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ABSTRACT
Blockchains and more general distributed ledgers are becoming

increasingly popular as efficient, reliable, and persistent records of

data and transactions. Unfortunately, they ensure reliability and cor-

rectness by making all data public, raising confidentiality concerns

that eliminate many potential uses.

In this paper we present Solidus, a protocol for confidential trans-
actions on public blockchains, such as those required for asset

transfers with on-chain settlement. Solidus operates in a frame-

work based on real-world financial institutions: a modest number

of banks each maintain a large number of user accounts. Within

this framework, Solidus hides both transaction values and the trans-

action graph (i.e., the identities of transacting entities) while main-

taining the public verifiability that makes blockchains so appealing.

To achieve strong confidentiality of this kind, we introduce the

concept of a Publicly-Verifiable Oblivious RAM Machine (PVORM).

We present a set of formal security definitions for both PVORM

and Solidus and show that our constructions are secure. Finally, we

implement Solidus and present a set of benchmarks indicating that

the system is efficient in practice.

1 INTRODUCTION
Blockchain-based cryptocurrencies, such as Bitcoin, allow users to

transfer value quickly and pseudonymously on a reliable distributed

public ledger. This ability to manage assets privately and author-

itatively in a single ledger is appealing in many settings beyond

cryptocurrencies. Companies already issue shares on ledgers [25]

and financial institutions are exploring ledger-based systems for

instantaneous financial settlement.

For many of these companies, confidentiality is a major concern

and Bitcoin-type systems are markedly insufficient. Those systems

expose transaction values and the pseudonyms of transacting en-

tities, often permitting deanonymization [41]. Concerns over this

leakage are driving many financial institutions to restrict on-chain

storage to transaction digests, placing details elsewhere [11, 33, 56].

Such architectures discard the key benefits of blockchains as cen-

tralized authoritative ledgers and reduce them to little more than a

timestamping service.
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The overall structure of current blockchains additionally mis-

aligns with that of the modern financial system. The direct peer-to-

peer transactions in Bitcoin and similar systems interfere with the

customer-service role and know-your-customer regulatory require-

ments of financial institutions. Instead, the financial industry is

exploring a model that we call bank-intermediated systems [33, 56].

In such systems a small number of entities—which we call banks—
manage transactions of on-chain assets on behalf of a large number

of users. For example, a handful of retail banks could use a bank-

intermediated ledger to authoritatively record stock purchases by

millions of customers. By design, bank-intermediated systems faith-

fully replicate asset flows within modern financial institutions.

While a number of bank-intermediated blockchain systems have

been proposed, e.g., [1, 22, 58], these systems either do not pro-

vide inherently strong confidentiality or do so by sequestering data

off-chain, preventing on-chain settlement. Coin mixes, e.g., [27, 37,

50, 57], and cryptocurrencies such as Monero [2] and Zcash [6] do

improve confidentiality, but with notable limitations. Coin mixes

and Monero provide only partial confidentiality, with demonstrated

weaknesses [41, 44, 53]. Zcash, which relies on zero-knowledge Suc-

cinct Non-interactive ARguments of Knowledge (zk-SNARKs) [7]

provides strong confidentiality. But it involves reported proof gen-

eration times of over a minute on a single consumer machine [6].

While this is feasible for a single client performing infrequent trans-

actions, we show experimentally in this paper that adapting zk-

SNARKs to a bank-intermediated system would be prohibitively

expensive. zk-SNARKs also require an undesirable trusted setup

and introduce engineering complexity and cryptographic hardness

assumptions that financial institutions are reluctant to embrace [33].

To address these concerns we present Solidus,1 a system sup-

porting strong confidentiality and high transaction rates for bank-

intermediated ledgers. Solidus not only conceals transaction values,

but also provides the much more technically challenging property

of transaction-graph confidentiality.2 This means that a transac-

tion’s sender and receiver cannot be publicly identified, even by

1
The solidus was a solid gold coin in the late Roman Empire.

2
Pseudonymous cryptocurrencies such as Bitcoin are often viewed as graphs where

nodes represent keys and edges transactions. The term transaction-graph confiden-
tiality means concealing the graph’s edges to guard against deanonymization attacks

exploiting its structure [41].
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pseudonyms. They can be identified by their respective banks, but

other entities learn only the identities of the banks.

Solidus takes a fundamentally different approach to transaction-

graph confidentiality than previous systems such as Zcash. As the

technical cornerstone of Solidus, we introduce a new primitive

called Publicly-Verifiable Oblivious RAM Machine or PVORM, an

idea derived from previous work on Oblivious RAM (ORAM). In

previously proposed applications, ORAM is used by a single client

to outsource storage; only that client needs to verify the integrity of

the ORAM. In Solidus, the ORAM stores user account balances. This

means that any entity in the system must be able to verify (in zero-

knowledge) that bank B’s ORAM reflects precisely the set of valid

transactions involvingB. Tomeet this novel requirement, a PVORM

defines a set of legal application-specific operations and all updates

must be accompanied by ZK proofs of correctness. Correctness

includes requirements that account balances remain non-negative,

that each transaction updates a single account, and so forth. We

offer a formal and general definition of PVORM and describe an

implementation incorporated into Solidus.

The introduction of PVORM provides several benefits to Solidus.

First, Solidus can use efficient NIZK proofs based on Generalized

Schnorr Proofs (GSPs) [15, 17]. GSPs are more efficient to construct

that zk-SNARKs and do not require trusted setup, but are much

slower to verify, so we explore both options. Second, unlike Zcash,

Solidus’s core data structure grows only with the number of user

accounts, not the number of transactions over the system’s lifetime.

This property is especially important in high-throughput systems

and minimizes performance penalties for injecting of “dummy”

transactions to mitigate timing side-channels. Finally, Solidus main-

tains all balances as ciphertexts on the ledger. This approach sup-

ports direct on-chain settlement—something that Zcash, for in-

stance, does not. It also permits decryption of balance by authorized

parties and allows users to prove their own balances if, for example,

they wish to transfer funds away from unresponsive banks.

In addition to the PVORM component, we present a formal secu-

ritymodel for Solidus as awhole in the form of an ideal functionality.

This presentation may be of independent interest as a specification

of the security requirements of bank-intermediated ledger systems.

We prove the security of Solidus in this model.

Further, while Solidus targets a permissioned ledger model, it

requires only a permissioned group; it is agnostic to the implemen-

tation of the underlying ledger, whether centralized or distributed.

Therefore, we use the generic term ledger to denote a blockchain

substrate that can be instantiated in a wide variety of ways.

Our contributions can be summarized as follows:

• Bank-intermediated ledgers. Our work on Solidus represents the

first formal treatment of bank-intermediated ledgers—a new ar-

chitecture that closely aligns with the settlement process in the

modern financial system. Our work provides a formal security

model that broadly captures the requirements of financial insti-

tutions migrating assets onto ledgers.

• PVORM.We introduce Publicly-Verifiable Oblivous RAMMachines,
a new construction derived from ORAM and suitable for enforc-

ing transaction-graph confidentiality in ledger systems. We offer

formal definitions and efficient constructions using Generalized

Schnorr Proofs.

• Implementation and Experiments.We report on our prototype im-

plementation of Solidus and present results of benchmarking ex-

preiments, demonstrating a lower bound on Solidus performence.

We also provide a performance comparison with zk-SNARKs.

Our results are not just a new technical approach to transaction-

graph confidentiality on ledgers. They also show the practicality of

bank-intermediated ledger systems with full on-chain settlement.

2 BACKGROUND
We now review existing cryptocurrency schemes and approaches

to their confidentiality. We then give some background on bank-

intermediated system modeling and describe the technical building

blocks used to achieve security and confidentiality in Solidus.

2.1 Existing Cryptocurrencies
Many popular cryptocurrencies are based on the same general trans-

action mechanism popularized by Bitcoin. Any userU may create

an account (“address” in Bitcoin) with a public/private key pair. To

transfer money,U creates a transaction T by signing a request to

send some quantity of coins to a recipient.
3
Miners sequence trans-

actions and directly publish T to the blockchain, an authoritative

append-only record of transactions. Since only transactions are

recorded, to determine the balance ofU , it is necessary to tally all

transactions involvingU in the entire blockchain. As a performance

optimization, many entities maintain a balance summary—called

an unspent transaction (UTXO) set in Bitcoin.

This setup publicizes all account balances and transaction details.

The only confidentiality stems from the pseudonymity of public

keys which are difficult—though far from impossible [41]—to link

to real-world identities.

To conceal balances and transaction values, Maxwell proposed a

scheme called Confidential Transactions (CT) [38]. CT operates in

a Bitcoin-like model, but publishes only Pedersen commitments of

balances. Transaction values are similarly hidden and balances are

updated using a homomorphism of the commitments and proven

non-negative using Generalized Schnorr Proofs (see below). Solidus

uses an El-Gamal-based variant of CT to conceal transaction values.

Several decentralized cryptocurrency schemes aim to provide

partial or full transaction-graph confidentiality. (See Section 8 for

a brief overview.) As noted above, though, only those involving

zk-SNARKs, most notably Zcash, provide strong confidentiality of

the type we seek for Solidus: Zcash, like Solidus, conceals balances,

transfer amounts, and the transaction graph. Unfortunately, Zcash

misaligns with financial settlement systems and has the setup and

performance drawbacks noted above. Additionally, the authorita-

tive state in Zcash is stored in a Merkle tree and grows linearly

with total system transaction history, a cost we avoid in the design

of Solidus. As a basis for performance comparison, we describe and

evaluate a zk-SNARK-based version of Solidus in Section 7.3.

2.2 Bank-intermediated Systems
Managing assets on ledgers is appealing to the financial industry.

3
This is a simplification and details vary between systems. For example, a basic transac-

tion in Bitcoin (“Pay-to-PubkeyHash”), takes a reference to the output from a previous

transaction and includes a small script restricting the user of outputs and a mining fee.
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The transfer of assets in financial markets today involves a la-

borious three-step process. Execution denotes a legally enforceable

agreement between buyer and seller to swap assets, such as a secu-

rity for cash. Clearing is updating a ledger to reflect the transaction

results. Settlement denotes the exchange of assets after clearing.
Multiple financial institutions typically act as intermediaries; when

a customer buys a security, a broker or bank will clear and settle

on her behalf via a clearinghouse.

Today, the full settlement process typically takes three days

(T+3) for securities. This delay introduces systemic risk into the

financial sector. Government agencies such as the Securities and

Exchange Commission (SEC) are trying to reduce this delay and are

looking to distributed ledgers as a long-term option. If asset titles—

the authoritative record of ownership—are represented on a ledger,

then trades could execute, clear, and settle nearly instantaneously.

Existing cryptocurrencies such as Bitcoin can be viewed as titles

of a digital asset. Execution takes the form of digitally signed trans-

action requests, while clearing and settlement are simultaneously

accomplished when a block containing the transaction is mined
4

Today, however, banks intermediate most financial transactions.

Even with Bitcoin, ordinary customers often defer account man-

agement to exchanges (e.g. Coinbase). Additionally, a labyrinthine

set of regulations, such as Know-Your-Customer [45], favors bank-

intermediated systems. Thus existing cryptocurrencies do not align

well with either financial industry or ordinary customer needs.

Solidus aims to provide fast transaction settlement in a bank-

intermediated ledger-based setting. As in standard cryptocurren-

cies, Solidus assumes that each user has a public/private key pair

and digitally signs transactions. Solidus, however, conceals account

balances and transaction amounts as ciphertexts. To do so and

provide public verifiability at the same time, it relies on PVORM.

2.3 Oblivious RAM
As PVORM is heavily inspired by Oblivious RAM (ORAM), we pro-

vide some background here.

An ORAM is a cryptographic protocol that permits a client to

safely store data on an untrusted server. The client maintains a map

from logical memory addresses to remote physical addresses and

performs reads and writes remotely. Ensuring freshness, integrity,

and confidentiality of data in such a setting is straightforward

using authenticated encryption and minimal local state. The key

property of ORAM is concealment of memory access patterns; a
polynomially-bounded adversarial server cannot distinguish be-

tween two identical-length sequences of client operations.

These properties provide an appealing building block for Solidus.

Identifying an edge in the system’s transaction graph can easily

be reduced to identifying which account’s balance changed with

a transaction. Thus placing all balances in an ORAM immediately

provides transaction graph confidentiality. Moreover, recent work

has drastically improved the performance of ORAM. The most

practical ORAM constructions maintain a small local cache on the

client known as a stash and either organize the data blocks as a

tree allowing logarithmic work on each access [54, 59], or write to

4
Strictly speaking, settlement involves an exchange of assets, and thus two transactions,

but this issue lies outside the scope of our work.

completely randomized locations, resulting in constant-time writes

but linear reads (so-called “write-only” ORAM) [10].

Unfortunately, standard ORAM is insufficient for Solidus. Be-

cause ORAM is designed for a client using an untrusted server,

correctness simply means the ORAM reflects the client’s updates.

There is no notion of “valid” updates, let alone means for a client to

prove an update’s validity. In Solidus, clients (banks) must prove an

application-defined notion of correctness for each update. Banks

also cannot store a local stash, as we would no longer have all data

on the ledger. To address these concerns we introduce PVORM—

detailed in Section 4—a new construction inspired by ORAM.

2.4 Generalized Schnorr Proofs
Solidus makes intensive use of Generalized Schnorr Proofs (GSPs), a
class of Σ-protocol forwhich practical honest-verifier zero-knowledge
arguments (or proofs) of knowledge can be constructed.

Notation introduced in [15, 17] offers a powerful specification

language for GSPs that call the PoK language. Using multiplicative

group notation, let G = ⟨д⟩ be a cyclic group of prime order p.5 If
x ∈ Zp and y = дx , then PoK(x : y = дx ) represents a ZK proof of

knowledge of x such that y = дx where д and y are known to the

verifier. (This is the Schnorr identification protocol.)

The PoK specification language for GSPs is quite rich; it supports

arbitrary numbers of variables as well as conjunctions and disjunc-

tions among predicates. It has a set of corresponding standard tools

based on the Schnorr identification protocol for efficient realization

in practice whenG has known order [15]. It is possible, additionally,

using the Fiat-Shamir heuristic [26], to render GSPs non-interactive,

i.e., to generate NIZK proofs of knowledge.

