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Abstract. We propose OCEAN, an alternative miner reward system for blockchains that
seeks to discourage pooling by providing a pool’s variance mitigation functionality as a
blockchain built-in. Our proposal relies on Succinct, Non-interactive Arguments of Knowledge
(SNARKs), an advanced modern cryptographic tool that enables anyone to prove complex
statements with the proof not growing in size with the complexity of the statement. We ex-
pect that blockchains that implement our proposal would see less pooling centralization than
what is currently observable in deployed cryptocurrencies.
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1 Introduction

Blockchains were introduced by Satoshi Nakamoto in the context of the Bitcoin cryptocurrency [8]
with the aim of decentralizing electronic payments. Since then, many other applications have been
proposed [5, 9, 11] that aim at using blockchains to provide decentralized alternatives to useful
services. The picture of the current blockchain ecosystem, however, is bleaker.

1.1 Problem

Centralization is a major concern in today’s blockchain ecosystem. Centralization occurs along many
axes including governance, development, and currency ownership. In this work, however, we focus
on the issue of pooling centralization in Proof of Work blockchains. Mining is heavily centralized
through pooling in many major deployed cryptocurrencies.

Mining pools are conglomerates of individual miners who cooperate in order to reach a higher
total share of the network and hopefully experience smoother returns than they would on their
own. While often those pool participants are simply small miners following their self-interest, they
aggregate to large amounts of hashing power that end up under the control of a few pool managers.

This is undesirable for the blockchain ecosystem for a number of reasons. First, as is natural in a
market, and despite blockchain enthusiasts’ dislike of centralization, a few pools end up dominating.
This means that miners who don’t want to suffer unreasonable variance in their rewards are forced
to deal with one of a limited set of parties, thereby weakening a blockchain ecosystem’s claim
to openness. The managers of those large pools will also necessarily have large influence in the
ecosystem and might be able to influence blockchain governance decisions. That might include
blacklisting certain blockchain addresses so as to prevent them from redeeming their coins via,
e.g., feather-forking [10]. Second, the centralization of de facto control on computing resources
means pools have the ability to wreak havoc by misbehaving for a short time, and potentially
colluding to carry out 51% attacks. Although misbehaving pools would likely see their miners
depart quickly, most miners are not monitoring the blockchain in real time, giving pools a chance
to cause meaningful damage.
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1.2 Technical overview

Our goal is to provide the same reduction in payment variance as that of mining pools, but with
the miners only interacting with the blockchain, rather than with a centralized pool manager. We
suggest that miners, instead of presenting near hashes to a mining pool will present them to the
blockchain itself. To avoid flooding the blockchain with endless lists of near hashes, the proof will be
provided in the form of a SNARK. To present the proof, miners will create a transaction-like claim
that they will broadcast on the blockchain network for inclusion in a block. The claim, assuming it
is valid, will generate coins (similar to the coinbase transaction in existing cryptocurrencies) which
are then spendable by the miner.

1.3 Organization

We start providing the necessary background in Section 2, particularly on Mining Pools and
SNARKs. We then discuss issues of miner incentives and how these considerations both affect
existing solutions to mining pools and inform the design of our own in Section 3. We then fully lay
out the OCEAN proposal in Section 4, including a high-level description of the statement for which
SNARKs should be computed in 4.1. We finally list a number of open problems in Section 5.

2 Background

2.1 Mining Pools

Mining pools are groups of miners who combine their computing resources together to mine on the
blockchain. They mine blocks which reward a pool manager, and the pool manager then distributes
the reward to the miners after taking a cut. Though this reduces a miner’s expected profits a little,
it benefits them overall by increasing the likelihood they get paid at all. A miner’s chances of mining
a block scale with their relative computing power in the network, but many individual miners have
a minuscule portion of the network’s computing power. If a number of them combine their resources
into a pool, the pool has a higher chance of mining a block overall, so the miners will get paid more
regularly.

