
Wallet Contracts on Ethereum
Monika di Angelo, Gernot Slazer

TU Wien, Vienna, Austria

{monika.di.angelo,gernot.salzer}@tuwien.ac.at

Abstract—On the blockchain, cryptocurrencies play a role
similar to cash, while cryptographic tokens are a universal
tool for handling rights and assets. Software wallets interact
with blockchains in general and with smart contracts (on-chain
programs) in particular. Some wallets are realized (partly) as
smart contracts with the intent to increase trust and security
by being transparent and by offering features like daily limits,
approvals, multiple signatures, and recovery mechanisms.

Ethereum is the most prominent platform for both, tokens
and smart contracts, and thus also for wallet contracts. We
discuss several methods for identifying wallet contracts in a
semi-automatic manner by looking at the deployed bytecodes
and their interaction patterns. Furthermore, we differentiate
characteristics of wallets in use, and group them into six types.

Index Terms—analysis, EVM bytecode, transaction data

I. INTRODUCTION

Wallets keep valuables, credentials, and items for access
rights (like cash, licenses, credit cards, key cards) in one place,
for ease of access and use. In this paper, we investigate wallet
contracts on the main chain of Ethereum qualitatively as well
as quantitatively up to block 8 450 000, mined on August 30,
2019. An extended version of this work can be found at [1].

Methodologically, we start from the source code of wallets
and determine characteristic functions. Then we search the
deployed bytecode for variants of the wallets with the same
profile. Some wallets can also be detected by their creation
history or by the way they interact with other contracts. We
group the wallets according to their functionality and collect
creation and usage statistics from the blockchain data. In total,
we found 3.9 M deployed wallet contracts of different 24 types.

This work thus contributes to a better understanding of what
smart contracts on Ethereum are actually used for. We extract
a comprehensive collection of blueprints for wallet contracts
and thereby compile a ground truth. Moreover, the wallet
blueprints and the features they implement may serve as a
resource when designing further decentralized trading apps.

II. BYTECODE ANALYSIS

1) Code Skeletons: To detect functional similarities be-
tween contracts we compare their skeletons. These are ob-
tained from the bytecodes of contracts by replacing meta-
data, constructor arguments, and the arguments of PUSH
operations uniformly by zeros and by stripping trailing zeros.
The rationale is to remove variability that has little impact
on the functional behavior, like the swarm hashes added by
the Solidity compiler or hard-coded addresses of companion
contracts. Skeletons allow us to transfer knowledge gained

about one contract to others with the same skeleton. Note
that the 18 M contract deployments so far give rise to 252 k
distinct bytecodes and just 119 k distinct skeletons. While
only 77 k (0.4 %) contracts provide verified source codes on
etherscan.io, we are able to relate 6.7 M (37 %) of the
contracts to corresponding verified source code by exploiting
creation histories and the similarity of skeletons.

2) Interface Extraction: We developed a pattern-based tool
to extract the interface contained in the bytecode. As ground
truth for validation, we used the 77 v̨erified source codes
together with the corresponding bytecode and ABI as provided
by Etherscan. The signatures extracted by our tool differed
from the ground truth in 42 cases. Manual inspection revealed
that our tool was correct also in these cases, whereas the ABIs
did not faithfully reflect the signatures in the bytecode (e.g.
due to compiler optimization or library code).

3) Interface Restoration: To understand the purpose of
contracts we try to recover the function headers from the
signatures. As the signatures are partial hashes of the headers,
we use a dictionary of headers with their 4-byte signatures
(collected from various sources), which allows us to obtain a
header for 59 % of the 254 k distinct signatures on the main
chain. Since signatures occur with varying frequencies and
codes are deployed in different numbers, this ratio increases
to 89 % when picking a deployed contract at random.

III. IDENTIFYING WALLETS

We define a wallet as a contract that only manages assets.
In contrast, contracts that serve other purposes as well beyond
managing assets are termed non-wallet contracts.

Our two-step approach identifies potential wallet contracts
and then checks if the bytecode actually implements a wallet.
In step 1, we first collect the set of blueprints. We start with
a few known wallets that have Solidity sources. As some
wallets are deployed in large quantities, we also examine mass
deployments (factories) for potential wallets. Finally, we scan
all verified source codes for wallets contracts. With this set
of blueprints, we fuzz all implemented interfaces in order
to capture variants by identifying idiosyncratic signatures of
the blueprints and collecting all bytecodes that implement
these signatures. In step 2, we check the other signatures and
occasionally the bytecode to exclude any non-wallets.