Solidus uses GSPs in a variety of ways to ensure account balances

and PVORMs are properly updated and remain valid.

3 SOLIDUS OVERVIEW
Before delving into technical details, we give an overview of Solidus,

including basic notation, trust assumptions, and security goals. We

also give an architectural sketch. First, however, we give a concrete

target application as motivation.

Example 3.1 (TradeWind Markets). TradeWind Markets, whose

use case helped inform the design of Solidus, offers an example

of how Solidus might support management of asset titles [56].

TradeWind is building an electronic communication network (ECN)

for physical gold bullion to be traded using a bank-intermediated

ledger for settlement and title management. The physical bullion

is managed by a custodian who is trusted to track inflows and

outflows to and from a specifically designated vault. Each user

has an account with a holding bank—generally a large commercial

bank—which manages trades. A user may additionally buy gold

from outside, send it to the vault, and sell it on the TradeWind

ECN—requiring the custodian to create a record of the asset—or

buy gold on the TradeWind ECN, remove it from the vault, and sell

it elsewhere—requring the custodian to destroy the asset record.

Holdings are represented on the ledger as fractional ounces of

gold held by individual users. To trade gold, a user authorizes her

5
Solidus uses the group for elliptic curve secp256k1. We make this choice for perfor-

mance, so despite elliptic curve groups typically using additive notation, we will use

multiplicative notation for simplicity and generality.
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holding bank to transfer the gold to another user. Holding banks

may also provide other services, such as holding gold as collateral

against a loan. In such cases the bankmay freeze assets, for example,

until the loan is repaid.

As we shall show, Solidus can support the full asset lifecycle

of a system like the TradeWind ECN while providing practical

performance and strong confidentiality and verifiability guarantees.

3.1 Design Approach
Solidus has two important features that differ from existing ledger

systems and make it more amenable to the financial industry.

The first is its bank-intermediated design: unlike nearly all sys-

tems proposed by the research community (see Section 8), Solidus

aligns with the structure of the modern financial system. Each bank

in Solidus has a set of customers or users who hold shares of some

asset (e.g., securities, cryptocurrency, or gold) in their accounts.

Specially designated entities called asset notaries record the injec-

tion of assets into the system, as we discuss below. Second, unlike

other bank-intermediated systems, Solidus provides strong confi-
dentiality. It conceals account balances and transaction details from

non-transacting entities, placing them on the ledger as ciphertexts.

It is for these reasons that Solidus uses PVORM. Each bank main-

tains its own PVORM on the ledger to record the identities and

balances of its account.

Each transaction involves a sending user at a sending bank, and

a receiving user at a receiving bank. When a user (sender)Us signs

a transaction and gives it to her (sending) bank Bs , Bs first verifies

the validity of the transaction—that it is correctly signed andUs
possesses the funds $v to be sent—then updates its PVORM to

reflect the results of the transaction. The receiving bank performs

a corresponding update on the receiving user’s account.

The confidentiality properties of PVORM ensure that another

entity can learn only the identities of the sending and receiving

banks, not $v or the identities of the transacting users. Indeed,

even the sending bank cannot identify the receiving user nor the

receiving bank the sending user.
6
The public verifiability of PVORM

ensures that any entity with access to the ledger can verify that

each transaction is correctly processed by both banks.

Solidus is designed to be agnostic to the implementation of the

underlying ledger. While it does require a mutually-aware group of

banks and transaction validation by the ledger maintainers, those

maintainers can be a “permissioned” (fixed-entity) group, an “un-

permissioned” (fully decentralized) ledger (a blockchain), or any

other trustworthy append-only data structure.

3.2 Architectural Model
In Solidus, a predetermined set of banks B1, . . . ,Bm maintain asset

titles on a ledger. Each bank Bi has a public/private key pair for

each of encrypting and signing. It also has up to n users {U i
j }
n
j=1

each with a signature key pair. Each account is publicly associated

with one bank, so bank(U i
j ) = Bi is well-defined.

6
It is desirable for receiver to be able to verify the sender’s identity. The sender can

easily acquire a receipt by retaining a proof that she authorized the transaction.
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Figure 1: An example transaction T whereU s
2
at Bs sends $v to

U r
1
at Br and each bank has two users. The upper boxes are the

logical (plaintext) memory of each bank’s PVORM, and the lower

boxes are the associated public (encrypted) memories. Entities other

than Bs , Br ,U
s
2
, andU r

1
learn only that a user at Bs sent money

to a user at Br and both banks updated their PVORMs correctly.

Each bank Bi maintains its own private data structureMi con-

taining each user’s balance and public key. It maintains a corre-

sponding public data structure Ci , placed on the ledger, whose ele-

ments are encrypted under Bi ’s encryption key.Mi andCi together

constitute the memory in a PVORM, which we describe in Section 4.

Solidus uses this structure to ensure that updates toCi reflect valid

transactions processed inMi while concealing transaction details

and the transaction graph.

A transaction T is a digitally signed request by user U i
j with

balance $bij to send some amount $v of asset to another userU i′
j′ .

The transaction is valid if $bij ≥ $v ≥ 0. To process a transaction,

Bi updates Mi to set $bij ← $bij − $v and Bi′ updates Mi′ to set

$bi
′

j′ ← $bi
′

j′ + $v . They generate publicly verifiable ZK-proofs that

$v ≥ 0 and that they updated their respective PVORMs correctly

using $v . Figure 1 depicts a simple Solidus transaction.

We treat the ledger as a public append-only memory which veri-

fies transactions. All banks have asynchronous authenticated read

and write access and the ledger accepts only well-formed transac-

tions not already present. We model this by an ideal functionality

F
Ledger

, detailed in Appendix C, which any bank can invoke.

Notarizing New Asset Titles. As described above, all user trans-

actions must be zero-sum;U i
j sends money (that she must have)

to U i′
j′ . Financial systems are generally not closed, though. That

is, assets can enter and leave the system through specific chan-

nels. To support this, Solidus defines a fixed set of asset notaries
{U$

1
, . . . ,U$

ℓ }. These are accounts with no recorded balance, but

the authority to create and destroy asset titles. To easy auditing of

this sensitive action, transactions involvingU$

i revealU$

i ’s iden-

tity.

Asset notaries clearly must be restricted; it would make no sense

to allow arbitrary users to create and destroy asset titles. In Exam-

ple 3.1, Solidus would designate the custodian as the sole notary

responsible for acknowledging receipt and removal of the physical

asset (gold) and guaranteeing its physical integrity.
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3.3 Trust Model
Solidus assumes that banks respect the confidentiality of their own

users but otherwise need not behave honestly. They may attempt

to steal money, illicitly give money to others, manipulate account

balances, falsify proofs, etc. Banks (respectively, users) can also

attempt to violate the confidentiality of other banks’ users (respec-

tively, other users) passively or actively. We assume no bound on

the number of corrupted banks or users.

The Ledger. We assume the ledger abstraction given in Section 3.2.

In practice, the ledger can, but need not, be maintained by the

banks themselves. If not maintained by the banks, the ledger’s trust

model is independent from the higher-level protocol. It may be

constructed using a (crash-tolerant) consensus protocol such as

Paxos [35], ZooKeeper [29], or Raft [47], a Byzantine consensus

protocol such as PBFT [19], a decentralized consensus protocol such

as Nakamoto consensus [46], or even a single trustworthy entity.

We simply assume that the ledger maintainers satisfy the protocol’s

requirements and the ledger remains correct and available.

We regard the ledger together with the public PVORM data struc-

tures {Ci } as a replicated state machine. Despite this, Solidus’s flex-

ible design allows us to treat the consensus and application layers

as entirely separate for the majority of our discussion.

Availability. We assume that the ledger remains available at all

times; it is not susceptible to denial-of-service attacks and enough

consensus nodes will remain non-faulty to maintain liveness. A

bank, however, can be unavailable in two ways: it can freeze a user’s

assets by rejecting transactions or it can go offline entirely.

Asset freezing can be a feature. For certain types of assets (e.g. gold,

as in Example 3.1) a user may wish to use her balance as collateral

against a loan. A bank could, however, maliciously freeze a user’s

assets or go offline due to a technical or business failure. In either

case, an auditor with the bank’s decryption key (see below) could

enable a user to prove her balance and recover funds despite being

unable to transact directly.

Auditing. Regulators and auditors play a pivotal role in the finan-

cial sector. While Solidus does not include explicit audit support,

it enables banks to prove correct decryption of on-chain data or

share their private decryption key. In the first case, the auditor

can acquire a transaction log on demand and verify its correctness

and completeness. In the second case, the auditor can directly and

proactively monitor activity within the bank and its accounts.

3.4 Security Goals
Solidus aims to provide very strong safety and confidentiality guar-

antees for both individual users and the system as a whole.

Safety Guarantees. Solidus provides a very simple but strong set

of safety guarantees. First, no user’s balance may decrease without

explicit permission of that user (in the form of a signature), and such

authorization can be used only once; there are no replay attacks.

Second, account balances can never be negative, ensuring that no

user can spend money she does not have. Finally, transactions that

do not include asset notaries must be zero-sum.

To ensure the above properties hold, we require that the correct-

ness of every transaction be proved in a publicly-verifiable fashion

(via ZK-Proof). If the ledger checks these proofs before accepting—

and settling—the transaction, then every transaction will maintain

these guarantees. Solidus places all proofs on the ledger, meaning

an auditor can verify them offline.

Confidentiality Guarantees. To facilitate audits and asset recov-
ery against malicious banks, Solidus places all account balances and

transaction details directly on the ledger. Despite this persistent

public record, Solidus provides a strong confidentiality for all users.

First, account balances are visible only to the user’s bank (and au-

thorized auditors). Second, while transactions do reveal the sending

and receiving banks, there is no way to determine if two transac-

tions involving the same bank involved the same account. We use a

hidden-public-key signature scheme (see Appendix A.3) to enforce

the publicly-verifiable authorization requirement above without

revealing identities. This second feature is often referred to as trans-
action graph confidentiality. It precludes use of the pseudonymous

schemes employed by Bitcoin and similar systems, and is the chal-

lenge specifically addressed by PVORM. We do not directly address

information leaked by the timing of transactions.

We present a formal model in Section 5 that encompasses all of

these security and confidentiality goals.

4 PVORM
As discussed in Section 2.3, ORAM presents a means to conceal

the Solidus transaction graph, but lacks the public verifiability that

Solidus requires. To overcome this limitation, we introduce the

Publicly-Verifiable Oblivious RAM Machine (PVORM).

As with ORAMs, PVORMs have a private logical memoryM and

corresponding encrypted physical memory C . There are, however,
four key differences:

• Constrained Updates.Write operations are constrained by a public

function f . In Solidus, for example,M contains account IDs and

balances and f updates a single balance to a non-negative value.

• Publicly Verifiable Updates. Whenever the client modifies C , it
must publicly prove (in zero-knowledge) that the change reflects

a valid application of f .

• Client Maintains All Memory. Instead of a client maintainingM
and a server maintaining C , the client maintains both directly.

While M remains hidden, C is now publicly visible (e.g., on a

ledger in Solidus).

• No Private Stash. Any data in M not represented in C would

prevent the client from proving correctness of writes. Instead of

a variable-size private stash, PVORM includes a fixed-size public

encrypted stash.

To achieve public verifiability, our PVORM construction relies on

public-key cryptography.While traditional ORAMs uses symmetric-

key primitives, this difference is not fundamental. One could con-

struct a PVORM using symmetric-key encryption and zk-SNARKs,

but as we see in Section 7.3, such a construction performs poorly.

We also leverage the fact that PVORM is designed for public

verifiability and not storage outsourcing to improve efficiency. In

ORAM, reads incur a cost as the client must retrieve data from

the server. In PVORM, reads are “free” in that they require only

reading public state—the ledger in Solidus—which leaks nothing.

Writes, however, are still publicly visible. Second, since PVORM
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does not aim to reduce local memory usage, we assume that the

client locally maintains a full copy of the PVORM including private

data and metadata. This allows clients to perform updates much

more efficiently by avoiding unnecessary decryption.

These features are nearly identical to those leveraged by write-

only ORAM, but those techniques do not apply. Write-only ORAM

requires simple writes, but we implement updates as read-update-

write operations to prove properties about changes in values.

4.1 Formal Definition
We now present a formal definition of PVORM. We letM represent

a private array of values from a publicly-defined space (e.g. N) and
C be the public (encrypted) representation ofM . U is the space of

update specifications (e.g., account ID, balance change pairs).

Definition and Correctness. We first define the public interface

of a PVORM and its correct operation. A PVORM consists of the

following operations.

• Init(1λ ,n,m0,U )
$

−→ (pk, sk,C ), a randomized function that ini-

tializes the PVORM with security parameter 1
λ
, n data elements,

initial memoryM = (m0, . . . ,m0), and valid update valuesU .

• An update constraint function f (u,M ) → M ′ that updates M
according to update u ∈ U . Note that f may be undefined on

some inputs (invalid updates), and must be undefined if u < U .

• Update(sk,u,C )
$

−→ (C ′, e, proof ), a randomized update function

that takes an update u and a public memory and emits a new

public memory, a ciphertext e of u, and a zero-knowledge proof

of correct application.

• Ver(pk,C,C ′, e, proof ) → {true, false}, a deterministic update

verification function.

We also define Read(sk,C ) → M andDec(sk, e ) → u, two determin-

istic functions that read every value from aC as a plaintext memory

M and decrypt an update ciphertext, respectively. We employ these

operations only in our correctness and security definitions; they

are not part of the core PVORM interface.

