	3.1 Systemkomponenten
	3.1.1 System des Benutzers
	3.1.2 System des Applikationsanbieters
	3.1.3 Infrastruktur

	3.2 Schnittstellen

	4 Anwendungsfälle
	4.1 Registrierung eines Benutzers
	4.2 Authentisierung eines registrierten Benutzers
	4.3 Erstellung einer elektronischen Signatur durch den Benutzer
	4.4 Beweiskrafterhalt für qualifiziert elektronisch signierte Dokumente
	4.5 Automatisierte Erzeugung von Server-seitigen Signaturen
	4.6 Erstellung einer Server-basierten Signatur nach Authentisierung des Benutzers

	5 Zusammenfassung

	56-03-Balfanz
	56-04-Hallof gematik
	56-05-Feller
	56-06-Seidel
	56-07-Wild

	Medizinische Bildverarbeitung für die computergestützte Diagnostik und Therapie
	Medizinische Bildverarbeitung für die computergestützte Diagnostik und Therapie.pdf
	57-01-Luetzkendorf
	57-02-Baecke
	57-03-Mueller
	 Abstract: Aktuell wird als eine vielversprechende Therapiemethode das sogenannte Neuro-feedback für verschiedene Angst-, Zwangs- oder Suchtstörungen diskutiert. Dabei wird dem Probanden noch während einer Messung die neuronale Aktivierung aus bestimmten Regionen seines Gehirns präsentiert, welche er dann selbständig und in Echtzeit regulieren soll. In der vorliegenden Arbeit wird erstmalig ein Rahmenkonzept zur Echtzeit-Adaption einer komplexen Virtual Reality (VR)-Umgebung vorgestellt. Die Analyse der neuronalen Aktivierung sowie das Neurofeedback wurden dabei mittels funktioneller Magnetresonanztomographie (fMRT) realisiert. Das entwickelte Adaptionskonzept nutzt die in Echtzeit analysierten Hirnaktivierungen und führt abhängig von der Ausprägung der Hirnaktivierung eine automatische Anpassung der VR-Umgebung zur Laufzeit durch. Die komplexen Interaktionsmöglichkeiten des Probanden mit der VR bleiben während dieser Anpassung erhalten. Zur sicheren Evaluation des Frameworks unter kontrollierten Bedingungen wurden der gesamte Prozessablauf und das Entscheidungskriterium auf ein simuliertes Echtzeit-fMRT-Experiment mit realen fMRT-Daten von 12 Probanden angewandt und analysiert. Die Ergebnisse zeigen die erfolgreiche Echtzeit-Adaptierung einer komplexen VR-Umgebung abhängig von den Hirnaktivierungen des Probanden.
	1 Einleitung
	2 Stimulus-Adaptionskonzept
	2.1 Prozessabläufe
	2.2 Adaptionsalgorithmus/Framework zur dynamischen VR-Adaption
	 2.2.1 Extraktion der Referenzwerte
	2.2.2 Adaption der VR-Stimuli

	3 Evaluierung und Ergebnisse
	4 Diskussion und Zusammenfassung
	Literaturverzeichnis

	57-04-Suniaga
	57-05-Walczak
	57-06-Duscha
	57-07-Wilms
	57-08-Werner

	Elektronische Prüfungen – technische Konzepte für große Prüfungsgruppen und Integration in eCampus-Strukturen.pdf
	Elektronische Prüfungen.pdf
	58-01-priss
	58-02-poerzgen
	58-03-stoecker

	Doktorandenprogramm.pdf
	Doktorandenprogramm.pdf
	doktorandenkolloquiu_submission_1
	doktorandenkolloquiu_submission_2
	doktorandenkolloquiu_submission_5
	doktorandenkolloquiu_submission_6
	doktorandenkolloquiu_submission_7
	Introduction
	Related Work
	User-Centered Planning Process
	Structure
	Context information
	Algorithm

	Prototype
	Conclusion and Future Work

	doktorandenkolloquiu_submission_9
	doktorandenkolloquiu_submission_10
	doktorandenkolloquiu_submission_11

