
Evaluating the Red Belly Blockchain
Tyler Crain

University of Sydney
tyler.crain@sydney.edu.au

Christopher Natoli
University of Sydney

christopher.natoli@sydney.edu.au

Vincent Gramoli
University of Sydney

Data61-CSIRO
vincent.gramoli@sydney.edu.au

Abstract
In this paper, we present themost extensive evaluation of blockchain
system to date. To achieve scalability across servers in more than 10
countries located on 4 different continents, we drastically revisited
Byzantine fault tolerant blockchains and verification of signatures.
The resulting blockchain, called the Red Belly Blockchain (RBBC),
commits more than a hundred thousand transactions issued by
permissionless nodes. These transactions are grouped into blocks
within few seconds through a partially synchronous consensus run
by permissioned nodes. It prevents double spending by guarantee-
ing that a unique block is decided at any given index of the chain
in a deterministic way by all participants.

We compared the performance of RBBC against traditional Byzan-
tine fault tolerant alternatives and more recent randomized so-
lutions. In the same geo-distributed environment with low-end
machines, we noticed two interesting comparisons: (i) the RBBC
throughput scales to hundreds of machines whereas the classic 3-
step leader-based BFT statemachine used by consortium blockchains
cannot scale to 40 identically configured nodes; (ii) RBBC guaran-
tees transaction finality in 3 seconds and experiences a third of
the latency that randomized-based solutions like HoneyBadgerBFT
can offer. This empirical evaluation demonstrates that blockchain
scalability can be achieved without sacrificing security.

1 Introduction
Blockchain systems [31] aim at implementing a Byzantine
fault tolerant replicated state machine (RSM) by totally order-
ing blocks or sets of transactions that are issued by requesters.
Various replicated state machines have been proposed over
the last decades to coordinate servers, but they typically
apply to a small set of replicas. By contrast, blockchains
aim at offering a peer-to-peer model where many geodis-
tributed participants replicate the information and where
many requesters can check their balance and issue crypto-
graphically signed transactions. Permissioned (resp. permis-
sionless) blockchains allow a pre-determined set of nodes
(resp. all nodes) to be the deciders of new transaction blocks.
The limitations of existing blockchains, be they permissioned
or permissionless, are their performance: the verification of
all transactions is computationally intensive while reaching
consensus is communication intensive.

In this paper, we evaluate a fast blockchain called the Red
Belly Blockchain (RBBC)1 that is deterministic and does not
assume synchrony. RBBC offers a new sharding method that
assigns, for each group of transactions, distinct groups of

1“Red belly” is inspired by the name of a snake endemic to Sydney.

proposer and verifier nodes. (i) The sharding of proposers
balances the communication load on multiple nodes, hence
avoiding the congestion and slowdown induced by the least
responsive node. As opposed to practical Byzantine consen-
sus protocols that traditionally rely on a leader to propose
a set of transactions, RBBC’s multiple proposers combine
distinct sets of transactions into a super block to commit
more transactions per consensus instance. (ii) The shard-
ing of verifiers balances the computation load on different
verifiers. As opposed to existing blockchains whose nodes
typically verify the same transactions, each of our transac-
tion signature is verified by at least t + 1 and at most 2t + 1
verifiers (where t is the maximum number of faulty nodes).

We conducted the most extensive evaluation of blockchain
to date by evaluating (i) the peak throughput with the large
bandwidth offered by hundreds of high end machines in a
single data center, (ii) as compared to classic and random-
ized Byzantine tolerant blockchains, (iii) when attacked by
a coalition of maliciously behaving machines and (iv) when
deployed on low-end machines over 4 continents around
the world. While well-documented blockchain experiments
already involved a large number of virtual machines [19, 25],
they typically spawn consensus participants in the same
country, if not the same datacenter to make sure that mes-
sage delays remain as low as possible.

Other blockchains even require that all message delays are
lower than a bound imposed by the algorithm, an assumption
called synchrony [19, 31, 39], which can be difficult to achieve
in practice and may be exploited to double spend [17, 32].
Some blockchain components that avoid the synchrony as-
sumption cannot verify transaction signatures [34], allowing
someone to withdraw from someone else’s account. Ran-
domized alternatives that terminate with high probability
may require additional messages to implement a common
coin [28] that all participants can use. Until now, purely
Byzantine fault tolerant blockchains have been notoriously
unscalable [38], often reaching their peak throughput with 4
nodes [10, 34], hence tolerating at most one failure to maxi-
mize performance. This even led companies to recently trade
security for crash fault tolerance [3].
For the sake of security, RBBC features the non Turing

complete scripting language and the unspent transaction
output (UTXO) model from Bitcoin [31]. Each transaction is
cryptographically signed and verified using Elliptic Curve
Digital Signature Algorithm (ECDSA) keys. In contrast with
Bitcoin, transactions are only verified by sufficiently many

ar
X

iv
:1

81
2.

11
74

7v
1

 [
cs

.C
R

]
 3

1
D

ec
 2

01
8

verifiers to cope with t Byzantine nodes. The underlying
consensus protocol run by n nodes is especially designed to
run in a blockchain over the Internet [15]. It is time optimal,
resilience optimal in that it tolerates t < n

3 Byzantine nodes,
and runs in a partially synchronous network. To evaluate the
performance of RBBC, we deployed it on up to 1000 nodes on
up to 14 datacenters in 4 different continents. For most work-
loads, we tested the performance of RBBC across continents
and observed tens of thousands of transactions committed
per second. The performance of our system peaks at 660,000
transactions per second, when run on 260 machines in a
single datacenter with a low fault tolerance parameter t .
As cryptography is necessary but not sufficient to guar-

antee the security of a blockchain system, we evaluate the
robustness of RBBC by implementing Byzantine attacks and
assessing empirically the behavior of RBBC. In a distributed
system, the misbehavior of some machines, that could be due
to a simple misconfiguration, may affect the result of the en-
tire computation, like the consensus decision. To observe the
robustness of RBBC, we implemented alternative Red Belly
Blockchain programs flipping the bits that they should send
to slow down the consensus execution and sending wrong
information to delay the broadcast of the information among
correct nodes. We deployed these intentionally misbehaving
codes and observed the Byzantine fault tolerance of RBBC
and the impact on performance these misbehaviors could
cause.
Finally, we compared the RBBC against a classic leader-

based BFT [8, 11, 21] protocol and HoneyBadgerBFT [28].
The results indicate a latency among the lowest but signif-
icantly higher throughput. More specifically, in the same
settings the throughput of RBBC peaks at hundreds of ma-
chines where the traditional Byzantine fault tolerant solu-
tions would not scale to 40 machines and the latency of RBBC
is a third of the HoneyBadgerBFT randomized alternative.
We start with the background on other blockchain sys-

tems (§2) and present the design decision of the Red Belly
Blockchain (§3). We then describe the settings of our exper-
iments (§4). We compare the Red Belly Blockchain to both
leader-based and randomized blockchains when deployed
on geo-distributed machines and illustrate the performance
gained from its transaction signature verification and its
proposal combination to decide large blocks (§5). We then
evaluate the security of the Red Belly Blockchain by run-
ning Byzantine attacks and observing its resilience and how
it maintains performance (§6). Finally, we present the per-
formance on a thousand of virtual machines (§7) and we
conclude (§8).

