
HAL Id: hal-00325470
https://hal.archives-ouvertes.fr/hal-00325470

Submitted on 29 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consensus is Easier Than Reliable Broadcast
Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Franck Petit,

Sam Toueg

To cite this version:
Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Franck Petit, Sam Toueg. Consensus
is Easier Than Reliable Broadcast. 2008. �hal-00325470�

https://hal.archives-ouvertes.fr/hal-00325470
https://hal.archives-ouvertes.fr

With Finite Memory

Consensus is Easier Than Reliable Broadcast

Carole Delporte-Gallet1 Stéphane Devismes2 Hugues Fauconnier1

Franck Petit3∗ Sam Toueg4

Abstract

We consider asynchronous distributed systems with message losses and process crashes. We
study the impact of finite process memory on the solution to consensus, repeated consensus and
reliable broadcast. With finite process memory, we show that in some sense consensus is easier
to solve than reliable broadcast, and that reliable broadcast is as difficult to solve as repeated
consensus: More precisely, with finite memory, consensus can be solved with failure detector
S, and P− (a variant of the perfect failure detector which is stronger than S) is necessary and
sufficient to solve reliable broadcast and repeated consensus.

Keywords: Distributed algorithms, failure detectors, reliable broadcast, consensus, repeated con-
sensus.

1 Introduction

Designing fault-tolerant protocols for asynchronous systems is highly desirable but also highly
complex. Some classical agreement problems such as consensus and reliable broadcast are well-
known tools for solving more sophisticated tasks in faulty environments (e.g., [19, 16]). Roughly
speaking, with consensus processes must reach a common decision on their inputs, and with reliable
broadcast processes must deliver the same set of messages.

It is well known that consensus cannot be solved in asynchronous systems with failures [15],
and several mechanisms were introduced to circumvent this impossibility result: randomization [7],
partial synchrony [11, 12] and (unreliable) failure detectors [6].

Informally, a failure detector is a distributed oracle that gives (possibly incorrect) hints about
the process crashes. Each process can access a local failure detector module that monitors the
processes of the system and maintains a list of processes that are suspected of having crashed.

Several classes of failure detectors have been introduced, e.g., P, S, Ω, etc. Failure detectors
classes can be compared by reduction algorithms, so for any given problem P , a natural question is
“What is the weakest failure detector (class) that can solve P ?”. This question has been extensively
studied for several problems in systems with infinite process memory (e.g., uniform and non-uniform
versions of consensus [5, 13], non-blocking atomic commit [9], uniform reliable broadcast [1, 21],

1LIAFA, Université D. Diderot, Paris, France, {cd,hf}@liafa.jussieu.fr
2VERIMAG, Université Joseph Fourier, Grenoble, France, stephane.devismes@imag.fr
3INRIA/LIP Laboratory,Univ. of Lyon/ENS Lyon, Lyon, France, franck.petit@ens-lyon.fr
4Department of Computer Science, University of Toronto, Toronto, Canada, sam@cs.toronto.edu
∗This work was initiated while Franck Petit was with MIS Lab., Université of Picardie, France. Research partially

supported by Région Picardie, Proj. APREDY.

1

implementing an atomic register in a message-passing system [9], mutual exclusion [10], boosting
obstruction-freedom [18], set consensus [23, 25], etc.). This question, however, has not been as
extensively studied in the context of systems with finite process memory.

In this paper, we consider systems where processes have finite memory, processes can crash and
links can lose messages (more precisely, links are fair lossy and FIFO1). Such environments can be
found in many systems, for example in sensor networks, sensors are typically equipped with small
memories, they can crash when their batteries run out, and they can experience message losses if
they use wireless communication.

In such systems, we consider (the uniform versions of) reliable broadcast, consensus and repeated
consensus. Our contribution is threefold: First, we establish that the weakest failure detector for
reliable broadcast is P− — a failure detector that is almost as powerful than the perfect failure
detector P.2 Next, we show that consensus can be solved using failure detector S. Finally, we prove
that P− is the weakest failure detector for repeated consensus. Since S is strictly weaker than P−,
in some precise sense these results imply that, in the systems that we consider here, consensus is
easier to solve than reliable broadcast, and reliable broadcast is as difficult to solve as repeated
consensus.

The above results are somewhat surprising because, when processes have infinite memory, re-
liable broadcast is easier to solve than consensus3, and repeated consensus is not more difficult to
solve than consensus.

Roadmap. The rest of the paper is organized as follows: In the next section, we present the
model considered in this paper. In Section 4, we show that in case of process memory limitation
and possibility of crashes, P− is necessary and sufficient to solve reliable broadcast. In Section 5,
we show that consensus can be solved using a failire detector of type S in our systems. In Section
6, we show that P− is necessary and sufficient to solve repeated consensus in this context.

For space considerations, all the proofs are relegated to an optional appendix.

2 Model

Distributed System. A system consists of a set Π = {p1, ..., pn} of processes. We consider
asynchronous distributed systems where each process can communicate with each other through
directed links.4 By asynchronous, we mean that there is no bound on message delay, clock drift, or
process execution rate.

A process has a local memory, a local sequential and deterministic algorithm, and input/output
capabilities. In this paper we consider systems of processes having either a finite or an infinite
memory. In the sequel, we denote such systems by ΦF and ΦI , respectively.

We consider links with unbounded capacities. We assume that the messages sent from p to q
are distinguishable, i.e., if necessary, the messages can be numbered with a non-negative integer.
These numbers are used for notational purpose only, and are unknown to the processes. Every link
satisfies the integrity, i.e., if a message m from p is received by q, m is received by q at most once,
and only if p previously sent m to q. Links are also unreliable and fair. Unreliable means that the

1The FIFO assumption is necessary because, from the results in [22], if lossy links are not FIFO, reliable broadcast
requires unbounded message headers.

2Note that P ⊆ P
− and P

− is unrealistic according to the definition in [8].
3With infinite memory and fair lossy links, (uniform) reliable broadcast can be solved using Θ [3], and Θ is strictly

weaker than (Σ, Ω) which is necessary to solve consensus.
4We assume that each process knows the set of processes that are in the system; some papers related to failure

detectors do not make this assumption e.g. [4, 17, 14].

2

messages can be lost. Fairness means that for each message m, if process p sends infinitely often
m to process q and if q tries to receive infinitely often a message from p, then q receives infinitely
often m from p. Each link are FIFO, i.e., the messages are received in the same order as they were
sent.

To simplify the presentation, we assume the existence of a discrete global clock. This is merely
a fictional device: the processes do not have access to it. We take the range T of the clock’s ticks
to be the set of natural numbers.

Failures and Failure Patterns. Every process can fail by permanently crashing, in which case
it definitively stops to execute its local algorithm. A failure pattern F is a function from T to
2Π, where F (t) denotes the set of processes that have crashed through time t. Once crashed,
a process never recoves, i.e., ∀t : F (t) ⊆ F (t + 1). We define crashed(F) =

⋃
t∈T F (t) and

correct(F) = Π \ crashed(F). If p ∈ crashed(F) we say that p crashes in F (or simply crashed
when it is clear in the context) and if p ∈ correct(F) we say that p is correct in F (or simply correct
when it is clear in the context). An environment is a set of failure patterns. We do not restrict
here the number of crash and we consider as environment E the set of all failure patterns.

Failure Detectors. A failure detector [6] is a local module that outputs a set of processes that
are currently suspected of having crashed. A failure detector history H is a function from Π × T
to 2Π. H(p,t) is the value of the failure detector module of process p at time t. If q ∈ H(p,t), we
say that p suspects q at time t in H. We omit references to H when it is obvious from the context.

Formally, failure detector D is a function that maps each failure pattern F to a set of failure
detector histories D(F).

A failure detector can be defined in terms of two abstract properties: Completeness and Accu-
racy [6] . Let us recall one type of completeness and two types of accuracy.