We define correctness of a PVORM with respect to valid update

sequences. An update sequence {u0}
k
i=1 is valid for m0 if, when

M0 = (m0, . . . ,m0) and Mi = f (ui ,Mi − 1), then Mi is defined for

all 0 ≤ i ≤ k .
A PVORM is correct if for all initial values m0 and all update

sequences {ui }
k
i=1 valid form0,

Pr[ExpCorrect (λ,n,m0, {ui }
k
i=1)] = 1

where ExpCorrect (λ,n,m0, {ui }
k
i=1) is defined as

Experiment ExpCorrect (λ, n,m0, {ui }ki=1):

(pk, sk, C0)
$

←− Init(1λ, n,m0, U )

if Read(sk, C0) , M0, return false

for i = 1 to k :

(Ci , ei , proof i )
$

←− Update(sk, ui , Ci−1)

if
[
(Read(sk, Ci ) , Mi ) ∨ (Dec(sk, ei ) , ui )

∨ ¬Ver(pk, Ci−1, Ci , ei , proof i )
]

return false

return true

with {M0, . . . ,Mk } defined as above. In other words, the PVORM

is correct if Update correctly transforms C as defined by f and Ver
verifies these updates.

Obliviousness. Solidus requires a structure that can realize ORAM
guarantees in a new setting against even an adaptive adversary. Intu-

itively, we require the PVORM to guarantee that any two adaptively-

chosen valid update sequences result indistinguishable output. For-

mally, we say that a PVORM is oblivious if for all PPT adversaries

A, there is a negligible negl (λ) such that for all n ∈ N,m0, andU ,

���� Pr
[
ExpObliv (0,A, λ,n,m0,U ) = 1

]

− Pr
[
ExpObliv (1,A, λ,n,m0,U ) = 1

] ���� ≤ negl (λ)

where ExpObliv (b,A, λ,n,m0,U ) is defined by

Experiment ExpObliv (b, A, λ, n,m0, U ):

(pk, sk, C )
$

←− Init(1λ, n,m0, U )

return AOb,sk,C (·, ·) (1λ, pk, C )

where Ob,sk,C (·, ·) is a stateful oracle with initial state S ← C . On
input (u0,u1), Ob,sk,C executes (C ′, e, proof )

$

←− Update(sk,ub , S ),
updates S ← C ′, and returns (C ′, e, proof ). The experiment aborts

if any C ′ is ever undefined.
This definition is an adaptive version of those presented in the

ORAM literature [52, 54, 59].

Public Verifiability. The final piece of our security definition is

that of public verifiability. Intuitively, we require that each update

produce a proof that the update performed was valid and is the

one claimed. Formally, a PVORM is publicly verifiable if for all PPT
adversaries A,

Pr[ExpPubVer (A, λ,n)] ≤ negl (λ)

where ExpPubVer (A, λ,n) is defined as

Experiment ExpPubVer (A, λ, n):

(pk, sk, _)
$

←− Init(1λ, n, _, _);

(C, C′, e, proof )
$

←− A (1λ, n, pk, sk);

return Ver(pk, C, C′, e, proof )

∧
(
f (Dec(sk, e ), Read(sk, C )) , Read(sk, C′)

)
This corresponds to the soundness of the ZK-proof that an update

was performed correctly.

4.2 Solidus Instantiation
In Solidus we instantiate a PVORM by combining the structure of

Circuit ORAM [59] with several GSPs. Circuit ORAM places data

blocks into buckets organized as a binary tree. It performs updates

by swapping pairs of blocks along paths in that tree. This struc-

ture leads to good performance for two reasons: updates require

logarithmic work in the number of accounts, and pairwise swaps

of public-key ciphertext admit efficient ZK-proofs of correctness.

Figure 2 shows how Solidus’s PVORM is structured and updated.

Each data block holds an account’s unique identifier and balance.

This pair of values must move in tandem as blocks are shuffled,
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Figure 2: An update for a Circuit ORAM-based PVORM with buck-

ets of size 2. Colors indicate the blocks involved in each operation

of the read-modify-write structure. Read moves one block from

the read path (shaded) into the distinguished fixed block. Then

modify combines it (homomorphically) with the modify ciphertext

(dashed). Finally write evicts the resulting value into the tree along

two eviction paths (thick bordered).

so Solidus employs a verifiable swap algorithm for El Gamal ci-

phertexts [31] augmented to swap ordered pairs of ciphertexts (see

Appendix A.4).

Solidus constrains each update to modify one account balance

and requires that balances remain in a fixed range [0,N ]. To make

updates publicly verifiable, a bank first moves the desired account

to a deterministic fixed block by swapping that position with each

block along the Circuit ORAM access path. Next the bank updates

the account balance and generates a set inclusion proof on the re-

sulting ciphertext to prove it is in the legal range (see Appendix A.5).

Finally, the bank performs Circuit ORAM’s eviction algorithm to

reinsert the updated account. This again requires swapping the

fixed block with a set of tree paths.

In Appendix B we concretize this construction and prove that it

is correct, oblivious, and publicly verifiable.

Stash Overflow. Circuit ORAM assumes a stash of bounded size,

but data loss is possible if the stash overflows, resulting in a proba-

bilistic definition of correctness; correct behavior occurs only when

data is not lost. Since the probability of data loss is negligible in the

size of the stash, the definition is reasonable for the setting.

In Solidus the stash must be placed on the ledger, so to prevent

leaking information we also bound the stash size. Data loss is,

however, catastrophic no matter how infrequent. When the stash

would overflow, instead of losing data we insert one account deeper

into the tree. This insertion is public, so it does leak that regular

eviction was insufficient as well as the location of a single account

(though not the account’s identity).

Solidus inherits the stash overflow probability of Circuit ORAM,

which is negligible in the stash size [59]. As we show in Section 7,

the PVORM update performance is linear in the stash size, giving

Solidus a direct performance-privacy trade-off. Pleasantly, modest

stash sizes make overflow exceedingly unlikely. With buckets of

size 3, a stash of size 25 reduces overflow probability to near 2
−64

.

Ledger

Us Bs Br

Transaction fromUs toUr

Request

Verify &

Prepare

PVORM

Update

PVORM

Update

Sign Sign

Settle

.

.

.

.

.

.
T
i
m
e

Figure 3: The lifecycle of a transaction in Solidus. An arrow from

one operation to another means the second depends on the first.

Note thatUr does not appear. The receiving user plays no role in

settling transactions.

5 SOLIDUS PROTOCOL
We now present the Solidus protocol. This construction relies heav-

ily on cryptographic primitives that we describe in Appendix A.

We make this choice to simplify the explanation and leave abstract

operations with several instantiations—such as range proofs.

Bank State. The state of a bank Bi consists of an encryption

key pair (ePKi , eSKi ), a signing key pair (sPKi , sSKi ), and a set of

accounts. Each accountUj has a unique account identifier and a

balance. For simplicity, we useUj ’s public key pkj as its identifier.
Each bank maintains its own PVORM, updated on every transac-

tion, containing the information of each of its accounts. Section 4.2

describes the PVORM structure.

Requesting Transactions. As Solidus is bank-intermediated,Us
at Bs must send a request to Bs in order to send $v to Ur at Br .

The request consists of:

• A unique ID txid
• Enc(ePKs , $v ), $v encrypted under Bs ’s public key

• Enc(ePKr , pkr ), a ciphertext ofUr ’s ID under Br ’s public key

• Ahidden-public-key signature signedwith sks (see AppendixA.3).

On receipt of a request, Bs must validate the request—check that

txid is globally unique and 0 ≤ $v ≤ $bs—and initiate the transac-

tion settlement process.

Settling Transactions. Figure 3 shows the structure of settling a

transaction. Bs generates a proof that $v ≥ 0, reencrypts $v under

ePKr , and sends (txid, Enc(ePKr , $v ), Enc(ePKr , pkr )) to Br . Then
both banks (concurrently) update their respective PVORMs, signs

their updates, and posts all associated proofs and signatures onto

the ledger. Once the full transaction is accepted by the ledger, the

assets have been transferred and the transaction has settled.
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FInit

[
λ,

{
Bi

}k
i=1

,
{
Ui

}n
i=1

]

Init:
for i ∈ [1, n]:
Generate key pair (pki , ski )

$

←− hGen(1λ )
send pki to each user and bank and (pki , skk ) to Ui

for i ∈ [0, k]:
Generate key pair (sPKi , sSKi )

$

←− sGen(1λ )
(ePKi , eSKi , Ci )

$

←− Init(1λ, |Bi |, 0, U )
send (“initBank”, ePKi , sPKi , Ci ) to each user and bank

send all five values to Bi

Figure 4: Solidus ideal initializer with banks {Bi } and users {Ui }.

Transaction IDs. To prevent replay attacks, Solidus includes a

globally unique ID with each transaction. This ID could simply

be a random bit string (eg., a GUID), but then verification would

require the ID of every transaction over the lifetime of the system.

To avoid this growing cost, Solidus uses a two-part transaction ID:

a timestamp and a random number. Transactions are only valid

within a time window T∆. If txid = (T , id), the transaction is only

valid at timeTnow ifTnow−T∆ < T < Tnow. This allows verification
to only store IDs for T∆ and still properly prevent replay attacks.

Opening and Closing Accounts. Banks are constantly opening

new accounts, so Solidus must support this. To create an account,

bank Bi must insert the account into its PVORM. Our construction

makes this simple. Bi publishes the new ID with a verifiable en-

cryption of the ID and balance 0. It then inserts this ciphertext pair

into its PVORM by replacing a dummy value. To close an account

Bi simply publicly verifies the identity of an account and replaces

it in the PVORM with a dummy value.

5.1 FLedger-Hybrid Functionality
For simplicity we define the Solidus protocol, Prot

Sol
, using a trust

initializer and an idealized ledger. We could instantiate the trusted

initializer using existing PKI systems and, as mentioned above,

Solidus is agnostic to the ledger implementation so we wish to

leave that abstract.We present the trusted initializer FInit in Figure 4

and the ledger F
Ledger

in Figure 5. Throughout the protocol, users

employ hidden-public-key signatures (see Appendix A.3) and banks

employ Schnorr signatures [15, 51], denoted (sGen, Sign, sVer).
The F

Ledger
functionality has two operations: posting a com-

pleted transaction and aborting an in-progress transaction. The

need for the first is obvious; the ledger is the authoritative record

of transactions and is responsible for their verification. The second

helps guard against malicious activity. As we see below, processing

a transaction fromUs requires bank Bs to send its PVORM update

to Br prior to posting the transaction to the ledger, but Br may

never reply. With no abort operation, Bs has two options: wait for

a reply—causing a DoS attack if none arrives—or proceed as if the

transaction were never initiated. In the second case, Br can learn

with high probability whether Us participates in future transac-

tions involving Bs ; if a different Circuit ORAM path is accessed,

Us is not involved, but if the same path is accessed,Us likely is.

In order to prevent this information leakage, Bs must post some

PVORM update to the ledger after sending the update to Br be-

fore initiating any other transaction. If the original transaction

FLedger

[{
Bi

}k
i=1

,
{
Ui

}n
i=1

]

Init: TXID = ∅ and LEDGER = ϵ

On receive (“approveRecvTxn”, txid, txn):
assert txid < TXID
Parse txn→ (Bs , Br , txdatas , σs , txdatar , σr )
assert sVer(Bs , txdatas , σs ) ∧ sVer(Br , txdatar , σr )

∧ VerTxn (Bs , Br , txn, LEDGER[Bs , Br ])
TXID← TXID ∪ {txid}
LEDGER← LEDGER ∥ (txid, txn)
broadcast (“postTxn”, txid, txn) to all banks

On receive (“abortTxn”, abort) from B:
Parse abort→ (txid, (C, e, proof ), pf ⋆ )
assert txid < TXID
assert Ver(ePK, LEDGER[B], C, e, proof )
assert pf ⋆ proves e is a no-op

TXID← TXID ∪ {txid}
LEDGER← LEDGER ∥ (abort)
broadcast (“abortTxn”, abort) to all banks

Figure 5: Solidus ideal ledger with banks {Bi } and users {Ui }.

LEDGER[Bs ,Br ] denotes the most recent PVORM states for each

bank in LEDGER, and VerTxn verifies all proofs associated with a

given transaction, which requires the public keys and preceding

PVORM state of each bank involved.

settles that includes exactly such an update. Otherwise Bs can in-

voke “abortTxn” with a dummy update on the same tree path, thus

invalidating any information Br may have gained.

With these ideal functionalities defined, we can now present

the main Solidus protocol, Prot
Sol

, in Figure 6. We note that the

environmentZ is a standard UC framework entity that represents

all behavior external to the protocol execution. (Z feeds input to

and collects outputs from protocol parties and the adversary.)

To execute a transaction in Prot
Sol

, a user executes “beginTxn”,

which sends a “requestTxn” request to the user’s bank. The bank

verifies the request, updates its PVORM, signs the update, and

forwards it to the recipient’s bank. That bank similarly verifies,

updates, and signs before posting the completed transaction to

F
Ledger

. For simplicity the sending bank performs all updates and

sends them to the receiving bank. In practice both banks can update

their respective PVORMs in parallel as implied by Figure 3.

The protocol also contains operations for two other purposes:

handling transaction aborts described above and updating other

banks’ states when they post updates to F
Ledger

.

5.2 Security Definition
To demonstrate the security of Prot

Sol
, we need a notion of how a

secure Solidus protocol operates. We define this as an ideal func-

tionality F
Sol

presented in Figure 7. For an adversary A and en-

vironment Z, we let HybridA,Z (λ) denote the transcript of A

when interacting with Prot
Sol

. We let IdealS,Z (λ) be the transcript
produced by a simulator S when run in the ideal world with F

Sol
.

This allows us to define security as follows.