2 Background
Byzantine Fault Tolerance (BFT) requires a number of mes-
sages per consensus instance that grows quadratically with
the number of nodes. Most previous work on Byzantine-fault
tolerant blockchains [8, 21, 34] would solve the traditional

Byzantine consensus problem [24], deciding only one pro-
posed value, regardless of the number of participants [4, 5, 8,
11, 27]. Due to this scalability limitation [10, 34, 37], we see
various blockchain proposals reverting to a crash tolerant
model to tolerate more but simpler failures, like Hyperledger
Fabric [3]. Not tolerating Byzantine failures confines these
blockchains to secure networks that are protected from in-
trusions by other means.

For the sake of scalability, one can instead solve a variant
of the consensus problem that allows to combine propos-
als into a decision [7, 15, 33]. Extra care is however needed
before one can apply solutions to these problems to decide
a “super” block combining multiple proposed blocks. For
example, the related problems of Agreement on a Core Set or
Asynchronous Common Subset (ACS) [7], Interactive Con-
sistency (IC) [24] and Vector Consensus (VC) [33] require
either n − t or t + 1 (at least t + 1 as n > 3t) proposed values
to be decided. In blockchain, however, there may not even
be t + 1 compatible proposed blocks. This incompatibility
arises when at least one transaction per block is not cor-
rectly signed or transactions of two distinct blocks conflict.
Accepting to commit these invalid transactions could limit
fairness and introduce starvation, yet at proposal time even
correct proposers cannot anticipate these conflicts. Instead
of trying to decide a minimal number of proposed blocks,
RBBC propose sets of transactions and decides on a new
block whose transactions are the union of correctly signed
and non-conflicting proposed transactions.

Many blockchains [1, 19, 22, 25, 31, 39] assume synchrony.
The drawback is that if the messages experience an un-
foreseen delay, then the blockchain guarantees are violated.
These delays can for example be exploited in proof-of-work
blockchains [31, 39] to double spend [32]. To avoid incen-
tivizing all nodes to generate a proof-of-work that waste
CPU resources, alternative proof-of-* models were proposed.
Algorand [19] uses randomization to restrict the task of de-
ciding a block to a small subset. Elastico [25] proposes a
sharded consensus partitioned into sub-committees to run
fast but more consensus instances. By contrast, the RBBC
sharding only applies to verifiers and proposers of a single
instance, which gives a low latency and a high throughput.
Recent blockchains try to avoid the synchrony assump-

tions [3, 21, 28, 34]. The HoneyBadger Byzantine Fault Toler-
ance (HBBFT) [28] aims at solving ASC by building upon an
asynchronous binary Byzantine consensus algorithm [29]
that is probabilistic and assumes a fair scheduler [30]. As
we show in §5, even with a fair scheduler HBBFT is too
costly for RBBC to build upon it because it requires a binary
consensus [29] that requires a common coin. Some alterna-
tives relax this fair scheduler assumption but they require
more messages, which risks to increase the overhead [30].
To avoid both randomization and synchrony, various solu-
tions [5, 8, 11, 12, 18, 23, 26] assume partial synchrony [16].

2

Unfortunately, they all rely on a leader or a primary to pro-
pose to others and follow a three-step execution pattern that
offers low latency but whose throughput cannot scale. The
lack of scalability of this pattern was experimented in §4.
Recent blockchains, like Tendermint [21] achieve secu-

rity by building upon these BFT protocols. As they all in-
herit the same execution pattern, they all decide only one
of the proposed set of transactions and do not scale to tens
of nodes [10, 34, 37]. A Byzantine fault tolerant ordering
service was tested for Hyperledger Fabric, however, its best
performance was achieved with n = 4 nodes [34]. Hyper-
ledger Fabric finally reverted to a crash fault tolerance ver-
sion [3] to try to scale to a larger network. Despite the lack of
Byzantine fault tolerance, its consensus was only evaluated
across two data centres [3]. By contrast, RBBC features a
Democratic BFT (DBFT) that extends a Byzantine consensus
algorithm [15] by creating a super block resulting from mul-
tiple proposed sets of transactions. The reason for choosing
this consensus algorithm is that it does not follow the com-
mon leader-based pattern that has costly recoveries in the
case of faulty or slow leaders [4, 9, 13].
Despite these differences, RBBC combines many of the

optimizations proposed in the aforementioned BFT literature.
Its leaderless DBFT algorithm stems from a provably cor-
rect algorithm [15], its concurrent implementation leverages
multicores similar to BFT-Smart [8]. It generalises the n pro-
posers of HoneyBadger BFT to any number [28]. In addition,
RBBC could potentially benefit from other BFT optimiza-
tions. Some proposals [34] allow temporary inconsistencies
and transaction rollback. Other proposals rely on trusted
components [6, 26, 35]. In particular, RAM [26] suggests to
use the Attested Append-Only Memory (A2M) [12] trusted
service to scale, however, we are not aware of any implemen-
tation. Steward [2] organizes consensus into a hierarchy to
scale to wide area networks and offers tens of updates per
second on an emulated wide area network. RBBC extends
this related work through the implementation of a replicated
state machine tailored for blockchain.

