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Abstract. In the standard definition of a commitment scheme, the
sender commits to a message and immediately sends the commitment to
the recipient interested in it. However the sender may not always know
at the time of commitment who will become interested in it. Further,
when the interested party does emerge, it could be critical to establish
when the commitment was made. Employing a proof of work protocol
at commitment time will later allow anyone to “carbon date” when the
commitment was made, approximately, without trusting any external
parties. We present CommitCoin, an instantiation of this approach that
harnesses the existing computational power of the Bitcoin peer-to-peer
network; a network used to mint and trade digital cash.

1 Introductory Remarks

Consider the scenario where Alice makes a discovery. It is important to her that
she receives recognition for her breakthrough, however she would also like to
keep it a secret until she can establish a suitable infrastructure for monetizing
it. By forgoing publication of her discovery, she risks Bob independently making
the same discovery and publicizing it as his own.

Folklore suggests that Alice might mail herself a copy of her discovery and
leave the letter sealed, with the postal service’s timestamp intact, for a later
resolution time. If Bob later claims the same discovery, the envelope can be
produced and opened. In reality, this approach does not work as (among other
shortcomings) most postal services are pleased to timestamp and deliver unsealed
empty envelopes that can be retroactively stuffed with “discoveries.”

In our approach, Alice will use a commitment scheme to put the discovery in
a “digital envelope” which can be opened at some later time, but only by Alice.
Alice can safely disclose the commitment value to anyone, but she does not know
ahead of time that Bob will rediscover her breakthrough. Alice might attempt to
reach Bob by broadcasting the commitment value to as many people as possible
or she might have a trusted/distributed third party timestamp it, however she
is neither guaranteed to reach Bob, nor choose a party that Bob will trust.
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Instead we show that Alice can produce a commitment and later convince Bob
that the commitment was made at roughly the correct time, premised on the
assumption that she does not have unusual computational power. We call this
“carbon dating.” We show a general approach to carbon dating using moderately
hard puzzles and then propose a specific instantiation. CommitCoin harnesses
the existing processing power of the Bitcoin network without trusting it, and is
designed to leave the commitment value evident in the public Bitcoin transcript
in a way that does not destroy currency. We use CommitCoin to augment the
verifiability of a real-world election.

2 Preliminaries and Related Work

Commitment Schemes. Briefly, Comm(m, r) takes message m and randomness
r and produces commitment c. Open(c,m, r) takes the commitment and pur-
ported message and returns accept iff c is a valid commitment to m. Commit-
ments should be binding and hiding. Respectively, it should be hard to find any
〈m1,m2, r〉 where m1 �= m2 such that Open(Comm(m1, r),m2, r) accepts, and it
should be hard to find any 〈m, r〉 given c such that Open(c,m, r) accepts.

Secure Time-Stamping. Secure time-stamping [18] is a protocol for preserving
the chronological order of events. Generally, messages are inserted into a hash
chain to ensure their relative temporal ordering is preserved under knowledge
of any subsequent value in the chain. The chain is constructed by a distributed
time-stamping service (TSS) and values are broadcast to interested participants.
Messages are typically batched into a group, using a hash tree [4,3,7,27] or an
accumulator [5], before insertion in the chain. Time-stamping is a mature field
with standardization1 and commercial implementations.

A secure timeline is a “tamper-evident, temporally-ordered, append-only se-
quence” of events [24]. If an event Eti occurs at time ti, a secure timeline can
only establish that it was inserted after Eti−1 was inserted and before Eti+1 was.
To determine ti by consulting the chain, one must either trust the TSS to vouch
for the correct time, or, to partially decide, trust a recipient of a subsequent
value in the chain to vouch for when that value was received (if at tj , we can
establish ti < tj). However should conflicting values emerge, implying different
hash chains, there is no inherent way to resolve which chain is correct beyond
consensus.