Definition 5.1. We say that Solidus securely emulates FSol if for
all real-world PPT adversaries A and all environments Z, there
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ProtSol
[{
Bi

}k
i=1

,
{
Ui

}n
i=1

]

User Ui :

On input (“beginTxn”, Uj , $v ) from environment Z:

Let Bi = bank(Ui ) and Bj = bank(Uj )
Generate random unique txid
Encrypt cr = Enc(ePKj , pkj ) and cv = Enc(ePKi , $v )
σ = hSign(ski , ePKj , (txid, cr , cv ))
send (“requestTxn”, txid, ePKj , cr , cv , σ ) to Bi

Bank Bi :
On receive (“initBank”, ePKj , sPKj , Cj ) from FInit :
assert B[Bj ] is not set
B[Bj ]← (ePKj , sPKj , Cj )

On receive (“postTxn”, txid, txn) from FLedger :
Retrieve (Bs , C ′s ) and (Br , C ′r ) from txn
if (Bi = Bs or Bi = Br ), then Pend ← ⊥
Update B[Bs ]← (ePKs , sPKs , C ′s )

B[Br ]← (ePKr , sPKr , C ′r )

On input (“abortPend”) from environment Z:

assert Pend , ⊥
Retrieve Ui at Bi from Pend
Update (C ′i , e, proof ) ← Update(eSKi , (Ui , 0), Ci )
Generate a ZK-proof pf ⋆ that e encrypts a 0-value change.

send (“abortTxn”, (txid, Bi , (C ′i , e, proof ), pf
⋆ ) to FLedger

On receive (“abortTxn”, abort) from FLedger :

Parse (txid, Bj , (C ′j , e, proof ), pf
⋆ ) ← abort

if Bj = Bi
assert Pend = (txid, _)
Pend ← ⊥

B[Bj ]← (ePKj , sPKj , C ′j )
if Pend , ⊥ and Bj is the other bank in Pend

Execute “abortPend” as described above

On receive (“requestTxn”, txid, ePKs , cv , cr , σ ) from Us :
assert (Pend = ⊥) ∧ (txid is unique)

∧ hVer(ePKi , (txid, cv , cr ), σ )

∧
(
((α, β ), _) ← σ : Dec(eSKi , (α, β )) = pks

)
Decrypt $v = Dec(eSKi , cv )
assert 0 ≤ $v ≤ Mi [Us ]
Update (C ′i , es , proof s ) ← Update(eSKi , (Us , −$v ), Ci )
Let c ′v = Enc(ePKj , $v )
Generate txdatas containing:

• (txid, (cv , cr ), σ , c ′v )
• (C ′i , es , proof s )
• RangePf (ev , t )
• Proof that es updates Us by amount in cv
• Proof that cv and c ′v encrypt the same value

Pend ← txdatas
σs = Sign(sSKi , txdatas )
send (“approveSendTxn”, txid, txdatas , σs ) to Bj

On receive (“approveSendTxn”, txid, txdatas , σs ) from Bj :
assert (Pend = ⊥) ∧ (txid is unique)

∧ sVer(sPKj , txdatas , σs )
∧ all proofs in txdatas are valid

Retrieve (txid, (cv , cr ), σ , c ′v ) from txdatas
Decrypt $v ← Dec(eSKi , c ′v )
assert txid is unique and $v ≥ 0

Decrypt pkr = Dec(eSKi , cr )
Update (C ′i , er , proof r ) ← Update(eSKi , (Ur , $v ), Ci )
Generate txdatar containing:

• (txid, (cv , cr ), σ , c ′v )
• (C ′i , er , proof r )
• Proof that er updates account cr by value c ′v

Pend ← (txid, txdatar )
σr ← Sign(sSKi , txdatar )
Let txn = (Bj , Bi , txdatas , σs , txdatar , σr )
send (“approveRecvTxn”, txid, txn) to FLedger

Figure 6: F
Ledger

-hybrid protocol for Solidus with banks {Bi } and users {Ui }. For simplicity we omit operations to open and close accounts.

exists a simulator S such that for all PPT distinguishers D,

��� Pr
[
D

(
HybridA,Z (λ)

)
= 1

]

− Pr
[
D

(
IdealS,Z (λ)

)
= 1

] ��� ≤ negl (λ).

This definition leads to the following theorem, which we prove in

Appendix C.

Theorem 5.2. The Solidus protocol ProtSol satisfies Definition 5.1
assuming a DDH-hard group in the ROM.

In order to prove Theorem 5.2 in the Universal Composability

(UC) framework [18], we assume Solidus employs only universally

composable (UC) NIZKs. Prior work [5] demonstrates that GSPs

can be transformed into UC-NIZKs by using the Fiat-Shamir heuris-

tic and including a ciphertext of the witness under a public key

provided by a common initializer. As Solidus already employs this

trusted initialization and includes ciphertexts of most operations

anyway, the performance impact of ensuring UC-NIZKs is minimal.

6 OPTIMIZATIONS
In addition parallelizing operation, there are several optimizations

which make Solidus more practical. Some of these optimizations

are only appropriate for certain use cases, but they may result

in significant speedups when applicable. We include the simpler

optimizations in our evaluation in Section 7.

6.1 Precomputing Randomization Factors
A large computational expense in Solidus is re-randomizing cipher-

texts while updating a PVORM. Fortunately, El Gamal allows us to

re-randomize ciphertext by combining them with fresh encryptions

of the group identity. That is, in a groupG = ⟨д⟩ of size p, with key

pair (pk = дsk, sk) and a ciphertext c = (α , β ), we can re-randomize

c by picking a random r ← Zp and computing c ′ = (α · pkr , β · дr ).
Computing (pkr ,дr ) only requires knowledge of the group G,

the generator д, and the public key pk, which do not change for a

given bank across the lifetime of the system. This means we can

precompute these unit ciphertexts and re-randomize by multiplying

in a precomputed value.

Since the system can continue indefinitely, it must continue gen-

erating these randomization factors. Many financial systems have

predictable high and low load times (e.g., very light traffic at night),

so they can utilize otherwise-idle hardware for this purpose during

low-traffic times. If the precomputation process can generate more

randomization pairs than the application consumes over a modest

time frame (e.g. a day), we can drastically improve performance.
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FSol

[{
Bi

}k
i=1

,
{
Ui

}n
i=1

,
{
U$

i
}ℓ
i=1

]

Init
Initialize T to empty

Initialize V [Ui ]← 0 for i ∈ [1, n]

On receive (“requestTxn”, Ur , $v ) from Us :
assert $v ≥ 0

Generate unique txid
T [txid]← (Us , Ur , $v, “req”)
send txid to Us
send (“req”, txid, Us , bank(Ur ), $v ) to bank(Us )

On receive (“approveSendTxn”, txid) from Bs :
Retrieve (Us , Ur , $v, f ) ← T [txid]
assert f = “req” and Bs = bank(Us )
T [txid]← (Us , Ur , $v, “aprv”)
send (“aprv”, txid, Bs , Ur , $v ) to bank(Ur )

On receive (“approveRecvTxn”, txid) from Br :
Retrieve (Us , Ur , $v, f ) ← T [txid]
assert f = “aprv” and Br = bank(Ur )
Remove T [txid] mapping

Retrieve $bs ← V [Us ], $br ← V [Ur ]
assert $bs ≥ $v or Us = U$

i for some i
V [Us ]← $bs − $v
V [Ur ]← $br + $v
// Reveal identities of asset notaries and banks

Let Ps = Us if Us = U$

i , bank(Us ) otherwise
Let Pr = Ur if Ur = U$

j , bank(Ur ) otherwise

broadcast (“postTxn”, txid, Ps → Pr ) to all banks

On receive (“abortTxn”, txid) from B:
if txid has been seen before // Can “abort” nonexistent transactions

Retrieve (Us , Ur , _, _) ← T [txid]
assert B = bank(Us ) or B = bank(Ur )
Remove T [txid] mapping

broadcast (“abortTxn”, txid, B) to all banks

Figure 7: Ideal functionality for the Solidus system with banks

{Bi }, users {Ui }, and asset notaries {U
$

i }. For simplicity we assume

a fixed set of accounts for each bank.

6.2 Reducing Verification Overhead
As we see in Section 7, proof verification is quite expensive. In

the basic protocol, the ledger consensus nodes must each verify

every transaction. As more banks join the system this increases

the load on the consensus nodes—which may be the banks. By

strengthening trust assumptions slightly, we can omit much of

this online verification and increase performance. We present two

strategies that rely on different assumptions.

Threshold Verification. In the financial industry, there is often a

group of entities (e.g., large banks and regulators) who are generally

trusted. If a threshold number of these entities verify a transac-

tion, this could give all other consensus nodes—often other banks—

confidence that the transaction is valid, allowing them to accept it

without further verification. Once the threshold is reached, each

other node need only verify the signatures of the trusted entities

that verified the transaction, which is far faster than performing

a full verification. If the group of trusted entities is significantly

larger than the threshold or those entities have much more capacity

than others, this strategy will improve system scaling.

Full Offline Verification. In some cases banks can be treated

as covert adversaries. That is, they will attempt to learn extra in-

formation, but they will subvert the protocol only if attribution is

impossible. This situation could arise if each Solidus bank is con-

trolled by a large commercial bank. While a bank may wish to learn

as much information as possible, the cost of being caught misbe-

having is high enough to deter attributable protocol deviations.

Under these assumptions we can omit online verification entirely.

The verifiability of a ledger-based system remains in place, so if a

bank submits an invalid transaction or proof, post hoc identification

of the faulty transaction and offending bank is trivial. Thus, in this

covert adversary model, banks will only submit valid transactions

and proofs, meaning that the ledger can accept transactions without

first verifying the associated proofs first.

6.3 Transaction Pipelining
Solidus requires sequential processing of transactions at a single

bank because PVORM updates must be sequential to generate valid

proofs. Given transactions T1 followed by T2, in order for B to

process T2 it needs the PVORM state following T1. It does not,

however, need the associated proofs. Therefore, if B assumes T1
will settle—because faults are rare—it can start processing T2 early
while generating proofs forT1. While this technique will not reduce

transaction latency, it can drastically increase throughput. More-

over, determining the updated PVORM state requires primarily

re-randomizing ciphertexts, making this optimization particularly

effective when combined with precomputation (Section 6.1).

When failures do occur, it impacts performance but not correct-

ness. IfT1 aborts for any reason,T2 will not yet have settled sinceT1
would have to settle first. This means B can immediately identify

the problem and reprocess T2—and any following transactions—

without T1. This reprocessing may lead to significant, but tempo-

rary, performance degradation, meaning this optimization is only

appropriate when failure are rare if each transaction is posted indi-

vidually to the ledger.

We can alleviate some of this performance penalty by bundling

transactions into blocks, as is done in systems like Bitcoin. If T1
aborts, instead of reprocessing T2, B can include a rollback opera-

tion later in the same block. This rollback must provably revert any

changes executed by T1’s update, thus allowing verifiers to check

that T1 was never processed at all. There is, however, no need to

recompute T2 as long as the rollback can be placed after it while

remaining in the same block as T1.

7 EXPERIMENTS
We now present performance results for our PVORM and Solidus

prototypes. Our Solidus implementation is 4300 lines of Java code,

2000 of which constitute the PVORM.We use BouncyCastle [13] for

crypto primitives and Apache ZooKeeper [4] for distributed consen-

sus. We ran all experiments on c4.8xlarge Amazon EC2 instances

and employed the precomputation optimization (Section 6.1). These

benchmarks do not include the precomputation time.

We emphasize that our performance results employ an unopti-

mized implementation and only one server per bank, highly limiting
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Figure 9: PVORM capacity scaling with buckets of size 3 and stash

of size 25.

our parallelism. Solidus is designed to be highly parallelized, allow-
ing it to scale up using multiple servers per bank to achieve vastly
superior performance in practice.

7.1 PVORM Performance
We measured the concrete performance of PVORM Update and Ver
operations under different configurations and levels of parallelism.

Bucket and Stash Size. Figure 8 shows the single-threaded per-

formance of our PVORM as we vary bucket and stash sizes. As

expected, larger buckets are slower and runtime grows linearly

with the stash size. As bucket and stash sizes determine the chance

of stash overflow, this measures the performance-privacy trade-off.

Tree Depth. Figure 9 shows the single-threaded performance of

our PVORM as the capacity scales. As expected, the binary tree

structure results in clearly logarithmic scaling.

Parallelism. Our PVORM construction supports highly parallel

operation. A single update contains many NIZKs that can be created

or verified independently. Figure 10 shows performance for a single

PVORMwith varying numbers of worker threads. In each test there

is exactly one coordination thread, which does very little work.

Because the proof of each pairwise swap can be computed or ver-

ified independently, we expect performance to scale well beyond

10 threads—possibly as high as 100. We stop at 10 for a combi-

nation of two reasons. First, PVORM operations are CPU-bound,

2 4 6 8 10

2

6

10

14

18

22

Number of Worker Threads

T
h
r
o
u
g
h
p
u
t
(
o
p
s
/
s
e
c
)

Perfect Scaling

Update
Ver

Figure 10: Parallel PVORM performance using size 3 buckets, a

size 25 stash, and capacity of 2
15
. Dashed lines show perfect scaling

where all computation is parallelized with no overhead.

so adding threads beyond the number of CPU cores produces no

meaningful speedup. Second, our prototype implementation does

not distribute to multiple hosts and scales poorly to multi-CPU

architectures. Since c4.8xlarge EC2 instances have two 10-core

CPUs, we present scaling to only 10 worker threads. Note that with

10 worker threads there are 11 total threads, so some work may not

be effectively parallelized on the same CPU. This likely explains

some of the reduced scaling in that case.

Proof Size and Memory Usage. For a PVORM with size 3 buck-

ets, a size 25 stash, and capacity 2
15
, a single PVORM update with

proofs is 190 KB (or 114 KB if compressed
7
). To generate an update,

our prototype requires a complete copy of the PVORM in memory.

Despite this, memory consumption peaks at only 880 MB.

7.2 Solidus System Performance
We present performance tests of a fully distributed Solidus system

with 2 to 12 banks. Each bank runs on its own c4.8xlarge EC2 in-

stance and maintains a PVORMwith size 3 buckets, as size 25 stash,

and capacity 2
15
. These parameters allow realistic testing, with a

stash overflow probability of around 2
−64

. To maintain the ledger,

each bank’s host also runs a ZooKeeper [4] node. We make no

attempt to tune ZooKeeper or optimize off-ledger communication.

To test this configuration we fully load each bank with both

incoming and outgoing transactions. As explained in Section 6.2,

in some settings transaction verification can occur offline, so we

also test performance with online verification turned off.

Figure 11 contains the results of these tests. With regular online

verification, performance improves until all CPUs are saturated

verifying third-party transactions, after which point scaling slows.

Using offline verification, transactions settle faster and additional

banks impose lower overhead on existing banks, improving scaling.

These results could be further improved by having each bank

distribute transaction verification cross multiple machines, improv-

ing capacity and increasing throughput. Pipelining transactions (as

described in Section 6.3) could improve throughput substantially if

banks also distributed proof generation across multiple hosts. (Such

distribution is unlikely to provide any benefit without pipelining.)