3 The Design of the Red Belly Blockchain
The Red Belly Blockchain was initially presented at MIT in
July 2017 where a first version of the system could achieve
440,000 transactions per second on 100 machines. The per-
formance was optimized and shown to achieve 660,000 trans-
actions per second on 300 machines at Facebook and Visa
Research in October 2017 as we explain in this paper. The
details of these presentations are available online [20].
In short, the Red Belly Blockchain is a community

blockchain [36] with a dynamic set of consensus partici-
pants or proposers whose public keys are listed in a configu-
ration block. These proposers receive from permissionless
clients some balance, subscription and transaction requests.
Proposers can answer balance requests based on the infor-
mation they have about the current state of the blockchain

and they keep a list of subcribers to send them updates about
the balance of all accounts. Both proposers and subscribers
are called replicas as they maintain a copy of the state of the
blockchain either as the full blockchain or as a UTXO table.
Proposers store transactions in a memory pool or mempool
before proposing them to some consensus instance. Once a
client receives an identical balance response from t + 1 pro-
posers, it knows the balance of its account. Once the consen-
sus decides upon a combination of the proposed transactions
that are correctly signed and not in conflict, this combination
is wrapped into a block appended to the chain.

3.1 Optimized Democratic BFT
The unprecedented performance of the Red Belly Blockchain
is mainly due to a novel design that relies on a Byzantine
consensus algorithm especially designed for blockchains
and called Democratic Byzantine Fault Tolerance (DBFT) [15]
that does not assume synchrony. Most Byzantine consensus
algorithms predate the blockchain era and were not designed
to scale to a very large number of machines as it is needed
in blockchains.

For this reason, there are few distinctions between DBFT
and classic Byzantine fault tolerant algorithms.
First, DBFT does not rely on a leader to avoid any bottle-

neck effect at large scale. Instead it allows multiple proposers
to propose disjoint sets of transactions that could all be in-
serted in the block decided at the end of the consensus.
Second, DBFT solves the consensus deterministically.

Hence the Red Belly Blockchain never forks, a situation
where multiple blocks are appended at the same index of
the chain and that could be exploited by attackers to double-
spend [32]. In particular, it does neither require a common
coin nor a fair scheduler. The interested reader can access
the detailed proofs in the technical report [14].
To reduce the bandwidth usage of the reliable broadcast

of DBFT [15], we included a SHA256 hash digest of the
message instead of including the full proposal in the echo
and ready messages. To increase throughput we grouped all
valid and non-conflicting transactions obtained at the end of
the consensus to create a new block.

3.2 Sharded Verification
The Red Belly Blockchain also offers other advantages as it
shards the verification of transaction signatures. Traditional
blockchains either require all active participants to verify
the signature of each individual transaction or assume the
presence of trusted verifiers or endorsers. The Red Belly
Blockchain leverages the computational resources of the
participants by spreading the load of verifying transactions
to different subsets of participants but without requiring
trust. It only requires each transaction to be verified by at
least t+1 participants but never more than 2t+1 participants.
The Red Belly Blockchain is a full-fledge blockchain

that supports UTXO transactions signed through Elliptic
3

Curve Digital Signature Algorithm (ECDSA) and verified at
run-time. All communications are encrypted through SSL,
which does not impact performance significantly. It offers a
model of open permissioned blockchain called community
blockchain in that it relies on a dynamic set of participants
whose public key are well identified to run the consensus but
allows permissionless clients to issue transaction and balance
requests. More details on how this community blockchain
bypasses the predetermined set of participants requirement
of consortium blockchain can be found in [36].

The optimized deterministic leader-less DBFT consensus
designed for blockchain and the sharded verification allows
Red Belly Blockchain to be a secure blockchain that does not
fork and whose performance scales with the amount of com-
putational resources coming with hundreds of participants.

4 Experimental Settings
In this section, we evaluate RBBC on up to 1000 machines
on Amazon EC2 located in up to 14 separate regions. To this
end, we compare the performance of (1) RBBC with its shard-
ing and its DBFT consensus. (2) RBBC where we replaced
DBFT by the Honey Badger of BFT protocol (HBBFT) [28],
for which we reused the publicly available cryptographic
operations implementation and (3) RBBC where we re-
placed DBFT by a classic 3-step leader-based BFT algorithm
CONS1 [8, 11, 21].
We run three types of experiments: (i) with up to 300

deciders all deciding and generating the workload, allowing
new proposals to be made as soon as the previous one is
committed (§5 and §6.1); (ii) with requesters running on
nodes separated from the permissioned nodes to measure
their impact on performance and finally (§6.2); (iii) with up
to 1000 nodes all runnings as replicas, some requesting and
some deciding, but all updating their copy of all account
balances (§7).

4.1 Leader-based and randomized BFT
CONS1 is the classic 3-step leader-based Byzantine consen-
sus implementation similar to PBFT [11], the Tendermint
consensus [21], and including the concurrency optimizations
of BFT-Smart [8]. To reduce network consumption CONS1
is implemented using digests in messages that follow the
initial broadcast.
The HoneyBadger Byzantine Fault Tolerance

(HBBFT) [28] aims at solving the ASC problem [7]
by building upon an asynchronous binary Byzantine
consensus algorithm [29] that is probabilistic and assumes a
fair scheduler [30]. To evaluate HBBFT we used the source
code provided by the authors of HBBFT.

Both CONS1 and HBBFT variants make use of a classic ver-
ification, as in traditional blockchain systems [31, 39], that
takes place at every decider upon delivery of the decided
block from consensus. Unless otherwise stated, all nodes be-
have correctly. Apart from the sharded verification of RBBC,

all algorithms run the same code for the state-machine com-
ponent implementing the blockchain. Note that there exist
BFT algorithms that terminate in less message steps than
CONS1, but require additional assumptions like non-faulty
clients [5, 23] or t < n/5 [27]. HBBFT uses a randomized
consensus [29] and reliable broadcast using erasure codes.

4.2 Machine specification
We run the blockchains on the 14 Amazon datacenters that
we had at our disposal at the time of the experiment: North
Virginia, Ohio, North California, Oregon, Canada, Ireland,
Frankfurt, London, Tokyo, Seoul, Singapore, Sydney, Mum-
bai, São Paulo. We tested two different VMs: (1) high-end
c4.8xlarge instances with an Intel Xeon E5-2666 v3 processor
of 18 hyperthreaded cores, 60 GiB RAM and 10Gbps network
performance when run in the same datacenter where stor-
age is backed by Amazon’s Elastic Block Store (EBS) with 4
Gbps dedicated throughput; (2) low-end c4.xlarge instances
with an Intel Xeon E5-2666 v3 processor of 4 vCPUs, 7.5 GiB
RAM, and “moderate” network performance (as defined by
Amazon). Storage is backed by EBS with 750Mbps dedicated
throughput. To limit the bottleneck effect on the leader of
PBFT, we always place the leader in the most central (w.r.t.
latency) region, Oregon. When not specified, proposals con-
tain 10,000 transactions and t is set to the larger integer
strictly lower than n

3 .

