
Making Bitcoin Exchanges Transparent

Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

Distributed Computing Group, ETH Zurich, Switzerland
{cdecker,guthriej,seidelj,wattenhofer}@ethz.ch

Abstract. Bitcoin exchanges are a vital component of the Bitcoin ecosys-
tem. They are a gateway from the classical economy to the cryptocur-
rency economy, facilitating the exchange between fiat currency and bit-
coins. However, exchanges are also single points of failure, operating out-
side the Bitcoin blockchain, requiring users to entrust them with their
funds in order to operate. In this work we present a solution, and a
proof-of-concept implementation, that allows exchanges to prove their
solvency, without publishing any information of strategic importance.

1 Introduction

Since the conceptual introduction of Bitcoin in 2008 by Satoshi Nakamoto [15]
and the appearance of the first Bitcoin client in 2009, Bitcoin has seen massive
growth on a multitude of fronts. Bitcoin currently has a market capitalisation of
3 billion US dollars and an average daily transaction volume of approximately
50 million US dollars.

One factor which has driven widespread adoption of Bitcoin is the emergence
of Bitcoin exchanges: companies which allow trading bitcoins with fiat currency,
such as Euros and US dollars. Bitcoin exchanges have helped the adoption of
Bitcoin in two ways. Firstly, before the advent of Bitcoin exchanges, the only
way to come by bitcoins was to mine them oneself or to informally trade bitcoins
with other participants. Exchanges have opened the Bitcoin market to parties
who might otherwise not have been able to participate. Secondly, exchanges
publish their trade books which establishes an accepted exchange rate between
fiat currencies and bitcoins. This in turn allowed vendors to value their goods
and services in bitcoins in accordance to the market rates in fiat currency.

Although Bitcoin exchanges have had a positive contribution to the Bitcoin
economy, they are not without risks. In Moore and Christen’s analysis of the
risks involved with Bitcoin exchanges [14] they analyse 40 Bitcoin exchanges, at
the time of publication 18 of the 40 exchanges had ceased operation. Of those
18, 5 exchanges did not reimburse customers on closure, 6 exchanges claim that
they did and for the remaining 7 there is no data available. Most of the collapsed
Bitcoin exchanges were not long-lived, with their closure either being immediate
or over a relatively short period of time.

Since the publication of that analysis the most high-profile exchange closure
took place: the bankruptcy and closure of the Mt. Gox Bitcoin exchange, in which
650,000 bitcoins belonging to customers of the exchange were lost or stolen. At



2 Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

the time, Mt. Gox claimed that a flaw in the Bitcoin protocol was to blame
for the loss of its client’s bitcoins, a claim which has since been refuted [7]. At
the time of the event, Mt. Gox was one of the longest-running exchanges in
the Bitcoin market with its cumulative number of transactions accounting for
approximately 70% of all Bitcoin transactions.

Bitcoin transactions are irreversible by design. Once a user has transferred
her bitcoins to another user there is no way that she will get them back without
the cooperation of the recipient. There is little recourse for the customer of an
exchange: Bitcoin is new ground for insurers, regulators, and law enforcement
who do not yet have any established methods for dealing with Bitcoin related
legal issues.

In an effort to calm customers fears, some exchanges have taken to period-
ically publishing data proving their solvency: an anonymised list of their cus-
tomers account balances and a list of Bitcoin addresses owned by the exchange
along with a signature that proves the ownership. If the balance of the bitcoins
available on the addresses is at least as large as the sum of the amounts owed by
the exchange, the exchange is solvent. Although customers may be appreciative
of this type of transparency, it may put the exchange at a disadvantage as it
reveals information of strategic importance, such as the number of customers,
the amounts the exchange’s customers keep on hand and the total balance of
bitcoins held by the exchange.

In conventional financial markets trust is placed in the financial statements
made by institutions such as exchanges or investment funds through the process
of auditing. An independent third party, which is perceived to be trustworthy
by the customers of the institution, or a state mandated auditor inspects the
financial records of the institution and publishes an audit result. Such an audit
is an expensive and time-consuming process and is typically only performed in
well-spaced intervals.

