A PUBLIC KEY CRYPTOSYSTEM AND A SIGNATURE SCHEME BASED ON DISCRETE LOGARITHMS

TaherElGamal ${ }^{*}$
Hewlett-Packard Labs
1501 Page Mull Rd
Palo Alto CA 94301
ABSTRACT

A new signature scheme is proposed together with an implementation of the Diffie - Hellman key distribution scheme that achieves a public key cryptosystern. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields.

1. INTRODUCTION

In 1976. Diffie and Hellman [3] introduced the concept of public key cryptography. Since then, several attempts have been made to find practical public key systems (see for example $[6,7,9])$ depending on the difliculty of solving some problems. For example, the RSA system [9] depends on the difficulty of factoring large integers. This paper presents systems that rely on the difficulty of computing logarithms over finite fields.

Section 2 shows a way to implement the public key distribution scheme introduced by Diffie and Hellman [3] to encrypt and decrypt messages. The security of this system is equivalent to that of the distribution scheme. Section 3 introduces a new digital signature scheme that depenis on the difliculty of computing discrete logarithms over finite fields. It is not yet proved that breaking the system is equivalent to computing discrete logarithms. Section 4 develops sorne attacks on the signature scheme, none of which seems to break it.

This work was supported by the NSF under contract ECSB3 07741 while the author was at the information systems laboratory. Stanford University.

Section 5 gives some properties of the system. Section 6 concludes and gives some remarks.

2. THE PUBLIC KEY SYSTEM

First, the Diffie - Fiellman Key distribution scheme is reviewed. Suppose that A and B want to share a secret $K_{A B}$ where A has a secret x_{A}, and B has a secret x_{B}. Let p be a large prime and α be a primitive element mod p, both known. A computes $y_{A}=\alpha^{x_{A}} \bmod p$, and sends y_{A}. Similarly B computes $y_{B}=\alpha^{x_{B}} \bmod p$ and sends y_{B}. Then the secret $K_{A B}$ is computed as

$$
\begin{aligned}
K_{A B} & =a^{x_{A} x_{B}} \bmod p \\
& =y_{A}{ }^{x_{B}} \bmod p \\
& =y_{B} x_{A} \bmod p .
\end{aligned}
$$

Hence both A and B are able to compute $K_{A B}$. But for an intruder computing $K_{A B}$ appears to be difficult. Note that it is not yet proved that breaking the systern is equivalent to computing discrete logarithms. For more details refer to [3].

In any of the cryptographic systems that are based on discrete logarithms, p must be chosen such that $p-1$ has at least one large prime factor. If $p-1$ has only small prime factors, then computing discrete logarithms is easy (see [8]).

Now suppose that A wants to send B a message m, where $0 \leq m \leq p-1$. First A chooses a number k uniformly between 0 and $p-1$. Note that k will serve as the secret x_{A} in the key distribution scheme. Then A computes the "key"

$$
\begin{equation*}
K=y_{B}{ }^{k} \bmod p \tag{1}
\end{equation*}
$$

where $y_{B}=a^{x_{B}} \bmod p$ is either in a public fle, or is sent by B. The encrypted message (or ciphertext) is then the pair ($\left.c_{1}, c_{2}\right)$, where

$$
\begin{equation*}
c_{1}=\alpha^{k} \bmod p, \quad c_{2}=K m \bmod p \tag{2}
\end{equation*}
$$

and K is computed in (1).
Note that the size of the ciphertext is double tbe size of of the message. Also note that the multiplication operation in (2) can be replaced by any other invertible operation such as addition mod p.

The decryption operation splits into 2 parts. The first step is recovering K, which is easy for B since $K=\left(a^{k}\right)^{x_{B}}=c_{1}^{x_{B}}$ mod p, and x_{B} is known to B only. The second step is to divide c_{2} by K and recover the message m.