5 Comparing geodistributed blockchains
First, we report the performance when running 10 high-end
VMs in each of the 14 regions for a total of 140 machines. At
the time of this experiment Amazon was offering us only 14
availability zones: North Virginia, Ohio, North California,
Oregon, Canada, Ireland, Frankfurt, London, Tokyo, Seoul,
Singapore, Sydney, Mumbai, São Paulo. Each zone contains
10 high-end machines. As depicted on Table 1, we computed
the variation of communication latencies and throughput
between these Amazon EC2 datacenters as measured us-
ing c4.xlarge instances. The minimum latency is 11ms be-
tween London and Ireland, whereas the maximum latency is
332ms observed between Sydney and São Paulo. Bandwidth
between Ohio and Singapore is measured at approximately
64.9 Mbits/s (with variance between 6.5 Mbits/s and 20.4
Mbits/s).

5.1 Impact of verification
To measure the impact of verification on performance, we
varied the parameter t from the minimum to its maximum
value (46 < 140

3) with sharded verification as depicted in
Figure 1 (left) and we compared all three blockchains with
all nodes verifying all transactions (all) and with no veri-
fication (no validation) as depicted in Figure 1 (right). The
peak throughput of 151,000 transactions per second (tx/sec)
is achieved with the fault-tolerance parameter t = 12. When
t ≤ 6, performance is limited by the (t − 1)th slowest node as

4

Tokyo Seoul Mumbai Singa. Sydney Canada Frankfurt Ireland London São P. N.Virg. Ohio N.Cal. Oregon
Tokyo 0 551 129 240 161 106 74 66.4 59 55.4 90.1 96.2 129 132
Seoul 33 0 137 157 141 91.5 54 60.8 54.7 56.6 84.2 114 84.2 116

Mumbai 133 164 0 121 67 90.9 176 178 145 46.7 81.9 80.5 69.1 64.2
Singapore 69 100 67 0 90.9 83.2 90.7 86.1 90.4 40.8 59.5 64.9 80.5 77.3
Sydney 106 135 235 170 0 77.1 61.3 53.8 51.2 40.2 74.9 99.7 135 119
Canada 166 185 196 220 225 0 166 250 164 159 808 760 205 168
Frankfurt 244 275 112 178 292 102 0 477 823 92.9 222 220 144 85.7
Ireland 226 246 122 188 286 78 25 0 829 114 185 183 104 117
London 255 284 111 179 281 90 15 12 0 107 190 195 107 85.5
São Paulo 271 293 302 328 332 125 210 184 192 0 131 124 77.7 81.7
N. Virginia 162 209 182 238 205 15 89 85 76 122 0 827 232 186

Ohio 169 199 193 227 196 25 99 91 87 131 13 0 428 219
N. California 120 150 262 178 148 76 148 142 138 182 64 52 0 681

Oregon 105 135 235 163 162 66 164 141 158 183 76 71 22 0

Table 1. Heatmap of the bandwidth (Mbps) in the top right triangle and latency (ms) in the bottom left triangle between the
14 regions of Amazon Web Services, as used in our experiments

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 6 12 24 46

T
h

ro
u

g
h

p
u

t
(t

h
o

u
sa

n
d

 t
x
/s

e
c
)

Value of t

RBBC

 1

 10

 100

All None

All or no verifications

CONS1 HBBFT

Figure 1. Impact of fault tolerance and verification on the
RBBC throughput when n = 140 geodistributed machines

the consensus waits for a higher number of n − t proposers.
When t ≥ 24, performance is then limited by the growing
number of t + 1 necessary verifications. In Figure 1 (right),
the performance of all algorithms is higher without verifi-
cation than with full verification. RBBC is the most affected
dropping from 219,000 tx/sec to 33,000 tx/sec while HBBFT
and CONS1 throughputs drop less but from a lower peak. As
we will show in §5.2 and §5.3, there are factors other than
verification that have a larger impact on these algorithms.

5.2 Combining proposals
Figure 2 explored the effect of deciding the unions of pro-
posals when running the blockchain. CONS1 has the low-
est latency because in all executions the leader acts cor-
rectly, allowing it to terminate in only 3 message delays,
where RBBC with DBFT requires 4 message delays. Proba-
bly due to its inherent concurrency, RBBC offers the best
latency/throughput tradeoff: at 1000ms latency, RBBC of-
fers 12,100 tx/sec whereas at 1750ms latency, CONS1 offers
only 5800 tx/sec. Finally, the blockchain with HBBFT has the
worst performance for several reasons: HBBFT relies on a
consensus algorithm [29] whose termination is randomized
and it uses erasure codes: the computation time needed for
performing reliable broadcast using erasure codes on a single
node with a proposal size of 1000 transactions takes over

 0.001

 0.01

 0.1

 1

 10

 100

1 10 100 1000 10000

T
h

ro
u

g
h

p
u

t
(t

h
o

u
sa

n
d

 t
x
/s

e
c
)

Proposal size (#tx)

RBBC CONS1 HBBFT

 0.1

 1

 10

 100

1 10 100 1000 10000

L
a
te

n
cy

 (
se

c
o

n
d

s)

Proposal size (#tx)

RBBC CONS1 HBBFT

Figure 2. Throughput and latency comparison of the
blockchain solutions with n = 140 and t = 46, and proposal
sizes of 1, 10, 100, 1000 and 10000

200ms. Each node then has to do this for each proposal (i.e.,
140 times in this experiment) increasing significantly the
latency.