In this paper, we propose to perform a software-based audit of Bitcoin ex-
changes without revealing any information about the bitcoins that are possessed
by either the exchange, or its customers to the public. This is achieved by re-
placing the human financial auditor by a piece of software. To ensure that the
software is executed correctly we rely on Trusted Computing (TC) technology.
In our scenario, the traditional limitations of financial auditing no longer apply.
Software executes orders of magnitudes faster than humans, and the execution
of a piece of software is generally not costly at all and it becomes feasible to
provide daily audits of a Bitcoin exchange. Our contribution is twofold: we pro-
pose a system that uses Trusted Computing to prove the exchange’s solvibility
to its customers and we implement the proposed solution on consumer hardware
minimizing obstacles to its deployment.

1.1 Related Work

Auditing Bitcoin exchanges has been previously discussed by Todd and Maxwell [10],
and later by Maxwell and Wilcox [11]. Both approaches rely on modifying the
merkle tree computation to defend against insertion of negative subtrees. Our



Making Bitcoin Exchanges Transparent 3

use of TC for the merkle tree computation obviates any such modifications as
the secure code would error out on negative sums.

Trusted Computing, and more specifically TPMs, have been proposed previ-
ously as a method to secure Bitcoin wallets by Hal Finney [8], storing sensitive
keying material in the tamper proof storage. Since then several additional meth-
ods of securing funds have been proposed, including multisignature accounts [3],
the creation of deterministic public keys that do not require private keys during
the generation [4] and locking funds for a predetermined period of time [17].
The latter may also be used to extend the audit to guarantee the solvency for a
certain period, by making the funds inccessible until they are unlocked.

While regular audits may help detect fraud at an early stage, a regulatory
framework is needed to prosecute perpetrators. Some initial work has been done
in the field of regulation, examining the impact of Bitcoin on current anti-money
laundering (AML) policies and on know-your-customer (KYC) policies [1, 2, 5,
6, 16].

2 Preliminaries

The software-based audit of a Bitcoin exchange relies on an understanding of
both the Bitcoin project as well as Trusted Computing. This section introduces
the fundamentals of Bitcoin and Trusted Computing, as needed in this paper.

2.1 Bitcoin

Bitcoin is a decentralized digital currency built on cryptographic protocols and
a system of proof of work. Instead of relying on traditional, centralized financial
institutions to administer transactions as well as other aspects concerning the
economic valuation of the currency, peers within the Bitcoin network process
transactions and control the creation of bitcoins. The major problems to be
solved by a distributed currency are related to how consensus can be reached
in a group of anonymous participants, some of whom may be behaving with
malicious intent.

Transactions within the Bitcoin network are based on public key cryptogra-
phy, users of Bitcoin generate an address which is used to receive funds. The Bit-
coin address is derived, through cryptographic hash functions, from the public-
key of an ECDSA key pair. A Bitcoin transaction records the transfer of bitcoins
from some input address to output addresses. A transaction consists of one or
more inputs and one or more outputs, each input to a transaction is the output
of a previous transaction. The output of a transaction may only be used as the
input to a single transaction. The outputs are associated with an address, whose
private key is then used to sign transactions spending these outputs.

Transactions are generated by the sender and distributed amongst the peers
in the Bitcoin network. Transactions are only valid once they have been accepted
into the public history of transactions, the blockchain. As the blockchain contains
Bitcoin’s entire transaction history and is publicly distributed, any user can



4 Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

determine the bitcoin balance of every address at any time, by summing the
value of unspent transaction outputs (UTXOs) associated with the address.

Bitcoin Exchanges Bitcoin exchanges facilitate trade between fiat currency
and bitcoins. In order to trade on the exchange, users create an account with the
exchange and transfer fiat currency and/or bitcoins to the exchange. Should the
user wish to retrieve their bitcoins, they must make a request that the exchange
transfers the bitcoins to an address which the user controls. The exchange man-
ages a balance of the bitcoins that the user has deposited with the exchange or
traded for against fiat currency.

The user may place buy and sell orders for bitcoins or fiat currency which
are executed for the user by the exchange, adjusting the balances of the user’s
Bitcoin or fiat currency accounts. The orders are executed internally within the
exchange, that is they are not recorded in the blockchain. Given this model of
operation, a Bitcoin exchange is not merely a marketplace but also acts as a
fiduciary, administrating both fiat currency and bitcoin accounts for its clients.

2.2 Trusted Computing

When a third party, such as a Bitcoin exchange, is tasked with performing a
computation, there is no method for the verification of the integrity of the result,
short of performing the computation locally, which in some circumstances may
not be feasible. Trusted Computing allows the creation of a trusted platform
which provides the following features [18]:

Protected Capabilities are commands which may access shielded locations,
areas in memory or registers which are only accessible to the trusted plat-
form. These memory areas may contain sensitive data such as private keys
or a digest of some aspect of the current system state.