IV. CLASSIFICATION AND COMPARISON OF WALLETS

Employing the technique of skeletons in combination with
the fuzzed interface method, we eventually had to examine
631 distinct code skeletons, corresponding to 1357 distinct978-1-7281-6680-3/20/$31.00 © 2020 IEEE

bytecodes deployed at 3.9 M addresses. The skeletons can be
grouped into 24 blueprints for wallets. Based on the features
a wallet provides, we assign the blueprints to one of six
types. Table I lists the blueprints with their names, types, and
numbers of deployed instances. A detailed description of each
blueprints and its characteristics can be found in [1].

TABLE I
FUNCTIONAL TYPES OF WALLET CONTRACTS

Type # Found Name

Simple 9 250 AutoWallet
4 635 BasicWallet
3 634 ConsumerWallet

46 340 SmartWallet
1 436 SpendableWallet

202 TimelockedWallet

MultiSig 11 Argent
135 457 BitGo

10 150 Gnosis/ConSensys
96 Ivt

3 391 Lundkvist
995 NiftyWallet

44 235 Parity/Eth/Wood
822 TeambrellaWallet
131 Unchained Capital

Forwarder 1 087 257 BitGo
2 520 IntermediateWallet

527 SimpleWallet2

Controlled 2 488 845 Bittrex

Update 2 862 Eidoo
3 926 LogicProxyWallet

Smart 4 098 Argent
15 749 Dapper

1 065 Gnosis

Simple Wallets provide little extra functionality beyond
handling Ether and tokens. MultiSig Wallets require that m out
of n owners sign a transaction before it is executed. Usually
the required number of signatures (m) is smaller than the total
number of owners (n), meaning that not all owners have to
sign. In most cases, the set of owners and the number of
required signatures can be updated. Forwarder Wallets forward
the assets they receive to some main wallet. They may include
owner management. Controlled Wallets can be compared to
traditional bank accounts. They are assigned to customers,
who can use them as target of transfers, but the control over
the account remains with the bank. Withdrawals are executed
by the bank on behalf of the customer. This construction
allows to comply with legal regulations that may restrict
transactions. Regarding the number of deployments, controlled
wallets are the most common type. Update Wallets provide
a mechanism to update their main features at the discretion
of the owner. Smart Wallets offer enhanced features like
authorization mechanism for arbitrary transactions, recovery
mechanisms for lost keys, modular extension of features, or
advanced token standards.

V. CREATION AND USE OF WALLETS OVER TIME

Figure 1 depicts the number of wallets created per 100 k
blocks (about two weeks) as a stack plot over time. Of the

Fig. 1. Creation and usage of all wallets.

3.9 M wallet contracts, 68 % have not been used so far (2.6 M,
grey). The other wallets are either used for tokens (529 k,
magenta) or for Ether (626 k, cyan), but only a few wallets are
used for both (91 k, black). This means that wallet contracts
are used either for tokens or for Ether, but rarely for both. Even
though most wallets are designed for token management, only
16 % have so far received at least one token. Of the wallets
holding tokens, 83 % hold just one type of tokens, 16.5 % hold
2–10 types, and only 0.5 % hold more than 10 different types.

VI. CONCLUSIONS

Our method of computing code skeletons is comparable to
the first step for detecting similarities by [2]. Instead of their
second step of fuzzy hashing though, we rely on the set of
function signatures extracted from the bytecode and manual
analysis, as our purpose is to identify wallets reliably. Relying
on the interface is in line with the results in [3].

Wallets tend to provide verified source code. The high code
homogeneity results from the small number of on- or off-
chain factories that generate most of the wallets. Since we
manually check the wallet code, our work yields a ground truth
of wallets that can be used for evaluating automated tools.

MultiSig wallets were the first to appear in 2015, while
controlled and forwarder wallets followed in 2017. Update
wallets and smart wallets with a modular design started at the
end of 2018. Still, the multiSig wallet seems popular, either
as it is or incorporated into smart wallets.

Future work. To detect contract types characterized by
their behaviour (like wallets), tools analyzing and classifying
automatically the semantics of bytecode are desireable.

REFERENCES

[1] M. Di Angelo and G. Salzer, “Wallet Contracts on Ethereum,” arXiv
preprint: 2001.06909, 2020.

[2] N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing
code clones in the ethereum smart contract ecosystem,” arXiv preprint
arXiv:1905.00272, 2019.

[3] M. Fröwis, A. Fuchs, and R. Böhme, “Detecting token systems on
ethereum,” in International conference on financial cryptography and
data security. Springer, 2019.