Non-Interactive Time-Stamping. An approach closely related to carbon dating
is non-interactive time-stamping [25]. In such a scheme, stampers are not required
to send any message at stamping time. The proposed scheme is in the bounded
storage model. At each time interval, a long random bitstring is broadcast to all
parties. Stampers store a subset that is functionally dependent on the message
they are time-stamping. Verifiers also captured their own subset, called a sketch,
at every time interval. This allows verification of the timestamp by anyone who
1 ISO IEC 18014-3; IETF RFC 3161; ANSI ASC X9.95.
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is participating in the protocol, but not by a party external to the protocol. By
contrast, our notion of carbon dating allows verification by anyone but is not
necessarily non-interactive.

Proof of Work. The literature considers applications of moderately hard func-
tions or puzzles that take a certain amount of computational resources to solve.
These are variably called pricing [14], timing [15], delaying [17], or cost [16,2] func-
tions; and time-lock [29,6,22] or client [20,1,12,32,33,13,31,10,30] puzzles. Proof
of work is sometimes used as an umbrella term [19]. Among other applications,
proof of work can be used to deter junk email [14,16] and denial of service at-
tacks [20,12,2,32,33], construct time-release encryption and commitments [29,6],
and mint coins in digital currencies [28,2,26].

We consider proof of work as three functions: 〈Gen, Solve,Verify〉. The gener-
ate function p = Gen(d, r) takes difficulty parameter d and randomness r and
generates puzzle p. The solve function s = Solve(p) generates solution s from p.
Solve is a moderately hard function to compute, where d provides an expecta-
tion on the number of CPU instructions or memory accesses needed to evaluate
Solve. Finally, verification Verify(p, s) accepts iff s is a correct solution to p.

Time-Stamping & Proof of Work. Bitcoin is a peer-to-peer digital currency
that uses secure time-stamping to maintain a public transcript of every transac-
tion [26]. However new events (groups of transactions) are appended to the hash
chain only if they include the solution to a moderately hard puzzle generated
non-interactively from the previous addition. Peers compete to solve each puzzle
and the solver is awarded newly minted coins. A secure timeline with proof of
work provides a mechanism to both limit the creation of new currency and to
make it computationally difficult to change a past event and then catch up to
the length of the original chain (peers accept the longest chain as canonical).

3 Commitments with Carbon Dating

A protocol for carbon dating commitments is provided in Protocol 1. It is a
natural application of proof of work protocols but one that does not seem to have
been specifically noted in the literature before.2 Alice commits to a message m
and instantiates a puzzle p based on the commitment value c that will take, on
expectation, Δt units of time to solve. Alice begins solving p. Should a new party,
Bob, become interested in when c was committed to, Alice will later produce
the solution s. When given s, Bob concludes that p, and thus c, were created
Δt time units before the present time. Since p will not take exactly Δt to solve,
there is some variance in the implied instantiation time. We consider the case
where Bob is only interested in whether the commitment was made well before
a specific time of interest, which we call the pivot time.

If useful, a few extensions to Protocol 1 are possible. It should be apparent
that carbon dating can be used for any type of sufficiently random message
2 Concurrent to the review of this work, it is independently proposed and studied [23].
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PROTOCOL 1 (Commitments with Carbon Dating)

Input: Alice has message m at t1.
Output: Bob decides if m was known by Alice prior to pivot time t2.
The protocol:
1. Pre-instantiation: At t0, Alice commits to m with randomness r by com-

puting c = Comm(m, r). She then generates puzzle based on c with diffi-
culty d (such that the time to solve it is approximately Δt) by computing
p = Gen(d, c). She outputs 〈c, p〉.

2. Instantiation: At t1, Alice begins computing s = Solve(p).
3. Resolution: At t3 = t1 + Δt, Alice completes s = Solve(p) and outputs

〈s,m, r〉. Bob checks that both Verify(s,Gen(d, c)) and Open(c,m, r) accept.