7
An elliptic curve point is an ordered pair of elements of Fp . Points can be compressed

to a single bit and a field element, but decompression imposes nontrivial overhead.
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Number of Threads

1 4 36

Proof Time (sec) 65.45 24.53 13.76

Verification Time 0.0065 sec

Proof Size 288 bytes

Peak Memory Use 7.2 GB

Table 1: Performance of PVORM using zk-SNARKs.

Implementing this distribution introduces complex systems engi-

neering challenges that are orthogonal to the technical innovations

introduced by Solidus, so we neither implement nor benchmark

these options.

7.3 zk-SNARK Comparison
Wefinally compare our prototype’s performance to that of a PVORM

implemented with zk-SNARKs. This approach has succinct proofs

and short verification times, but costly proof generation.

Simply taking our Circuit ORAM PVORM construction and con-

verting all proofs to zk-SNARKs would be needlessly expensive. As

zk-SNARKs can prove correct application of an arbitrary circuit [7],

we use a compact Merkle tree structure. Each account is stored at

the leave of a standard Merkle hash tree, the root of which is posted

to the ledger. To update the PVORM, a bank updates one account

to a valid value and modifies the Merkle tree accordingly. It then

produces a zk-SNARK that it properly performed the update and

verified the requester’s signature. The root of the new Merkle tree

is the new PVORM state and the zk-SNARK is the proof.

We implemented this construction using a security level equiv-

alent to our GSP-based PVORM.
8
Table 1 shows its performance

running on a c4.8xlarge EC2 instance. While verification is ex-

tremely fast, even highly parallel proof generation is more than

200 times slower than the GSP PVORM. For this to improve overall

system throughput, the system would need to verify every proof

around 200 times. In our expected use-case, at most tens of banks

8
Both hash with SHA-256. The GSP-based PVORM uses El Gamal with the secp256k1

curve and the SNARK-based PVORM uses RSA-3072. Both provide 128 bits of security.

would maintain the ledger, so this is significantly slower. More-

over, additional hardware can allow banks to verify numerous GSP

transactions in parallel but provides little benefit to zk-SNARKs.

8 RELATEDWORK
We compare Solidus here with related work on cryptocurrencies

and transaction confidentiality. We omit related work on ORAM,

which was covered in Sections 2.3 and 4.

Anonymous cryptocurrencies. Anonymous e-cashwas proposed

by Chaum [20, 21] and refined in a long series of works, e.g., [14, 16,

28]. In these schemes, trust is centralized. A single authority issues

and redeems coins that are anonymized using blind signatures or

credentials. Due to its centralization and technical limitations, such

as poor handling of fractional coins and double-spending, e-cash

has been largely displaced by decentralized cryptocurrencies.

Zcash, a recently deployed decentralized cryptocurrency, and its

academic antecedents [6, 24, 42] and offshoots e.g., Hawk [34], pro-

vide strong transaction-graph confidentiality like Solidus. Zcash

relies on zk-SNARKs to ensure conservation of money, prevent

double spending, and hide both transaction values and the system’s

transaction graph. Consequently, unlike Solidus, it requires trusted

setup, which in practice must be centralized (as multiparty compu-

tation for this purpose [8] is impractical). Moreover, as we showed

in our exploration of a zk-SNARK variant of Solidus in Section 7.3,

zk-SNARKs are far more expensive to generate (by two orders of

magnitude) than the GSPs used in Solidus. Additionally, Zcash and

Hawk do not provide auditability as Solidus does; as designed, they

do not record assets on-chain, only commitments.

Alternative schemes such as Monero [2], a relatively popular

cryptocurrency, and MimbleWimble [32], a pseudonymous pro-

posal, provide partial transaction-graph concealment. Serious weak-

nesses in Monero’s anonymity have recently been identified, how-

ever [43], while MimbleWimble has yet to be deployed or have its

confidentiality properties formally analyzed.

Mixes. Mixes partially obscure the transaction graph in an exist-

ing cryptocurrency. A number have been proposed and deployed,

e.g., [27, 37, 50, 57]. Mixes have a fundamental limitation: they only

protect participating users, and thus provide only partial anonymity,

resulting in demonstrated weaknesses [44, 53]. As mixes’ costs are

linear in the number of participants, they do not scale well. In con-

trast, Solidus achieves strong and rigorously provable transaction-

graph confidentiality for all users.

Confidential Transactions. A class of schemes called Confiden-

tial Transactions [36, 38, 39] hide transaction amounts, but do not

aim at transaction graph privacy. Solidus employs a Confidential

Transaction scheme similar to that in [38], but makes more direct

use of and inherits the provable security properties of GSPs.

Financial sector blockchain technologies. The financial indus-
try’s intense interest in blockchains has led to a number of proposed

and deployed systems. These systems support current banking sys-

tem transaction flows like Solidus. They achieve elements of Solidus,

but lack its full set of features. For example, RSCoin [22], a scheme

for central bank cryptocurrency issuance that supports auditability
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like Solidus, but does not inherently support transaction confiden-

tiality. Other examples are SETLcoin [58], which aims at on-chain

trade settlement, like Solidus, but lacks strong transaction-graph

confidentiality, and the Digital Asset Platform [1], which provides

confidentiality by keeping transaction details off-chain and com-

pletely foregoing on-chain settlement and auditability.

9 CONCLUSION
We have introduced Solidus, a system that addresses a major im-

pediment to broad use of blockchain transaction systems, their

critical lack of transaction-graph confidentiality. Unlike previous
approaches (e.g. Zcash), Solidus is specifically geared towards the

structural and performance requirements of modern financial trans-

action and settlement systems. The key innovation in Solidus is the

Publicly-Verifiable Oblivious RAMMachine (PVORM), a generaliza-

tion of ORAM. A PVORM supports publicly verifiable outsourcing

of computation over memory, enabling a completely new approach

to blockchain transaction system design. Solidus employs a PVORM

with data structure size linear in the number of accounts—rather

than the number of transactions in the system, as in Zcash—and

proof computation times two orders of magnitude faster than zk-

SNARKs. We define the security of Solidus as an ideal functionality

and prove its security in the UC framework. Finally, we present

a series of optimizations and experiments running the complete

Solidus protocol on a distributed ledger (ZooKeeper), which demon-

strate the ability of Solidus to scale to the throughputs required

for real-world workloads. We believe that Solidus is the first vi-

able approach to building strongly verifiable and fully auditable

bank-intermediated ledger transaction systems.
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A CRYPTO PRIMITIVES
We now describe the basic cryptographic primitives used in Solidus.

These primitives operate over a multiplictive cyclic group G =
⟨д⟩ of order p determined by (linear in) security parameter λ. As
we explain, our building blocks require that the Decisional Diffie-

Hellman assumption hold for G. (To prevent sub-group attacks

using the Pohlig-Hellman algorithm, p is typically prime.) In our

implementation of Solidus, G is the secp256k1 elliptic curve group.

A.1 El Gamal Encryption and Account-Balance
Representation

The El Gamal cryptosystem (Gen, Enc,Dec) is as follows:

• Gen: x
$

←− Zq , sk← x , pk← дx , output (pk, sk)
• Enc(pk,m): if ¬(m, pk ∈ G ), output ⊥; r

$

←− Zq , α ← m · pkr ,
β = дr , output c = (α , β )

• Dec(sk, (α , β )): if¬(sk ∈ Zp ∧ α , β ∈ G ), output⊥; output α/βsk

If the Decisional Diffie-Hellman (DDH) problem is hard for

G, then El Gamal encryption is semantically secure. El Gamal ci-

phertexts are malleable, however, a useful feature in our construc-

tions. Specifically, El Gamal has a few useful homomorphisms. Let

(α , β ) 7→mmean that (α , β ) decrypts tom, i.e., (α , β ) = (m·pkr ,дr )
for r ∈ Zp . Then the following hold:

• Multiplicative homomorphism: (α , β ) 7→m, (α ′, β ′) 7→m′ implies

(αα ′, ββ ′) 7→mm′.

• Additive homomorphism in exponent space: (α , β ) 7→ дm , (α ′, β ′) 7→

дm
′

implies (αα ′, ββ ′) 7→ дm+m
′

.

• Multiplicative homomorphism in exponent space: (α , β ) 7→ дm

implies (αk , βk ) 7→ дmk
.

Observe that re-encryption of a ciphertext (α , β ) 7→ m with-

out knowledge of sk is achievable using the multiplicative homo-

morphism: Let r
$

←− Zp , compute a fresh ciphertext (α ′, β ′) =
(pkr ,дr ) 7→ 1, and then let (A,B) = (αα ′, ββ ′). Observe that

(A,B) 7→ (m × 1) =m.

Account-BalanceRepresentation. The cryptographic primitives

in Solidus rely on a representation of account balances in the expo-

nent space in order to leverage the additive homomorphism in the

exponent space illustrated above. Thus an account balance $v is

encoded in the form д$v and represented in an El Gamal ciphertext

as (д$vpkr ,дr ) for some r ∈ Zp . Decrypting an account balance

thus requires solving the discrete log problem on д$v . While in

general this is hard inG, if $v is known to be relatively small (e.g.,

0 ≤ $v < 2
30
), then the balance can be decrypted using a lookup

table of manageable size.

A.2 Generalized Schnorr Proofs (GSPs)
Generalized Schnorr Proofs [15] are a type of Σ-protocol, that is,
3-move honest-verifier zero-knowledge (HVZK) proofs (often more

specifically defined as special 3-move HVZK proofs with special

soundness) [23]. GSP specifically operate over groups for which

the discrete log problem and variants are hard. We note that here

we consider GSPs only in a cyclic group of prime order, avoiding

the caveats of [15] regarding composite-order groups.

Given x
$

←− Zp and y ← дx , there is a simple Σ-protocol to prove
knowledge of x to a verifier that knows only y = дx :

• Prover P selects r
$

←− Zp and sends e = дr to Verifier V

• V selects c
$

←− Zp
• P replies with s = cx + e .

Verifier V then checks that дs = eyc . This protocol is specified in

the language of GSPs using notation introduced in [17] as:

PoK
(
x : y = дx

)
,

and is a form of the Schnorr identification protocol.

A more general GSP is possible of the form:

PoK (x1, . . . ,xk : Pred(y, (x1, . . . ,xk ), (y1, . . . ,yk ))) ,
14
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where Pred is a predicate y = yx1
1
· · ·y

xk
k for a collection of values

y,y1, . . . ,yk ∈ G known to the verifier and where the prover aims

to prove knowledge of x1, . . . ,xk ∈ Zp .
It is possible to construct efficient GSPs that combine such predi-

cates conjunctively and disjunctively, and efficient constructions for

other predicates have been shown as well. Additionally, GSPs may

be converted in the Random Oracle Model (ROM) into NIZKs using

the Fiat-Shamir heuristic [26], which involves hashing the prover’s

message in the first move of the Σ-protocol. It is also possible to

append a supplementary value, which we call a tag, to the message

to be hashed. The NIZK version of PoK(x : y = дx ), with tag m,

for example, is a Schnorr signature onm. In Solidus, all ZPKs are

such NIZKs, and we leave this fact implicit in the remainder of the

appendix.

A.3 Hidden-Public-Key Signatures
In order to authenticate transactions without revealing the sending

user, Solidus employs a hidden-public-key (HPK) signature scheme.

This simple scheme allows a signer to sign with respect to a signing

public key pk that is (El Gamal) encrypted under a bank’s public

key ePK, i.e., a ciphertext (α , β )
$

←− Enc(ePK, pk). An HPK signature

scheme (hGen, hSign, hVer) with public key ePK is as follows:

• hGen: sk
$

←− Zq , pk← дsk, output (pk, sk)
• hSign(sk, ePK,m): r

$

←− Zp , (α , β ) ← (pk · ePKr ,дr ). Construct
a NIZK

pf = PoK
(
(sk, r ) :

(
дsk · ePKr = α

)
∧

(
дr = β

))
with tagm. Output σ = ((α , β ), pf ).

• hVer(ePK,m,σ ): Parse σ = ((α , β ), pf ) and verify pf with ePK,
m, (α , β ).

An HPK of this form is not terribly useful in and of itself, as

the receiver knows only that a valid signature was generated with

respect to some key, but learns nothing about the key.

The fact that (α , β ) is an El Gamal ciphertext of pk under ePK,
however, makes such signatures useful in two ways. First, when

U requests a transaction, it allows B to decrypt pk and identifyU .

Second, it allows B to generate a plaintext equivalence proof on

(α , β ) and the encrypted account key associated with the balance

B is updated in its PVORM. This second property verifies that the

user whose balance is updated knows sk, which thus makes this a

valid signature.

A.4 El Gamal Swaps
The vast majority of the computation required for proof generation

and verification in Solidus is devoted towhat we call El Gamal swaps.
The operation ElGamal-Swap takes as input an ordered pair of El

Gamal ciphertexts (c0, c1) =
(
(α0, β0), (α1, β1)

)
, a corresponding

public key pk, and a value s ∈ {Swap,NoSwap}. It outputs a fresh
ordered pair

(
(α ′

0
, β ′

0
), (α ′

1
, β ′

1
)
)
, re-encrypted under pk, with the

same underlying plaintexts. If s = NoSwap, the plaintext order is
the same as the original ciphertexts, otherwise it is swapped. The

algorithm is as follows:

Algorithm ElGamal-Swap((c0, c1), pk, s ):

parse (c0, c1) =
(
(α0, β0), (α1, β1)

)
;

r0
$

←− Zp, r1
$

←− Zp ;

if s = NoSwap

c′
0
= (α ′

0
, β ′

0
) ← (α0pkr0, β0дr0 );

c′
1
= (α ′

1
, β ′

1
) ← (α1pkr1, β1дr1 )

else // s = Swap

c′
0
= (α ′

0
, β ′

0
) ← (α1pkr1, β1дr1 );

c′
1
= (α ′

1
, β ′

1
) ← (α0pkr0, β1дr0 );

output (c′
0
, c′

1
)

It is possible to prove correct execution of ElGamal-Swap for

an input / output pair (c0, c1) and (c ′
0
, c ′
1
) via a GSP specified in [31].