Integrity Measurement is the process of measuring the software which is
executing on the current platform. A measurement is the cryptographic hash
of the software which is executing throughout each stage of execution.

Integrity Reporting is the process of delivering a platform measurement to
a third party such that it can be verified to have originated from a trusted
platform.

These features of the trusted platform are deployed on consumer hardware
in a unit called the Trusted Platform Module (TPM), a secure cryptographic
co-processor, which is usually incorporated on the mainboard of the hardware.

An important component in proving trust are the Platform Configuration
Registers (PCRs), 20-byte registers which are only modifiable through the extend
operation based on cryptographic hash digests. The properties of a cryptographic
hash ensure that the value held in a PCR cannot be deliberately set.

Initially the TPM is equipped with a Storage Root Key (SRK) which may
be used to sign and thus authenticate further keys which may be generated or
loaded into the TPM. A number of different types of cryptographic keys may be



Making Bitcoin Exchanges Transparent 5

present on the TPM, however we limit our description to Attestation Identity
Keys (AIK). AIKs are signing keys that reside solely on the TPM, which are
used to sign data, which originates from the TPM, in order to attest to the
values originating from the TPM. In order to verify a TPM attestation, the
verifying party requires the signed attestation, the AIK public key, and a valid
SRK signature authenticating the AIK.

The TPM can be used to seal data which encrypts the data with a key which
is loaded in the TPM and binds the data to the state of some of the PCRs. The
encrypted data may only be decrypted or unsealed if PCRs are in the same state
as when the data was sealed, thus binding the ability to decrypt to the measured
state. TPMs provide two distinct paradigms:

SRTM (Static Root of Trust for Measurement): the system begins to boot in a
piece of firmware which is trusted (the static root) and each component of the
boot process is measured and verified against a known-good configuration
before it is executed in order to assert that no component has been tampered
with.

DRTM (Dynamic Root of Trust for Measurement): allows for a trusted plat-
form to be established dynamically without requiring a system reboot. It
even allows for a trusted platform to be established within a platform which
is known to be compromised with malicious software.

DRTM is implemented in consumer general purpose processors from Intel and
AMD under the names Intel Trusted eXecution Technology (TXT) and AMD
Secure Virtual Machine (SVM). Intel TXT and AMD SVM provide additional
security features when executing in the secure mode on top of the capabilities of
the TPM. These include turning off system interrupts to prevent other execu-
tion paths, as well as memory protection for specific memory ranges which also
prevents DMA access [9].

3 Auditing

The audit should determine the solvency of the exchange. In principle this is a
binary result, either solvent in the case that the exchange’s assets in bitcoins
cover its liabilities in bitcoins, or insolvent otherwise. It is plausible that there are
situations in which this binary result does not suffice, for instance an exchange
which wishes to prove fractional reserves. In these cases a multiplicative factor
can be applied to the liabilities of the exchange to show that the exchange can
cover some percentage of its liabilities with its assets.

The auditing process can be broken into three individual steps: summing
the user account balances (proof of liabilities), summing the assets, i.e., address
balances, the exchange controls (proof of reserves), and proof that the reserves
cover the liabilities (proof of solvency). Figure 1 illustrates the components of the
audit, the inputs to each of the components of the calculation and the outputs
of the audit.



6 Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

filterverifyhash

Address
balances

Signed
public keys

+

+ Merkle

User
accounts

∗

Fraction
factor

≥

Audit
result

Address
balance hash

Merkle
root

Fraction
factor

• • •

Reserves Liabilities

Signed Outputs

Fig. 1. An overview of the audit process. Italicised values are not published.

The publicly available inputs are the address balance and the fraction factor,
which determines the percentage of coverage that the exchange wishes to prove.
The address balances can be computed by a third party by replaying transactions
in the blockchain until the time of the audit. The non-public inputs consist of
a list of signed public keys owned by the exchange and the list of user account
information, including account balances and customer identifiers.

Unlike the inputs, the outputs of the auditing process should all be disclosed
publicly. The address balance hash proves that the latest snapshot of the address
balances was used in the audit and should match an independently computed
hash. The audit result is the boolean result, either true if the exchanges assets
are greater than the fraction of the liabilities or false otherwise. To prove that
all liabilities have been considered a merkle tree is computed and its root is
included in the outputs as well as the fraction which determines the coverage
percentage. The output values are signed by the TPM, which also signs a hash
digest of the binary which was executing at the time.