If so, Bob decides if t3 −Δt
?� t2

(e.g., plaintexts, ciphertexts, signatures, etc.) by replacing c in Gen(d, c) with the
message. Second, the commitment can be guaranteed to have been made after a
given time by, e.g., including recent financial data in the puzzle instantiation [11].
Finally, the resolution period can be extended by instantiating a new puzzle with
the solution to the current puzzle (assuming the puzzles are entropy-preserving;
see [17] for a definition of this property).3

3.1 Puzzle Properties

For carbon dating, we require the proof of work puzzle to have specific properties.
Consider two representative proof of work puzzles from the literature (and recall
c is the commitment value and d is a difficulty parameter). The first puzzle
(Prs), based on repeated squaring, is to compute Solve(d, c,N) = c2

d

mod N
where N = q1q2 for unknown large primes q1 and q2, and 2d � N [29,6,21]. The
second puzzle (Ph), based on hash preimages, is to find an x such that y = H(c, x)
has d leading zeros (where H is a cryptographic hash function)4 [16,1,2,26]. We
contrast the properties of Prs and Ph with the properties of an ideal puzzle scheme
for carbon dating (Pcd).

Pcd should be moderately hard given a sufficiently random c as a parameter.
Prs requires d modular multiplications and Ph requires 2d−1 hashes on average.
Neither precomputation, amortizing the cost of solving many puzzles, or par-
allelization should be useful for solving Pcd. Parallelization is useful in solving
Ph, while Prs is by design inherently sequential. Verify in Pcd should be efficient for

3 It may be preferable to solve a chain of short puzzles, rather than a single long
puzzle, to allow (by the law of large numbers) the average solution time to converge
and to reduce the amount of time Bob must wait for the solution.

4 Let H : {0, 1}∗ → {0, 1}m. Then for d ≤ m, find any x such that y ∈
({0}d‖{0, 1}m−d).
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anyone. This is the case in Ph but not Prs, where efficient verification requires
knowing the factorization of N ,5 making Prs useful only when the puzzle creator
and solver are different parties.6 When surveying the literature, we found that
like Prs and Ph, each type of puzzle is either parallelizable or only verifiable by
the puzzle creator. Designing a non-interactive, non-parallelizable puzzle appears
to be an open problem.

Finally, we require a few properties specific to our scheme. It should be hard to
choose c such that the puzzle is not moderately hard. Given s = Solve(Gen(d, c))
and s′ = Solve(Gen(d, c′)), it should be hard to find any pair of puzzles such that
s = s′. Further, it should not be efficient to convert 〈s, c〉 into 〈s′, c′〉.

3.2 Limitations

Aside from a good candidate for Pcd, the primary limitation to Protocol 1 is
that the implied instantiation time is fuzzy. Carbon dating is best when the
ratio between instantiation-to-pivot and pivot-to-resolution is maximized but the
timing of the pivot is often unknowable. Another limitation is that Alice could
commit to many different messages but only claim one. This excludes carbon
dating (and non-interactive time-stamping) from, e.g., predicting election results
or game outcomes. Generally, the scheme only works for accepting a committed
message from an exponentially large set. A final limitation is that Alice must
devote a CPU to solely solving the problem for a long period of time. We address
this last limitation with CommitCoin, and then latter provide an example where
the first two limitations are not as applicable.

4 Carbon Dating with Bitcoin

Bitcoin is a peer-to-peer digital currency. A simplification of the scheme is as
follows. Participants are identified by a public signing key. A transaction includes
a sender, receiver, and amount to be transferred (units of bitcoins are denoted
BTC), and it is digitally signed by the sender and broadcast to the network.
Transactions are batched together (into a “block”) and then appended to a hash
chain (“block chain”) by solving the Ph hash puzzle on the block (d = 53 bits
currently). The first node to broadcast a solution is awarded newly minted coins
(currently 50 BTC) plus any transaction fees (currently optional). At the time of
writing, one large Bitcoin mining pool, Deepbit, reports being able to compute 242
hashes/second, while the network solves a puzzle on average every 10 minutes.7

5 The totient of N serves as a trapdoor: compute δ = 2d mod φ(N) and then
s = cδ mod N .

6 Alice could use Ph with the smallest unfactored N from the RSA challenges. Assum-
ing continued interest in factoring these numbers, Alice’s solution will eventually be
verifiable. However she risks (a) it being factored before she solves the puzzle or (b)
it never being factored at all. It also assumes non-collusion between Alice and RSA
(assuming they know the factors).

