Replacing Paper Contracts With Ethereum
Smart Contracts

Contract Innovation with Ethereum

Wesley Egbertsen, Gerdinand Hardeman, Maarten van den Hoven,
Gert van der Kolk and Arthur van Rijsewijk

June 10, 2016

Abstract

This research finds out what criteria Ethereum needs to fulfil to replace
paper contracts and if it fulfils them. It dives into aspects such as privacy
and security of the blockchain and its contracts, and if it is even possible
at all to place a contract on the blockchain. However, due to the variety
of contract clauses and a large privacy setback, it is not recommended to
place paper contracts on the Ethereum blockchain.

1 Introduction

In spring 2016, impactful decisions or even some of the fundamental life decisions
take a lot of time to be fully integrated with a city’s municipality database. For
instance, when one is buying a house, a notary will need to form a contract
between the seller and the buyer, meaning there is a third party involved in
making the transfer legal which takes a lot of time and costs a lot of money.
The cause of this is that contracts need to be signed by authorised people and
checked by authorised and trusted third parties. Signing these has to be done
according to the law. Not only is this often required via notaries but all jobs
that have the authority to make a contract stating something happened at a
particular point in time such as lawyers, officers and prosecutors. The complete
process takes a lot of money and time and can be done faster if it is done another
way.[1] Ethereum is a blockchain based technology that comes with the option
to store code in the blocks on its blockchain. Bitcoin on the other side is merely
a cryptocurrency. The Bitcoin blockchain does not support smart contracts yet,
making Ethereum a possible and viable candidate for replacing paper contracts
with smart contracts.[2]

To prove this theory, several subquestions must be answered. The first three
subquestions are an introduction to what Ethereum is and how it works. The
last two subquestions will return a list of criteria that will together answer
whether or not Ethereum can replace paper contracts in a safe and practical
way.

”What is Ethereum?” explains the idea behind Ethereum and how it came
to be. It also explains what makes Ethereum unique and what its actual uses
are. This subquestion gives a basic understanding of Ethereum needed for the
following subquestions.

"How does Ethereum work?” shows the technical side of Ethereum. This
subquestion dives into the technology that drives Ethereum, such as the Blockchain,
Ether, Accounts and Smart Contracts. A phase of experimentation with Ethereum
software was needed to complete this subquestion.

"What defines a paper contract?” is a small subquestion that gives back-
ground information on paper contracts, its bureaucracy around it and a list of
properties all paper contracts have which is needed for the following subques-
tion.

”What kind of paper contracts are best suited to be replaced by Ethereum
contracts?” explains the possibilities and limitations of smart contracts. It also
shows what paper contracts might be capable of converting to a smart contracts,
which is necessary to be able to pick a contract for the proof of concept in the
last subquestion.

”What are the risks of Ethereum?” is a subquestion that is imperative to
this research. It shows tense parts of Ethereum like the volatile price and
the ’centralised’ foundation, but also more of the technical side such as wallet
security and the privacy and security of the blockchain.

"Proof of concept” is a chapter that contains information about a decen-
tralised application that has been made as a proof of concept. This DApp
shows the ability that a paper contract can be converted to a smart contract
on the Ethereum blockchain. The goal of this DApp will be explained as well
as the technology used to create this Dapp. Finally the result of this proof of
concept will be explained.

2 What is Ethereum?

This subquestion explains the concept that defines Ethereum, how it was in-
vented, why it was invented and how it influences the modern world.

2.1 History

The history of the World Wide Web consists mostly of centralised applications.
Even though the load is often distributed to several servers, there is always a
third party involved. For instance, payments and other data went from a client
to a centralised server and the other way around.[3] Depending on third party
servers and companies used to be a volatile business due to privacy and central-
isation. In the early 1980’s protocols arose based on the so-called ’Chaumian
Blinding’, coming from the founder of the digital electronic currency ’ecash’
David Chaum. The Chaumian Blinding provided a substantial amount of pri-
vacy, but due to their centralised underlying protocols they mostly failed to stay
alive.[4] In the late 1990’s a proposal from Wei Dai called 'b-money’ introduced
the idea of generating money by solving computational puzzles as well as an
idea for a decentralised protocol.[5] A few years later the computer scientist Hal
Finney introduced a concept of a system which uses parts of Wei Dai’s b-money
to create a concept for a cryptocurrency.[6] This idea, however, failed as well
due to relying on trusted computing on the back end. By 2009, a decentralised
currency was successfully implemented for the first time in practice by an anony-
mous person or organisation who call themselves ”Satoshi Nakamoto”. For this
reason, Satoshi Nakamoto’s development of Bitcoin in 2009 has been labelled as

a game-changing development in the economic and technological world.[7] More
interesting however was the underlying decentralised blockchain technology that
relies on a peer-to-peer network of nodes.[8] The mechanism behind this was a
breakthrough because it solved two major problems. It set a straightforward
and practical set of rules that allowed nodes in the network to agree unani-
mously on updates to the blockchain, but it also provided free and easy entry
into the process, solving the mostly political problem of deciding who gets to
influence the consensus and preventing attacks at the same time.

Over the following four years, there was a massive increase in bitcoin-based
cryptocurrencies which received the term ’altcoins’ (alternative coins). Most of
these altcoins are direct copies of Bitcoin’s source code that have minor changes
made to them as the name, coin supply and confirmation time.[9] In late 2013
Vitalik Buterin initially described Ethereum with the goal of creating a platform
on a custom blockchain that offers users to build decentralised applications with
a Turing complete language, which will be elaborated in later subquestions.
Unlike most of the altcoins, it was described as being part of a group of projects
with the potential to extend blockchain use beyond Bitcoin’s peer-to-peer money
system.[10]

2.2 Why is it unique?

Ethereum is a project that tries to build a technology on which all transac-
tion based state machine concepts may be developed. It intends to provide the
end-developer with an integrated end-to-end system for developing software on
an unexplored compute paradigm in the mainstream. Ethereum provides an
alternative protocol for building decentralised applications. It provides a dif-
ferent set of trade-offs that will be very useful for a large class of decentralised
applications.[2] Ethereum emphasises situations where rapid development time,
security for small and rarely used applications, and the ability for different
applications to very efficiently interact, are necessary.[7] One can achieve this
by creating what the ultimate abstract foundational layer is: a blockchain in-
cluding a built-in Turing-Complete programming language, enabling anyone to
write a smart contract and decentralised applications where they can create
their arbitrary rules for ownership, transaction formats and state transition
functions. Smart contracts are boxes that can hold multiple values and will
be unlocked when certain conditions are completed. These can be built on top
of the platform and with more power that that offered by Bitcoin, because of
the added power of Turing-completeness, value-awareness, block-chain aware-
ness and state.[7] According to Vitalik Buterin, a inventor and co-creator of
Ethereum, the advantages of Ethereum are the following:[11]

1. Smart contracts - Funds can be stored into a contract. If the owner of the
contract dies, as defined by becoming inactive for six months. The funds
become available for the next-of-kin. An agreement between the company
and shareholder can be written in self-executing code. The votes and
proposals are being done on the blockchain and executed automatically if
and only if a proposal gets a sufficient amount of support.

2. Computational resource marketplaces - Ethereum contracts can use Merkle
trees; to check if the resource you are requesting is still being stored on
the blockchain and send them a payment if it is.

3. Decentralized DNS - Ethereum contracts can store database mapping
names to public keys or addresses. This way the contracts can be used
to register websites, decentralized applications, contracts, pieces of static
code, etc. Essentially a decentralized phonebook for anything.

4. Financial applications - the Ethereum repository for the programming lan-
guage Serpent contains a contract that implements Kickstarter-like crowd-
funding in 40 lines of code. There can be also be the opportunity to do
prediction markets.

5. ”Smart property - imagine self-driving cars that are tied to contracts, so
anyone can send a transaction to make a payment and then automatically
receive the right to use the car (ie. the car will recognize messages signed
by the user’s private key, controlled by some specially designed app on
their smartphone) for some short time.”