3.1 Proof of Reserves

The assets that the exchange possesses are in the form of bitcoins in the block-
chain. The sum of assets is therefore calculated by determining which balances
in the blockchain the exchange has access to and calculating the sum of those
balances. In order for the exchange to access the bitcoins it needs to be in
possession of the private keys belonging to the addresses.

To simplify the calculation, the audit program does not need to parse the
entire blockchain to determine which balances should be summed. Instead, a



Making Bitcoin Exchanges Transparent 7

preprocessor can be used to compute the address balances from the blockchain.
This is secure as it is a deterministic aggregation over publicly available data.

The exchange can prove control of a Bitcoin address by providing the public
key belonging to that Bitcoin address and signing it with the private key. For
additional safety, the exchange should also sign a value which can be used to
prove the freshness of the signature, a nonce. The hash of the last block added
to the blockchain is an ideal candidate for the nonce, as it uniquely identifies the
state of the blockchain and thus the address balances, it is not predictable and
changes frequently. Thus, the second input to the audit process consists of a list
of tuples of a public keys, and a signatures of the public key and the nonce:

〈PubKey, {PubKey,Nonce}σ〉

where {data}σ indicates that data is signed with the corresponding private key.
The overview of the steps of the calculation of reserves is shown in Figure 1,

internally it consists of four different stages. The first stage computes the hash
of the address balances, which is required in the verify stage. The verify stage
asserts that the signatures for the public keys are valid and that the provided
nonce matches the hash of the provided address balances. It then passes the
public keys to the filter stage, determines the Bitcoin address and filters for
entries in the address balances which match the exchange’s addresses. Finally,
the balances of these entries are summed. The sum, as well as the hash of the
address balances are produced as outputs of the proof of reserves.

3.2 Proof of Liabilities

The liabilities of the exchange are the balances in bitcoins owed to its customers.
The audit process requires a list of tuples consisting of a customer identifier and
a positive balance owed to the customer:

〈CustID,Balance〉

An additional input to the proof of liabilities is the fraction factor, which is
multiplied with the sum of client account balances to prove fractional reserves.

Using the above definition of liabilities, the total liabilities of the exchange
are calculated as the sum of all customer account balances. The calculated sum is
later compared against the sum of reserves to determine solvency. Additionally
to the sum, the proof of liabilities component calculates the root of a merkle
tree [13], as well as a hash of the fraction factor.

The basic schema is to construct a merkle tree with the user account in-
formation. That is, in order to compute a leaf in the tree one would take the
cryptographic hash of the customer identifier and the balance owed to the cus-
tomer. The leaves are then combined in a pairwise fashion and hashed, forming
the nodes in the next layer of the tree. Nodes are combined and hashed until the
root of the tree is constructed.

As the root of the merkle tree is dependent on all of the individual values
within the tree, it serves as public record of the account balances which were



8 Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

h(ABCD‖EFGH)

h(AB‖CD)

h(A‖B)

h(A:20)

A:20

h(B:15)

B:15

h(C‖D)

h(C:30)

C:30

h(D:10)

D:10

h(EF‖GH)

h(E‖F)

h(E:25)

E:25

h(F:40)

F:40

h(G‖H)

h(G:10)

G:10

h(H:15)

H:15

Fig. 2. An example merkle tree with the path from h(D:10) to the root highlighted

counted in the summation of all account balances, without revealing individual
customers account balances.

3.3 Proof of Solvency and Verification

The proof of the solvency of a bitcoin exchange consists of two components, one
is the outputs of the audit, the other is an attestation which can be used to
verify that the auditing software was executed in the trusted environment, and
that it computed the outputs which are attested. The final output is the Audit
result, which is a binary value, true if the reserves are greater than or equal to
the liabilities, and false otherwise. The attestation is a signature for the outputs
as well as the platform measurements, i.e., the hashes of the executed program.

Given the audit program, its public inputs and outputs and the attestation,
a customer can independently verify the validity of the audit. By hashing the
program and validating it against the attested measurements she can ensure that
the TPM has executed the program. The validity of the program could be proven
by publishing its source code. The customer can then proceed to validating the
outputs, by checking the signatures, that the address balance hash matches the
blockchain and that she is included in the merkle tree.