Definition 1 (Strong Completeness) Eventually every process that crashes is permanently sus-
pected by every correct process. Formally, D satisfies strong completeness if: ∀F ∈ E ,∀H ∈
D(F),∃t ∈ T ,∀p ∈ crashed(F),∀q ∈ correct(F),∀t′ ≥ t : p ∈ H(q, t′)

Definition 2 (Strong Accuracy) No process is suspected before it crashes. Formally, D satisfies
strong accuracy if: ∀F ∈ E ,∀H ∈ D(F),∀t ∈ T ,∀p, q ∈ Π \ F (t) : p /∈ H(q, t)

Definition 3 (Weak Accuracy) A correct process is never suspected. Formally, D satisfies weak
accuracy if: ∀F ∈ E ,∀H ∈ D(F),∀t ∈ T ,∃p ∈ correct(F),∀q ∈ Π : p /∈ H(q, t)

We introduce a last type of accuracy:

Definition 4 (Almost Strong Accuracy) No correct processes are suspected. Formally, D sat-
isfies almost strong accuracy if: ∀F ∈ E ,∀H ∈ D(F),∀t ∈ T ,∀p ∈ correct(F),∀q ∈ Π : p 6∈ H(q, t)

For all these aformentioned properties, we can assume, without loss of generality, that when a
process is suspected it remains suspected forever.

We now recall the definition of the perfect and the strong failure detectors [6] and we introduce
our almost perfect failure detector:

Definition 5 (Perfect) A failure detector is said to be perfect if it satisfies the strong complete-
ness and the strong accuracy properties. This failure detector is denoted by P.

3

Definition 6 (Almost Perfect) A failure detector is said to be almost perfect if it satisfies the
strong completeness and the almost strong accuracy properties. This failure detector is denoted by
P−.

Definition 7 (Strong) A failure detector is said to be strong if it satisfies the strong completeness
and the weak accuracy properties. This failure detector is denoted by S.

Algorithms, Runs, and Specification. A distributed algorithm is a collection of n sequential
and deterministic algorithms, one for each process in Π. Computations of distributed algorithm A
proceed in atomic steps. In a step, a process p executes each of the following actions at most once:
(1) p gets an input, (2) p outputs a value, (3) p receives a message, (4) p queries its failure detector
module, (5) p modifies its (local) state, and (6) p sends a message to a single process.

A run of Algorithm A using a failure detector D is a tuple R = 〈F ,HD,γinit,E,T 〉 where F is
a failure pattern, HD ∈ D(F) is an history of failure detector D for the failure pattern F , γinit is
an initial configuration of A, E is an infinite sequence of steps of A, and T is a list of increasing
time values indicating when each step in E occurred. A run must satisfy certain well-formedness
and fairness properties. In particular, (1) E is applicable to γinit, (2) a process cannot take steps
after it crashes, (3) when a process takes a step and queries its failure detector module, it gets
the current value output by its local failure detector module, (4) every process that is correct in F
takes an infinite number of local steps in E, and (5) any message sent is eventually received or lost.

A problem P is defined by a set of properties that runs must satisfy. An algorithm A solves a
problem P using a failure detector D if and only if all the runs of A using D satisfy the properties
required by P .

A failure detector D is said to be weaker than another failure detector D′ (denote D ≤ D′) if
there is an algorithm that uses only D′ to emulate the output of D for every failure pattern. If D
is weaker than D′ but D′ is not weaker than D we say that D is strictly weaker than D′ (denote
D < D′).

From [6] and our definition of P−, we get:

Proposition 1
S < P− < P

The weakest [5] failure detector D to solve a given problem is a failure detector D that is sufficient
to solve the problem and that is also necessary to solve the problem, i.e. D is weaker than any
failure detector that solves the problem.

Notations. In the sequel, vp denotes the value of the variable v at process p. Also, vτ
p denotes

the value of vp at time τ . Finally, a datum in a message can be replaced by “−” when this value
has no impact on the reasonning.

3 Problem specifications

Reliable Broadcast. The reliable broadcast [20] is defined with two primitives: BROADCAST(m)
and DELIVER(m). Informally, after a process p invokes BROADCAST(m), every correct processes must
eventually execute DELIVER(m). In the formal definition below, we denote by sender(m) the process
that invokes BROADCAST(m).

Specification 1 (Reliable-Broadcast) A run R satisfies reliable-broadcast if and only if the
following three requirements are satisfied in R:

4

Validity: If a correct process invokes BROADCAST(m), then it eventually executes DELIVER(m).

(Uniform) Agreement: If a process executes DELIVER(m), then all other correct processes eventually
execute DELIVER(m).

Integrity: For every message m, every process executes DELIVER(m) at most once, and only if
sender(m) previously invokes BROADCAST(m).

Consensus. In the consensus problem, all correct processes propose a value and must reach a
unanimous and irrevocable decision on some value that is chosen between the proposed values. We
define the consensus problem in terms of two primitives, PROPOSE(v) and DECIDE(u). When a pro-
cess executes PROPOSE(v), we say that it proposes v; similarly, when a process executes DECIDE(u),
we say that it decides u.

Specification 2 (Consensus) A run R satisfies consensus if and only if the following three
requirements are satisfied in R:

(Uniform) Agreement: No two processes decide differently.

Termination: Every correct process eventually decides some value.

Validity: If a process decides v, then v was proposed by some process.

Repeated Consensus. We now define repeated consensus. Each correct process has as input an
infinite sequence of proposed values, and outputs an infinite sequence of decision values such that
(1) two correct processes have the same output (the output of a faulty process is a prefix of this
output) and (2) the ith value of the output is the ith value of the input of some process. We define
the repeated consensus problem in terms of two primitives, R-PROPOSE(v) and R-DECIDE(u). When
a process executes the ith R-PROPOSE(v), v is the ith value of its input (we say that it proposes v
for the ith consensus); similarly, when a process executes the ith R-DECIDE(u) u is the ith value of
its output (we say that it decides v for the ith consensus).

Specification 3 (Repeated Consensus) A run R satisfies repeated-consensus if and only if
the following three requirements are satisfied in R:

Agreement: If u and v are the outputs of two processes, then either u is a prefix5 or v is a prefix
of u.

Termination: Every correct process has an infinite output.

Validity: If the ith value of the output of a process is v, then v is the ith value of the input of some
process.

4 Reliable Broadcast in ΦF

We show in this section that P− is the weakest failure detector to solve the reliable broadcast in
ΦF .

5If u = v, then u is also a prefix of v.

5

P− is Necessary. To show that P− is necessary to solve the reliable broadcast the following
lemma is central to the proof:

Lemma 1 Let A be an algorithm solving reliable-broadcast in ΦF with a failure detector D.
There exists an integer k such that for every process p and every correct process q, for every run R
of A where process p BROADCASTs and DELIVERs k messages, at least one message from q has been
received by some process.

Assume now that there exists an algorithm A that implements reliable-broadcast in ΦF

using the failure detector D. To show our result we have to give an algorithm that uses only D to
emulate the output of P− for every failure pattern.

Actually, we give an algorithm A(p,q) (Figure 1) where a given process p monitors a given process
q. This algorithm uses one instance of A with D. Note that all processes except q participate to
this algorithm following the code of A. In this algorithm Output q is equal to either {q} (q is
faulty) or ∅ (q is correct).

The algorithm A(p,q) works as follows: p tries to BROADCAST k messages, all processes execute
the code of the algorithm A using D except q that does nothing. If p DELIVERs k messages, it
sets Output q to q and never changes the values of Output q. By lemma 1, if q is correct p can’t
deliver k messages and so it never sets Output q to q. If q is faulty and p is correct: as A solve
reliable-broadcast, p has to deliver DELIVER k messages and so p Output q to q.6

To emulate P, each process p uses algorithm A(p,q) for every process q. As D is a failure detector
it can be used for each instance. The output of P− at p (Variable Output) is then the union of
Output q for every process q.

1: /∗ Code for process p ∗/
2: begin

3: Output q ← ∅
4: for i = 1 to k do

5: BROADCAST(m) /∗ using A with D ∗/
6: wait for DELIVER(m)
7: end for

8: Output q ← {q}
9: end

10: /∗ Code for process q ∗/
11: begin

12: end

13: /∗ Code for every process Π− {p, q} ∗/
14: begin

15: execute the code of A with D for these messages
16: end

Figure 1: A(p,q)

Theorem 1 P− is necessary to solve reliable-broadcast in ΦF .