In Solidus, due to the fact that an account is represented by a

pair of ciphertexts on the public key of an account and the account

balance, we in fact need perform double El Gamal swaps, meaning

that two pairs of ciphertexts are swapped using the same value of

s . The proof of correctness involves a straightforward extension of

the GSP for a single swap.

A double swap proof requires 13 elliptic curve multiplications,

while verification requires 18.

A.5 Range Proofs
There are a number of protocols (e.g., [12]) for proving statements

of the form PoK(x : y = дx ∧ l0 ≤ x ≤ lp ).
In Solidus, drawing on the conceptually simple Confidential

Transactions approach [38], we use a GSP to prove of an El Gamal

ciphertext c = (α , β ) = (д$vpkr ,дr ) that represents an account

balance 0 ≤ $v . Specifically, to preclude modular wraparound, we

prove that the integer $v ∈ [0, 2t ) for parameter t , which deter-

mines the upper bound on account balances. In our prototype, we

set t = 30.

We now describe the GSP we use accomplishes this range proof

in a bitwise manner. First, we observe that to show for ciphertext

(αi , βi ) that (αi , βi ) 7→ $vi ∈ {д
0,д2

i
} under public key pk, it

suffices to prove:

PoK
(
ri :

(
(αi/д

2
i
= pkri ) ∨

(
αi = pkri

))
∧ βi = д

ri
)
.

Thus the GSP

PoK *
,
{ri }

t
i=1 :

t−1∧
i=0

((
αi/д

2
i
= pkri

)
∨

( (
αi = pkri

) )
∧

(
βi = д

ri ) )
+
-

proves for (α , β ) =

(
t∏
i=1

αi ,
t∏
i=1

βi

)
that (α , β ) 7→ д$v such that

$v ∈ [0, 2t ), i.e., that (α , β ) is a ciphertext on account balance

$v ∈ [0, 2t ).
This range proof requires 5+10t elliptic curvemultiplications and

t encryptions (requiring 2 multiplications each unless precomuta-

tion is employed), while verification requires 7+12t multiplications.

We denote such a proof that ciphertext c encrypts a value in

[0, 2t ) (in exponential space) by RangePf (c, t ).
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A.6 Circuit ORAM
Solidus’s primary data structure used to store account balances on

the ledger is a PVORM based on the structure of Circuit ORAM [59].

PVORM, however, aims to provide very different guarantees than

classical ORAM. An ORAM enables a client with limited local mem-

ory tomaintain a piece of large virtual memoryM in a data structure

C outsourced to a more powerful external device generically called

a server. The goal is to enable the client to storeM confidentially

with as little local storage as possible.
An ORAM ensures access-pattern confidentiality; despite its abil-

ity to observe the client’s accesses to C , the server learns nothing
(no non-negligible) information about the client’s pattern of access

to blocks in M . Blocks in C are encrypted using a symmetric-key
cipher to ensure data confidentiality. But note that encryption alone

does not conceal access patterns.M is structured as a set of blocks
M[1],M[2], . . . ,M[N ]. Were C[idx] simply an encryption of the

current value ofM[idx], for instance, then the server would know

every time the client reads from or writes to M[idx], as it would
see the client access C[idx].

Thus, to achieve access-pattern confidentiality, ORAM imple-

mentations require a more sophisticated approach.

In this approach,C is represented as a tree of depth L = logN +1
(N is assumed to be a power of 2). Each node in the tree contains a

bucket that has B slots for storage of blocks, where B is a system pa-

rameter. Most of these slots are empty at a given time, an important

fact, as we shall see below.

A block takes the form idx∥label∥data, where idx is the index
of a block—the value idx corresponding to its virtual memory slot

M[idx], label identifies a leaf in the tree along the path to which

from the root the block is located in C , and data stores the block
contents.

The client maintains a small amount of local memory called

a stash, which is a buffer to handle overflow from C . The client

also stores a position map PosMap, a data structure such that

PosMap[idx] = label. That is, PosMap maps a given block’s

index idx inM to its corresponding leaf value label. (PosMap can

be stored recursively in a separate ORAM on the server to reduce

storage overhead, a feature that is not relevant to PVORM.)

Reads and writes involve the same basic operation Access by
the client on C , which is as follows.

Algorithm Access(op):

// Note: op = (“read′′, idx) or (“write′′, idx, data∗ )

label← PosMap[idx];

{idx | |label | |data} ← ReadAndRm(idx, label);

PosMap[idx]
$

←− [0, N − 1];

if op = “read′′ then data∗ ← data;

stash.add( {idx∥PosMap[idx]∥data∗ });

Evict();

output data

Here, ReadAndRm reads the full path in C containing the tar-

get block and removes the block (re-encrypting blocks along the

path), while stash.add performs the obvious operation of adding

a block to the stash. Evict can be implemented either randomly or

deterministically. The random approach picks two leaves leaf l and
leaf r uniformly at random from the left and right halves of the

three, respectively, and performs what is called an eviction pass

in the root-to-leaf paths they define. The deterministic approach

(which we adopt in our PVORM construction) does the same, but it

selects leaf l and leaf r in a rotating deterministic order designed

to place eviction passes on consecutive accesses as far away from

each other as possible while still rotating through every leaf over

enough accesses.

An eviction pass on a given path involves performing swaps on

pairs of adjacent path elements one by one from the top to bottom

of the tree, with the stash treated as a special “level 0,” i.e., sitting

above the root. These swaps aim to move blocks down the path

to the lowest possible levels. A block is “picked up” and moved

through successive swaps to the lowest point such that it remains

on the path defined by label and there is an empty slot available

for it. At this point it is “dropped”—inserted into the bucket at that

level. A block may be picked up from the slot into which the last

one was dropped or swapping may continue until another block

is reached that can be pushed further down the path. The reason

for performing evictions on two paths rather than one is to ensure

that blocks remain deep enough globally inC to prevent substantial

overflow into the stash.

This processing step in Circuit ORAM is in fact quite complicated.

The client does not have full local information about where blocks

reside in C , and therefore must plan swaps using metadata. (This

complication does not arise in PVORM, however, as we explain

below.)

Other tree-based ORAMs, such as Path ORAM [54], differ pri-

marily in their use of alternative eviction strategies. The use of

swaps in Circuit ORAM is especially conducive to efficient NIZK

production in Solidus, however, which is the reason it is used in

the Solidus PVORM.

B SOLIDUS PVORM CONSTRUCTION
We now present the details of the PVORM construction used in

Solidus and prove that it is a correct, oblivious, and publicly ver-

ifiable PVORM. We note that it is possible to construct a PVORM

from any ORAM, ZK proof system, and encryption scheme (sym-

metric or public-key). Our PVORM in Solidus, however, is con-

structed to ensure highly efficient proof computations in support

of high throughputs. For this purpose, we use Circuit ORAM, non-

interactive Generalized Schnorr Proofs, and El Gamal encryption.

Recall from above that Circuit ORAM consists of a binary tree

of buckets, each containing a fixed number of data blocks. Each

location contains an encryption of either a data block or a dummy

value. Each logical data block is associated with a single leaf in the

tree and physically resides somewhere along the path to that leaf.

In order to access a logical data block (read or write), the client

reads all blocks along the path to the associated leaf. The client then

associates the accessed logical block with a new random leaf, and

writes out new encryptions of all blocks along the accessed path

and two other deterministic paths in the tree. During these writes,

the client evicts existing data blocks towards leaves as possible

while maintaining the invariant that each real data blocks remains

on the path to its associated leaf. These evictions can be done with

a number of pairwise swaps of physical memory locations linear
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in the depth of the tree. We take advantage of the ability to do

evictions via pairwise swaps in our PVORM construction.

B.1 Construction
In Solidus, each bank maintains its own PVORM to store user ac-

count balances. Since the PVORM is uniquely associated with a

single bank, we a simple El Gamal key pair for the key pair spec-

ified in Section 4. Each logical address is specified by an account

ID and each data block is itself an account balance. To store these,

each data block contains a pair of El Gamal encryptions: one of the

account ID and one of the balance. We limit the maximum balance

to a relatively small value (e.g. 2
30

or 2
40
). This allows us to encrypt

balances in exponential space, creating an additive homomorphism,

while still permitting decryption (using a lookup table). Let t denote
the binary log of the maximum balance.

Thus we interpret M as a map from account IDs to account

balances. We define the PVORM update function f ((id, $v ),M ) that
replacesM[id]withM[id]+$v if id exists as a key inM and (M[id]+
$v ) ∈ [0, 2t ). Otherwise f ((id, $v ),M ) is undefined. Intuitively, f
updates a single account balance to any value within the valid

range.

As noted in Section 4, we use a fixed-size public stash instead of

the dynamic private one assumed by Circuit ORAM. For simplicity,

we merge this stash into the root node of the tree. Each data block

in the stash is of the same form as those in the tree. We additionally

employ a single distinguished fixed block. This block is simply a

single deterministic block that exists on every path. It may be part

of the root bucket/stash or it may be its own separate location.

We now describe the implementation of each operation defined

in Section 4. Let (Gen, Enc,Dec) be the standard El Gamal cryp-

tosystem.

Construction 1 (Solidus PVORM). We always initialize all bal-

ances to 0. The update spaceU consists of account ID/transaction

value pairs, with values being between the max balance and its

negative. Initialization proceeds as follows:

Init(1λ, {idi }ni=1, 0, U ):

(pk, sk)
$

←− Gen(1λ )

for i ∈ [1, n]
Insert (idi , 0) into a Circuit ORAM tree

Set all unused blocks to (0, 0)

for each block (id, 0)

Set C at that location to (Enc(pk, id), Enc(pk, 0))

Let (α, β ) be the encryption of 0

pf = PoK (x : (α = βx ) ∧ (pk = дx ))

return (pk, sk, C, {pf })

Let M = Read(sk,C ). We note that Update(sk,u,C ) is only de-

fined when f (u,M ) is defined. Given u, sk, and C , this property is

easy to check, so our definition simply assumes Update is defined
on the inputs and does not check explicitly. Let BF be the distin-

guished fixed block. For simplicity assume that the pk associated
with sk is available (either by being stored as part of sk or derivable
from sk).

Update(sk, u, C ):

e = (eid, ev )
$

←− (Enc(pk, id), Enc(pk, $v ))

for each block Bi along the path associated with id:

Let s = Swap if the ID in B is id and NoSwap otherwise.

(BF , B′i )
$

←− ElGamal-Swap((BF , Bi ), pk, s )

pf i = proof of correct swap

Let (cid, cv ) ← BF

rangePf = RangePf (cv − ev , t ) // (see Appendix A.5)

Let (α, β ) = (cid − eid)

idPf = PoK (x : (α = βx ) ∧ (pk = дx ))

BF ← (cid, cv − ev )

for each block Bi along the eviction paths in Circuit ORAM

Let s = Swap or NoSwap as per Circuit ORAM

(BF , B′i )
$

←− ElGamal-Swap((BF , Bi ), pk, s )

pf i = proof of correct swap

return (C′, e, ( {B′i }, {pf i }, rangePf , idPf ))

Verification is performed simply by verifying all NIZKs included

in the output of Update and by verifying that the updated BF was

computed correctly between the two sets of swaps.

B.2 Security Proofs
We now prove the security of the construction given in the previous

section.

TheoremB.1 (PVORMCorrectness). Construction 1 is a correct
PVORM.

Proof. The following properties ensure correctness.

• Circuit ORAM is correct when the stash does not overflow and

Construction 1 modifies Circuit ORAM to leak transaction graph

information instead of lose data on overflows.

• El Gamal is correct and includes a multiplicative homomorphism,

while we encrypt account balances in exponential space, thus

making the homomorphism additive.

• Construction 1 employs correct NIZKs and only attempts to

prove true statements.

□

To prove obliviousness, we provide a hardness reduction to the

Decisional Diffie-Hellman (DDH) problem. We do this through a se-

ries of reductions. First we consider the following classic definition

of CPA security that a cryptosystem (Gen, Enc,Dec) is CPA secure
if for all PPT adversaries A there is a negligible function negl such
that

���� Pr
[
ExpCPA (0,A, λ) = 1

]

− Pr
[
ExpCPA (1,A, λ) = 1

] ���� ≤ negl (λ).
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where ExpCPA (b,A, λ) is defined as

Experiment ExpCPA (b, A, λ):

(sk, pk)
$

←− Gen(1λ )

(m0,m1)
$

←− A (1λ, pk)

c
$

←− Enc(pk,mb )

return A (1λ, c )

It is well known that El Gamal (which Solidus uses) is CPA-secure

in a DDH-hard group. We further define double-CPA security which

we will use to prove obliviousness of our PVORM construction.

Definition B.2 (Double-CPA Security). A cryptosystem (Gen, Enc,Dec)
is double-CPA secure if for all PPT adversariesA there is a negligible

negl such that

���� Pr
[
Exp2CPA (0,A, λ) = 1

]

− Pr
[
Exp2CPA (1,A, λ) = 1

] ���� ≤ negl (λ).

where Exp2CPA (0,A, λ) is defined as

Experiment Exp2CPA (b, A, λ):

(sk, pk)
$

←− Gen(1λ )

((m0,m′0), (m1,m′1))
$

←− A (1λ, pk)

c
$

←− Enc(pk,mb )

c′
$

←− Enc(pk,m′b )

return A (1λ, c, c′)

We now prove by a hybrid argument that any public-key cryp-

tosystem that is CPA secure (e.g. El Gamal) is double-CPA secure.

Lemma B.3 (Double-CPA Security). Let (Gen, Enc,Dec) be a
CPA secure public-key cryptosystem. Then it is also a double-CPA

secure cryptosystem.

Proof. Assume for contradiction that there is someA and non-

negligible ε (λ) such that

���� Pr
[
Exp2CPA (0,A, λ) = 1

]

− Pr
[
Exp2CPA (1,A, λ) = 1

] ���� ≥ ε (λ).