The customer can use the root of the merkle tree to verify that its account
balance was included in the calculation. The merkle tree in Figure 2 shows
a potential scenario in which customer D wishes to determine whether it was
accounted for in the hash h(ABCD‖EFGH). The nodes which D requires are the
children of the nodes along the path from D’s leaf node to the root excluding
the nodes along that path. These are the nodes h(C:30), h(A ‖ B), h(EF‖GH).
With these node values, D can reconstruct the path from its leaf node to the



Making Bitcoin Exchanges Transparent 9

root, calculating the same value of h(ABCD‖EFGH) that was provided by the
exchange.

4 Implementation

The proof-of-concept presented in this work is built on the Flicker platform [12].
Flicker is a software platform which leverages DRTM to allow security sensitive
components of software applications to execute in a secure, isolated environment.
The developers of Flicker call such a component a Piece of Application Logic
(PAL). The PAL comprises only the routines required to perform some security
critical computation component of the application. Flicker consists of two com-
ponents, the kernel module which prepares and launches the DRTM process,
and the Secure Loader Block (SLB) core which performs bootstrapping of the
secure execution environment for the PAL.

The execution scenario in which the PAL runs is made up of four distinct
components: the user application, the Flicker kernel module, an Authenticated
Code Module (ACM), and one or more PAL binaries, each consisting of the
SLB core and PAL. The ACM is the root of dynamic trust for the DRTM in
Intel TXT and is digitally signed by the chipset vendor. It functions as a secure
bootloader for a lightweight piece of code which is to be executed on the processor
in complete isolation from any other software or hardware access.

User
Application

Flicker
Kernel
Module

In
tel

A
C

M

S
L

B
C

o
re

PAL

SLB/PAL binary

Kernel space
Secure Execution

Environment
User space

Fig. 3. Flicker PAL execution scenario.

The user application is a conventional application executing in userspace.
The Flicker kernel module provides data and control file system entries with
which the user application may interact in order to provide the Flicker kernel
module with the SLB, PAL, and the inputs, as well as to read the outputs when
execution of the PAL terminates.

Figure 3 illustrates the control flow when the user application needs to per-
form a security-critical task. First the application passes the PAL binary and



10 Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

inputs to the Flicker kernel module and instructs the kernel module to execute
the PAL. The Flicker kernel module prepares the necessary data structures and
memory protection to launch the DRTM and start the PAL, it then invokes
the GETSEC[SENTER] CPU instruction which disables interrupts and triggers
the start of the DRTM. These data structures are measured by the Intel ACM,
which forms the root of the DRTM. The ACM hands control over to the Flicker
SLB core which invokes the PAL and contains the necessary data structures to
return the control flow directly to the Flicker kernel module when the PAL has
finished executing.

During the execution of the SENTER operation, the dynamic TPM PCRs
(17-23) are initialised to zero. PCR 17 is then extended with the hashes of the
ACM and a number of configuration parameters. During the execution, PCR 18
is extended with the hash of the PAL. These PCR values are provided in the
TPM’s attestation, which can be used to prove to a third party that the PAL
binary was executed and calculated the output values.

The Flicker platform was designed with lightweight, short-lived computa-
tions in mind, as such it imposes a number of restrictions which make a direct
implementation of the audit as outlined in Chapter 3 unfeasible. The major
restriction which poses problems for the automated software audit is memory.
The Flicker environment has a stack size of 4KB, a heap size of 128KB, and a
maximum input size of approximately 116KB. In addition each Flicker session
has a significant overhead, between 0.2 and 1 second, depending on which TPM
functionality is used during the invocation [12].

4.1 Architecture

Three of the four inputs to the audit process may be of considerable size: the
address balances, the public keys and signatures, and the user accounts. At the
time of writing there are a total of 3.7 million addresses with a non-zero balance.
Each of the entries in the address balance input consists of an address of up to
35 byte and a 64 bit integer for the balance. The size of all address balances
therefore is just under 160 MB. The size of the user accounts depends on the
number of user accounts of the exchange. Generating a unique identifier from
the account information by hashing results in a 32 byte identifier. Each account
therefore has a 32 byte identifier with a 64 bit integer for the balance. Estimating
the user base of the exchange at 1 million users this results in a total size for
the user account input of 40 MB. While the number of addresses owned by the
exchange is under control of the exchange, the prototype should support any
number of addresses.