P− is Sufficient. In Algorithm B (Figure 2), every process uses a failure detector module of type
P− and a finite memory. Theorem 2 shows that Algorithm B solves the reliable broadcast in ΦF

and directly implies that P− is sufficient to solve the reliable broadcast in ΦF (Corollary 1).
In Algorithm B, each process p executes broadcasts sequentially: p starts a new broadcast only

after the termination of the previous one. To that goal, any process p initializes Mes[p] to ⊥. Then,
p periodically checks if an external application invokes BROADCAST(−). In this case, MesToBrd()
returns the message to broadcast, say m. When this event occurs, Mes[p] is set to m and the
broadcast procedure starts. Mes[p] is set to ⊥ at the end of the broadcast, p checks again, and so
on.

Algorithm B has to deal with two types of faults: process crashes and message loss.

6If q is faulty and p is faulty, the property of failure detector is trivially ensured.

6

1: /∗ Code for every process q ∗/
2: variables:

3: Flag[1 . . . n][1 . . . n] ∈ {0,1}n
2

;
∀(i, j) ∈ Π2, Flag[i][j] is initialized to 0

4: FD: failure detector of type P−

5: Mes[1 . . . n]: array of data messages;
∀i ∈ Π, Mes[i] is initialized to ⊥

6: function: MesToBrd(): returns a message or ⊥
7: begin

8: repeat forever

9: if Mes[p] =⊥ then

10: Mes[p]← MesToBrd()
11: if Mes[p] 6=⊥ then

12: Flag[p][p]← (Flag[p][p] + 1) mod 2
13: end if

14: end if

15: for all i ∈ Π \ FD do

16: for all j∈Π\(FD∪{p,i}),Flag[i][p] 6=Flag[i][j] do

17: if (rcv〈i-ACK, F 〉 from j)
∧ (F=Flag[i][p]) then

18: Flag[i][j]← F
19: else

20: send〈i-BRD, Mes[i], Flag[i][p]〉 to j
21: end if

22: end for

23: if (Mes[i] 6=⊥) ∧
(∀q ∈ Π \ FD, Flag[i][i] = Flag[i][q]) then

24: DELIVER(Mes[i])
25: Mes[i]←⊥
26: end if

27: end for

28: for all i ∈ Π \ FD \ {p} do

29: for all j ∈ Π \ (FD ∪ {p}) do

30: if (rcv〈i-BRD,m, F 〉 from j) then

31: if (∀q ∈ Π \ FD, Flag[i][q] = Flag[i][i])
∧ (F 6= Flag[i][p]) then

32: Mes[i]← m

33: Flag[i][p]← F
34: end if

35: if i = j then

36: Flag[i][i]← F
37: end if

38: if (i 6= j) ∨
(∀q ∈ Π \ FD, Flag[i][q] = Flag[i][i]) then

39: send〈i-ACK, Flag[i][p]〉 to j
40: end if

41: end if

42: end for

43: end for

44: end repeat

45: end

Figure 2: Algorithm B.

- Dealing with process crashes. Every process uses a failure detector of type P− to detect the
process crashes. Note that, as mentionned in Section 2, we assume that when a process is
suspected it remains suspected forever.

Assume that a process p broadcasts the message m: p sends a broadcast message (p-BRD)
with the datum m to any process it believes to be correct.

In Algorithm B, p executes DELIVER(m) only after all other processes it does not suspect
receives m. To that goal, we use acknowledgment mechanisms. When p received an acknowl-
edgment for m (p-ACK) from every other process it does not suspect, p executes DELIVER(m)
and the broadcast of m terminates (Mes[p]←⊥).

To ensure the agreement property, we must guarantee that if p crashes but another process
q already executes DELIVER(m), then any correct process eventually executes DELIVER(m).
To that goal, any process can execute DELIVER(m) only after all other processes it does not
suspect except p receive m. Once again, we use acknowledgment mechanisms to that end:
q also broadcasts m to every other process it does not suspect except p (this induces that a
process can now receive m from a process different of p) until receiving an acknowledgment
for m from all these processes and the broadcast message from p if q does not suspect it.

To prevent m to be still broadcasted when p broadcasts the next message, we synchronize the
system as follows: any process acknowledges m to p only after it received an acknowledgment
for m from every other process it does not suspect except p. By contrast, if a process i
receives a message broadcasted by p (p-BRD) from the process j 6= p, i directly acknowledges
the message to j.

- Dealing with message loss. The broadcast messages have to be periodically retransmitted
until they are acknowledged. To that goal, any process q stores the last broadcasted message

7

from p into its variable Mesq[p] (initialized to ⊥). However, some copies of previously received
messages can be now in transit at any time in the network. So, each process must be able
to distinguish if a message it receives is copy of a previously received message or a new one,
say valid. To circumvent this problem, we use the traditional alternating-bit mechanism [2,
24]: a flag value (0 or 1) is stored into any message and a two-dimentionnal array, noted
Flag[1 . . . n][1 . . . n], allows us to distinguish if the messages are valid or not. Initially, any
process sets Flag[i][j] to 0 for all pairs of processes (i,j). In the code of Process p, the value
Flagp[p][p] is used to mark every p-BRD messages sent by p. In the code of every process
q 6= p, Flagq[p][q] is equal to the flag value of the last valid p-BRD message q receives (not
necessarily from p). For all q′ 6= q, Flagq[p][q′] is equal to the flag value of the last valid p-BRD
message q receives from q′.

Theorem 2 Algorithm B is a reliable broadcast algorithm in ΦF with P−.

Corollary 1 P− is sufficient for solving reliable broadcast in ΦF .

5 Consensus in ΦF

We show in this section that we can solve consensus in system ΦF with a failure detector that is
strictly weaker than the failure detector necessary to solve reliable broadcast and repeated consen-
sus. We solve consensus with the strong failure detector S. S is not the weakest failure detector
to solve consensus whatever the number of crash but it is strictly weaker than P− and so enough
to show our results.

We customize the algorithm of Chandra and Toueg [6] that works in an asynchronous message-
passing system with reliable links and augmented with a strong failure detector, to our model.

In this algorithm, CS (Figure 3), the processes execute n asynchronous rounds. First, processes
execute n−1 asynchronous rounds (r denotes the current round number) during which they broad-
cast and relay their proposed values. Each process p waits until it receives a round r message from
every process that is not suspected by its failure detector module in S (as mentionned in Section
2, we assume that when a process is suspected it remains suspected forever) before proceeding to
round r+1. Then, processes execute a last asynchronous rounds during which they eliminate some
proposed values. Again each process p waits until it receives a round n message from every process
that is not suspected by its failure detector module. By the end of these n rounds, correct processes
agree on a vector based on the proposed values of all processes. The ith element of this vector either
contains the proposed value of process i or ⊥. This vector contains the proposed value of at least
one process : the process that is never suspected by its failure detector. Correct processes decide
the first nontrivial component of this vector.

To customize this algorithm to our model, we have to ensure the progress of each process: While
a process has not ended the asynchronous round r it must be able to retransmit all the messages7

that it has previously sent in order to allow others processes to progress despite the link failures. As
we have used a strong failure detector and fair loss links, it is possible that one process has decided
and the other ones still wait messages of asynchronous rounds. When a process has terminated the
n asynchronous rounds, it uses a special Decide message to allow others processes to progress.

In the algorithm, we first use a function consensus. This function takes the proposed value in
parameter and returns the decision value and uses a failure detector. Then, at processes request,
we propagate the Decide message.