5.3 Low-end machines and distributed proposals
We now experiment on up to 240 low-end VMs, whose CPU
resource is closer to the one of cell phones, and evenly spread
on 5 datacenters in the United States (Oregon, Northern
California, and Ohio) and Europe (Ireland and Frankfurt). We
examine the impact of having t+1 vs.n proposers. Dedicating
the 4 vCPUs of these low-end instances led to verify about
7800 serialized transactions per second with 97% of CPU time

5

 0

 1

 2

 3

 4

20 60 100 140 180 220
 0

 1

 2

 3

 4

T
h

ro
u

g
h

p
u

t
(t

h
o

u
s
a

n
d

 t
x/

se
c)

L
a
te

n
cy

 (
s
e

c
o

n
d

s)

Nodes

RBBC, 100 (tx)
RBBC, 100 (s)

 CONS1, 100 (tx)
CONS1, 100 (s)

CONS1, 1000 (tx)
CONS1, 1000 (s)

 0

 2

 4

 6

 8

 10

20 60 100 140 180 220
 0

 2

 4

 6

 8

 10

T
h

ro
u

g
h

p
u

t
(t

h
o

u
s
a

n
d

 t
x/

se
c)

L
a
te

n
cy

 (
se

c
o

n
d

s)

Nodes

RBBC, 1000 (tx)
RBBC, 1000 (s)

 CONS1, 2500 (tx)
 CONS1, 2500 (s)

 CONS1, 5000 (tx)
 CONS1, 5000 (s)

Figure 3. The performance of CONS1 and RBBC with t + 1
proposer nodes; the number following the algorithm name
represents the number of transactions in the proposals; solid
lines represent throughput, dashed lines represent latency

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

L
a
te

n
cy

 (
s
e

c
o

n
d

s)

Throughput (thousand tx/sec)

RBBC CONS1

Figure 4. Comparing throughput and latency of CONS1
and RBBC with t + 1 proposer nodes on 100 geodistributed
nodes; each point represents the number of transactions
in the proposals, either 10, 100, 1000, 2500, 5000 or 10000
(HBBFT does not appear due to lower performance)

spent verifying signatures and with 3% spent deserializing
and updating the UTXO table.

5.4 The impact of t + 1 proposer nodes
Figure 3 shows the throughput and latency of RBBC with
t + 1 proposers and CONS1 with different sizes of propos-
als. As CONS1 is limited to a single proposer (its leader)

while RBBC supports multiple proposers, we tested whether
CONS1 performance would be better with more transactions
per proposal than RBBC.
With proposal size of 100, RBBC throughput increases

from 1000 to 4000 tx/sec while its latency increases from
750ms to 2 seconds. The throughput increase stems from in-
creasing CPU and bandwidth resources with more proposers.
With larger proposal size (1000), performance increases faster
(from 3000 tx/sec to 9000 tx/sec) with the number of nodes
and flattens out earlier around 10,000 tx/sec while latency
increases from 2 to 8 seconds.
With proposal size of 100, CONS1 throughput decreases

from 310 tx/sec to 220 tx/sec while latency increases from
320ms to 460ms. Unfortunately, this low latency does not
help to increase throughput by increasing proposal size after
a certain number of nodes. In particular, with proposal size
of 5000 the throughput drops by 4 times (from 2800 tx/sec to
700 tx/sec). While CONS1 can broadcast message authenti-
cation codes (MACs) through UDP in local area networks,
no such broadcast primitive is available in this wide area
testnet.

Figure 4 further examines the performance of CONS1 and
RBBC with 100 nodes and proposal sizes of 1, 10, 100, 1000,
2500, and 5000. Here we see that the throughput of CONS1
reaches a limit of about 1100 tx/sec while RBBC approaches
14,000 tx/sec. CONS1 has a better minimum latency of 270ms
compared to 640ms for RBBC for proposals of size 1.

5.5 The impact of n proposer nodes
Figure 5 depicts the performance of RBBC and HBBFT with
n proposers, with proposal sizes of 100 and 1000 transactions.
Unsurprisingly, with n proposers the throughput of RBBC in-
creases faster than with t + 1 proposers. With a proposal size
of 100, the throughput reaches 6000 tx/sec at 80 nodes and
slowly degrades, while latency starts at 740ms with 20 nodes
and reaches 5160ms with 240 nodes. With a proposal size of
1000, the throughput reaches 10,000 tx/sec at 40 nodes and
remains mostly flat, latency starts at 2670ms with 20 nodes
and reaches 25,100ms with 240 nodes. With larger node
counts (around 200), the configurations with t + 1 proposals
achieve similar throughput, but with much lower latency.
Thus when using nodes similar to the low-end instances,
having n proposers seems better suited for configurations of
less than 100 nodes.
For HBBFT we observe that latencies increase superlin-

early and throughput degrades as we increase the number
of nodes. As mentioned before, this is primarily due to the
computation needed for the erasure codes. Note that we only
run HBBFT up to 100 nodes as afterwards we start seeing
latencies approaching minutes.

5.6 Transaction verification count
In the previous experiments we also recorded the average
number of times a transaction is verified to examine the state

6

 0

 1

 2

 3

 4

 5

 6

20 40 60 80 100 120 140 160 180 200 220 240
 0

 5

 10

 15

 20

 25

 30

T
h

ro
u

g
h

p
u

t
(t

h
o

u
s
a

n
d

 t
x/

se
c)

L
a
te

n
cy

 (
s
e

c
o

n
d

s)

Nodes

RBBC, 100 (tx)
RBBC, 100 (s)

HBBFT, 100 (tx)
HBBFT, 100 (s)

 0

 2

 4

 6

 8

 10

 12

20 40 60 80 100 120 140 160 180 200 220 240
 0

 8

 16

 24

 32

 40

 48

T
h

ro
u

g
h

p
u

t
(t

h
o

u
s
a

n
d

 t
x/

se
c)

L
a
te

n
cy

 (
se

c
o

n
d

s)

Nodes

RBBC, 1000 (tx)
RBBC, 1000 (s)

HBBFT, 1000 (tx)
HBBFT, 1000 (s)

Figure 5. The performance of HBBFT and RBBC with n
proposer nodes. The number following the algorithm name
represents the number of transactions in the proposals; solid
lines represent throughput, dashed lines represent latency

of sharded verification, the results are shown in Figure 9. The
best case is t + 1 verifications while the 2t + 1 is the worst
case. We observe that with t +1 proposers the number of ver-
ifications stays close to the optimal, while with n proposers
the number of verifications remains around the middle of
t + 1 and 2t + 1. This is likely due to the increased load on
the system causing verifications to occur in different orders
at different nodes.

6 Experiment under Byzantine attacks
We evaluate RBBC performance under 2 Byzantine attacks:
Byz1 The payload of the reliable broadcast messages altered

so that no proposal is delivered for reliable broadcast
instances led by faulty nodes. The binary payloads of
the binary consensus messages are flipped. The goal
of this behavior is to reduce throughput and increase
latency.