It is clear from the memory requirements posed by the input data and the
available input sizes of the Flicker platform that the monolithic architecture
of the audit as proposed in Figure 1 must be broken into smaller components.
The input data is split into input-sized chunks and processed in an incremental
fashion. This does not change the result of the audit, however the calculation of
the outputs which are required to verify the input data must change as a result
of the components only having a view of a small subset of the input data in each



Making Bitcoin Exchanges Transparent 11

filter+ verify

Public keys +
Signatures

hash

Address
Balances[i]

Sum(AB)ihi(AB)

Sealed Outputs

•

Fig. 4. An overview of the proof of reserves component. Italicised values are not pub-
lished publicly. Dashed arrows indicate values which are passed from invocation to
invocation

iteration. The individual invocations of a component of the audit require a secure
method of storing intermediate values, for instance a sum which is calculated
over multiple iterations. The PAL can use the TPM to seal intermediate values
to the current PCR state, encrypting them such that they can only be decrypted
by the TPM when it is executing the same PAL. The encrypted data is passed
back to the user application which should provide it as an input to the next
iteration of the component.

The process is driven by a user application, external to the trusted platform,
which repeatedly invokes the computation in the trusted platform. As the en-
crypted data is passed back to the user application, which is executing in an
untrusted and potentially malicious environment, there is the potential for a re-
play attack to be performed. However, the process of hashing the input ensures
that replay attacks can be detected by the client when verifying the result of the
audit.

We consider each component of the system individually and describe how it
is implemented in order to support incremental invocations.

Proof of Reserves The Proof of Reserves can be split into iterative invocations by
splitting the address balance list, and the list of signatures and public keys into
equal sized batches. Initially the address balance list ist sorted lexicographically,
in order to allow a verifier to compute the same hash. Each batch contains a list of
address balances and a possibly empty set of signatures and public keys matching
the address balances of the batch. This allows the system to verify the signatures
and sum up the respective values. The hash of the address balances is computed
by concatenating the hash from the previous round with the current hash and
hashing the result: h0 = h(AB0) and hi = h(hi−1 ‖ ABi). The output includes
the last considered address from the current batch. Due to the lexicographic
ordering of addresses it is trivial for the proof of reserves to detect a replay
attack, since it would require a lexicographically lower first address than the last



12 Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

merkle+

Customer
Data[i]

Sum(L)i Merklei

Sealed Outputs

•

Fig. 5. An overview of the proof of liabilities component. Italicised values are not
published publicly. Dashed arrows indicate values which are passed from invocation to
invocation

address from the previous batch. Figure 4 shows an overview of the new POR
component.

Proof of Liabilities The Proof of Liabilities (POL) is invoked iteratively, similarly
to the Proof of Reserves. Figure 5 shows an overview of the POL component.
The merkle tree computation accepts a list of tuples consisting of merkle subtree
root hashes, the root’s height and the associated sum of the tree’s value. It then
iteratively computes the roots of the trees by combining the subtrees, summing
the values and increasing the height. The resulting merkle root, height and value
sum is then sealed for the next iteration or to be passed to the proof of solvency.
In order to initiate the process, the proof of liabilities also accepts subtrees that
are not sealed for height 0, i.e., the hashes of the account identifier and the
account’s value. Missing branches in the merkle tree are replaced with a single
leaf with value 0.

Given that the merkle tree computation does not allow negative value sums
for subtrees guarantees that, if an account was included in the computation, its
value is included in the sum. A replay attack in this case does not benefit the
exchange as it may only increase the sum that is to be covered.

Proof of Solvency The Proof of Solvency (POS) component takes as inputs the
sealed outputs from the Proof of Reserves (POR) and Proof of Liabilities (POS)
components as well as the Fraction factor. As it handles only constant size inputs
it is sufficient to call the proof of solvability once. Its main purpose is to compute
the fraction that is to be covered and whether or not the assets are sufficient to
cover the liabilities. A secondary purpose is to unseal the results from the other
components and sign in order to publish them.