2.3 Actual use

By searching through the Google search engine, not much information on com-
panies using Ethereum is found at fist, while the Ethereum YouTube channel
shows that more than ten small start-up companies are pitching their projects
and products built around Ethereum. However, on big multinationals using
Ethereum is not much to find. In January 2015 IBM and Samsung have created
a functional demo product. It uses the Ethereum smart contracts to operate.
IBM states the reason they chose Ethereum as underlying blockchain protocol
is that Ethereum blockchain helps achieve coordination and transactions on the
blockchain. Ethereum manages the contracting between devices. Devices can
create and set their responsibilities and permissions. This technology makes the
devices almost entirely autonomous. This is a big thing for the future of the
Internet of Things.[12]

In March 2016, there are a few companies that already have integrated
Ethereum into their businesses. Omne of those companies is called Slock.it.
Slock.it is a German company that uses the Ethereum blockchain to be able
to rent, sell or share anything without the need of a middleman. Slock.it also
created usable locks called Slocks that connect to the Ethereum blockchain.
“When someone purchases a Slock, it will be linked to the Slock smart con-
tract in the Ethereum blockchain and controlled by it,” says Slock.it co-founder
Christoph Jentzsch. “The owner of a Slock can set a deposit amount and a price
for renting his property, and the user will pay that deposit through a transaction
to the Ethereum blockchain (without us), thereby getting permission to open
and close that smart lock through their smartphone.” [13]

“The deposit will be locked in the Ethereum blockchain until the user de-
cides to return the virtual key by sending another transaction to the Ethereum
blockchain,” continues Jentzsch. “Then the contract will be automatically en-
forced. The deposit will be returned to the user minus the price for the rental,
which will be automatically sent to the owner of the Slock. All of this happens
without any assistance from a third party!”[13]

One of the big projects the company Slock.it is working on involves electrical
car charging stations. Slock.it has a partnership with RWE, a large German
power company, to change the way electric cars are charged. ”Cars with digital
wallets will be able to "talk” to autonomous electric charging stations which

use smart contracts to allow users to rent the station, put up a deposit, charge
their car, then get their deposit back.”[14]

Another company that uses the Ethereum blockchain is Ujo. Ujo is bringing
the music industry to the blockchain. Phil Barry, one of the founders of Ujo,
explains in his talk on Ujo, that songs are often owned by multiple artists.[15]
Moreover, each of these artists has the right to a different share of the earnings.
For instance, the singer gets 20%, the music directors gets 5%, and some other
artists get 1.2%. The odd thing is that there is no definitive record of this
information. So every record company and every rights society have their version
of this information, and they have a hard time agreeing which version is correct.
Ujo claims to bring the solution to this problem. By adding the music rights
on the blockchain, a decentralised database, the problem of different versions of
music rights documents is solved. Also, anybody can use the registered content
provided that he or she meet the terms of the policy. The right to do so is
transferred automatically through a smart contract. Payments are delivered
to individual stakeholders instantly and automatically using digital currency,
eliminating the need for intermediaries. Ujo’s open platform provides a shared
infrastructure upon which infinite potential services, applications and business
models can be built.[16]

2.4 Summary

Ethereum is a blockchain based technology. This technology comes forth from
Bitcoin’s blockchain. This technology is not necessarily focused on building a
safe and trusted cryptocurrency, but on creating the possibility to write de-
centralised applications. Ethereum is a blockchain with a Turing-Complete
programming language, allowing anyone to write smart contracts.

From our research on companies working with Ethereum, we can conclude
that there are no big multinational corporations that have integrated with
Ethereum yet. However, the Internet of Things sector is interested in the many
possibilities it brings. As explained in section 2.3 IBM in cooperation with
Samsung have made a functional demo product. Start-up tech companies are
still trying to find the right use for the Ethereum blockchain technology. Those
companies observe real life problems and solve them by using the Ethereum
blockchain.

3 How does Ethereum work?

In this subquestion, we will explain how Ethereum works on a slightly more
technical level.

3.1 Blockchain

A blockchain is a series of data (transactions) chained together. The blockchain
technology is decentralised, which means that there is no single party which
holds control. This decentralisation has the advantage that it is not necessary
to trust a single party, as everyone on the blockchain collectively decides what
happens.

s frm

6060606 66608 6880 688600

Figure 1: Centralization vs Decentralization

Vitalik Buterin, the founder of Ethereum, says the following about blockchains:
"They allow for a large number of interactions to be codified and carried out
in a way that greatly increases reliability, removes business and political risks
associated with the process being managed by a central entity, and reduces the
need for trust. They create a platform on which applications from different
companies and even of different types can run together, allowing for extremely
efficient and seamless interaction, and leave an audit trail that anyone can check
to make sure that everything is being processed correctly.”[17] It reduces the
need for trust, because all transactions can be viewed publicly.[18] The security
of the blockchain does denote that the performance of a decentralised appli-
cation is not as good as a centralised application. The performance drop is
caused by the need to validate transactions on the blockchain, which is done
by miners.[19] There are plans to increase the performance of the blockchain.
On a short term this would mean migrating from a Proof of Work to a Proof
of Stake algorithm. The Proof of Stake algorithm will result in significantly
faster block chains, and it is also expected to result in more transactions per
second.[20] However, a decentralised application will never outperform a cen-
tralised application, based on the nature of the blockchain. On the blockchain,
every transaction has to be processed by every node, in contrast to centralised
applications, where a transaction only has to be executed once. Also, because
this is a peer to peer connection, every transaction has to be verified by a sig-
nature. This is computationally complex and thus costs time.[21]

3.1.1 Blocks

The blockchain consists of blocks; these blocks are like a journal by recording
a series of transactions. A block can be seen as a container, to which only
the owner has the key, however everyone can see the metadata. In contrast to
Bitcoin, Ethereum has no fixed limit on the size of one block.[22] The Ethereum
block size is limited to a gas limit instead. This gas limit is not set, but it is
expanding based on the long-term exponential moving average of the gas used
in recent blocks.[23] The concept of gas will be explained in section 3.2.

3.1.2 Mining

Mining is the process of adding block to, and verifying computation on the
Ethereum blockchain. Miners produce new blocks, which other miners check for
validity. Currently blocks are validated by checking whether or not they contain
a Proof of Work of a given difficulty. In Ethereum 1.1 this Proof of Work system
will likely change to a Proof of Stake system. Anyone can participate in the
mining process, but the chance of finding a valid block increases with the power
of the computer performing the calculations. At the publication date of this

document the block time is set to 12 seconds, so the difficulty of the block will
adjust based on the time of the previous block.

Sometimes a miner will find an uncle block; an uncle block is a block which
is initially valid but is surpassed by another, faster block. However, this uncle
block will still be rewarded with % of a full block value and their hashes will be
added to the valid block. A maximum of two uncle blocks can be added to a valid
block. The miner of the valid block also receives é extra ether per uncle block
included. This ensures that these blocks still contribute to the security.[24, 25]

The rewards for successfully mining a block can be found in section 3.2.

3.1.3 Mining pools

Mining can be done individually or in a pool of miners. Miners in a pool can
mine together, and the reward will be split between all the members in the
mining pool. A mining pool has a much better chance of solving a block and
winning the reward compared to mining alone. Mining pools are a way to
encourage small-scale miners to stay involved. There are multiple mining pools
for Ethereum. Each with their own set of rules regarding fees and rewards.
Mining pools pose a risk as they have a high hashrate, however, they are not
allowed to go over 51% of the hashing power of the network. If a single pool
controls more than 50% of the network’s computing power, it could cause a
disturbance.[26] The concept of the 51% attack will be explained in section 6.4.

3.2 Ether

Ether is used as fuel for the distributed application framework Ethereum as
well as being a form of payment. The purpose of Ether is to give developers
an incentive to develop applications of a higher quality as wasteful code costs
more.

The base reward for successfully mining a block is five Ether. If another
miner finds a solution as well, but is not fast enough to be included in the
blockchain, it will turn into an uncle block. Miners of uncle blocks receive 4.375
Ether, while also raising the reward for the block in which the uncle block is
included by 3—12 per uncle block included. Because there is a limit of two uncles
per block, if another miner also finds a solution, but this block can not be
included in the blockchain, this miner will usually receive 2-3 Ether. There is
currently a maximum growth of 18 Million Ether per year, but it is unlikely to be
kept at this limit, as there is a new algorithm called Casper under construction,
expected to be released in 2017.[25, 27, 20]

Transactions on the Ethereum platform need fuel to execute, as further
explained in section 3.3.1. In Ethereum this fuel is called gas, this gas is purely
used internal and is paid for with Ether. The gas price can be changed by
developers, so the cost of execution of the code will not necessarily change with
the fluctuation of the Ether price.