Byz2 The Byzantine nodes form a coalition in order to
maximize the bandwidth cost of the reliable broadcast
using the digests described in §3.1. As a result, for
any reliable broadcast initiated by a Byzantine node,
t + 1 correct nodes will deliver the full message while
the remaining t will only deliver the digest of the

 100

 1000

 10000

Throughput (tx/sec)

RBBC
RBBC,Byz1

 1

 10

Latency (seconds)

HBBFT
HBBFT,Byz1

Figure 6. Comparing throughput and latency of RBBC and
HBBFT, with normal and Byzantine behavior on 100 geodis-
tributed nodes; all n nodes are making proposals of 100 trans-
actions

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

Msg Complexity (MB)

RBBC
RBBC,Byz2

 0.1

 1

 10

Latency (seconds)

HBBFT

Figure 7. Comparing message complexity and latency of
RBBFT and HBBFT with normal and Byzantine behaviors
on 100 geodistributed nodes

message, meaning they will have to request the full
message from t + 1 different nodes from whom they
receive echo messages.

As in §5.3, experiments are run with 100 low-end machines
using the same 5 datacenters from US and Europe and with
n proposers.

Figure 6 shows the impact of Byz1 on performance with n
proposers and proposal sizes of 100. For RBBC, throughput
drops from 5700 tx/sec to 1900 tx/sec, and latency increases
from 920ms to 1750ms. The drop in throughput is partially
due to having t less proposals being accepted (the proposals
sent by Byzantine nodes are invalid), and to the increase in
latency. The increase in latency is due to the extra rounds
needed to be executed by the binary consensus to termi-
nate with 0. The throughput of HBBFT drops from 350 to
256 tx/sec due to the decrease in proposals, but interestingly
the latency also decreases. This is due to the fact that since
there are less proposals, less computation is needed for the
erasure codes.
Byz2 is a behavior designed against the digest compres-

sion of the reliable broadcast, with the goal of delaying the
7

 0

 100

 200

 300

 400

 500

 600

 700

20 60 100 140 180 220 260 300
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

T
h

ro
u

g
h

p
u

t
(t

h
o

u
sa

n
d

 t
x
/s

e
c)

L
a
te

n
cy

 (
s
e

c
o

n
d

s)

Nodes

RBBC (throughput) RBBC (latency)

Figure 8. The performance (latency and throughput) of
RBBC in a single datacenter
delivery of the message to t of the correct nodes, and in-
creasing the bandwidth used. HBBFT avoids this problem by
using erasure codes, but has a higher bandwidth usage is the
non-faulty case. Figure 7 shows the impact of this behavior
on bandwidth usage and latency for RBBC and HBBFT with
n proposers and proposal sizes of 100. The bandwidth usage
of RBBC increases from 538MB per multivalued consen-
sus instance to 2622MB per multivalued consensus instance
compared to HBBFTwhich uses 3600MB in all cases. Further-
more, the latency of RBBC increases from 920ms to 2300ms.
Note that the bandwidth usage can further increase if addi-
tional delays are added to the network, in such cases the use
of Erasure codes becomes beneficial.

6.1 Single availability zone experiment
To really stress test RBBC, we tested the performance on
300 high-end VMs in the Oregon datacenter. We fixed t to
the largest fault tolerance parameter we can tolerate with
n = 20 nodes and increase the number of nodes from 20 to
300 permissioned nodes. While the setting is not realistic, it
helps identifying potential performance bottlenecks. Note
that Fig. 1 depicts the impact of varying t on performance.
The results, shown in Figure 8, indicates that the throughput
scales up to n = 260 nodes to reach 660,000 tx/sec while the
latency remains lower than 4 seconds. Atn = 280 throughput
drops slightly. Other experiments not shown here indicated
about 8 verifications per transaction converging towards
7 = t + 1 as n increases. The performance is thus explained
by the fact that the system is CPU-bound up to n = 260, so
that increasing n adds CPU resources needed for the sharded
verification and improves performance, after what the sys-
tem becomes network-bound due to the consensus and per-
formance flattens out.

6.2 Impact of remote requesters
For the following experiments we run the blockchain with
requesters defined as follows. At the start of the benchmark
each requester is assigned a random private key and a single
UTXO contained within the genesis block with value 100,000

 0

 40

 80

 120

 160

20 40 60 80 100 120 140 160 180 200 220 240

V
e

ri
fi
c
a
tio

n
s

p
e

r
tr

a
n

s
a

c
tio

n

Nodes

t+1
2t+1

RBBC,t+1
RBBC,n

Figure 9. The number of times a transaction is verified in
RBBC with proposal size of 100 transactions, with either
t + 1 or n proposer nodes; the dashed lines t + 1 and 2t + 1
represent the minimum and maximum number of possible
verifications.

coins. The requester then loops over the following two steps
until the benchmark completes: (i) For each UTXO currently
assigned to the requester a new transaction is created using
that UTXO as input. For the transaction’s output a UTXO is
created using a randomly chosen account as the receiver with
a value of 10 coins. Any change is included in a second UTXO
sent back to the requester. Each transaction is then broadcast
to the requester’s assigned proposers. (ii) The requester then
repeatably performs the request_utxos(account) operation
until it receives at lest one new UTXO and then returns to
step (i). Each requester is run in its own thread and maintains
connections to 2t + 1 of the blockchain nodes, including the
requester’s t + 1 proposers (all CONS1 requesters have the
same primary proposer).
For this experiment we ran RBBC and CONS1 using

100 c4.4xLarge server instances 25 c4.4xLarge requester in-
stances. Both types of nodes are evenly distributed across the
5 datacenters from US and Europe. The c4.4xLarge instances
use Intel Xeon E5-2666 v3 processors with 16 vCPUs, and
30 GiB RAM. The number of requesters vary from 1,000 to
50,000 and are evenly distributed across the requester nodes.
For the proposal size β , we choose 1000 for RBBFT as it
gave the best throughput. For CONS1 we chose a proposal
size of 2500 as we found that larger sizes increased latency
without increasing throughput and smaller sizes decreased
throughput while only having a minor impact on latency.
The experiments were run for 45 sec with a 15 sec warmup.

Table 2 shows the results. Valid-tx/sec is average number
of valid transactions committed per second, Read/sec is the
average number of request_utxos(account) operations per-
formed per second, R/W ratio is the ratio of the previous two
values, Latency is the average amount of time between com-
mitted blocks, Valid-tx/block is the average number of valid
transactions per block, and Invalid-tx/block is the average
number of invalid transactions per block.