The final step of the POS component is the attestation of the PAL binary.
The audit no longer consists of an individual invocation of a PAL, instead the
POR and POL components are invoked hundreds or thousands of times each



Making Bitcoin Exchanges Transparent 13

hi(AB) Sum(AB)i Sum(L)i

Fraction
Factor

Merklei

∗

≥

Audit
Result

Hash of
Address Balances

Fraction
Factor

Merkle
Root

Signed Outputs

Sealed Inputs

Fig. 6. An overview of the proof of solvency component.

of these invocations requires attestation. The solution to this problem is to put
the separate logic for the POR, POL and POS components into a single binary.
The initial invocations of both the POR and POL logic of the PAL produce a
sealed intermediate values which are tied to that PAL. The sealed blob is then
unsealed by the next invocation, the intermediate values are modified and then
resealed. When the POS is invoked, it unseals the intermediate results produced
by the POR and POL.

The fact that the sealed blobs are unsealed and modified in each invocation
of the POR and POL and that they can only be unsealed by the same PAL that
initially created them means that the values in the sealed blob form a chain of
trust from their respective first invocations until the invocation of the POS. An
attesation of the POS is transitive to all previous PAL executions which were
able to unseal the blobs that the POS unseals.

4.2 Execution time

As previously mentioned, the Flicker invocation and some TPM operations pose
a significant overhead of up to 1s, when repeatedly entering and leaving the
PAL. During the execution time of the PAL, the operating system on which
the Flicker session is invoked does not process any interrupts. When the Flicker
session ends, the operating system requires a small amount of time to process
any interrupts and respond to system events. Tests showed that the operating
system needs pauses of 500ms to 1s in order to continue processing without
locking up or crashing. As the processing time for such a small number of inputs
is quite low in comparison to the TPM overhead, we can safely assume that each
Flicker invocation costs approximately two seconds.



14 Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

For input sizes in the range previously discussed, 3.7 million address balances
and 1 million customer accounts, the POR must be invoked approximately 1300
times if each invocation of the POR can process 3000 address balances, the
POL must be invoked approximately 500 times. This comes to a total of 1800
invocations, each of which requires 2s to execute and wait for the operating
system to recover. The overall execution time for an audit with inputs of this
size is approximately one hour and scales linearly in the number of address
balances and user accounts.

4.3 Additional Interfaces

Although the audit is the core component of proving solvency of a Bitcoin ex-
change, the signed audit output is not all that a customer requires in order to
verify the audit. Customers must retrieve additional values from the exchange
and perform some local computations in order to be able to verify the audit, and
to have some form of recourse should the verification fail. The implementation
of these interfaces is not in the scope of this work, what follows is an outline of
the requirements of the peripheral software and interfaces.

Audit Verification Most important for customers is the ability to verify the
audit’s result. This consists of the verification that the customer’s balance was
included in the calculation, verification of the address balances, and verification
of the attestation. The customer of an exchange must be able to retrieve the
nodes in the merkle tree which can be used to calculate the path from the
customer’s leaf node to the root of the merkle tree. If the customer is able to
reproduce the merkle root using the nodes provided by the exchange and their
own customer identifier and account balance at the time of the audit, then they
can be assured that they were accounted for in the calculation. The interface for
this purpose must take the hash of the tuple

〈Customer Identifier,Balance〉

as an argument and deliver the set of nodes required to calculate the path from
the customer’s leaf node to the merkle root. Each node would consist of a tuple

〈Height,Hash〉

Where Height is the height of the node in the merkle tree and Hash is the hash
digest stored at that node in the tree. The customer must also be able to verify
that the hash of the address balances provided by the exchange represents the
true account balances for a set blockchain height. For this purpose, the customer
must be able to determine the blockchain height that was used to determine
the address balances. The customer would require a software client which can
determine the address balances for the blockchain at a given height. This consists
of: extraction and aggregation of UTXOs, and sorting of the address balances.
With the address balances calculated, the customer can calculate the hash and



Making Bitcoin Exchanges Transparent 15

compare it with the hash provided by the audit. Finally, the customer must be
able to verify the attestation. This consists of two components: verification that
the attestation originates from a TPM, and verification of the binary which was
executed in the trusted platform.

Attestation Verification The customer needs to be able to verify that the
attestation was indeed issued by a TPM, in other words, what the customer
needs to know is that the Attestation Identity Key (AIK) used to sign the
attestion was provided by a TPM. The method proposed by the TCG is
Direct Anonymous Attestation (DAA) which allows for a customer to verify
directly that an AIK belongs to a TPM. For this the exchange must provide
an interface which performs DAA and the customer requires client software
which can verify the DAA provided by the exchange.