To enable easier calculations, Ether also has some subdenominations:

e Wei - 10°
e Szabo - 10'2

e Finney - 10'°

e Ether - 1018

When discussing costs, Wei is the most commonly used term.[2]

3.3 Accounts

There are two types of accounts in Ethereum, namely the following:

e Normal or externally controlled
This is an account controlled by a private key. If a person owns the private
key associated with the account, they have the ability to send Ether and
messages from it.

e Contracts
This is an account that has its own code and is controlled by code. A
contract is thus basically a regular account but with the extra option of
containing code. Though it can only fire a transaction in response to other
transactions that they have received. This means that all actions on the
Ethereum blockchain start by transactions fired from normal accounts.

In paragraph 3.4 we will discuss contracts, but for this section, the general
concept of accounts will be explained. The state in Ethereum is made up of these
accounts, and each account has a 20-byte address which is unique.[28] Because
an address is made up of 20 bytes, its uniqueness is limited. 20 bytes is equal
to 160 bits, so there is a 2160 chance that a newly generated address is already
used. Thus the likelihood that a newly generated address is already used, is
about 1 in 1,461,501,637,330,902,918,203,684,832,716,283,019,655,932,542,976.
This limit should not be a problem for now. Such an address is part of an
Ethereum account. An account consist of following fields:

e Nonce, a counter so that transactions can only be processed once.
e The account’s Ether balance.

e Contract code, if existing.

e Storage, which is empty by default.

As told before in this section, the state is made up of accounts. Each block in
the Ethereum blockchain contains the state information from that moment. It
could be seen as inefficient at first glance because the entire state stores itself in
each block, but the efficiency should be comparable with Bitcoin. It is similar
because the state gets stored in the tree structure, and with every block, only a
small part of the tree is changed. Because of this, the tree between two blocks
is mostly the same. Therefore, the data can be stored once and referenced
twice with pointers, such as the hashes of the subtrees. Because all of the state
information is part of the last block, the entire blockchain history does not need
to be stored. For example, if Bitcoin would also use this strategy, it is calculated
that when this procedure gets applied to Bitcoin it can provide 5-20x savings
in space.[7]

3.3.1 Transactions

In Ethereum, the term transaction is used to refer to a signed data package that
stores a message to be sent from a regular account. A transaction contains the
following information:

e The recipient to which the message gets sent.
e A signature that identifies the sender.

e Amount of Ether to transfer.

e An optional data field.

e STARTGAS value, this defines the maximum number of computational steps
the transaction is allowed to do.

e GASPRICE value, this determines the fee the sender must pay per compu-
tational step.

The data field can contain data that a contract can access. As an example, if
a contract is providing a way for people to vote, the data field could include
some identifier for that person and the party for whom they are voting. The
STARTGAS and GASPRICE fields are essential for the anti-denial of service model
from Ethereum. Meaning that accidental or hostile infinite loops are to be
avoided. That is why each transaction is required to set a limit to how many
computational steps it can do. Usually computational step costs one gas, but
it can be higher if it is computationally more expensive or if it increases the
amount of data that must get stored as part of the state. Also, for each byte of
the transaction data, there is a fee of 5 gas. So the intent of this fee system is to
require an attacker to pay respectively for every resource they use. Therefore,
an attack with much computing power would cost a large quantity of Ether.[7]

3.3.2 Messages

As explained in subsection 3.3, contracts can only fire a transaction when they
receive a transaction. When a contract sends a transaction, it’s called a message.
A message is like a transaction; the only difference is that a contract fires it.
A message contains the same attributes as a transaction as seen in subsection
3.3.1, except it does not have the GASPRICE value as this is defined in the first
transaction that is fired that caused a message to fire. For example, if a normal
account, account 1, sends a transaction to account 2 with 500 gas, and account
2 only used 100 gas before sending a message to account 3, and the execution
of account 3 only uses 300 gas, then account 2 can use another 100 gas.[7]

3.4 Contracts

As explained in subsection 3.3, a contract is an account that also has its own code
and is controlled by code. A contract can only send a transaction in response to
a transaction it has received.[28] The code from a contract activates whenever
it receives a message, allowing the contract to read and write to its storage and
send other messages or create contracts. Contracts in Ethereum should not be
seen as something that should be fulfilled or complied with. Contracts should

be perceived as autonomous agents, meaning that they can carry out some set
of operation on behalf of a user with some independence. Moreover, with that
represent some of the user’s goals that are programmed in the contract. So
contracts are like autonomous agents that live inside of the Ethereum execution
environment, always executing its code when it receives a message or transaction
and having control over their own Ether balance and their own key/value store
to keep track of persistent variables. The key/value store is the contract’s long-
term storage, unlike the stack and memory that is used when the contract’s
code starts running when triggered by a transaction or message.|[7]

Appendix A explains how to build a contract that returns ”Hello world”. It
also shows how to deploy an established contract and how to invoke a function
from the deployed contract.

3.5 Summary

Ethereum is a technology based on the blockchain. Blockchain technology en-
ables decentralisation because everyone has a copy of all the information stored
on the blockchain. Every time a transaction executes, it is broadcasted between
users, and will be confirmed by a process called mining. This mining process
ensures that no individuals can control or change what will be saved in the
blockchain.

Because this process requires a certain amount of computational power
Ethereum has its own cryptocurrency called Ether. Ether is used to pay for
transactions and is used to compensate the people doing the computations nec-
essary to mine the blocks.

There are two types of accounts in Ethereum, a normal account, and a
contract account. A normal account allows a person to send Ether or messages
if a person owns the associated private key from the account. A contract account
is an account with its own code and is controlled by code. It can only fire a
transaction in response to a transaction that the contract has received. The state
in Ethereum is made up of these accounts. Each account has its own unique
20-byte address. For the contract code to function properly without denial of
service attacks. Each transaction must have a STARTGAS and GASPRICE field.
The GASPRICE is the fee the sender must pay per computational step and the
STARTGAS is the maximum number of computational steps the transaction can
do. A message is basically the same as a transaction, but it is sent by a contract
and does not have the GASPRICE value, as this was already defined by the first
transaction that caused all the events to fire.

The code in a contract activates whenever it receives a message or transac-
tion, allowing the contract to read and write to its storage, and in turn send
messages and create contracts. These contracts should not be seen as some-
thing that should be fulfilled or complied with. Contracts should be seen as
autonomous agents, meaning that they can fulfil a set operations on behalf of
a user with some independence. All in all, contracts can never execute their
own code by themselves, only when they receive a transaction or message. A
message can only get sent if the contract that is sending the message received
a transaction, thus meaning that every execution of code from contracts in the
blockchain is started by one transaction from a normal account.

10

4 What defines a Paper Contract?

There are several different kinds of paper contracts, each with their own set of
properties. This subquestion explains what defines a paper contract and list the
properties that apply to each kind of paper contract. It is important to know
what a paper contract consists of before moving to the next subquestion. Once
a list of properties is defined, they are compared to Ethereum smart contracts,
and are checked if it is even possible to replace paper contracts properly.

4.1 Background Information and Bureaucracy

A contract is an agreement between two parties: one that delivers, and one that
pays. However, traditionally a paper contract takes a long path through several
middlemen and third parties such as notaries, lawyers, officers and prosecutors.
This process takes a lot of money and time that can be spent on other important
matters.[29, 30]

4.2 List of properties of paper contracts

Every existing contract is based on two or more entities reaching an agreement.
These agreements could be all sorts of deals. Some of these agreements are
written down in a paper contract. Every contract has its individual properties,
also called clauses, and these may differ from other contracts. Some features
exist in every contract. All common contract properties are listed and explained
below.