Pool managers redistribute the mining rewards to the miners based on their relative computing
power. This can be approximated by having miners submit near hashes — nonces that result in
hashes with slightly fewer zeros than the actual blockchain difficulty.

2.2 SNARKs

Before we introduce SNARKs, we will first define another cryptographic tool known as SNARGs.
A SNARG allows a person to prove to others that some statement is true. The first SNARG system
was introduced by Micali in 2000 [6], then under the name ”Computationally-Sound Proofs”. The
SNARG creator is referred to as the prover and those interested in checking the argument output
by the SNARG are referred to as verifiers. SNARG is an acronym for Succinct, Non-interactive
Argument. We define these terms below.

– Argument: Arguments are similar to proofs in that they convince the verifier that some state-
ment is true. However, they differ in that an argument assumes that the prover is computation-
ally limited while a proof makes no such assumptions. In other words, in an argument system, a
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prover with unbounded computational power would be able to construct a convincing argument
of a false statement. However, in a proof system, this prover would not be able to construct
a convincing proof of a false statement. Although proofs are more theoretically secure, it is
currently unknown if there is a succinct, non-interactive proof system. For the purposes of our
proposal, we can practically assume that an attacker has a limited amount of computation
power, which is already an assumption in the blockchain design we build on.

– Succinct: A succinct argument is an argument requiring at most polylogarithmic space with
respect to the runtime of the program which verifies the argument. This property is important
because it places an upper bound on the size of an individual argument, making it efficient to
communicate over the network.

– Non-interactive: As opposed to interactive arguments which require provers and verifiers to
exchange messages to complete the argument, non-interactive arguments require only a single
message to make the argument. Such arguments do not require verifiers to respond in order
to convince them of the truthfulness of the argument. This construct allows arguments to be
asynchronously checked, and multiple verifiers can independently check an argument after it is
transmitted. Non-interactive arguments are therefore very scalable since it doesn’t require the
prover to stay online to convince multiple verifiers of the truth to its argument.

One might be tempted to assume that if a prover were able to prove a statement, they must
know a value w that is a witness for it. But the properties we naturally associate with SNARGs
provide no such guarantee. To illustrate why that might matter, consider the following, somewhat
artificial, example. Suppose that, for some polynomial p(x), Victor wanted to know that p(x) has
a real root, and that Peggy had provided a SNARG proof of that fact. Victor might be tempted to
believe that this means Peggy (or whoever created the proof) knows one such root. However, Peggy
could have proven this existence without actually knowing any roots (say using Descartes’ rule of
signs), and for some SNARGs, that might be enough for Peggy to create a SNARG proof.

To rectify this, we may use SNARKs: Succinct, Non-interactive Arguments of Knowledge [1].
These are SNARGs with the additional property that in order for a prover to create an argument
of knowledge, they must know the witness. In our example above, if Peggy were to supply an ar-
gument of knowledge to Victor (as opposed to a plain argument), Victor would know (with high
probability) that Peggy knows a real root.

To be more formal, a SNARK tries to prove x ∈ L for a NP language L with a Turing machine
M . x has witness w that x is in L. A simplified definition of a SNARK is a tuple of three algorithms:
(Setup, Prove, Verify) where

– Setup(1λ) → (σ, τ): On input of the security parameter λ, the setup algorithm outputs a
reference string σ and verification state τ ;

– Prove(σ, y, w) → π: On input of the reference string σ, statement y = (M,x) and witness w,
outputs a proof π;

– Verify(τ, y, π)→ {0, 1}: On input of the verification state τ , statement y, and proof π, outputs
1 if it believes the proof is correct and 0 otherwise.

For a SNARK to be complete, the verifier must always output 1 on correct proofs. For a SNARK
to be sound, the verifier may only output 1 on incorrect proofs with probability negligible in the
security parameter λ. We say that the SNARK is efficient if the proof size and verification time is
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polynomial in y and λ and is polylogarithmic in w.