7Notice that they are in finite number

8

1: /∗ Code for process p ∗/
2: function consensus(v) with fd

3: variables:

4: Flag[1 . . . n] ∈ {true,false}n;
∀i ∈ Π, Flag[i] is initialized to false

5: V[1 . . . n]: array of propositions;
∀i ∈ Π, V[i] is initialized to ⊥

6: Mes[1 . . . n]: array of arrays of propositions;
∀i ∈ Π, Mes[i] is initialized to ⊥

7: r: integer; r is initialized to 1
8: begin

9: V[p]← v the proposed values
10: Mes[1]← V

11: while (r ≤ n) do

12: send〈R-r, Mes[r]〉 to every process,

except p
13: for all i ∈ Π \ (fd ∪ {p}), Flag[i] = false do

14: if (rcv〈R-r,W〉 from i) then

15: Flag[i]← true
16: if r < n then

17: if V[i] = ⊥ then

18: V[i]←W [i]; Mes[r + 1][i]←W [i]
19: end if

20: else

21: if V[i] 6= ⊥ then

22: V[i]←W [i]
23: end if

24: end if

25: end if

26: end for

27: for all i ∈ Π \ {p} do

28: if (rcv〈R-x,W〉 from i), x < r then

29: send〈R-x, Mes[x]〉 to i
30: end if

31: end for

32: if ∀q ∈ Π \ (fd ∪ {p}), Flag[q] = true then

33: if r < n then

34: for all i ∈ Π do

35: Flag[i]← false
36: end for

37: end if

38: if r = n− 1 then

39: Mes[n]← V

40: end if

41: r ← r + 1
42: end if

43: for all i ∈ Π \ {p} do

44: if (rcv〈Decide, d〉 from i) then

45: return(d)
46: end if

47: end for

48: end while

49: d = the first component of V different from ⊥
50: return(d)
51: end

52: end function

53: procedure PROPOSE(v)
54: variables:

55: u: integer; FD: failure detector of type S
56: begin

57: u←consensus(v) with FD

58: DECIDE(u)
59: repeat forever

60: for all j ∈ Π \ {p}, x ∈ {1, ..., n} do

61: if (rcv〈R-x,W〉 from j) then

62: send〈Decide, u〉 to j
63: end if

64: end for

65: end repeat

66: end

67: end procedure

Figure 3: Algorithm CS, consensus with S.

Theorem 3 shows that Algorithm CS solves the consensus in ΦF and directly implies that S is
sufficient to solve te consensus problem in ΦF (Corollary 2).

Theorem 3 Algorithm CS is a consensus algorithm in ΦF with S.

Corollary 2 S is sufficient for solving consensus in ΦF .

6 Repeated consensus in ΦF

We show in this section that P− is the weakest failure detector to solve the reliable consensus
problem in ΦF .

P− is Necessary. The proof is similar to the one in Section 4, and here the following lemma is
central to the proof:

Lemma 2 Let A be an algorithm solving repeated-consensus in ΦF with a failure detector D.
There exists an integer k such that for every process p and every correct process q for every run
R of A where process p R-PROPOSEs and R-DECIDEs k times, at least one message from q has been
received by some process.

9

Assume that there exists an algorithm A that implements repeated-consensus in ΦF using
the failure detector D. To show our result we have to give an algorithm that uses only D to emulate
the output of P− for every failure pattern.

In fact we give an algorithm Aq (Figure 4) where processes monitor a given process q. This
algorithm uses one instance of A with D. Note that all processes except q participate to this
algorithm following the code of A. In this algorithm Output q is equal to either {q} (q is crashed)
or ∅ (q is correct).

The algorithm Aq works as follows: processes try to R-DECIDE k times, all processes execute
the code of the algorithm A using D except q that does nothing. If p R-DECIDE k messages, it sets
Output q to q and never changes the values of Output q.

By lemma 2, if q is correct p cannot decides k times and so it never sets Output q to q. If q is
faulty and p is correct8: as A solve repeated-consensus, p has to R-DECIDE k times and so p sets
Output q to q.

To emulate P−, each process p uses Algorithm Aq for every process q. As D is a failure detector
it can be used for each instance. The output of P− at p (Variable Output) is then the union of
Output q for every process q.

1: /∗ Code for process p of Π \ q ∗/
2: begin

3: Output q ← ∅
4: for i = 1 to k do

5: R-PROPOSED(v) /∗ using A with D ∗/
6: wait for R-DECIDE(v)
7: end for

8: Output q ← {q}
9: end

10: /∗ Code for process q ∗/
11: begin

12: end

Figure 4: Aq

Theorem 4 P− is necessary to solve repeated-consensus problem in ΦF .

P− is Sufficient. In this section, we show that P− is sufficient to solve the repeated consensus
in ΦF . To that goal, we consider an algorithm called Algorithm RCP (Figures 5 and 6). In this
algorithm, any process uses a failure detector module of type P− and a finite memory. Theorem
5 shows that Algorithm RCP solves the repeated consensus in ΦF and directly implies that P− is
sufficient to solve the repeated consensus in ΦF (Corollary 3).

We assume that each correct processes has an infinite sequence of input and when it terminates
R-PROPOSED(v) where v is the ith value of its input, it executes R-PROPOSED(w) where w is the
(i + 1)th value of its input.

When a process executes R-PROPOSED(v), it first executes a consensus in which it proposes v.
The decision of this consensus is then outputted. Then, processes have to avoid that the messages
of two consecutive consensus are mixed up. We construct a synchronization barrier. Without
message loss, and with a perfect failure detector, it is sufficient that each process waits a Decide

message from every process trusted by its failure detector module. By FIFO property, no message
〈R-x,−〉 sent before this Decide message can be received in the next consensus.

To deal with message loss, the synchronization barrier is obtained by two asynchronous rounds:
In the first asynchronous rounds, each process sends a Decide message and waits to receive a

8If q is faulty and p is faulty, the property of failure detector is trivially ensured.

10

1: /∗ Code for process p ∗/
2: function consensus(v) with the failure detector fd

3: variables:

4: Flag[1 . . . n] ∈ {true,false}n;
∀i ∈ Π, Flag[i] is initialized to false

5: V[1 . . . n]: array of propositions;
∀i ∈ Π, V[i] is initialized to ⊥

6: Mes[1 . . . n]: array of arrays of propositions;
∀i ∈ Π, Mes[i] is initialized to ⊥

7: r: integer; r is initialized to 1
8: begin

9: V[p]← v the proposed values
10: Mes[1]← V

11: while (r ≤ n) do

12: send〈R-r, Mes[r]〉 to every process,

except {p} ∪ fd

13: for all i ∈ Π \ (fd ∪ {p}), Flag[i] = false do

14: if (rcv〈R-r,W〉 from i) then

15: Flag[i]← true
16: if r < n then

17: if V[i] = ⊥ then

18: V[i]←W [i]; Mes[r + 1][i]←W [i]
19: end if

20: else

21: if V[i] 6= ⊥ then

22: V[i]←W [i]

23: end if

24: end if

25: end if

26: end for

27: if ∀q ∈ Π \ (fd ∪ {p}), Flag[q] = true then

28: if r < n then

29: for all i ∈ Π do

30: Flag[i]← false
31: end for

32: end if

33: if r = n− 1 then

34: Mes[n]← V

35: end if

36: r ← r + 1
37: end if

38: for all i ∈ Π \ (fd ∪ {p}) do

39: if (rcv〈Decide, d〉 from i) then

40: return(d)
41: end if

42: end for

43: end while

44: d = the first component of V different from ⊥
45: return(d)
46: end

47: end function

Figure 5: Algorithm RCP, repeated consensus with P−. Part 1: function consensus()

Decide message or a Start message from every process trusted by its failure detector module (in
P−). In the second one, each process sends a Decide message and waits to receive a Start message
or a 〈R-x,−〉 message. Actually, due to message loss it is possible that a process goes to its second
round despite some process have not received its Decide message, but it cannot finish the second
round before every correct processes have finished the first one.

As a faulty process can be suspected by P− before it crashes, it is possible that a faulty process
will not be waited by other processes although it is still alive. To avoid that this process disturbs
the round, when a process p has suspected a process q, p never waits a message from this process
and p never sends a message to this process.

Note also that if the consensus function is executed with P−, then there is no need to send
〈R-x,−〉 in round r > x again. We have rewritten the consensus function to take these facts in
account, but the behaviour remains the same.

Theorem 5 Algorithm RCP (Figure 5 and 6) is a repeated consensus algorithm in ΦF with P−.

Corollary 3 P is sufficient for solving repeated consensus in ΦF .

Contrary to these results in system ΦF , in system ΦI , we have the same weakest failure detector
to solve the consensus problem and the repeated consensus problem :

Proposition 2 In system ΦI , if there is an algorithm A with failure detector D solving the con-
sensus problem then there exists an algorithm solving repeated consensus with D.