Parties
Anyone can participate in a paper contract. However, there are some excep-
tions. For example, some parties like minors, felons or people of unsound mind
can not enter certain types of contracts. Contracts must identify who the par-
ties are. Some contracts just use names. Others are more comprehensive.|[30]

Consent
A valid contract requires each parties’ consent. The consent must be free, mu-
tual and communicated to each other. Thus, if one of the parties forces the
other party to sign a contract, that party has not signed out of consent and can
rescind the contract.[30]

Object
The object is the matter being agreed upon. This matter is sometimes called
the subject. Objects must be legally enforceable terms and conditions.[30]

Consideration
All contracts require consideration, which means each party must gain some-
thing. The benefit can be an effort or a product. Some companies will never
sign stating they will have to make some effort. Other companies only sign con-
tracts stating they have to deliver a product that lives up to the requirements.
A contract can also state restrictions such as to not sell their house to anyone
else for thirty days.[30]

11

These four properties are mandatory in a contract. There are however more
properties; that depend on the different kind of contracts. Of the well over 50
properties, a few are listed below.

Notice
Some contracts contain a period of notice. The notice is usually the term after
one of the parties informs the other that the contract will end. In a contract,
the notice shows how long the period will be before the contract ends. Notices
are usually seen in contract for house rental, employment, etc.[31]

Confidentiality
Other contracts contain a confidentiality clause. The confidentiality clause is a
clause in which certain information is labeled private and prohibited from being
disclosed or distributed to anyone other than specifically identified individuals
or organisations.[32]

Indemnification
Certain contracts contain an indemnification clause. In an indemnification
clause, one party agrees to be financially responsible for specified types of dam-
ages, claims or losses. The other party signs to reimburse the other party, may
the event present itself.[32]

The law states that state courts may intervene in disputes between con-
flicting parties. When there is a dispute concerning a contract, the party that
suffered a loss may bring a claim for compensation. This is governed by Author-
ities of law of the country which carries out performance of the contract unless
specified in the contract.[33]

4.3 Conclusion

There is a clear definition of a contract: An agreement between two or more
parties for the doing or not doing of something specified. Every contract must
contain a description and some information about both parties and the object.
Both parties must gain something from signing a contract and both parties
must give consent. These are the basis of a contract. Contracts could also
contain more than those basic properties. A contract can have clauses, which
are distinct articles or provisions in a contract, treaty, will, or other formal or
legal written document.

Any contracts concerning the law must go through several middleman and
third parties. Because of this, most contracts take a lot of time and cost a lot
of money to become legally enforceable.

5 What kind of paper contracts are best suited
to be replaced by Ethereum contracts?
In this subquestion, the possibilities and limitations of smart contracts will be

explained. Besides that, some examples from paper contracts as smart contracts
are stated.

12

5.1 DPossibilities and Limitations

Storing a contract on the blockchain could be a wise choice as one will probably
need contracts, especially business-, trade- or other necessary contracts, to be
safe and trusted.[34] Blockchain technology provides secure storage as explained
in section 3.1 and section 6.1. As a matter of fact, the NXT-foundation already
owns a start-up company in Singapore storing commercial contracts on the
blockchain.[34] This means there is a possibility to store commercial contracts
on the blockchain.

In the previous chapter, the different kind of contract properties have been
discussed. These features come with lots of possibilities and limitations when it
comes to replacing them with an Ethereum smart contract. In other words, these
properties either can or can not be translated into code for a smart contract.
Therefore, if a contract has to be automated by Ethereum smart contracts, the
contract’s clauses need to be able to be translated into code. Otherwise, this
contract can not be fully automated by smart contracts.

For instance, when one has a purchase agreement and wants to automate
the contract for that purchase agreement, there is a clause stating the transfer
of the purchased item, or multiple items. This is a physical act and therefore
cannot go through the blockchain. A smart contract can trigger a method in the
smart contract changing the ownership of the purchased item or its items. This
action can be triggered by a DApp (Decentralized application). Both parties
can use the user interface of the DApp to trigger actions in the smart contract.

13

5.2 Example of paper contract to smart contract

In this subsection, examples of paper contracts will be given and explained how
these would fit as smart contracts on the Ethereum blockchain.

5.2.1 Purchase Agreement

A purchase agreement is the event where one person is selling the other person
goods, and when the buyer agrees to buy those goods. This example explains
how the purchase could be done without an intermediary by using Ethereum.
The problem with not having an intermediary is that the buyer or seller could
be a scammer. Typically, both parties send the money or items to an escrow
intermediary. An escrow is a third party that receives the goods and verifies
the purchase agreement. If both sides have fulfilled their part, the purchase
agreement will be met. But this can also go wrong if the escrow is a scammer.

CURRENT WORLD ETHEREUM ENABLED WORLD

Bos ESCROW AuCE 4

PROBLEMS:
. Set-up and facilitation complications
. What if escrow is a scammer?
. What if buyer is a scammer?

Figure 2: Regular purchase compared to an Ethereum purchase

With Ethereum, one can construct a contract that acts as an intermediary
between the seller and buyer. A smart contract does exactly what it is pro-
grammed to do. It is a bit more complicated because it has to interface with
the real world as one can not send goods to the contract. An idea by Oleg
Andreev[35] is that the seller puts a deposit of two times the value of the items.
The buyer also puts the same deposit in the contract. At this point, the buyer
and seller can not withdraw their money from the contract. Then the seller
can send the items to the purchaser, who in response can verify the goods and
notify the contract that the goods have arrived. Once the buyer has verified
this, the contract sends the value of the goods onefold back to the purchaser,
and sends the value of the goods twofold back to the seller. The contract will
also send the price of the goods the buyer paid to the seller. So in short the
buyer has received their items and one time the value of the goods, and the
seller has received three times the value of the goods. The seller receives three
times the value of the goods because the seller made a deposit to the contract,
with two times the value of the goods and the money the buyer is paying. If
the purchaser verifies that the received goods are not the right goods, the buyer
can send back the goods to the seller. Then the only option for the seller is to

14

refund the buyer. This is the only option as the seller also wants the deposit
back that was made by them earlier.[36]

SMART
Bos CONT ALICE

Buyer confirms they received

Buyer gets deposit back, seller gets deposit + sale

Figure 3: Purchase confirmed with smart contract

5.2.2 Diploma

Fake diplomas and degrees are a global problem. For example, these days people
can fake diplomas with Photoshop or people can buy a diploma from a diploma
mill. A diploma mill is a company or organisation which offers illegitimate
degrees and diplomas for a fee. The diplomas from a diploma mill are hard to
differentiate from a real diploma. Thus allowing people to buy these diplomas,
and act like they have graduated in that field of work.[37]

For example, schools can use the blockchain for certifications of diplomas.
The Leonardo da Vinci Engineering School, a renowned academic institution
in Paris, has already thought of this idea. They want to issue and certify
diplomas using Bitcoin’s blockchain. The school has not yet decided if it will
develop their own tools and applications with the blockchain or use established
platforms. Cyril Grunspan, educational director of the Financial Engineering
and Mathematics department, thinks that the easiest way would be a link to
http://blockchain.info. Also noting that employers could access their school’s
website to verify diplomas. The school would still issue diplomas through paper,
alongside certifying them on the blockchain.[38]

The immutability of blockchains makes the idea of issuing and certification
of diplomas on the blockchain an interesting idea, because once the diploma
is issued on the blockchain, it is immutable. Allowing potential employers to
verify diplomas of schools using blockchain technology.[39]

5.2.3 Voting

With voting in a democracy, there are problems such as corruption, voter in-
timidation and fraud. With Ethereum, this issue could be tackled by giving
transparency to the voting process.

15

In Ukraine, a group of officials signed a memorandum in February 2016.
In this memorandum, they wanted to move multiple levels of elections to the
Ethereum blockchain using E-vox.[40] E-vox is a platform developed by a group
of companies including Ambisafe, Distributed Lab and Kitsoft. With this mem-
orandum, the officials want to create a decentralised, transparent and accessible
system for group decisions making via blockchain-based mechanisms. They
want to use this system for political primaries, elections, online petitions or
referenda. [41]

With Ukrainian officials taking Ethereum and the blockchain seriously as
an instrument for voting, it is an idea that is to be taken seriously. Ethereum
smart contracts can store the vote of a person on the blockchain and make it
permanent, as the blockchain is immutable.[39] This will allow the voting to
be transparent which decreased the chance of fraud. A smart contract in this
example can save the information of the voting person along with his or her
vote.