Wenow consider a set of hybrid experiments. LetH0 = Exp2CPA (0,A, λ),
H2 = Exp2CPA (1,A, λ), and

Experiment H1:

(sk, pk)
$

←− Gen(1λ )

((m0,m′0), (m1,m′1))
$

←− A (1λ, pk)

c
$

←− Enc(pk,m0)

c′
$

←− Enc(pk,m′
1
)

return A (1λ, c, c′)

Note that we encryptm0 (as in H0) andm
′
1
(as in H2). By the stan-

dard hybrid argument A must have advantage at least ε (λ)/2 in
distinguishing either between H0 and H1 or between H1 and H2.

We now construct an adversary B to break the CPA security of

(Gen, Enc,Dec). On input (1λ , pk),B first runsA to get (m0,m
′
0
), (m1,m

′
1
).

It then picks a random i
$

←− {0, 1}. We handle these cases separately.

• i = 0: In this case B outputs (m0,m1). On receipt of challenge c it

computes c ′
$

←− Enc(pk,m′
1
), submits (1λ , c, c ′) toA and returns

the result.

• i = 1: In this case B outputs (m′
0
,m′

1
). On receipt of challenge

c ′, it computes c
$

←− Enc(pk,m0) and submits (1λ , c, c ′) toA and

returns the result.

In the first case, if c encryptsm0 then this is exactly experiment

H1 and if c encrypts m1, this is experiment H2. For the second

case, B has similarly generated either experiment H0 or H1. B

will succeed exactly when A succeeds. Since A has advantage

at least ε (λ)/2 in one of these experiments and B randomly se-

lects which experiment to run, it must be the case that B succeeds

with advantage at least ε (λ)/4, which is non-negligible. By assump-

tion, however, (Gen, Enc,Dec) is CPA-secure, so this contradicts

our assumption that A exists. Thus (Gen, Enc,Dec) is double-CPA
secure. □

Theorem B.4 (PVORM Obliviousness). Construction 1 is oblivi-
ous in the ROM assuming a DDH-hard group.

Proof. Assume for contradiction that there exists some PPT

adversary A and non-negligible ε (λ) such that

���� Pr
[
ExpObliv (0,A, λ,n,m0,U ) = 1

]

− Pr
[
ExpObliv (1,A, λ,n,m0,U ) = 1

] ���� ≥ ε (λ).

We now construct an adversary B that breaks the game Exp2CPA,
as defined in Lemma B.3, for El Gamal.

First we argue thatA cannot distinguish based solely on observ-

ing the pattern of data blocks touched within the Circuit ORAM

structure. As noted by Wang, Chan, and Shi [59], each access con-

sists first of accessing a uniformly random path independent from

all previous accesses, followed by eviction along two paths chosen

independently from the access. Thus A can only hope to distin-

guish in this manner by forcing the stash to overflow. Wang, Chan,

and Shi additionally note that the probability of stash overflow is

negligible in the size of the stash even for a worst-case access pat-

tern. Therefore A gains at most negligible advantage by observing

the Circuit ORAM access structure.

This means that A must either break the semantic security of

El Gamal or the zero-knowledge property of an NIZK. We now

assume that A will make at most p (λ) queries the PVORM oracle

for some polynomial p. Using this, we construct a series of hybrid

distributions H0, . . . ,Hp (λ)+1 modifying how the ExpObliv oracle
works.

In hybridH0, theO operates exactly asO
1,sk,C . InH1,O operates

the same way except it leverages the fact that we are in the ROM

to forge all NIZKs. For Hi with i ≥ 1, on input (u0,u1) from A,

the oracle applies update u1 as in H1 for the first i − 1 queries,

after which it applies u0 instead. Though this may result in invalid

updates, the new oracle does not check the validity and applies the

update anyway with forged proofs. Because the proofs are forged,

it will always succeeded in making this (forged) update. Since, by

the definition of the game, A could not rely on submitting invalid

updates in order to distinguish, this cannot improve the advantage

at all.
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Because we are working in the ROM and all NIZKs are GSPs, A

receives the same view in H0 and H1. Whenever the PVORM oracle

needs to generate a proof, it first picks a random challenge c and
a response. It then computes the commitment com to ensure that

the tuple is from the correct distribution, and modifiesA’s random

oracle so that it receives c when querying that oracle on com. As

long as the random oracle has not previously been queried on com,

this strategy will work and produce exactly the same distribution

as in H1.

If there is a collision—the random oracle has been queried on

com—then the experiment H1 simply aborts. Fortunately this hap-

pens with negligible probability. Specifically, A makes at most

q(λ) independent queries to its random oracle for some polyno-

mial q, and O must forge some constant k number of proofs for

each PVORM update. This bounds the probability of collision to

ν (λ) =
k ·p (λ)+q (λ)

2
λ , a negligible function.

We can apply the same argument to Hp (λ)+1 and the (unnamed)

hybrid that corresponds to O
0,sk,C with real proofs. Thus A can

distinguish between H1 and Hp (λ)+1 with advantage at least ε (λ) −
2ν (λ). So by a standard hybrid argument, there must be some

i ∈ [1,p (λ)] such that A can distinguish between Hi and Hi+1

with advantage at least
ε (λ)−2ν (λ)

p (λ) . This too is non-negligible. For

simplicity, we will denote this advantage ε ′(λ).
Next we recall that the secret key is only used to generate NIZKs

in Update, meaning an adversary with only the public key can

run A with an oracle that generates any of H1, . . . ,Hp (λ)+1. B is

exactly such an adversary.

On input (1λ , pk),B first guesses a uniformly random i ∈ [1,p (λ)]
and then runs A. B then handle’s A’s PVORM oracle queries as

follows. For the first i − 1 queries (u0,u1), B applies u1 with forged

proofs—as in both Hi and Hi+1. Because Update uses sk only for

proofs and B is forging proofs, it can perform the rest of Update
properly with only pk. Recall that an update u consists of two

plaintexts: an account ID id and a transaction value $v . So to gen-

erate its chosen plaintext pairs, B outputs the updates specified

for A’s ith PVORM oracle query. Upon receiving a challenge pair

of ciphertexts e = (cid, cv ), B performs the rest of Update using
that update ciphertext (and forging proofs). For all future PVORM

oracle queries after the ith, B uses update request u0—as in both

Hi and Hi+1. When A terminates with an output, B outputs the

same value.

We now claim thatB has non-negligible advantage in theExp2CPA

experiment defined above. With probability at least
1

p (λ) , B will

pick some i where A has non-negligible advantage ε ′(λ) distin-
guishing betweenHi andHi+1. If B receives a challenge encryption

of u1, then A is playing exactly the game in Hi . Similarly, if B is

challenged with an encryption of u0, then A sees exactly distri-

bution Hi+1. In either case B will output the correct value exactly

when A does. This means that B must succeed with advantage at

least
ε ′ (λ)
p (λ) , which is non-negligible.

By assumption we are working with a DDH-hard group and

using El Gamal as our cryptosystem. Thus our cryptosystem is CPA

secure, so by Lemma B.3 no such B exists. This contradicts our

assumption that A exists and therefore Construction 1 must be an

oblivious PVORM. □

Theorem B.5 (PVORM Public Verifiability). Construction 1 is
publicly verifiable in the ROM.

Proof. This result follows directly from the fact that ourUpdate
specification includes a proof of every operation as well as a range

proof. By definition Ver simply verifies all NIZKs produced by

Update. Therefore, if an adversary were able to fool Ver, it must be

able to forge (at least) one of the proofs produced by Update.
Assume for contradiction that there exists some PPT adversary

adversary A and non-negligible ε (λ) such that

Pr

[
ExpPubVer (A, λ,n)

]
≥ ε (λ).

We note that Update produces three types of proofs. Thus we con-
struct three new PPT adversaries BR , BE , and BS that attempt to

forge range proofs, proofs of plaintext equivalence on El Gamal

ciphertexts, and proofs of correct El Gamal swaps, respectively.

They operate as follows.

• BR : On input (pk, sk), BR runs A and outputs the resulting

range proof with associated ciphertexts.

• BE : On input (pk, sk), BE runs A and outputs the resulting

plaintext equivalence proof and associated ciphertexts.

• BS : On input (pk, sk), BS runs A, picks a uniformly random El

Gamal swap proof from the output, and outputs that proof and

the associated ciphertexts.

WheneverA forges the one range proof or the one plaintext equiv-

alence proof, BR or BE succeed, respectively. For BS , the number

of El Gamal swaps executed by Update is fixed for a given PVORM

configuration (tree depth, bucket size, and stash size), so ifA forges

any El Gamal swap correctness proof,BS will succeedwith constant

probability.

By inspection of the specification of Update and a standard hy-

brid argument,A must succeed in forging at least one type of proof

with non-negligible probability, hence one BR , BE , and BS must

succeed with non-negligible probability. As we describe in Appen-

dix A, prior work shows that each of the associated proofs have

negligible soundness error in the ROM. Thus no such adversary A

can exist so the Solidus PVORM construction is publicly verifiable

in the ROM. □

C SOLIDUS SECURITY PROOF
We now provide a proof of Theorem 5.2 that Prot

Sol
is secure.

We assume several simple pieces of behavior not directly spec-

ified by the protocol. First, each honest bank will have only one

pending transaction at a time. That means that it will not approve

a request (as sending or receiving bank) while there is another

transaction it has approved that has not yet cleared. In the F
Ledger

-

hybrid world, this is codified within Prot
Sol

, but we simply assume

this property in the ideal world. Second, we assume that an honest

bank will reply immediately upon receiving a transaction approval

request. It may approve or abort the transaction, but it will reply in

some fashion. Note that an honest bank may abort a transaction it

has already approved in order to maintain availability. Finally, we

assume that for an honest bank, whenever an assertion fails, the

bank acts exactly as if the message it failed to process was never

received.
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For simplicity, we omit asset notaries from our proof. Adding

them requires only small modification. Initialization must publicly

distribute asset notary identities, F
Ledger

must check for valid asset

notary signatures, and Prot
Sol

must properly reveal asset notary

identities.

Theorem 5.2. The Solidus protocol ProtSol satisfies Definition 5.1
assuming a DDH-hard group in the ROM.

Proof. We prove that IdealS,Z (λ) and HybridA,Z (λ) are in-
distinguishable using a sequence of hybrids. In the following, a

probability is negligible if it is a negligible function of the security

parameter λ.
We define hybrids H0, . . . ,H7. H0 is the FLedger-hybrid world

withS being a “dummy” simulator that passes all messages through

unchanged. H1 allows S to simulate F
Ledger

. H2 replaces all proofs

generated by honest parties with forgeries and H3 to replaces the

contents of requests and PVORMs with arbitrary values. In H4 S

simulates the trusted initializer and controls all keys. H5 isolates

A’s set of transaction IDs and H6 drops any invalid messages from

A. Finally H7 is equivalent to an ideal execution.

Hybrid H0 contains a dummy simulator that passes messages be-

tween A and honest parties unchanged. This is identical to the

F
Ledger

-hybrid world.

Hybrid H1 is the same as H0 except that S maintains its own

simulated copy of F
Ledger

that behaves as F
Ledger

except for the

initialization, which it does not emulate. During initialization, S

passes the actual values sent by F
Ledger

toA without modification.

All other operations are emulated faithfully. We note that all non-

initialization operations require only public information (including

public keys). When an honest bank posts to F
Ledger

, S copies the

message to its own copy, and when A posts to F
Ledger

, S first

simulates the behavior on its copy, and if the post is accepted, it

forwards the post to the real F
Ledger

.

Since all posts to F
Ledger

are either dropped silently or broadcast

in their entirety to all banks, S’s faithful simulation of a copy will

result in a view that is identical to real execution.

Hybrid H2 proceeds as in H1 except whenever S receives any

proofs or signatures constructed by an honest party—as part of

a request, PVORM update, or “postTxn” message from F
Ledger

—

it stores the real proofs and signatures and replaces them with

forgeries. S sends the forgeries to A (or the simulated F
Ledger

),

and if a message containing those proofs would be sent back to an

honest party (or forwarded to the real F
Ledger

), S puts the original

(real) proofs and signatures back in place.

Note that this forgery and replacement only applies to the spe-

cific proofs and signatures constructed by honest parties. Mes-

sages from honest parties containing proofs and signatures from

A-controlled parties—such as the request signature from an A-

controlled user at an honest bank includedwith the final transaction—

have only the honest signatures and proofs replaced. The values

computed by A are left exactly in-tact.

As all proofs in the system are cSE NIZKs,S can forge proofs that

A will accept and A still cannot forge proofs with non-negligible

probability. Since the only thing that has changed from H1 is these

forged proofs, H1 and H2 are computationally indistinguishable.

Hybrid H3 is much like H2, but S also replaces the values of all

encryptions generated by honest parties under honest-party keys,

including PVORM values. S replaces these values with randomly-

selected values encrypted under the same keys. Again, it saves

the real values and real proofs when communicating with honest

parties, but it uses the random values withA. Since S only replaces

values thatA did not generate and are encrypted under public keys

for which A does not know the secret key, the semantic security

of the encryption scheme guarantees that H3 is indistinguishable

from H2. The proofs do not present a concern as they were already

forged (for the real values) in H2, so they remain forged (for the

random values) in H3.

HybridH4 differs fromH3 in thatS now emulates the initialization

in FInit. It generates fake keys and PVORMs—from the correct

distribution—for all parties and sends those to A instead of those

generated by FInit. Any encrypted values written by A will be

encrypted under the new (fake) keys for which S knows the secret

key, and any values intended to be read by A and written by an

honest party will be encrypted under a key given to S by the real

FInit. In either case, S can decrypt the ciphertext and re-encrypt

the plaintext under the other set of keys before passing an honest

message to A or A’s message to an honest party. The same is true

for signatures and proofs created by A.

For encryptions under honest-party keys written by honest par-

ties as well as proofs and signatures created by honest parties, S

already replaced those in H3 with random values and forgeries,

respectively, so it simply does the same but under the new (fake)

keys.

In this manner, all values, proofs, and signatures viewed by

A in H4 are the same as those in H3, but using different encryp-

tion/signing keys and different randomness. All encryptions, proofs,

and signatures generated by S to an honest party are similarly the

same, but with different randomness. Since the keys and random-

ness are selected faithfully from exactly the original distributions,

H3 and H4 are identically distributed.