Finally, in order to satisfy the argument of knowledge requirement (as opposed to the basic
argument requirement), we need to define extractability. For any prover P , we require there exist
an algorithm Ep known as the extractor. Ep takes in y, σ, and any auxiliary input that P used as
inputs and must output a candidate witness w∗. We then require the probability that the proof π
is accepted by the verifier and w∗ is not a NP-witness for y is negligible. We know that Ep gets
the same inputs as the prover. Thus the existence of such an extractor shows that it is possible to
efficiently find a witness w using only information that the prover was provided.

3 Miner incentives

Academic works on incentives in blockchains, particularly in the context of attacks, tend to focus
on risk-neutral, expectation maximizing miners [2] [3] [4]. We argue that the predominance of
pools in real-world operating blockchains suggests this approach is flawed, because manager fees
make pool mining an irrational behavior for participants who focus on maximizing their expected
return. Miners choose to join pools precisely because they are risk-averse and are willing to pay the
manager’s fee and temporarily entrust the manager with their rewards for the benefit of steadier
income.

3.1 Existing Solution to Pooling Centralization

In 2015, Miller et al. [7] proposed Nonoutsourceable Puzzles as a blockchain design tool that aims
doing away with pool mining. Nonoutsourceable Puzzles change the details of the proof of work
mechanism that is used to reward miners on a blockchain in such a way that pooling becomes
impractical: the pool manager, if they don’t want to entrust every pool participant with the private
key that holds the funds collected by the pool, needs to participate in every hashing attempt by a
miner in the pool. Such a strategy scales poorly and essentially lacks the core properties that make
pool mining practical. The use of Nonoutsourceable Puzzles would presumably see mining pools
gone for good in the blockchain that would introduce them. To the best of the author’s knowledge,
Nonoutsourceable puzzles have not been deployed.

3.2 Problems with Nonoutsourceable Puzzles

We argue that the direct removal of mining pools via cryptographic means that make them im-
practical would be undesirable. Mining pools emerge to address a need small miners have to reduce
their variance. While mining may be profitable in expected value, the unpredictability of mining
outcomes makes it a risky venture for miners that cannot reach a hash rate high enough that they
have a steady income stream. The risk associated with mining may discourage small miners from
joining the blockchain ecosystem, thus resulting in increased, not decreased, centralization.

3.3 An incentive-aware approach to Pool removal

We believe it is better to do away with mining pools through game theoretic means. The need of
miners to reduce their risk is legitimate, and the centralization we observe is only an unfortunate
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consequence of the fact that pooling is the only available option for risk-reduction. If we could
provide other means of smoothing miner rewards, for instance, as a blockchain built-in, then the
default risk might be low enough that only the most risk-averse of miners would still be willing to
pay fees to further lower their risk.

4 OCEAN Proposal

The OCEAN proposal builds on and resembles the Bitcoin protocol. To mine a block, a miner will
concatenate a set of transactions, a hash of the previous block, and a nonce. As with Bitcoin, if the
hash of the nonce is less than a certain number (the current difficulty of mining), the miner gets a
block reward and their block is accepted by other miners. Additionally, they receive the transaction
fees for the transactions they include in their block. What differentiates OCEAN from Bitcoin is
that miners may also obtain a reward if the hash of their nonce is not less the current difficulty.

Specifically, suppose the current block reward is B and the current difficulty is k. If a miner
publishes a block with nonce n where Hash(n) has at least k leading zeros, then the miner earns
B plus transaction fees and their block is published in the chain. On the other hand, if Hash(n)
has t leading zeros where t < k, then the miner can include this block in a SNARK. We call such
nonces, near hashes and a block containing a near-hash a near-hashed block. The miner will earn

f(n,B) for this near hash where f(t, B) = B ·
(
2k−t

)−1
. Note that this function only applies to near

hashes. While the function implies that hashes that have more leading zeros than required will be
rewarded greater than B, we cap the reward at B. The SNARK proves that the miner should earn∑
i f(ni, B) for all the near-hashed blocks they included in the SNARK. However, near hashes do

not earn any transaction fees. Transaction fees are only awarded to “fully-hashed” blocks that are
actually included in the blockchain. At some point a miner will publish their SNARK in order to
claim the rewards for their near-hashes. Other miners will then include this SNARK in their set of
transactions to include in blocks. As with regular transactions, the miner may choose to apportion
part of their reward as a transaction fee in order to coax other miners to include their SNARK.