5.2.4 Residential Lease Agreement

Residential lease agreements are agreements that can be altered. When the
tenant alters his copy of the Residential lease agreement. There will be a conflict
because the landlord sees that the Residential lease agreement does not match
with his version of the contract. If the Residential lease agreement is stored on
the blockchain as a contract, then the contract cannot be altered. Companies
are already starting their own Ethereum blockchain on which they can store the
Residential lease agreements. The Smart Tenancy Contract is an online software
tool created by Midasium. The Smart Tenancy Contract is for independent
landlords or property managers. These Smart Residential Lease agreements are
stored on the blockchain and can be digitally signed by both parties, unlike a
traditional contract. The contract can receive a bond payment or a direct debit
for a rent payment from the tenant.[42]

5.3 Conclusion

There is a company already storing contracts onto the blockchain. This company
is doing so for safety and to make sure contracts are not forgeable. However,
it is done without the use of smart contracts and purely for the reasons as
stated in the previous sentence, such as safety. If someone has the intention to
automate a contract, the first question to be answered is whether the clauses
of the contract can be translated into code for these smart contracts. If all the
clauses are translatable, smart contracts based on that contract can be made
and put onto the Ethereum blockchain.

The examples from paper contracts to smart contracts in this subquestion
are all ideas that are taken seriously by professionals. Thus, should be seen
as potential future implementations, if the blockchain technology will get more
attention from professionals.

Referring to the subquestion: ”What kind of paper contracts are best suited
to be replaced by Ethereum contracts?”: There is no ’best’ paper contract to
be replaced by smart contracts. As explained earlier, if all the clauses from a
paper contract are translatable to smart contract code, the paper contract is
suited to be replaced by a smart contract. The only question that remains is

16

whether or not people are willing to enter the digital age with paper contracts,
and maybe the smart contracts of Ethereum offer the solution.

6 What are the risks of Ethereum?

Ethereum poses several risks due to its young age, head company and the vague
legal area it finds itself in. This subquestion looks at several of these aspects,
as well as diving into the technology that runs Ethereum, to check its level of
security and privacy.

6.1 Risks of Ethereum in general

New cryptocurrency-like concepts like Ethereum are often vulnerable to internal
as well as external factors.[43] These risks and vulnerabilities range from internal
company issues to larger legal and fraudulent cases.[44]

A notary can help prevent fraud and identity theft. It is a powerful risk
management tool if a notary publically witnesses the signing of contracts.[29]
Using Ethereum this risk management is reduced, since all records enter the
blockchain and can not be deleted. Contract fraud comes in several forms,
like Fraud in the Inducement, where the fraud exists with regards to the entire
contract; the person is deceived into signing due to the fraudulent circumstances
(for instance, they sign because they though the person was a real estate agent,
when in fact they were not), and Fraud in the Factum where the fraud exists as
to a certain fact or description within the contract. For instance, if one party
signs because they thought they would be purchasing 50 items, when in fact the
person intends to sell them 100 items. However, these are mainly due to human
error and careless or inaccurate reading of the contract.[45] A more compelling
type of fraud with regards to Ethereum is the forgery of signatures. Forgery is
considered a crime when a person creates a false document or alters a genuine
one with the intent to defraud. Some criminal statutes also require the person
making the forgery to benefit from it in some way. For example, someone may
change a check worth $100 to $1,000.[46] In this situation, Ethereum could come
to great use. By using the Ethereum blockchain, everyone would own a copy
of the created contract. Altering the contract would not be possible, since one
person would have the modified contract, and the rest of the Ethereum users
would have the original copy. Due to the contract not being alterable and since
the author is always known it prevents forgery in a great way.

Another possible problem is Ethereum moving to a Proof-of-Stake system.[47,
48] Onme of the problems with this system is called the ”nothing at stake”
problem, where block-generators have nothing to lose by voting for multiple
blockchain-histories, which prevents the consensus from ever resolving. Anyone
can abuse this issue to attempt to double-spend ”for free” because there is lit-
tle cost in working on several chains.[49] To solve this, Ethereum suggested a
Slasher protocol that allows users to punish the cheater, who mines on the top
of multiple blockchain branches.[50] However, Slasher was never implemented.
The Ethereum developers concluded proof-of-stake was non-trivial and instead
designed a proof-of-work algorithm called Ethash.[51, 2]

However, since day one of Ethereum it has always been the plan to implement
a Proof of Stake algorithm. In order to make sure the transition between a proof

17

of work and an proof of stake algorithm goes smoothly, a difficulty bomb has
been implemented. This difficulty bomb ensures that when the time comes
to transition to the proof of stake algorithm, miners will follow, because the
difficulty bomb will make it impossible to make any profit off of the proof of
work algorithm. [52] However, because the proof of stake algorithm will utilise
the amount of Ether owned by the stakeholders in order to validate a block
instead of computing power, there will be less incentive for miners to mine on
the Ethereum blockchain. However, as there is less computing power required in
order to validate transaction, this should be a negligible problem. The Casper
proof of stake algorithm is also a betting scheme; miners will use Ether to bet
on their block to be part of the blockchain. If this is the case, they will be
rewarded Ether, if this is not the case, they will have wasted computing power
without a reward.[20]

6.2 Wallet security

To execute transactions, one needs to have Ether. This Ether has to be stored
somewhere. While it is not necessary to use a wallet for this, it is often a
more convenient solution because of the graphical interface. Because the wallet
contains valuable goods, security is an important factor. Not all wallet clients
that are available are trustworthy[53], so a choice should be made carefully.

A powerful technology that can be used to secure the funds stored in the
wallet is the multiple signature wallet. The multiple signature wallet can be
configured to need the authorization of multiple accounts to send a transaction.
This functionality is flexible, because of the amount of accounts that own the
wallet, the amount of accounts that have to approve the transaction and the
limit of Ether, which can be spent daily before the multiple authorisation is
needed. These accounts do not necessarily have to be owned by other people as
the accounts can also be in one’s possession. However, to improve security, the
private keys of the account should not be stored on the same device, because in
the case of a hack, multiple keys will still be compromised.

Should a multiple signature wallet be successfully created, with at least two
accounts on different devices, it is impossible for hackers and rogue employees to
compromise the system by hacking only one of these devices.[54] The amount of
accounts needed for authorising a transaction can be adjusted for higher levels
of security.

18

[JON Sthereum Wallet

WALLETS SEND |34 peers | ©5889 ©7ssince last block 19,172.82 usb

SIMPLE WALLET
Asimple wallet without additional security measures.

@® MULTISIGNATURE WALLET

Any transaction over that daily lim 2 lires the confirmation of 2 owners.
3
Wallet owners
4
. 0x7beb4d9775cfa556de! 5 '88fad67735d156957
@ 0x89afe05322d1e7a165 © dc37d82d6fd939725
7

IMPORT WALLET
Import an existing (multisignature) wallet.

CREATE

Figure 4: Multi signature wallet

The figure above shows how the Ethereum Mist wallet implements the mul-
tiple signature wallet technology. Another option is Ether.li, which is a multi-
ple signature web wallet, but lacks the amount of configuration Mist provides.
Ether.li only works with the standard model of 2-out-of-3 authorization, with
the second one always being SMS-authentication. While this does look promis-
ing, this does not leave flexibility for companies to implement their own kind
of 2-factor authentication technology.[55] This wallet is the best option at the
moment, because the Mist wallet implements this technology, has these con-
figuration options and is actively being developed by the Ethereum foundation
itself, [56]

6.3 Privacy and Security

When Ethereum is being discussed, besides the scalability, the main issue is the
privacy of the blockchain. Privacy in the blockchain is a significant factor in
this research, because it is a crucial aspect of contracts. Contracts often contain
private information about the people involved, such as finances, which should
not be known to the public. Because security is closely matched to privacy, it
will be discussed together with privacy.