8

#Requesters Valid-tx/sec Read/sec R/W ratio Latency(ms) Valid-tx/block Invalid-tx/block

RBBFT

1,000 5,359 2,143 0.4 870 4,648 0
10,000 13,870 33,288 2.4 2,475 34,132 877
20,000 12,664 31,660 2.5 5,022 63,607 3,033
50,000 14,450 47,685 3.3 4,303 62,193 5,455

CONS1

1,000 3,759 1,127 0.3 401 1,513 0
10,000 3,309 6,278 1.9 359 1,172 0
20,000 4,064 10,566 2.6 488 1,981 0
50,000 4,035 12,509 3.1 625 2,500 0

Table 2. Performance of RBBFT and CONS1 with varying number of requesters.

#Replicas #Requesters Valid-tx/sec Async write latency(ms) Latency(ms) Valid-tx/block Invalid-tx/block
1000 8400 30684 238 3103 95407 378

Table 3. Performance of RBBFT with 1000 replicas spread in 14 data centers.

Similar to the previous experiments we see that RBBFT
has the highest maximum throughput of 14, 450 tx/sec com-
pared to 4, 064 with CONS1. RBBFT has the highest maxi-
mum latency between blocks of 5, 022milliseconds compared
to a maximum of 625 milliseconds for CONS1. The higher
throughput and latency is explained by the higher utilization
of resources by the sharded proposers and reduced compu-
tation needed for sharded verification. In RBBFT increasing
the number of requesters past 10,000 has little impact on
the throughput as the system resources are already satu-
rated by this point, as a result we see an increase in the
R/W ratio as it takes longer for each individual node’s trans-
action to complete. A similar pattern is shown by CONS1,
though this starts at 1,000 requesters as they are limited by
the single primary proposer. Furthermore in RBBFT, increas-
ing the number of requesters also increases the number of
duplicate transactions occurring in blocks. This is due to the
increased load in they system causing slower nodes to miss
their proposals resulting in transactions being committed by
secondary proposers.

7 Evaluation with 1000 machines
To confirm that our blockchain scales to a large number of
machines, we spawned 1000 VMs. To avoid wasting band-
width, we segregated the roles: all 1000 VMs act as servers,
keeping a local copy of the balances of all accounts. On these
replicas, 10 requesters per 840 c4.large machines (60 VMs in
each of 14 datacenters) send transactions and 160 c4.8xlarge
machines (40 machines in each of the Ireland, London, Ohio
and Oregon datacenters) decide upon each block.
Each of the 8400 requesters start with 100 UTXOs and

each proposal contains up to 1000 transactions. Performance
are depicted in Table 3: throughput is only around 30,000
tx/sec due to the difficulty of generating the workload: the
replicas are located in 14 different datacenters and have to
wait for a UTXO to request a transaction that consumes
it (cf. §6.2). The asynchronous write latency measures the
time a proposer acknowledges a transaction reception. The

transaction commit time (latency) remains about 3 seconds
despite the large traffic.

8 Conclusion
In the most extensive experimentation of blockchain to
date, we evaluated the Red Belly Blockchain, a determin-
istic blockchain system that does not need synchrony to be
secure and performs well at large scale. Its main novelty
is its novel sharding that minimizes both computation and
communication wastes that allows to achieve unprecedented
throughput with a low latency when deployed world-wide.
The Red Belly Blockchain appears as a platform of choice
for obtaining the security needed to move blockchain use-
cases from innovation labs to production without sacrificing
performance.

References
[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman. Solida:

A blockchain protocol based on reconfigurable byzantine consensus.
In Proc. of the 21st International Conference on Principles of Distributed
Systems, (OPODIS), pages 25:1–25:19, 2017.

[2] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru, J. Olsen,
and D. Zage. Scaling byzantine fault-tolerant replication towide area
networks. In International Conference on Dependable Systems and
Networks (DSN’06), pages 105–114, June 2006. doi: 10.1109/DSN.2006.
63.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Mu-
ralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yel-
lick. Hyperledger fabric: A distributed operating system for permis-
sioned blockchains. In Proceedings of the Thirteenth EuroSys Con-
ference, EuroSys ’18, pages 30:1–30:15, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-5584-1. doi: 10.1145/3190508.3190538. URL
http://doi.acm.org/10.1145/3190508.3190538.

[4] P. Aublin, S. B. Mokhtar, and V. Quéma. Rbft: Redundant byzan-
tine fault tolerance. In 2013 IEEE 33rd International Conference
on Distributed Computing Systems, pages 297–306, July 2013. doi:
10.1109/ICDCS.2013.53.

[5] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić.
The next 700 bft protocols. ACM Trans. Comput. Syst., 32(4):12:1–
12:45, Jan. 2015. ISSN 0734-2071. doi: 10.1145/2658994. URL http:
//doi.acm.org/10.1145/2658994.

9

http://doi.acm.org/10.1145/3190508.3190538
http://doi.acm.org/10.1145/2658994
http://doi.acm.org/10.1145/2658994

[6] J. Behl, T. Distler, and R. Kapitza. Hybrids on steroids: Sgx-based high
performance bft. In Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, pages 222–237, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4938-3. doi: 10.1145/3064176.3064213.
URL http://doi.acm.org/10.1145/3064176.3064213.

[7] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure com-
putations with optimal resilience (extended abstract). In Proceed-
ings of the Thirteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’94, pages 183–192, New York, NY, USA,
1994. ACM. ISBN 0-89791-654-9. doi: 10.1145/197917.198088. URL
http://doi.acm.org/10.1145/197917.198088.

[8] A. Bessani, J. Sousa, and E. E. P. Alchieri. State machine replication for
the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 355–362, June
2014. doi: 10.1109/DSN.2014.43.

[9] F. Borran and A. Schiper. A leader-free byzantine consensus algorithm.
In K. Kant, S. V. Pemmaraju, K. M. Sivalingam, and J. Wu, editors, Dis-
tributed Computing and Networking, pages 67–78, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. ISBN 978-3-642-11322-2.

[10] E. Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains, 2016. MS Thesis.

[11] M. Castro and B. Liskov. Practical byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461, Nov.
2002. ISSN 0734-2071. doi: 10.1145/571637.571640. URL http://doi.acm.
org/10.1145/571637.571640.

[12] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: Making adversaries stick to their word. In
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 189–204, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-591-5. doi: 10.1145/1294261.1294280. URL
http://doi.acm.org/10.1145/1294261.1294280.

[13] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making
byzantine fault tolerant systems tolerate byzantine faults. In Proceed-
ings of the 6th USENIX Symposium on Networked Systems Design and
Implementation, NSDI’09, pages 153–168, Berkeley, CA, USA, 2009.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=1558977.
1558988.