Additionally note that it is useless to the ecosystem for miners to mine on old blocks. However,
a miner may include near hashes for multiple blocks in a single SNARK. Therefore we do not have
a straightforward requirement that blocks included in a SNARK must have a certain freshness. In
fact, at this time, we cannot foresee a reason why a miner would purposefully mine on an old block.
Doing so would cost them the opportunity of earning transaction fees. That being said, one could
devise a method that prevents miners from purposefully mining old blocks. To do this, we could
require a certain distribution on the age of blocks within a SNARK or attenuate the reward by the
block age. The exact method for this prevention is left as an open problem.

Finally, note that in Bitcoin, the block reward is halved every four years. Eventually, the block
reward will become zero. Note that if the block reward in our blockchain becomes zero, there will
be no reward for near hashes. At this point, our blockchain will have no advantage over blockchains
with pools. For that reason, we do not reduce the block reward over time. A consequence of this is
that there is no cap on the total monetary mass of the cryptocurrency with OCEAN, and thus the
cryptocurrency will presumably experience some inflation.
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4.1 Details of the SNARK used in OCEAN

In this section, we provide some details of the SNARK used in OCEAN. At a high level, we want
our SNARK to output a proof that a miner with public key pk deserves a reward of R due to partial
hashes.

To determine how much money the miner is owed, we will need everyone to agree on relevant
blockchain parameters, such as the block reward B and the mining difficulty k. Besides, we will
need to enforce that a miner should not be able to claim the same near hash twice. A component
of our solution to this problem is to require every claim for rewards by a miner to list a pair blocks
(identified by their hashes Zi and Zj) that were published on the blockchain. Then, we require that
all near hashes included in the claim were being mined on top off a block that was a child of the
block identified by Zi and a parent of the block identified by Zj . Finally, require that subsequent
claims by the miner with pair of hashes Zi′ , Zj′ have the block behind Zi′ be a descendant of the
block behind Zj .

An instance x on which the SNARK will operate is defined as a tuple of:

– The claimant’s public key pk∗;

– The reward R (expressed in cryptocurrency units);

– The block reward B;

– The mining difficulty k;

– The block interval on which this claim operates, as represented by a pair of hashes Zi, Zj .

Given such an instance, a miner will seek to prove a statement y = (M,x), which can be
described as follows: there exists a list of blocks {Xi} such that the concatenation of the following
NP statements holds:

– The {Xi} are pairwise distinct;

– The public key pki that would have received the block reward on block Xi verifies pki = pk∗,
for all i;

– The hashes of each Xi have at least ki leading zeros, and R =
∑
i f(ki, B);

– The blocks {Xi} were all mined on blocks that were descendants of a block behind Zi and
parents of a block behind Zj .

The SNARK will take the following auxiliary information from the miner as the witness w:

– The information for each block Xi that the miner wants to claim near-hashes for. This includes
a set of transaction Ti, a hash of a previous block hi, a nonce ni, and a public key pki. Note
that by public key pki we denote the public key in the generation transaction;

– The information of other blocks Zj on the main chain as detailed below.

Note that we assumed above that the difficulty level is fixed for the portion of the main chain on
which the claim operates. If this were not true, the instance would need to include a difficulty level
for each block. Additionally, the claim would need to specify this difficulty level for each block since
a verifier would need to verify the miner used the correct difficulty levels.
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Since the output of the SNARK is an argument of knowledge, we know that the miner which
submits the argument must know all the information in w.1 Specifically, they know the nonces {ni}
for the near-hashes of blocks {Xi} and the SNARK proves that pk∗ = pki for all i where pki is the
public key associated with block Xi. Thus we know that the miner with public key pk must have
mined the blocks {Xi}.