11

1: /∗ Code for process p ∗/
2: variables:

3: FD: failure detector of type P−

4: procedure R-PROPOSED(v)
5: variables:

6: FlagR[1 . . . n] ∈ {true,false}n;
∀i ∈ Π, FlagR[i] is initialized to false

7: stop: boolean; stop is initialized to false
8: u: integer;
9: begin

10: u←consensus(v) with FD

11: R-DECIDE(u)
12: repeat

13: send〈Decide, u〉 to every process,

except {p} ∪ FD

14: for all i ∈ Π \ (FD ∪ {p}), FlagR[i] = false do

15: if (rcv〈Decide, u〉 from i) ∨
(rcv〈Start〉 from i) then

16: FlagR[i]← true
17: end if

18: end for

19: if ∀q ∈ Π \ (FD ∪ {p}), FlagR[q] = true then

20: stop← true
21: end if

22: until stop
23: for all i ∈ Π do

24: FlagR[i]← false
25: end for

26: stop← false
27: repeat

28: send〈Start〉 to every process,

except {p} ∪ FD

29: for all i ∈ Π \ (FD ∪ {p}), FlagR[i] = false do

30: if (rcv〈Start〉 from i) ∨
(rcv〈R-1,W〉 from j) then

31: FlagR[i]← true
32: end if

33: end for

34: if ∀q ∈ Π \ (FD ∪ {p}), FlagR[q] = true then

35: stop← true
36: end if

37: until stop
38: end

39: end procedure

Figure 6: Algorithm RCP, repeated consensus with P−. Part 2.

References

[1] Marcos K. Aguilera, Sam Toueg, and Boris Deianov. Revisiting the weakest failure detector for
uniform reliable broadcast. In DISC ’99: Proceedings of the thirteenth International Symposium
on Distributed Computing, pages 13–33, LNCS vol. 1693. Springer-Verlag, September 1999.

[2] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex trans-
mission over halfduplex links. Journal of the ACM, 12:260–261, 1969.

[3] Rida A. Bazzi and Gil Neiger. Simulating crash failures with many faulty processors (extended
abstract). In 6th International Workshop on Distributed Algorithms (WDAG ’92), volume 647
of Lecture Notes in Computer Science, pages 166–184. Springer, 1992.

[4] David Cavin, Yoav Sasson, and André Schiper. Consensus with unknown participants or
fundamental self-organization. In Ioanis Nikolaidis, Michel Barbeau, and Evangelos Kranakis,
editors, ADHOC-NOW, volume 3158 of Lecture Notes in Computer Science, pages 135–148.
Springer, 2004.

[5] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685–722, 1996.

[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

[7] Benny Chor and Brian A. Coan. A simple and efficient randomized byzantine agreement
algorithm. IEEE Trans. Software Eng., 11(6):531–539, 1985.

[8] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. A realistic look at failure
detectors. In DSN, pages 345–353. IEEE Computer Society, 2002.

[9] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamental

12

problems in distributed computing. In Twenty-Third Annual ACM Symposium on Principles
of Distributed Computing (PODC 2004), pages 338–346, 2004.

[10] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Petr Kouznetsov. Mutual
exclusion in asynchronous systems with failure detectors. Journal of Parallel and Distributed
Computing, 65(4):492–505, April 2005.

[11] Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer. On the minimal synchronism needed
for distributed consensus. Journal of the ACM, 34(1):77–97, 1987.

[12] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

[13] Jonathan Eisler, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector to solve
nonuniform consensus. Distributed Computing, 19(4):335–359, 2007.

[14] Antonio Fernández, Ernesto Jiménez, and Michel Raynal. Eventual leader election with weak
assumptions on initial knowledge, communication reliability, and synchrony. In DSN, pages
166–178. IEEE Computer Society, 2006.

[15] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[16] Eli Gafni and Leslie Lamport. Disk paxos. Distributed Computing, 16(1):1–20, 2003.

[17] Fab́ıola Greve and Sébastien Tixeuil. Knowledge connectivity vs. synchrony requirements for
fault-tolerant agreement in unknown networks. In DSN, pages 82–91. IEEE Computer Society,
2007.

[18] Rachid Guerraoui, Michal Kapalka, and Petr Kouznetsov. The weakest failure detectors to
boost obstruction-freedom. In DISC ’06: Proceedings of the twentieth International Symposium
on Distributed Computing, pages 399–412, LNCS vol. 4167. Springer-Verlag, September 2006.

[19] Rachid Guerraoui and André Schiper. The generic consensus service. IEEE Transactions on
Software Engineering, 27(1):29–41, 2001.

[20] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related
problems. Technical Report TR 94-1425, Department of Computer Science, Cornell University,
1994.

[21] Joseph Y. Halpern and Aleta Ricciardi. A knowledge-theoretic analysis of uniform distributed
coordination and failure detectors. In Eighteenth Annual ACM Symposium on Principles of
Distributed Computing (PODC ’99), pages 73–82, 1999.

[22] Nancy A. Lynch, Yishay Mansour, and Alan Fekete. Data link layer: Two impossibility results.
In Symposium on Principles of Distributed Computing, pages 149–170, 1988.

[23] Michel Raynal and Corentin Travers. In search of the holy grail: Looking for the weakest
failure detector for wait-free set agreement. In Alexander A. Shvartsman, editor, OPODIS,
volume 4305 of Lecture Notes in Computer Science, pages 3–19. Springer, 2006.

[24] Vic Stenning. A data transfer protocol. Computer Networks, 1:99–110, 1976.

13

[25] Piotr Zielinski. Anti-omega: the weakest failure detector for set agreement. Technical Report
UCAM-CL-TR-694, Computer Laboratory, University of Cambridge, Cambridge, UK, July
2007.

14

A Proof of Lemma 1

Let A be an algorithm solving reliable-broadcast in ΦF with a failure detector D. There exists
an integer k such that for every process p and every correct process q, for every run R of A where
p BROADCASTs and DELIVERs k messages, at least one message from q has been received by some
process.

Let x be the maximum number of messages which can be stored in the memory of the processes.
x exists since the memory of processes are finite. Let k = x × (n − 1) + 1. Consider a process p
and a correct process q. Assume by contradiction that there exists a run R of A in which:

• p BROADCASTs and DELIVERs k messages.

• No message from q has been received by any process.

Consider the time τ at which process p DELIVERs the kth message. As no message from q has been
received, there exists another run R′ in which:

• All processes except process q take the same steps, send and receive the same messages as in
R.

• All messages to q are lost (this does not contradict the fairness hypothesis of the link).

• At time τ all messages in the links are lost (this does not contradict the fairness hypothesis
of the links).

At this point the knowledge of at least one message has disappeared: it is neither in the memory of
the processes, nor in the links, nor given by the failure detector (which output is a function of time
and failure pattern). q can’t DELIVER all the k messages. This contradicts the agreement property
of the reliable-broadcast. �

B Proof of Lemma 2

Let A be an algorithm solving repeated-consensus in ΦF with a failure detector D. There exists
an integer k such that for every process p and every correct process q, for every run R of A where p
R-PROPOSEs and R-DECIDEs k times, at least one message from q has been received by some process.

Let x be the maximum number of values from the set of proposed values which can be stored in
the memory of the processes. x exists since the memory of processes are finite. Let k = x×(n−1)+1.
Consider a process p and a correct process q. Assume by contradiction that there exists a run R
of A in which:

• p R-PROPOSEs and R-DECIDEs k times.

• No message from q has been received by any process.

Consider the time τ at which process p R-DECIDEs for the kth times. As no message from q has
been received, there exists another run R′ in which:

• All processes except process q take the same steps, send and receive the same message as in
R.

• All messages to q are lost (this does not contradict the fairness hypothesis of the link).

15

• At time τ all messages in the links are lost (this does not contradict the fairness hypothesis
of the links).

At this point the knowledge of at least one decision has disappeared: it is neither in the memory of
the processes, nor in the links, nor given by the failure detector (which output is a function of time
and failure pattern). q can’t R-DECIDE all the k values. This contradicts the agreement property of
the repeated-consensus. �

C Proof of Theorem 2

We now show that Algorithm B solves the reliable broadcast problem (using a failure detector of
type P− and finite local memories on processes) in any system ΦF .

We begin the proof by formally defining the notions of “start” and “termination”.

Definition 8 (Start) When a process p switches Mes from ⊥ to m with m 6=⊥, we say that p
starts a broadcast of the message m.

Definition 9 (Termination) When a process p switches Mes from m to ⊥ with m 6=⊥, we say
that the broadcast of m (invoked by p) terminates.