[14] T. Crain, V. Gramoli, M. Larrea, and M. Raynal.
(leader/randomization/signature)-free byzantine consensus for
consortium blockchains. Technical report, arXiv, 2017.

[15] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. DBFT: Efficient lead-
erless byzantine consensus and its applications to blockchains. In
Proceedings of the 17th IEEE International Symposium on Network Com-
puting and Applications (NCA’18), 2018.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, Apr. 1988. ISSN 0004-5411.
doi: 10.1145/42282.42283. URL http://doi.acm.org/10.1145/42282.42283.

[17] P. Ekparinya, V. Gramoli, and G. Jourjon. Impact of man-in-the-middle
attacks on ethereum. In SRDS, 2018.

[18] V. G., C. M., B. A., L. L., and V. P. Minimal byzantine fault tolerance.
Technical Report DI-FCUL TR-2009-15, June 2009.

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17, pages
51–68, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5085-3. doi:
10.1145/3132747.3132757. URL http://doi.acm.org/10.1145/3132747.
3132757.

[20] V. Gramoli. The red belly blockchain. In MIT, MA, USA. Personal
communication, June 2017.

[21] K. J. Tendermint: Consensus without mining, 2014.
[22] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and

B. Ford. Omniledger: A secure, scale-out, decentralized ledger. Tech-
nical Report 2017/405, Cryptology ePrint, 2017.

[23] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
Speculative byzantine fault tolerance. In Proceedings of Twenty-first

ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
pages 45–58, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
591-5. doi: 10.1145/1294261.1294267. URL http://doi.acm.org/10.1145/
1294261.1294267.

[24] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982. ISSN 0164-
0925. doi: 10.1145/357172.357176. URL http://doi.acm.org/10.1145/
357172.357176.

[25] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena.
A secure sharding protocol for open blockchains. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 17–30, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4139-4. doi: 10.1145/2976749.2978389. URL http://doi.acm.
org/10.1145/2976749.2978389.

[26] Y. Mao, F. P. Junqueira, and K. Marzullo. Towards low latency state
machine replication for uncivil wide-area networks. In In Workshop
on Hot Topics in System Dependability, 2009.

[27] J.-P. Martin and L. Alvisi. Fast byzantine consensus. IEEE Transactions
on Dependable and Secure Computing, 3(3):202–215, July 2006. ISSN
1545-5971. doi: 10.1109/TDSC.2006.35.

[28] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of
bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages 31–42, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/
2976749.2978399. URL http://doi.acm.org/10.1145/2976749.2978399.

[29] A. Mostéfaoui, H. Moumen, and M. Raynal. Signature-free asyn-
chronous byzantine consensus with t > n/3 and o(n2) messages.
In Proceedings of the 2014 ACM Symposium on Principles of Dis-
tributed Computing, PODC ’14, pages 2–9, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2944-6. doi: 10.1145/2611462.2611468. URL
http://doi.acm.org/10.1145/2611462.2611468.

[30] A. Mostéfaoui, H. Moumen, and M. Raynal. Signature-free asynchro-
nous binary byzantine consensus with t> n/3, o(n2) messages, and o(1)
expected time. J. ACM, 62(4):31:1–31:21, Sept. 2015. ISSN 0004-5411.
doi: 10.1145/2785953. URL http://doi.acm.org/10.1145/2785953.

[31] S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2008.
http://www.bitcoin.org.

[32] C. Natoli and V. Gramoli. The balance attack or why forkable
blockchains are ill-suited for consortium. In IEEE/IFIP DSN’17, Jun
2017.

[33] N. F. Neves, M. Correia, and P. Verissimo. Solving vector consensus
with a wormhole. IEEE Trans. Parallel Distrib. Syst., 16(12):1120–1131,
Dec. 2005. ISSN 1045-9219. doi: 10.1109/TPDS.2005.153. URL https:
//doi.org/10.1109/TPDS.2005.153.

[34] J. Sousa, A. Bessani, and M. Vukolić. A byzantine fault-tolerant order-
ing service for the hyperledger fabric blockchain platform. In 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 51–58, June 2018. doi: 10.1109/DSN.2018.00018.

[35] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Ebawa:
Efficient byzantine agreement for wide-area networks. In Proc. IEEE
12th International Symposium on High Assurance Systems Engineering,
pages 10–19, Nov 2010. doi: 10.1109/HASE.2010.19.

[36] G. Vizier and V. Gramoli. Comchain: Bridging the gap between public
and consortium blockchains. In IEEE Blockchain, 2018.

[37] M. Vukolic. The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication. In IFIP WG 11.4 International Workshop on Open
Problems in Network Security, pages 112–125, 2015.

[38] M. Vukolíc. The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication. In Proc. IFIP WG 11.4 Workshop on Open Research
Problems in Network Security (iNetSec 2015), pages 112–125, 2015.

[39] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger, 2015. Yellow paper.

10

http://doi.acm.org/10.1145/3064176.3064213
http://doi.acm.org/10.1145/197917.198088
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/1294261.1294280
http://dl.acm.org/citation.cfm?id=1558977.1558988
http://dl.acm.org/citation.cfm?id=1558977.1558988
http://doi.acm.org/10.1145/42282.42283
http://doi.acm.org/10.1145/3132747.3132757
http://doi.acm.org/10.1145/3132747.3132757
http://doi.acm.org/10.1145/1294261.1294267
http://doi.acm.org/10.1145/1294261.1294267
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/2976749.2978399
http://doi.acm.org/10.1145/2611462.2611468
http://doi.acm.org/10.1145/2785953
http://www.bitcoin.org
https://doi.org/10.1109/TPDS.2005.153
https://doi.org/10.1109/TPDS.2005.153

	1 Introduction
	2 Background
	3 The Design of the Red Belly Blockchain
	3.1 Optimized Democratic BFT
	3.2 Sharded Verification

	4 Experimental Settings
	4.1 Leader-based and randomized BFT
	4.2 Machine specification

	5 Comparing geodistributed blockchains
	5.1 Impact of verification
	5.2 Combining proposals
	5.3 Low-end machines and distributed proposals
	5.4 The impact of t+1 proposer nodes
	5.5 The impact of n proposer nodes
	5.6 Transaction verification count

	6 Experiment under Byzantine attacks
	6.1 Single availability zone experiment
	6.2 Impact of remote requesters

	7 Evaluation with 1000 machines
	8 Conclusion
	References