Ethereum is based on a blockchain technology, which means that everyone
owns a copy of all the data stored on the blockchain. This does, however,

19

implicates that everyone can see all data stored on the blockchain, even someones
financial records. All this data can be seen by competitors, governments, family,
friends, etc.[57]

Currently, with the Homestead release, a solution for the privacy problem
has not yet been implemented. However, with the Serenity release, there will be
more possibilities to implement advanced cryptotechnology such as ring signa-
tures. These possibilities will open up because Serenity will introduce a model
in which all transactions are valid.[58] To solve the privacy problem of the
blockchain, several technologies have already been proposed.[57] These tech-
nologies and their viability for privacy for paper contracts will be discussed in
the following section.

6.3.1 Ring signatures

One of the most talked about technologies is ring signatures, which looks very
promising, as it is already implemented by Monero, which is another blockchain
technology.[59] Another reason for why this will be the primary privacy solution
being looked at is that there is already a ring signature verification contract
created for the second Serenity proof of concept, which enables the use of ring
signatures for privacy.[60, 61]

Ring signatures provide privacy by taking a ring of possible signers, including
the user sending the transaction. Each of the public keys can be used to compute
a mathematical function contained in the ring, but only the private key of the
original sender can be used to control the output. There is no way to determine
the real sender from this group because the user just has to prove membership
to the group.[57] If there is only a certain group of signers which should be able
to send certain information, this ring can also, theoretically, be comprised of a
group of those signers, instead of all random signers.[62]

However, the fact that each user is anonymous brings one problem. There
is no way to check whether or not a user in a ring has already signed with
his private key. This is where linkable ring signatures come in. Linked ring
signatures can determine when something is signed twice with the same private
key. This linkability can prevent users from spending more than once with the
same public key.[57]

6.3.2 One time accounts

One time accounts is a technology implemented by Zerocash, another blockchain
technology[63]. The way this works is that every sender must use a given address
only once for either sending or receiving coins. After receiving coins, a user
should immediately make a new address, and pour those coins into that address.
Only after this, the money can be spent again. This technology makes sure
that there is an everlasting anonymity. However, the creation of new accounts
with every transaction gives a substantial overhead, which results in reduced
performance.[64] One time accounts is not a technology currently implemented
in the Ethereum core, but this is the easiest technology to implement from a
user’s standpoint.

The usage of the one time account technology can be implemented by users
themselves. This can be achieved by creating a new account for each transaction.

20

However, it requires a lot of time and effort to set up, which is why this is not
the ideal solution.

6.3.3 Obfuscation

Obfuscation is the technology of making the process between input and output
unintelligible. An example in the blockchain would be that it is recorded that
user A spent money and user B received money. If this is obfuscated, there
would be no distinguishable relation between the two users, just the fact that
one spent money, and one received money. Complete obfuscation is mathemat-
ically impossible. However, there is indistinguishable obfuscation[65], which is
something that can be used by us to create smart contracts.

Transaction (SEND or
GETBALANCE request)

Pubkey Enc@

Contract (obfuscated)

Storage
(cleartext) — Privkey Dec@

Process

Read

Write

Output

Figure 5: Obfuscating Smart Contract

Indistinguishable obfuscation can be implemented in a smart contract as
seen in the figure above. In this case, the obfuscated contract code will check
whether or not the user is entitled to read the balance. If they are entitled,
the code will return the balance. Otherwise, the code will return an error.[57]
However, this implementation is very inefficient, with calculations taking a very
long time to complete [66]. On the blockchain, this will result in very expensive
contract calls, which is why we can not use this kind of smart contract.

6.4 Blockchain

One of the biggest weaknesses of Bitcoin is the 51% attack. The blockchain
contains all the records of the past transactions, which means the information
is not stored on any central server. The blockchain is stored in multiple pools
3.1.3. These pools are continuously checked and rechecked. Sometimes a block
will be mined that is not part of the conventional blockchain, a so-called orphan
block. When the orphan block is mined, it will be validated against the pre-
existing blockchain. If the orphan block is not validated, it will be removed.

21

This means there are multiple blockchains being compared to each other. The
bitcoin protocol declares that the valid blockchain is the one that has been
worked on the most. This is where things go wrong. If an attacker has 51% of
the network’s total hashing power, the attacker can create its own blockchain.
When the attacker has its own blockchain, the attacker can put more data in
their blockchain. If this is faster than the number of times the original blockchain
updates, the attacker can create a new blockchain. The attackers blockchain can
double-spend coins by removing transactions from its blockchain after spending
them. This means the coins are returned to the original user’s wallet. When
in control of 51% of the network hash rate, certain addresses can be made
unspendable by rejecting transactions for those addresses. A mining pool that
controls 51% can be devastating towards other mining pools by rejecting their
data. That data will become orphan blocks.[67] However, despite widespread
concern about the vulnerability of the bitcoin network to large mining pools,
there remains no easy solution to the issue. In theory, one might be able to
affect the next block or two, launching a double-spending attack by holding on
to enough power to confirm the majority of transactions. However, this would
take an enormous amount of expense and effort and, should a big double spend
be attempted; the data would likely appear on the blockchain for all to see. The
attack could destroy the integrity of the system. This will cause the price of the
coin to crash and is not something the community wants. Their profits depends
on the current state of the bitcoin. If there were an attack, the coin value would
crash and everybody loses their money.[68]

6.5 Conclusion

Contract fraud comes in several shapes and sizes, like Fraud in the Inducement
and Fraud in the Factum. However, these are mainly due to human error and
careless or inaccurate reading of the contract.[45] A more compelling type of
fraud with regards to Ethereum is the forgery of signatures. In this situation,
Ethereum could come to great use. By using the Ethereum blockchain, everyone
would own a copy of the created contract. Altering the contract would not be
possible, since one person would have the modified contract, and the rest of the
Ethereum users would have the original copy.

Another possible problem is Ethereum moving to a Proof-of-Stake system.
Anyone can abuse this issue to attempt to double-spend ” for free” because there
is little cost in working on several chains.[49] To solve this, Ethereum suggested
a Slasher protocol that allows users to punish the cheater, who mines on the top
of multiple blockchain branches.[50] However, Slasher was never implemented.
The Ethereum developers concluded proof-of-stake was non-trivial and instead
designed a proof-of-work algorithm called Ethash.[51, 2] A fundamental flaw of
a proof of work algorithm is that the cost of attacking is equal to what is spent
running the system. This means that high security can only be achieved at
high operating costs. When the Proof of Stake for Ethereum comes, an honest
validator is expected to have very low costs, in contrast to an attacker.

As far as safe storage of Ether is concerned, multisig wallets are the way
to go. This way, not a single person is responsible, so if a single account gets
compromised, it is not a big deal. The Mist wallet for Ethereum should be the
one to use for this. Fther.li looks promising as well, but it lacks the configuration
options the Mist wallet offers.

22

On the field of privacy and security, a couple of technologies that could im-
plement this have been researched. The ring signature technology looks very
promising regarding privacy on the blockchain, but this is not yet implemented
in the current Ethereum release. However, with the release of Serenity, this
will be a viable option to implement privacy. The second option is one-time ac-
counts. Although this is something that has to be implemented in the blockchain
protocol itself to be viable. It could also be implemented manually, but that
will cost too much effort and time. The last option is the obfuscation of smart
contract code. If this works, this would be a perfect solution. However, it is
proven to be very computationally expensive, which is why this is not viable.
For now, the ring signature technology looks the most promising, but this is not
implemented in the Ethereum blockchain yet. At the moment, privacy is still a
very weak point in the Ethereum blockchain.

One of the biggest weaknesses of the blockchain is the 51% attack. This
attack can be accomplished by any attacker that gains over 51% of the net-
work’s total hashing power. When this happens, the attacker can create his own
blockchain and can double-spend coins by removing transaction after spending
them. When in control of 51% of the network hash rate, certain addresses can
be made unspendable by rejecting transactions for those addresses. However,
when this attack happens the market value would crash, and everybody loses
their money.

7 Proof of concept

To prove that a smart contract can replace a paper contract, a proof of concept
was built. In this chapter, its goal, technology, and the result will be explained.
There has been chosen to replace a paper residential lease agreement with a
smart contract.

7.1 Goal

The goal of the proof of concept is to support the main research question. The
theory is that a smart contract can replace a paper contract, this proof of concept
is built to support this theory. In section 5.2.4, a residential lease agreement
is explained as an example to be replaced by a smart contract. This example
is taken and used in the proof of concept to prove that a smart contract can
replace a paper contract.