Definition 10 (Player) Let k ∈ N
+. Let q be a correct process. Let q-Player(p, k) be the set of

processes defined as follows:

• q-Player(p, k) = correct(F) if p crashes before starting its kth broadcast,

• q-Player(p, k) = Π \ FDτ
q with τ , the time where p starts its kth broadcast, otherwise.

Remark 1 Let q be a correct process. Due to the quality of P−, we have ∀k ∈ N
+, q-Player(p, k) ⊆

q-Player(p, k − 1) and Correct(F) ⊆ q-Player(p, k) .

Definition 11 (Participating To/Still Executing) We say that a process q is participating to
or still executing the kth broadcast of the process p if:

• Mesq[p] = m when m if the kth message broadcasted by p,

• Flagq[p][q] = k mod 2, and

• ∃j ∈ Π \ FDq, if j is not crashed, then Flagq[p][q] 6= Flagq[p][j].

Definition 12 (Waiting For) We say that a process q is waiting for the kth broadcast of the
process p at time τ if:

• ∃t ≤ τ , Mesq[p] = mk−1 where mk−1 is the (k − 1)th message broadcasted by p,

• ∀t ≤ τ , Mesq[p] 6= mk where mk is the kth message broadcasted by p, and

• ∀j ∈ Π \ FDτ
q , if j is not crashed, then Flagq[p][j] = (k − 1) mod 2.

The technical lemma below will be used in all the other proofs.

Lemma 3 When the ith broadcast invoked by the process p starts, ∀q ∈ correct(F)∪{p}, we have:

16

(1) ∀j ∈ q-Player(p, i), either (a) j is crashed or (b) Flagq[p][j] = (i − 1) mod 2, Flagj [p][j] =
(i− 1) mod 2, and Flagj [p][q] = (i− 1) mod 2.

(2) Any p-BRD message in transit from q to another process j in q-Player(p, i) \ {p} is of the
form 〈p-BRD,−,(i− 1) mod 2〉, if j is not crashed.

(3) Any p-ACK message in transit to q from another process in q-Player(p, i) \ {p} is of the form
〈p-ACK,(i− 1) mod 2〉.

(4) Mesj [p] ∈ {⊥,mi−1} where mi−1 is the (i − 1)th message broadcasted by p, except p that sets
Mesp[p] to mi where mi is the ith message it broadcasts.

Proof. We prove this lemma by induction on the sequence number of the broadcasts invoked by
p.

Case i = 1. At the initialization, ∀q ∈ correct(F) ∪ {p}, q sets Mesq[p] to ⊥ and ∀j ∈
q-Player(p, i), q sets Flagq[p][j] to 0. If not crashed, j both sets Flagj [p][j] and Flagj [p][q] to
0, and Mesi[p] to ⊥. Then, until p starts its first broadcast, no p-BRD message is sent, no p-ACK
message is sent, and as a consequence, Flagq[p][j] remains equal to 0, Mesq[p] remains equal to ⊥
and if j is not crashed, Flagj [p][q] remains equal to 0 and Mesj [p] remains equal to ⊥. Thus, when
p starts its first broadcast, there is no p-BRD or p-ACK message in transit, and ∀q ∈ correct(F)∪{p},
∀j ∈ q-Player(p, i), we have Flagq[p][j] = 0, Flagj [p][j] = 0, Flagj [p][q] = 0, and Mesj [p] =⊥
except for j = p: Mesp[p] is set to m. Hence, the induction holds for i = 1.

Induction Assumption: Assume that ∃k ∈ N
+ such that when the kth broadcast invoked by

p starts, ∀q ∈ correct(F) ∪ {p}, we have:

(1) ∀j ∈ q-Player(p, k), either (a) j is crashed or (b) Flagq[p][j] = (k − 1) mod 2, Flagj [p][j] =
(k − 1) mod 2, and Flagj [p][q] = (k − 1) mod 2.

(2) Any p-BRD message in transit from q to another process j in q-Player(p, i)\{p} is of the form
〈p-BRD,−,(k − 1) mod 2〉, if j is not crashed.

(3) Any p-ACK message in transit to q from another process in q-Player(p, i) \ {p} is of the form
〈p-ACK,(k − 1) mod 2〉.

(4) Mesj [p] ∈ {⊥,mk−1} where mk−1 is the (k− 1)th message broadcasted by p, except p that sets
Mesp[p] to mk where mk is the kth message it broadcasts.

Case i = k + 1. As we study the case i = k + 1, let us assume that p eventually start its
(k + 1)th broadcast.

Let q ∈ correct(F) ∪ {p}. Let m be the kth message broadcasted by p. Consider two cases:

• q = p. First, Mesp[p] is set to m when p starts its kth broadcast. Then, (i) Mesp[p] remains
equal to m until p terminates the broadcast and, from the termination of the broadcast to
the start of the next one, p satisfied Mesp[p] =⊥.

By induction assumption, when the kth broadcast invoked by p starts, ∀j ∈ p-Player(p, k),
either (a) j is crashed or (b) Flagp[p][j] = (k − 1) mod 2, Flagj [p][j] = (k − 1) mod 2, and
Flagj [p][q] = (k − 1) mod 2. Due to the quality of FD, (ii) the broadcast then terminates
when at least ∀j ∈ p-Player(p, k + 1), either j is crashed or Flagp[p][j] = k mod 2. In this

case, (iii) these later values remains constant until at least p starts its (k + 1)th broadcast.

By induction assumption, (iv) when the kth broadcast invoked by p starts, ∀j ∈ p-Player(p, k)
\ {p}, either j is correct and, as a consequence, j is waiting for the kth broadcast of p or j is

17

faulty and is waiting for the kth broadcast of p, still executing the (k − 1)th broadcast of p,
or is crashed. Now, p waits that either j crashes or j acknowledges with a 〈p-ACK,k mod 2〉
message. If j crashes, then either p suspects j before receiving the valid acknowledgement, or
p eventually receives the valid acknowledgment, or p eventually flushes the link (q,p) from any
p-ACK until it suspects q. If j does not crash and is not suspected by p during the broadcast,
p eventually receives a valid acknowledgement from j otherwise p never terminates the kth

broadcast and as a consequence never starts the (k +1)th (a contradiction). Hence, (v) when
p starts its (k+1)th broadcast, it received a valid acknowledgement (〈ACK,k mod 2〉) from any
j ∈ p-Player(p, k + 1) \ {p} and, as a consequence, any j receive a 〈BRD,m,k mod 2〉 from p.

To send such an acknowledgement, any j ∈ p-Player(p, k + 1) \ {p} must first wait for the
kth broadcast of p and then receives a 〈BRD,−,k mod 2〉 message. The first of these processes,
say j0, to receive such a message can only receives it from p due to the induction assumption.
Then, when j0 receives such a message it sets Mesj0 [p] to m (due to (i) and the induction
assumption) and starts sending 〈BRD,m,k mod 2〉 messages. Then, the second process to
receive the message, receives it from p or j0, and so on. Hence, when p a 〈ACK,k mod 2〉
message from j, it has the guarantee that j starts participating to the kth broadcast of
p. Finally, any j sends it only when they are waiting for the (k + 1)th broadcast of p. As
previously, (vi) every process j waits for the (k+1)th broadcast of p until at least one receives
a 〈BRD,−,(k + 1) mod 2〉 messages from p, i.e., until at least p starts its (k + 1)th broadcast.
Another consequence is that (vii) any j satisfies Mesj [p] ∈ {⊥,m} until at least p starts its
(k + 1)th broadcast.

To sum up, when p starts its (k + 1)th broadcast, Point (1) of the induction holds thanks
to (ii), (iii), and (vi); Points (2) and (3) holds thanks to (iv), (v), (vi), and the FIFO
property; and Points (4) holds thanks to (i) and (vii).

• q ∈ correct(F) \ {p}. Similary to the previous case, we can show ∀j ∈ q-Player(p, k + 1),
Point (1) to (4) are satisfied for any j when p starts its (k + 1)th broadcast.

Hence, the induction holds for i = k + 1. �

In our algorithm, the broadcasts are executed in sequence. We now show that every broadcast
terminates in finite time if the broadcastor process does not crash. Hence, the current broadcast
cannot prevent forever the next one to be performed.

Lemma 4 If a process does not crash during the broadcast it starts, then the broadcast terminates
in finite time.