7 http://deepbit.net; http://blockexplorer.com/q/interval

http://deepbit.net
http://blockexplorer.com/q/interval
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PROTOCOL 2 (CommitCoin)

Input: Alice has message m, key pair 〈sk, pk〉 associated with a Bitcoin account.
Without loss of generality the account has a balance of >2 BTC.
Output: The Bitcoin block chain visibly containing the commitment to m.
The protocol:
1. Pre-instantiation: At t0, Alice does the following:

(a) Alice commits to m with randomness r by computing c = Comm(m,r).
(b) Alice generates new temporary key pair 〈sk′, pk′〉 with sk′ = c.

2. Instantiation: At t1, Alice does the following:
(a) Alice generates transaction τ1 = 〈pk → pk′, 2〉 to send 2 BTC from pk

to pk′ and signs it with randomness ρ: σ1 = Signsk(τ1, ρ). She outputs
〈τ1, σ1〉 to the Bitcoin network.

(b) Alice generates transaction τ2 = 〈pk′ → pk, 1〉 to send 1 BTC from pk′

back to pk and signs it with randomness ρ′: σ2 = Signsk′(τ2, ρ
′). She

outputs 〈τ2, σ2〉 to the Bitcoin network.
3. Tag & Open: At t2, after τ1 and τ2 have been finalized, Alice generates

transaction τ3 = 〈pk′ → pk, 1〉 to send the remaining 1 BTC from pk′ back to
pk and signs it with the same randomness ρ′: σ3 = Signsk′(τ3, ρ

′). She outputs
〈τ3, σ3〉 to the Bitcoin network.

4. Extraction: At t3, Bob can recover c by extracting sk′ from σ2 and σ3.

Remark: For simplicity we do not consider transaction fees.

4.1 CommitCoin Protocol

If Alice can put her commitment value into a Bitcoin transaction, it will be
included in the chain of puzzles and the network will provide carbon dating
without Alice having to perform the computation herself. Bob only has to trust
that Alice cannot produce a fraudulent block chain, longer than the canonical
one and in less time. This idea has been considered on the Bitcointalk message
board8in the context of the distributed network vouching for the timestamp.
Our observation is that even if you do not trust the timestamp or any node in
the network, the proof of work itself can be used to carbon date the transaction
(and thus commitment value).

In a Bitcoin transaction, Alice has control over several parameters including
her private key(s), her public key(s), and the randomness used in the signature
algorithm which, importantly, is ECDSA. If she sets the receiver’s public key9to
be her commitment value c and sends 1 BTC to it, the 1 BTC will be unrecov-
erable (akin to burning money). We consider this undesirable for two reasons:
(a) it is financially wasteful for Alice and (b) it is not being a good citizen of the
Bitcoin community.

8 http://goo.gl/fBNnA
9 Technically, it is a fingerprint of the public key.

http://goo.gl/fBNnA
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By setting c equal to a private key or the signature randomness and following
the protocol, c itself will never directly appear in the transcript. To get around
this, Alice sets c to the private key of a new account and then purposely leaks
the value of the private key by signing two different transactions with the same
randomness. The CommitCoin protocol is given in Protocol 2. Since c is random-
ized, it has sufficient entropy to function (temporarily) as a secret key. A few
bits of the secret key could be used as a pointer (e.g., URL) to a place to post
the opening of the commitment.

4.2 Implementation and Use with Scantegrity

An interesting application of carbon dating is in end-to-end verifiable (E2E)
elections. Scantegrity is an election system where the correctness of the tally can
proven unconditionally [9], however this soundness relies, in part, on commit-
ments made prior to the election. If a corrupt election authority changed the
pre-election commitments after the election without being noticed, an incorrect
tally could be made to verify. It is natural to assume that many people may only
become interested in verifying an election after it is complete. Since the pivot
(election day) is known, the commitments can be made well in advance, reducing
the uncertainty of the carbon dating protocol. Moreover, owing to the design of
Scantegrity, invalid commitments will only validate negligibly, ruling out precom-
mitting to many possible values as an attack. Scantegrity was used in the 2011
municipal election in Takoma Park, MD (for a second time [8]) and CommitCoin
was used to provide carbon dating of the pre-election commitments.10
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