7.2 Technology

The proof of concept uses Meteor to build a real-time web application. Meteor
is a full-stack framework with the ability to create real-time web applications.
This framework was chosen because the Lead DApp developer for Ethereum,
Fabian Vogelsteller, recommends it.[69]

DApp is an acronym for decentralized application. Ethereum DApps usu-
ally interface users with an HTML/Javascript web application using a Javascript
APIT to interact with the blockchain.[70] The proof of concept uses Meteor as ex-
plained earlier for the HTML /Javascript web application. As for the Javascript

23

API to communicate with the blockchain, the proof of concept uses the Web3
Javascript API.[71]

To build the proof of concept the official wiki from Ethereum has been used,
about how to create a DApp using Meteor.[72] The information on the wiki
suggested a boilerplate that offered a platform to build a DApp using Meteor.[73]

The smart contract is written in Solidity. This has been the standard for
smart contracts for a while, and is still actively being improved. The predecessor
of Solidity is Serpent. However, development on Serpent has stopped, because
it is seen as finished. Besides the fact that Solidity is actively being developed
on, it has the advantage of being statically typed and offering many more ad-
vanced features such as inheritance, libraries, complex user-defined types and a
bytecode optimizer.[74]

24

7.3 Result

The proof of concept consists of a smart contract and a DApp that allows a
landlord and a tenant to make an agreement on a residential property.

The first step in making this possible is to create a smart contract that holds
the data of the agreement. In appendix B the full smart contract is shown.
This smart contract can contain information that is relevant to a residential
lease agreement. The smart contract needs two values when it is deployed; the
house and rent for the residential lease agreement. It will make the person
that deployed the smart contract on the blockchain the landlord. When the
contract is deployed the state of the contract is set to ” Created”. Only someone
else than the landlord can confirm the agreement if the state is ”Created”.
When someone confirms the agreement that person is set as the tenant and the
state is set to ”Concession”. When the state is ”Concession” the agreement
can not be confirmed again, thus eliminating the possibility of overwriting the
current tenant. When the state is ”Concession” it allows the tenant to make
payments to the contract, the contract will then, in turn, send the payment to
the landlord and save the payment information in a payment list in the contract.
If the contract needs to be terminated, it is possible for the landlord to do so.
When the landlord terminates the contract the state is set to ”Terminated”
and all Ether left in the contract is sent to the landlord. After the contract is
terminated it will continue to exist on the blockchain, but payments can not be
made anymore, and the state will continue to be ” Terminated”.

The second step of making this possible is to create a DApp that uses the
smart contract. The DApp allows a person to deploy the contract as a landlord
with an inputted house and rent. When the contract is deployed, its information
is viewable within the DApp. Another person can confirm the contract as a
tenant in the DApp when the person agrees with the shown information from
the contract in the DApp. Further implementations for paying the rent and
terminating the contract are left out because the main concept is proven with
the built smart contract and DApp.

Rental Contract: 0xa5791633ac64be7df216ae4f712c2762bf54df70

Created: Thu Jun 09 2016 12:14.00 GMT+0200 (West-Europa (zomertijd
Landiord: 0x35ee462361C1525804e77747d3ce8355c401a3bc

Tenant: 0x00000000000000000000 0000000000000000000

State: Created

Rent: 35ETH

House: 1234AB+5

Figure 6: Smart contract information in the DApp

25

8 Conclusion

The main question ”What criteria does Ethereum need to fulfil to replace paper
contracts?” has successfully been answered. Ethereum needs to be able to save a
paper contract on the blockchain, the privacy of the contract should be sufficient,
and the security of the contract needs to be sufficient.

As shown by the proof of concept, it is possible to store paper contracts on
the Ethereum blockchain. A user can transfer a paper contract to the blockchain
using the proof of concept, as well as being able to read the contract. However,
A contract can have a wide variety of clauses. To transform certain contracts
to smart contracts written in Solidity code, they need to be translatable. Some
clauses can not be translated to smart contracts, making them unautomatable.

The proof of concept created for this project makes it possible to place a
paper contract on the blockchain using a smart contract. However, this means
that the properties of the contract can be viewed by anyone. Because data such
as the tenant, the landlord, the address and the rent is publically viewable, the
privacy is a very weak point. With the Serenity release of Ethereum, it will
be possible to implement ring signatures. This technology enables one to hide
the identity of the tenant. However, at the current state of Ethereum, it is not
advised to implement paper contracts on the blockchain, as the privacy is not
yet sufficient.

Storing a paper contract on the blockchain ensures that the contract is im-
mutable, thus making the agreement final. However, the biggest risk is a 51%
attack. Such an attack would allow the perpetrator to modify the blockchain.
With this risk, it would be possible to alter the blockchain, and thus allowing
the perpetrator to change the contract or even remove it from the blockchain.
Fortunately, the chance of this happening is rare, as the perpetrator has a sig-
nificant stake in the price of Ether, which would drop massively if the Ethereum
community found out that the blockchain had been compromised.

Due to the variety of the contract’s clauses and the privacy setback, it is not
recommended to place paper contracts on the Ethereum blockchain.

26

References

mr. B.G.N. (Bart) Gubbels. Contract opstellen.

Gavin Wood. Ethereum: a secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 2014.

David Schuff and Robert St Louis. Centralization vs. decentralization of
application software. Communications of the ACM, 44(6):88-94, 2001.

David Chaum. Blind signatures for untraceable payments. In Advances in
cryptology, pages 199-203. Springer, 1983.

Wei Dai. B-money. Consulted, 1:2012, 1998.

Hal Finney. Rpow: Reusable proofs of work, 2004.

Vitalik Buterin et al. Ethereum white paper, 2013.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Bobby Ong, Teik Ming Lee, Guo Li, and David LEE Kuo Chuen. Evaluat-
ing the potential of alternative cryptocurrencies. Handbook of Digital Cur-
rency: Bitcoin, Innovation, Financial Instruments, and Big Data, page 81,
2015.

Olga Kharif. Bitcoin 2.0 Shows Technology Evolving Beyond Use as Money,
2014.

Vitalik Buterin. What is so special about Ethereum, 2016.

Rywalk. An Overlooked Development: Ethereum, IBM ADEPT and the
Internet of Things (IoT), 2015.

Dcrypted. Slock.it DAO pre-sale, 2016.

Tan Allison. RWE and Slock.it — Electric cars using Ethereum wallets can
recharge by induction at traffic lights, 2016.

Phil Barry. DEVCON1: Ujo Music - Phil Barry, 2015.

Ujo. Rebuilding the music industry on the blockchain, 2015.
Vitalik Buterin. Privacy on the blockchain. Ethereum Blog, 2016.
Etherchain. Transactions, 2016.

Aggelos Kiayias and Giorgos Panagiotakos. Speed-Security Tradeoffs in
Blockchain Protocols. 2015.

Vlad Zamfir. Introducing Casper “the Friendly Ghost”. FEthereum Blog,
2015.

Gideon Greenspan. No Title. Private blockchains, 2016.

Aaron van Wirdum. The Decentralist Perspective, or Why Bitcoin Might
Need Small Blocks. Bitcoin Magazine, sep 2015.

27

Vitalik Buterin. State of Ethereum: August Edition. Ethereum Blog, 2014.
Ethereum. Ethereum blockchain, 2015.

Ethereum. Mining, 2015.

Coindesk.

Ethereum. What is Ether?, 2016.

Ethereum. Frontier Guide, 2015.

Tami Kamin-Meyer. What is a Notary and Why do we Notarize Docu-
ments?, 2008.

Jefrey Steinberger. Is This Contract Valid?, 2007.
Unknown. Notices, 2016.

TransLegal. Types of contract clause (1).
International Trade. International Law & Contracts.

Fast Moving Targets. Bas Wisselink (NXT Foundation) legt de blockchain
uit, 2016.

Oleg Andreev. Joint Escrow, 2015.

Christian Reitwiessner. DEVCON1: Building a DApp: Writing contracts,
2016.

DUO. Diploma mills, 2016.

Groupe Léonard de Vinci. L’ESILV va certifier ses diplomes grace a la
Blockchain et délivrer des enseignements sur ce réseau, 2016.