Proof. Assume, by the contradiction, that a broadcast started by the process p never terminates
despite p never crashes, i.e., p is correct. When p starts the broadcast, Flagp[p][p] = (k− 1) mod 2
by Lemma 3. Then, Flagp[p][p] is incremented to k mod 2 and becomes constant.

As the broadcast never terminates, the test of Line 23 is never satisfied at p for i = p. Now, p
never suspects any correct process and FD eventually outputs the exactly list of the correct process.
So, eventually Π\FD becomes constant and as the number of processes is finite, there exists a correct
process q 6= p such that Flagp[p][p] 6= Flagp[p][q] holds each time p executes Line 23 with i = p.
In the algorithm, once Flagp[p][p] = Flagp[p][q] holds, Flagp[p][p] = Flagp[p][q] holds continuously
until p terminates its current broadcast. Hence, Flagp[p][p] 6= Flagp[p][q] holds forever and, as a
consequence, p sends infinitively many 〈p-BRD,−,k mod 2〉 messages to q. As the link from p to q is
fair and q tries to receive p-BRD message from p infinitively often (due to the quality of FD and as p

18

never crashes, p is never suspected by q), q receives infinitively many 〈p-BRD,−,k mod 2〉 messages
from p.

By Lemma 3, when p starts the broadcast, q is waiting for the kth broadcast message of p. As
q eventually received a 〈p-BRD,−,k mod 2〉 from p, Flagq[p][p] and Flagq[p][q] are eventually set to

k mod 2. From this point on, Flagq[p][p] and Flagq[p][q] remains constant until q waits the (k+1)th

broadcast message of p.
If q is eventually waiting for the (k+1)th broadcast message of p (recall p never starts its (k+1)th

broadcast since we assume that the kth broadcast of p never terminates), then q acknowledges any
〈p-BRD,−,k mod 2〉 messages it receives from p with 〈p-ACK,k mod 2〉 messages. Hence, q sends
infinitively many 〈p-ACK,k mod 2〉 messages to p and as the links are fair and p tries to receive
p-ACK messages from q infinitively often (due to the quality of FD and as q is correct, q is never
suspected by p), p eventually receives such a message from q and Flagp[p][p] = Flagp[p][q] eventually
holds, a contradiction.

Assume now that q is never waiting for the (k + 1)th broadcast message of p. Then, q executes
the kth broadcast of p forever. As previously, there exists a process j in correct(F) \ {p,q} such
that Flagq[p][j] = (k − 1) mod 2 forever. In this case, q sends infinitively many 〈p-BRD,−,k mod 2〉
messages to j. As the links are fair and j tries to receive p-BRD from q infinitively often (due
to the quality of FD and as q is correct, q is never suspected by j), j receives infinitively many
〈p-BRD,−,k mod 2〉 messages from q. As a consequence, j sends infinitively many 〈p-ACK,k mod 2〉
to q (at the beginning j was waiting for the kth broadcast of p by Lemma 3 and j never starts the
(k + 1)th broadcast of p because p never does it too) and as the links are fair, q eventually receives
such a message from j and so Flagq[p][j] = k mod 2 eventually holds, a contradiction. �

If a process p does not crash during the broadcast of the message m it starts, then p executes
DELIVER(m) once during the broadcast: at its termination. Hence, we can deduce the two following
corollary from Lemma 4:

Corollary 4 (Validity) Let p be a correct process. In any BROADCAST(m) invoked by p, p executes
DELIVER(m).

Corollary 5 Let p be a correct process. In any BROADCAST(m) invoked by p, p executes DELIVER(m)
at most once.

Lemma 5 (Agreement) If a process executes DELIVER(m), then all correct processes eventually
execute DELIVER(m).

Proof. Let m be the kth message broadcast by some process p. Assume then by the contradiction
that some process j eventually executes DELIVER(m) but a correct process q does not.

First, by Lemma 3, q is waiting for the kth broadcast of p when p starts its broadcast. Then,
j is either waiting for the kth broadcast of p or still executing the (k − 1)th broadcast of p by
Lemma 3. By assumption, j is eventually waiting for the kth broadcast of p and eventually receives
a 〈p-BRD,m,k mod 2〉 message from a process in j-Player(p, k). From that point, j starts sending
〈p-BRD,m,k mod 2〉 messages and eventually receives an acknowledgment of q for the reception of
one of its 〈p-BRD,m,k mod 2〉 message, otherwise j never executes DELIVER(m).

After receiving the first 〈p-BRD,m,k mod 2〉 message, q starts sending 〈p-BRD,m,k mod 2〉 mes-
sages until it receives a 〈p-ACK,k mod 2〉 message from any process i in Π \ FD. Due to the quality
of FD, Π \ FD is eventually equal to correct(F). So, there is a correct process v from which q never
receives an acknowledgment for m: Flagq[p][v] 6= k mod 2 holds forever. As a consequence, (*) q

19

sends infinitively many 〈p-BRD,m,k mod 2〉 to v. By Lemma 3, (**) v is waiting for the kth broad-
cast of p when p starts its broadcast. By (*), (**), and the fact that the links are fair, v eventually
receives a 〈p-BRD,m,k mod 2〉 message and then acknowledges any p-BRD message it receives from q
with a 〈p-ACK,k mod 2〉 message until it starts participating to the (k + 1)th broadcast of p. Now,
as q never executes DELIVER(m), q is never waiting for the (k + 1)th broadcast of p and, as a con-
sequence, q never acknowledges the 〈p-BRD,m,k mod 2〉 messages it receives from p. Hence, p never
starts its (k + 1)th broadcast. So, by the fair property of the links, v receives infinitively many
〈p-BRD,m,k mod 2〉 messages from q and as a consequence send infinitively many 〈p-ACK,k mod 2〉
messages. Yet by the fairness property of the links, q eventually receives a 〈p-ACK,k mod 2〉 message
from v, a contradiction. �

Lemma 6 (Integrity) For every message m, (1) every process executes DELIVER(m) at most once,
and (2) only if sender(m) previously invokes BROADCAST(m).

Proof.

• Proof of Claim (1): Let m by the kth message broadcasted by p. Consider a process q.

If q = p, then q executes DELIVER(m) at most once by Corollary 5.

Assume now that q 6= p and q executes DELIVER(m). When this event occurs, q sets Mes[p] to
⊥ and q is waiting for the (k + 1)th broadcast of p: the next message q will DELIVER will be a
message encapsulated into a p-BRD message marked with the value (k +1) mod 2. By Lemma
3, q will receive such a p-BRD only after p starts its (k + 1)th broadcast. Once p starts its
(k + 1)th broadcast, q ignores any p-BRD marked with the value k mod 2 until it DELIVER the
(k + 1)th broadcast message of p. Lemma 3 implies that if q eventually DELIVER the (k + 1)th

broadcast message of p, then it previously received acknowledgment for any other process in
q-Player(p, k + 1) meaning that they are participating to the (k + 1)th broadcast message
of p. At this time, p receives no p-BRD message contaning m forever and, as a consequence,
never more executes DELIVER(m). Hence, if q 6= p, then q executes DELIVER(m) at most once.

• Proof of Claim (2): (contraposition) Assume that sender(m) never invokes BROADCAST(m).
Then, MesToBrd never returns m and, as a consequence, Messender(m)[sender(m)] is never set
to m. So, sender(m) never executes DELIVER(m) and never sends any 〈p-BRD,m,−〉 message
to any other process. As a consequence, any process q 6= sender(m) also never set Mesq[p] to
m and, as a consequence, never executes DELIVER(m).

�

Proof of Theorem 2: By Corollary 4, Lemma 5, and 6, any run of Algorithm B satisfies
reliable-broadcast. �

D Proof of Theorem 3

We now show that Algorithm CS solves the reliable broadcast problem (using a failure detector of
type P− and finite local memories on processes) in any system ΦF .

To prove that the Algorithm CS (Figure 3) is a consensus algorithm in ΦF with S, we first have
to prove that all correct processes decide, then the proof is exactly the same as the proof of the
Chandra and Toueg algorithm [6].

20

Lemma 7 For every correct process p that propose v, p terminates PROPOSE(v).