Hybrid H5 proceeds as H4, but S separates the transaction IDs

used by A from those used by honest parties. Whenever a new

request comes from A with transaction ID txidA , S generates a

new unique txidF to associate with the transaction with honest

parties. Whenever a message with a previously-unseen transaction

ID txidF comes in from an honest party (or F
Ledger

), S generates

a new unique txidA before forwarding to A (or the simulated

F
Ledger

). If, for an incoming message in either direction, S has seen

the ID before, there must be an associated ID in the other set, so it

simply uses that.

Since only the transaction IDs have changed and the new IDs are

drawn independently from the old IDs using the same methodology,

H4 and H5 are identically distributed.

Hybrid H6 is the same as H5 except S verifies all proofs and signa-

tures generated byA on all messages. If any proof or signature fails

to verify, S drops the message and does not forward it. Because all

proofs are verified in Prot
Sol

(either by the receiving party or by

F
Ledger

) before any other processing is done, andZ dictates that if

an assertion fails, the honest party behaves as if the associated mes-

sage had never arrived, this will not change any message received
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by A or the behavior of any honest parties. Similarly, H6 drops

all messages containing transaction IDs which have already been

posted to F
Ledger

, which honest parties will similarly drop. By the

simulation soundness of the NIZKs employed, A has a negligible

probability of forging a proof and thus there is a negligible proba-

bility of passing through a message that will be ignored anyway.

Hence H5 and H6 are computationally indistinguishable.

Hybrid H7 is the most complex step, as we now replace all honest-

party communication with F
Sol

. We now describe what S does in

H7 whenever it would send a message to an honest party in H6 and

whenever it receives a message from F
Sol

in H7.

• When S would send a “requestTxn” request to an honest bank B

on behalf of a compromised userUs inH6,S instead decrypts the

values supplied by A to get the plaintext value $v and receiving

user Ur and sends (“requestTxn”,Ur , $v ) to FSol on behalf of

Us . Instead of creating its own txidF to link to the txidA for this

transaction, it uses the one returned by F
Sol

.

• When S would send an “approveSendTxn” message to and hon-

est bank in H6, it first checks if there is an associated txidF from

F
Sol

, or if the message is coming unprompted fromA. In the first

case it sends (“approveSendTxn”, txidF ) to FSol. In the second

case, it first decrypts the request included with the transaction

data, which must be from a compromised userU at a compro-

mised bank B—otherwise the request would have come through

F
Sol

or the proofs would fail to verify andH6 would already have

dropped it. It then submits the associated “requestTxn” mes-

sage to F
Sol

from U . Upon receiving an associated txidF and

(“req”, txidF ,Us ,Br , $v ), S sends (“approveSendTxn”, txidF )
to F

Sol
.

• When S would send an “approveRecvTxn” message to the real

F
Ledger

(after passing through the simulated one), it again checks

for an associated txidF from F
Sol

. If none is found, then the

transaction must entirely be executed by compromised entities

for same reason described above. In this case, S decrypts the

transaction details and executes the entire transaction on F
Sol

.

If an txidF is found and S has seen a “req” response from

F
Sol

but not a “aprv” message, then it must be the case that

both banks are compromised. As with above, S finishes the

transaction in order, first sending (“approveSendTxn”, txidF )
and then (“approveRecvTxn”, txidF ).

Finally, if txidF is found and S has seen a “aprv” message

fromF
Sol

for txidF , then it simply sends (“approveRecvTxn”, txidF ).
• When S would send an “abortTxn” message to the real F

Ledger
,

it again checks if there is an associated txidF . If there is, it sends
(“abortTxn”, txidF ) to FSol. If not, it generates a random txid
and sends (“abortTxn”, txid) to F

Sol
.

Note that with negligible probability this new txidwill conflict
with an existing transaction ID and the abort will not be received,

but except with negligible probability this will appropriately

create an abort for a non-existent transaction.

• We handle S receiving (“req”, txidF ,Us ,Br , $v ) from FSol in
two cases.

(1) IfBr is honest, thenS acts as it would inH6 upon receiving a

valid (“requestTxn”, txidF , ePKs , cv , cr ,σ ) fromUs , noting

that in that case it can decrypt the identity ofUs and $v , but
not the identity of the receiving user.

(2) If Br is compromised, while S would have forwarded a

“requestTxn” message in H6, it does not have sufficient in-

formation to create the details of that request correctly. To

acquire that information, S immediately replies to F
Sol

with

(“approveSendTxn”, txidF ).

• When S receives (“aprv”, txidF ,Bs ,Ur , $v ) from FSol, we again
have three cases.

(1) If Bs is compromised, then we must have been in case 2

above. Thus S now has sufficient information to create a

complete “requestTxn” message as it would in H6, so it does

so and submits that request to A.

(2) If Bs is honest but the user who originally requested this

transaction Us is not, then there must be some txidA as-

sociated with txidF and an associated request. S can thus

manufacture an “approveSendTxn” message to submit to A.

As in H6, S uses the stored request for values created byUs
and falsifies values created by the honest Bs .

(3) If Bs and the sending userUs are both honest, then S must

create a new unique txidA and create an “approveSendTxn”

message as in H6. Note that the values S could decrypt in

H6 were the identity ofUr and $v , so it encrypts the correct
values for those and falsifies other values.

• When S receives (“postTxn”, txidF ,Ps → Pr ) from FSol, Since
this proof does not handle asset notaries, we can assume Ps and

Pr are both banks. There are three cases to consider.

First we consider the simplest case: whenPr is a compromised

bank. In this case the transaction will only clear through F
Sol

afterS successfully posts it to (the simulated) F
Ledger

. Thus there

is nothing to do.

Next we consider the case where Ps is a compromised bank

but Pr is honest. Here txidF must correspond to txidA for the

pending transaction in S’s simulation of Pr . In order for the

transaction to be approved by the sender in F
Sol

, S must have

received and verified (“signRecvTxn”, txidA , txdatas ) from A.

At this point S updates Pr ’s simulated PVORM with random

values and forged proofs (as in H6) and posts the full transaction

to F
Ledger

. We note that A cannot have already submitted a

transaction to F
Ledger

with ID txidA since honest banks respond

instantly, so this must be in response to approving the sending of

a transaction and H6 would have dropped that message if txidA
had already been posted to F

Ledger
.

Finally, we consider the case wherePs andPr are both honest.

In this case S manufactures random updates to the respective

PVORMs and forges all associated proofs. If txidF already cor-

responds to some txidA , that means the requesting user was

compromised, and S simply uses that request. Otherwise S se-

lects a new unique txidA and creates a request specification

(again with random values and forged proofs). It then posts the

result to the simulated F
Ledger

. We note that this is precisely the

value that would have been posted to the simulated F
Ledger

in

H6.

• WhenS receives (“abortTxn”, txidF ,B) from FSol, it first checks
of B is compromised. If so, this must be the response after send-

ing an abort to F
Sol

and there is nothing to do. If not, S checks
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if there is a known txidA already linked to txidF and generates

a new unique txidA otherwise. It then generates an abort opera-

tion using random values and forged proofs, as in H6 and posts

it to F
Ledger

. It also clears the simulated pending transactions for

B (which will only happen if txidA already existed).

Thus we see that each hybrid is computationally indistinguish-

able from the next, H0 corresponds to the F
Ledger

-hybrid world,

and H7 corresponds to the ideal world. Thus ProtSol achieves the
desired security. □

D VARIANTS
We now present three variants on the Solidus system based on

different architectural primitives. They provide different guarantees

and features which we believe are relevant.

D.1 zk-SNARK PVORM
Though GSPs are highly efficient to construct, they can be quite

large and expensive to verify. In circumstances where the size of

proofs or the verification time is more important than generation

time, zk-SNARKs provide a good alternative. While we could im-

plement the Circuit ORAM-based PVORM described in Section 4

and Appendix B using zk-SNARKs, the large numbers of reencryp-

tions would result in very expensive proofs, even if we were to use

symmetric-key primitives. Instead, in Section 7.3 we describe and

evaluated a different construction, based on a Merkle tree, which is

much more efficient for zk-SNARKs than use of Circuit ORAM.

Our evaluation in Table 1 shows the performance for a single

bank update at 128-bit security level, using libsnark [9] as the back
end for computing the zk-SNARK proofs. The Merkle tree has depth

15 giving the PVORM a capacity of 2
15

(the same as in our GSP

tests). Our implementation includes zk-SNARK-optimized SHA-256

circuits for the Merkle tree, and optimized circuits for RSA-3072

encryption (RSAES-PKCS1-v1_5) and signatures (RSASSA-PKCS1-

v1_5 with SHA-256). We used PKCS #1 v1.5 primitives instead

of the more up-to-date PKCS #1 v2.2 primitives and alternative

public-key schemes for three reasons: they yield less expensive

zk-SNARK circuits, they are still used in practice, and they provide

a conservative (i.e. competitive) comparison point for GSPs.

As may be seen from our results in Section 7, this construction

involves proof generation times two orders of magnitude slower

than those for GSPs. For single-threaded execution, or GSP PVORM

with a conservative 3-bucket parameterization and 2
15

accounts re-

quires 0.4 seconds to generate proofs, while the zk-SNARK PVORM

requires 65.5 seconds for and equivalent setup on the same machine

(Amazon EC2 c4.8xlarge instance). For single-threaded execution,
our GSP PVORM takes 0.4 sec to generate proofs with a conserva-

tive 3-bucket parameterization and 2
15

accounts on a c4.8xlarge
Amazon EC2 instance. Conversely, verification time for the zk-

SNARK PVORM is about two orders of magnitude faster (0.0065

sec vs 0.56 sec) and proofs are quite compact (288 bytes).

When used in Solidus, the zk-SNARK PVORM construction has

the clear drawback that the ledger does not contain each user’s

account balance, even in encrypted form. To compute a user’s bal-

ance, an auditor would need to parse the transaction ciphertexts,

decrypt them and perform all the operations. To reduce such over-

head in practice, however, the bank may periodically checkpoint

balances. Specifically, it may submit an encrypted version of the

Merkle tree leaves, and prove that the encryptions are consistent

with a published Merkle tree digest using another zk-SNARK proof.

Such a proof is quite expensive to construct, and could only be

done periodically, e.g., once per day, without significantly affecting

the system throughput. But as transactions are accompanied by

ciphertexts, an auditor can start at a checkpoint and then decrypt

all subsequent transactions to learn current account balances.

Of course, proof generation times aremore important in the appli-

cations targeted by Solidus, and in our discussions with blockchain

industry technologists, the engineering complexity of zk-SNARKs

and trusted setup make them less viable than GSPs today. But zk-

SNARKs offer an interesting alternative construction and illustrate

what could ultimately be a valuable point in the PVORM design

space.

D.2 Use of Trusted Hardware
Using Intel Software Guard Extensions (SGX) it is possible to con-

struct a much more efficient PVORM. SGX provides a new set of

instructions that permits execution of an application inside an

enclave [3, 40, 49], which protects the application’s control-flow in-

tegrity and confidentiality against even a hostile operating system.

SGX additionally enables generation of attestations that prove to
a remote party that an enclave is running a particular application

(identified as a hash of its build memory).

To reduce the expense of attestations, an enclave can generate a

signing key pair and attest to the integrity of the public key [30, 60].

It can then generate the equivalent of a NIZK by simply signing

an assertion that it knows a witness to the statement. Trust in

SGX then translates to trust in the application and thus its asser-

tions. Verifying an assertion requires only a single digital signature

verification.

Using an SGX-based approach, we can build an extremely fast

PVORM. We replace the public-key encryption with symmetric-

key encryption and all NIZKs with SGX-signed assertions. We can

even employ write-only ORAM to further improve performance.

Additionally, a PVORM constructed in the Sealed-Glass Proof (SGP)

model [55] provides security against arbitrarily strong side-channel

attacks, provided that the secret signing key remains protected—

such as by using a side-channel-resistant crypto library.

While several complications remain to be address (e.g., the need

to share keys across enclaves on different hosts in case of failure),

we believe that this approach is eminently practical—albeit under

the (strong) assumption of trust in Intel and its implementation of

SGX.

D.3 Use of Pedersen Commitments
One of the important features of Solidus is auditability, which is

greatly aided by having all account balances encrypted on the

ledger. Many financial companies and regulatory agencies are, how-

ever, wary to include this information, even in encrypted form [11,

33, 56]. While we believe it would degrade the functionality signifi-

cantly to omit these encryptions, it is not particularly difficult.

Instead of including encrypted balances on the ledger, banks

could instead represent PVORM elements as Pedersen commit-

ments [48]. Unlike El Gamal ciphertexts, Pedersen commitments
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are perfectly hiding and computationally binding. To implement

this, banks would need to retain witnesses for each commitment,

which consists of both the account balance and the randomization

factor. The bank could then reveal this witness to an auditor in order

to prove an account balance, and the proof schemes in Appendix A

would require only slight modification to prove information about

the known witnesses.

23


	Abstract
	1 Introduction
	2 Background
	2.1 Existing Cryptocurrencies
	2.2 Bank-intermediated Systems
	2.3 Oblivious RAM
	2.4 Generalized Schnorr Proofs

	3 Solidus Overview
	3.1 Design Approach
	3.2 Architectural Model
	3.3 Trust Model
	3.4 Security Goals

	4 PVORM
	4.1 Formal Definition
	4.2 Solidus Instantiation

	5 Solidus Protocol
	5.1 FLedger -Hybrid Functionality
	5.2 Security Definition

	6 Optimizations
	6.1 Precomputing Randomization Factors
	6.2 Reducing Verification Overhead
	6.3 Transaction Pipelining

	7 Experiments
	7.1 PVORM Performance
	7.2 Solidus System Performance
	7.3 zk-SNARK Comparison

	8 Related Work
	9 Conclusion
	References
	A Crypto Primitives
	A.1 El Gamal Encryption and Account-Balance Representation
	A.2 Generalized Schnorr Proofs (GSPs)
	A.3 Hidden-Public-Key Signatures
	A.4 El Gamal Swaps
	A.5 Range Proofs
	A.6 Circuit ORAM

	B SolidusPVORM Construction
	B.1 Construction
	B.2 Security Proofs

	C Solidus Security Proof
	D Variants
	D.1 zk-SNARK PVORM
	D.2 Use of Trusted Hardware
	D.3 Use of Pedersen Commitments