In order to prove that the blocks Xi were mined on the main chain, we need a connected portion
of the block chain. For example, assume that the blockchain currently looks as such:

· · ·Z5→Z6→Z7→Z8→Z9→· · ·
↘ ↘ ↘
X6 X8 X10

Where the sequence of Zi denotes the main blockchain hashes and the Xi denote the miner’s near-
hashed blocks. To prove that the miner tried to mine on the main blocks, the miner will input the
blocks Z5 through Z9 into the SNARK. That way, the SNARK can first check that Z5 through Z9

are consistent (i.e. Zi+1 contains the hash of Zi) and that Xi+1 was mined on top of Zi. The proof
that is output does not need to explicitly contain information of all the blocks in this connected
portion. It only needs to contain the hashes of Z5 and Z9. This makes the proof size constant in the
length of the connected portion yet still allows others to know that the miner has not submitted
proofs whose intervals intersect with this proof’s interval. That is to say, the miner has not previ-
ously submitted a proof on block interval (Yi, Yj) where Yj ≥ Zi.

To summarize, the SNARK will output a proof of the following instance: “A miner with address
pk mined near-hashed blocks on top of a subchain starting with Zi and ending with Zj , the difficulty
level was k and the block reward was B, and they deserve a reward of R.” Any person given this
SNARK proof would just need to verify that Zi and Zj are on the main blockchain and that B and
k are correct.

5 Open Problems

The OCEAN Proposal significantly changes the way miners are rewarded in Nakamoto consensus,
and these changes have implications for a number of aspects of blockchain design, not all of which
were addressed in this proposal. We list a number of open problems:

– In OCEAN, we focused on hashes that have less zeroes than the target difficulty, rewarding
them less that full hashes, by a factor depending on how far away they are from a full hash.
It would be interesting to consider what happens when hashes that get more zeroes that the
target are made to yield a larger reward as they get more and more zeroes.

– OCEAN, as described, requires the blockchain to constantly mint more cryptocurrency to en-
sure small miners, who don’t have access to transaction fees, get rewarded. While an important
selling point of Bitcoin was the fact that its total supply is fixed, we believe having a stati-
cally predictable amount of currency creation could be a reasonable price to pay if it enables
stronger decentralization guarantees. How to make OCEAN work without constantly inflating
the currency is an interesting research direction.

1 Note that this is true since mining is known to be exponentially hard (as a function of the difficulty
parameter, in the random oracle model). If mining were easy, the extractor could find the nonces itself
in polynomial time and figure out the witness, and extractability would not get us anything.
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– A related issue is that of block delays. Implicitly, OCEAN, uses the traditional blockchain mech-
anism to ensure blocks are somewhat evenly distributed in time, by looking at the timestamps
of full blocks. This could expose OCEAN to the type of attacks described in [3]. These attacks
have pools sabotaging other pools by participating in them but not submitting full hashes. As
OCEAN is in a sense a Blockchain-scale pool, miners might benefit from not submitting some
of their full hashes if that lowers the difficulty and increases the amount of cryptocurrency
they receive from near hashes. Those attacks have not been observed in practice on traditional
blockchains, presumably because they are based on risk-neutral models of miner behavior which
do not accurately represent the participants’ incentives.

– Finally, an important feature of OCEAN is the addition of a special type of transactions that are
SNARG publishing redeem claims. Those claims use some of the block’s space, and a key issue
for OCEAN will the share of its block space that it will use up, and what that leaves for regular
transactions. We stress that we do not believe this will be too significant of an issue as current
blockchains already have a large fraction of their space used for the purpose of rewarding pool
miners, although it is currently done via standard transactions created by the pool manager.
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