Proof. Assume by contradiction that some correct process doesn’t decide. In this case every
correct process that never decides loops forever in one of its n asynchronous rounds. Consider two
cases:

• One correct process p decides: There is a time after which p sends only 〈Decide,−〉 messages
and so, by FIFO property there is a time τ , after which every process can only receive
〈Decide,−〉 messages from p. Consider a correct process, say x, that never decides. It loops
forever in some round, say rx. After time τ , each time process x executes this round rx, it
sends a 〈R-rx,−〉 message to every others processes and in particular to p and it can only
send this message. By fairness of the link the link from p to x, p receives an infinity of this
message Line 61 and sends an infinity of 〈Decide,−〉 to x Line 62. By fairness of the links
too, x receives at least one of this message Line 44 and decides.

• No correct process decides: Let r be the lowest rounds in which a least one correct process
loops forever. Let pr be one of these processes. By FIFO property of the links, there is a
time τ , after which no message of lower rounds than rounds r are received. In round r, pr
waits forever some message 〈R-r,−〉 of some process q trusted by its FD. By completeness of
FD, q is correct. After time τ , there is two cases:

– q loops forever in round r: In this case, each time q executes its loop it sends 〈R-r,−〉
to pr. As we are after time τ , process q does not receive any message of a process in a
lower round. So q does not send any other messages than 〈R-r,−〉 to pr. By the fairness
of the link, pr receives this message.

– q loops forever in a bigger round: In this case, each time pr executes its loop it sends
〈R-r,−〉 to q. As we are after time τ , process pr does not receive any message of process
q in a lower round. So pr does not send any other messages than 〈R-r,−〉 to q. By the
fairness of the link, q receives an infinity of this message Line 28 and sends an infinity
of 〈R-r,−〉 to pr. As we are after time τ , process q can only receive message of process
pr in round r. Again by the fairness of the link pr receives this message.

�

Proof of Theorem 3: Immediat from Lemma 7 and [6]. �

E Proof of Theorem 5

We now show that Algorithm RCP (Figures 5 and 6) solves the repeated consensus problem (using
a P− and finite local memories on processes).

We begin by a technical lemma:

Lemma 8 For every integer i, for every process p, for every process q

• (part 1) Messages 〈R-x,−〉 sent by p to q while executing ith R-PROPOSED(−) can be only
received (1) Line 30 of the (i−1)th R-PROPOSED(−) if (i > 1) or (2) Lines 14 of the consensus
function in the ith R-PROPOSED(−)

• (part 2) Messages 〈Decide,−〉 sent by p to q while executing ith R-PROPOSED(−) can be only
received by q (1) Line 39 of the consensus function in the ith R-PROPOSED(−) or (2) Line 15
in the ith R-PROPOSED(−)

21

• (part 3) Messages 〈Start〉 sent by p to q while executing ith R-PROPOSED(−) can be only
received by q (1) Line 15 in the ith R-PROPOSED(−) or (2) Line 30 in the ith R-PROPOSED(−)

Proof. The proof is by induction on integer i

• (Case i = 1) To show the first part of the lemma, assume that some message 〈R-x,−〉 sent by
process p while executed the first R-PROPOSED(v), is received by a process q while executing
the jth R-PROPOSED(v) with j > 1.

Process q has ended the ith R-PROPOSED and has received a message 〈Decide,−〉 or 〈Start〉
of every process that its failure detector module does not suspect (Line 20, Figure 6). There
is two cases: (1) process q has received a message 〈Decide,−〉 or 〈Start〉 from p, by FIFO
property process q can’t receive a message 〈R-x,−〉 sent by process p while executed the ith

R-PROPOSED(v), (2) the failure detector at q suspects p. In this case, p will be never trusted
again by the failure detector. And so after that q does not receive any message from p.

The second and the third parts follow the same lines.

• (induction) Assume the lemma is true until the i−1 with i > 1. To show the first part assume
that a message 〈R-x,−〉 sent by process p to q, while executing ith R-PROPOSED(−) is received
by q in jth R-PROPOSED(−) with (i > j) and not in Line 30 of the (i− 1)th R-PROPOSED(−).

Before executing the ith R-PROPOSED(−), process p has executed the (i− 1)th R-PROPOSED(−)
and terminates it before time t. And so, it has suspected q or it has wait a 〈Decide,−〉
message or a 〈Start〉 message from q. If q is suspected in the (i − 1)th R-PROPOSED(−) by
the failure detector of p, q remains suspected in the ith R-PROPOSED(−) and so p does not
send messages to q. If it has wait a 〈Decide,−〉 message or a 〈Start〉 message from q, by
induction assumption part 2 and 3 this message can only send by q during the (i − 1)th

R-PROPOSED(−). And so q has finished all jth R-PROPOSED with j < i − 1 and has executed
the i− 1th R-PROPOSED(−) until at least Line 13, contradicting the assumption.

To conclude the proof of the first part we have to show that no message 〈R-x,−〉 sent by
process p while executed the first R-PROPOSED(v), is received by a process q while executing
the jth R-PROPOSED(v) with j > 1. The proof is the same that in case i = 1.

The proof of the second and the third parts follows the same lines.

�

Lemma 9 For every integer i, for processes p, q:
(1) if process p is correct, the ith R-PROPOSED(−) of process p terminates.
(2) the ith decision value of process p and process q are the same
(3) the ith decision value of process p is the ith value proposed by some process

Proof. The proof is by induction on integer i

• case i = 1: By Lemma 8, while executing the consensus() function, processes only receives
messages sent by others processes while executing this first call. The proof that every correct
process terminates consensus() function is similar to the Lemma 7. By a proof similar of
theorem 3, we prove items (2) and (3) of the lemma.

After the end of the consensus() function, each correct process p repetitively sends Decide

message until it receives Decide message or Start message (Lines 12-22, Figure 6).

22

Assume that all correct processes are blocked forever in this loop. During this loop, p doesn’t
send any other message. So by the fairness of the links, each correct process receives Decide
message from every other correct processes and goes to the next loop contracting the assump-
tion.

Assume now that at least one correct process p is blocked in the first repeat loop and a
least one process q has finished the second repeat loop (Lines 27-37, Figure 6). This case is
impossible because to finish the second loop, by the accuracy of the failure detector q has to
receive a Start message or 〈R-1,−〉 message from p. By Lemma 8, these messages can only
be sent by q in the first R-PROPOSED(−). And in our case p has never sent Start messages.
Moreover, by the part 1 of the this lemma, 〈R-1,−〉 message from p can’t be receive by q at
this point.

So assume now that at least one correct process p is blocked in the first repeat loop and at
least one correct process is blocked in the second repeat loop (the other correct processes are
blocked either in the first repeat loop or in the second) Every correct process sends either
Decide message or Start message to p infinitively often and only this message. By the
fairness of the links, process p receives these messages and ends the first repeat loop.

So all correct processes end the first repeat loop.

In the same way we show that every correct process ends the second repeat loop. Notice that
the consensus function works with FD in P− and so every process waits the asynchronous
rounds message following P−. And so the behaviour of Start and 〈R-1,−〉 messages is the
same in this repeat loop that the behaviour of Decide and Start messages in the first repeat
loop.

• Induction case

By induction assumption every correct process terminates the jth R-PROPOSED(−) with j < i.
So every correct process begins the ith R-PROPOSED. The proof follows the same line that in
the case i = 1.

�

Proof of Theorem 5: Immediat from Lemma 9. �

F Proof of Proposition 2

Note first that when the memory is infinite, fair links and reliable links are equivalent.

Proposition 3 Provided reliable links and processes with an infinite amount of memory, if there
is an algorithm A with failure detector D solving the consenbsus, then there exists an algorithm
solving repeated consensus with D.

Proof. As the memory is infinite, we can use an infinite number of integer. From A, it is
possible to obtain a infinite number of instance of A named Ax where x is an integer so that the
code of Ax is exactly the same as the code of A, except that, each time a process sends a message
m in A, it sends now the message x:m and it receives only the messages prefixing by x:.

The failure detector D can be query by any process p at any time τ . Its output depends only
of p, τ , and the failure pattern. So, every algorithm Ax solves consensus.

23

The repeated consensus algorithm simply uses the algorithm Ai when the i-th R-PROPOSE(−),
is invoked. The DECIDE(−) of this algorithm gives the i-th R-DECIDE(−).

�

Proof of Proposition 2: Immediat from Proposition 3. �

24