Antony Lewis. A gentle introduction to immutability of blockchains, 2016.
e Vox. e-Vox: Open e-Democracy Platform.

Nick Abouzeid. Ukraine Government Plans to Trial Ethereum Blockchain-
Based Election Platform, 2016.

midasium. Smart Tenancy Contracts.

Joy Marie Virga. International criminals and their virtual currencies: the
need for an international effort in regulating virtual currencies and com-
bating cyber crime. Braz. J. Int’l L., 12:512, 2015.

John Fry and Eng-Tuck Cheah. Negative bubbles and shocks in cryptocur-
rency markets. International Review of Financial Analysis, 2016.

Jose Rivera. What is contract fraud?, Dec 2014.
Effect of forgery on a contract.
Andrew Poelstra. On Stake and Consensus, 2015.

Vitalik Buterin. On Stake, 2014.

28

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]
[57]
[58]

[59]

[60]
[61]
[62]

[63]

[65]

[66]

[67]
[68]

Community. Problems, 2015.
Vitalik Buterin. Slasher: A Punitive Proof-of-Stake Algorithm, 2014.

Vitalik Buterin. Slasher Ghost, and Other Developments in Proof of Stake,
2014.

Stephan Tual. Ethereum Protocol Update 1. 2015.

EthereumCanada. WARNING to 1000+ users of ”Ethereum Wallet” by
Freewallet on Android. They hold your keys, website and support emails
very sketchy. Many signs of scams we’ve all seen before., 2016.

Vitalik Buterin. Blockchain and Ethereum Security on the Higher Level,
2016.

Jacob Donnelly. BitGo Engineers Launch Ethereum Wallet Side Project.
2016.

Alex van de Sande. Mist releases, 2016.
Vitalik Buterin. Privacy on the Blockchain. Ethereum Blog, 2016.

Vitalik Buterin. Understanding Serenity, Part I: Abstraction. Ethereum
Blog, 2015.

Shen Noether. Ring signature confidential transactions for monero. Cryp-
tology ePrint Archive, Report 2015/1098, 2015.

Ring signature code, 2016.
Vitalik Buterin. Serenity PoC2. Ethereum Blog, 2016.

Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring Signatures:
Stronger Definitions, and Constructions without Random Oracles. 2005.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 459-474. IEEE, 2014.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized Anony-
mous Payments from Bitcoin. 2014.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate Indistinguishability Obfuscation and Func-
tional Encryption for all circuits, 2013.

Sebastian Banescu, Martin Ochoa, Nils Kunze, and Alexander Pretschner.
Idea: Benchmarking Indistinguishability Obfuscation — A candidate imple-
mentation, 2015.

Joel Hruska. extremetech.

Daniel Cawrey. Coindesk.

29

[69] Fabian Vogelsteller. DEVCON1: Building a DApp: What are DApps and
why Meteor, 2016.

[70] Ethdocs Dapps.

[71] Web3 JavaScript Dapp API.

[72] Dapp using Meteor.

[73] meteor-dapp-boilerplate.

[74] Solidity. Frequently asked questions. 2016.

[75] Ethereum. Create a digital greeter, 2015.

30

A Contract creation and deployment

Ethereum created a tutorial on how to create contracts; they showed the fol-
lowing example about a contract that can greet you:[75]

contract mortal {
/* Define variable owner of the type addressx*/
address owner;

/* this function is executed at initialization and sets the owner of
the contract */
function mortal() { owner = msg.sender; }

/* Function to recover the funds on the contract */
function kill() { if (msg.sender == owner) suicide(owner); }

}

contract greeter is mortal {
/* define variable greeting of the type string */
string greeting;

/* this runs when the contract is executed */
function greeter(string _greeting) public {
greeting = _greeting;

}

/* main function */
function greet() constant returns (string) {
return greeting;

}

This is a simple contract with the classic "hello world”. As seen in the example
code, there are two contracts: mortal and greeter. This is because the contract
language Solidity has inheritance, which means that we can reuse contract code
so that we do not have to rewrite it every time. The mortal contract has
code that allows a contract to kill itself by its owner. This will remove the
contract from the blockchain and recovers locked funds in the contract back
to its owner. In its default state a contract is immortal and does not have an
owner. Therefore, it is needed if you want to be able to remove a contract
from the blockchain. Before a contract can be deployed it needs to be compiled.
The code must compile through, for example, the Geth console (command line
interface for running a full Ethereum node). You need to reformat the contract
to compile it by removing the line-breaks so that it fits into a string variable.
When this is done you can run the following commands in the Geth console and
the contract will compile:[75]

var greeterSource = ’contract mortal { address owner; function mortal()
{ owner = msg.sender; } function kill() { if (msg.sender == owner)
suicide(owner); } } contract greeter is mortal { string greeting;
function greeter(string _greeting) public { greeting = _greeting; }
function greet() constant returns (string) { return greeting; } }’

31

var greeterCompiled = web3.eth.compile.solidity(greeterSource)

After running these commands, the contract is ready to be deployed. For the
current example the greeting that returns when the contract executes needs
to be defined. By running the following commands in the Geth console, the
contract will deploy on the blockchain:[75]

var _greeting = "Hello World!"
var greeterContract =
web3.eth.contract(greeterCompiled.greeter.info.abiDefinition);

var greeter = greeterContract.new(_greeting,{from:web3.eth.accounts[0],
data: greeterCompiled.greeter.code, gas: 300000}, function(e,
contract){

if (le) {
if (!contract.address) {
console.log("Contract transaction send: TransactionHash: " +
contract.transactionHash + " waiting to be mined...");
} else {
console.log("Contract mined! Address: " + contract.address);
console.log(contract) ;

}

b

After all these commands the contract is deployed on the blockchain and ready
to be used. As programmed in the contract example, it has a function called
”greet” that returns a greeting. The greeting was defined in the last command
block as "Hello World!”. To execute the contract and receive a greeting, the
following command must be used:[75]

greeter.greet();

Now with that command ran, the console will return ”Hello World!” as defined
in the constructor from the contract in the deployment. Calling the function
greet does not cost gas as the call does not change anything on the blockchain.

32

B Rental contract

contract RentalContract {

/* This declares a new complex type which will hold the paid rentsx/
struct PaidRent {

uint id; /* The paid rent id*/

uint value; /* The amount of rent that is paid*/

PaidRent[] public paidrents;

uint public createdTimestamp;

uint public rent;

/* Combination of zip code and house numberx/
string public house;

address public landlord;

address public tenant;

enum State { Created, Concession, Terminated }
State public state;

function RentalContract(uint _rent, string _house) {
rent = _rent;
house = _house;
landlord = msg.sender;
createdTimestamp = block.timestamp;

modifier require(bool _condition) {
if (!_condition) throw;

modifier onlyLandlord() {
if (msg.sender != landlord) throw;

modifier onlyTenant() {
if (msg.sender != tenant) throw;

modifier inState(State _state) {
if (state != _state) throw;

function getPaidRents() internal returns(PaidRent[]) {
return paidrents;

}

function getHouse() constant returns(string) {

33

return house;

function getLandlord() constant returns(address) {
return landlord;

}

function getTenant() constant returns(address) {
return tenant;

}

function getRent() constant returns(uint) {
return rent;

}

function getContractCreated() constant returns(uint) {
return createdTimestamp;

}

function getContractAddress() constant returns (address) {
return this;

function getState() returns (State) {
return state;

}

event agreementConfirmed();
event paidRent();
event contractTerminated();

/* Confirm the lease agreement as tenant*/

function confirmAgreement ()
inState(State.Created)
require(msg.sender != landlord)

agreementConfirmed() ;
tenant = msg.sender;
state = State.Concession;

function payRent ()
onlyTenant
inState(State.Concession)
require(msg.value == rent)

paidRent () ;
landlord.send(msg.value) ;
paidrents.push(PaidRent ({
id: paidrents.length + 1,
value: msg.value

»);

34

/* Terminate the contract so the tenant can’t pay rent anymore,
and the contract is terminated */
function terminateContract()

onlyLandlord
{
contractTerminated();
landlord.send(this.balance); /* If there is any value on the
contract send it to the landlord*/
state = State.Terminated;
}

35