Binary Verification In order for the customer to verify that the PAL executed
in the trusted environment actually calculates the audit, as opposed to al-
ways returning true, the customer must have access to the source code of the
PAL and be able to reproduce the value of PCR 17 which is signed in the
TPM’s attestation. The exchange needs to provide a platform from which
the PAL source code can be retrieved, as well as a method for compiling a
reproducible binary, and instructions on how to transform the hash of the
binary to the value of PCR 17 in the attestation.

Signed Account Balance If a customer should determine that their account
balance was not included in an audit, they require some form of proof that
their account balances ought to have been taken into account in the audit. For
this purpose the exchange should provide an interface which allows a customer
to retrieve a signature of the hash of their 〈CustomrID,balance〉 tuple. With
this signature, other customers or the community at large could verify that the
exchange signed a value which is not included in the latest audit.

5 Conclusion

A string of Bitcoin exchange closures as well as various thefts from Bitcoin
exchanges have left customers of exchange services somewhat hesitant as there
has often been little transparency when such events took place. Exchanges have
published customer account balances as well as proof of ownership of Bitcoin
addressed which allow for customers and the public to determine the Bitcoin
assets of the exchange.

In this work we propose using an automated software-based audit to de-
termine the solvency of Bitcoin exchanges without revealing any private data.
Methods are proposed, based on the Flicker Trusted Computing platform, with
which the audit result can be verified and trusted to be correct. An architec-
ture is proposed which allows for the computation to be split into individual
pieces which iteratively compute a subset of the complete input to overcome the
memory limitations posed by the Flicker platform. The verification methodol-
ogy is expanded to cover the iterative execution scenario, allowing for customers



16 Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

of an exchange to verify the inputs to the audit. An analysis of the execution
time showed that it is entirely feasible to conduct audits on a daily basis at the
current estimate size of the Bitcoin ecosystem.

References

1. Bitcoin virtual currency: Unique features present distinct challenges for deterring
illicit activity. Tech. rep., Federal Bureau of Investigation (2012)

2. Application of fincen’s regulations to persons administering, exchanging, or using
virtual currencies. Tech. rep., Financial Crimes Enforcement Network, US Depart-
ment of the Treasury (2013)

3. Andresen, G.: Bitcoin improvement proposal 11: M-of-N standard transactions.
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki (2011, Online;
accessed February, 2015)

4. Araoz, M., Charles, R.X., Garcia, M.A.: Bip 45: Structure for deterministic
P2SH multisignature wallets. https://github.com/bitcoin/bips/blob/master/bip-
0045.mediawiki (2014, Online; accessed February, 2015)

5. Brito, J., Castillo, A.: Bitcoin: A primer for policymakers. Mercatus Center at
George Mason University (2013)

6. Bryans, D.: Bitcoin and money laundering: mining for an effective solution. Indiana
Law Journal

7. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: 19th
European Symposium on Research in Computer Security (ESORICS), Wroclaw,
Poland (September 2014)

8. Finney, H.: bcflick - using TPM’s and trusted computing to strengthen bitcoin
wallets. https://bitcointalk.org/index.php?topic=154290.msg1635481 (2013 (On-
line; accessed February, 2015))

9. Intel Corporation: Intel Trusted Execution Technology Software Developers Guide
(May 2014)

10. Maxwell, G., Todd, P.: Fraud proof. https://people.xiph.org/ greg/bitcoin-wizards-
fraud-proof.log.txt (2013 (Online; accessed March, 2015))

11. Maxwell, G., Wilcox, Z.: Proving your bitcoin reserves.
https://iwilcox.me.uk/2014/proving-bitcoin-reserves (February 2014 (Online;
accessed January 5th, 2015))

12. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An exe-
cution infrastructure for TCB minimization. In: ACM SIGOPS Operating Systems
Review

13. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Advances in Cryptology-CRYPTO’87

14. Moore, T., Christin, N.: Beware the middleman: Empirical analysis of bitcoin-
exchange risk. In: Financial Cryptography and Data Security

15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf (2008, Online; accessed February, 2015)

16. New York State Department of Financial Services: Virtual Currencies.
http://www.dfs.ny.gov/legal/regulations/revised vc regulation.pdf (2015 (Online;
accessed February, 2015))

17. Todd, P.: BIP 65: OP CHECKLOCKTIMEVERIFY.
https://github.com/bitcoin/bips (2014 Online; accessed March, 2014)

18. Trusted Computing Group: TCG Specification Architecture Overview (August
2007), rev. 1.4