The public flle consists of one entry for each user, namely y_{s} for user i (since a and p are known for all users). It is possible that each user chooses his own α and p, which is preferable
from the security point of view but that will triple the size of the public flle.
It is not advisable to use the same value k for enciphering more than one block of the message, since if k is used more than once, knowledge of one block m_{1} of the message enables an intruder to compute other blocks as follows:
Let

$$
c_{1,1}=\alpha^{k} \bmod p, c_{2,1}=m_{1} K \bmod p
$$

and

$$
c_{1,2}=\alpha^{k} \bmod p, c_{2,2}=m_{2} K \bmod p .
$$

Then $\frac{m_{1}}{m_{2}}=\frac{c_{2.1}}{c_{2,2}}$ mod p. and m_{2} is easily computed if m_{1} is known.
It can be easily seen that breaking the system is equivalent to breaking the Diffie - Hellman distribution scheme. First, if m can be computed from c_{1}, c_{2}, and y, then K can also be computed from y, c_{1}, and c_{2} (which appears like a random number since k and m are unknown). That is equivalent to breaking the distribution scheme. Second, (even if m is known) computing k or x from c_{1}, c_{2}, and y is equivalent to computing discrete logarithms. The reason is that both x and k appear in the exponent in y and c_{1}.

3. A DIGITAL SIGNATURE SCHEME

A new signature scheme is described in this section. The public fle contains the same public keys for encrypting messages as well as verifying signatures.

Let m be a document to be signed, where $0 \leq m \leq p-1$. The public file still consists of the public key $y=a^{z}$ mod p for each user. To sign a document, a user A should be able to use the secret key x_{A} to find a signature for m in such a way that all users can verify the authenticity of the signature using the public ksy y_{A} (together with α and p), and no one can forge a signature without knowing the secret x_{A}.

The signature for m is the pair (r, s) $0 \leq r, s<p-1$. chosen such that the equation

$$
\begin{equation*}
\alpha^{m}=y^{r} r^{z} \bmod p \tag{3}
\end{equation*}
$$

is satisfled.
3.1. The Signing Procedure

The signing procedure consists of the following 3 steps:
A. Choose a random number k, uniformly between 0 and $p-1$, such that $\operatorname{gcd}(k, p-1)=1$.
B. Compute

$$
\begin{equation*}
r=\alpha^{k} \bmod p \tag{4}
\end{equation*}
$$

C. Now (3) can be written as

$$
\begin{equation*}
\alpha^{m}=\alpha^{x r} a^{k s} \bmod p \tag{5}
\end{equation*}
$$

whish can be solved for s using

$$
\begin{equation*}
m=x r+k s \bmod (p-1) . \tag{6}
\end{equation*}
$$

Equation (6) has a solution for s if k is chosen such that $\operatorname{gcd}(k, p-1)=1$.

3.2. The Verification Procedure

Given m, r, and s, it is easy to verify the authenticity of the signature by computing both sides of (3) and checking that they are equal.

Note

As will be shown in section 4, the value of k chosen in step A should never be used more than once. This can be guaranteed, for example, by using as a " k generator" a DES chip used in the counter mode as a stream cipher.

4. SOME ATTACKS ON THE SIGNATURE SCHEME

This section introduces some of the possible attacks on the signature scheme. Some of these attacks are easily shown to be equivalent to computing discrete logarithms over $G F(p)$. It is not yet proved that breaking the signature scheme is equivalent to computing discrete logarithms, or equivalent to breaking the distribution scheme. However, none of the attacks shown in this section appear to break the system. The reader is encouraged to develop new attacks, or find fast algorithms to perform one of the attacks described in this section. The attecks will be divided into two groups. The first group includes some attacks for recovering the secret key x. and in the second group we show some attacks for forging signatures without recovering z.

4.1. Attacks aiming to recover x

4.1.1. Given $\left\{m_{i}: i=1,2, \ldots, l\right\}$ documents, together with the corresponding signatures $\left\{\left(r_{i}, s_{i}\right): i=1,2, \cdots, l\right\}$, an intruder may try to solve l equations of the form (6). Since there are $l+1$ unknowns (since each signature uses a different k), the system of
equations is underdetermined and the number of solutions is large. The reason is that each value for x yields a solution for the k_{i} 's since a system of linear equations with a diagonal matrix of coefficients will result. Since $p-1$ is chosen to have at least one large prime factor q. recovering $x \bmod q$ requires an exponential number of message-signature pairs.

Note

If any k is used twice in the signing, then the system of equations is uniquely determined and x can be recovered. So for the system to be secure, any value of k should never be used twice.
4.1.2. Trying to solve equations of the form (3) is always equivalent to computing discrete logarithms over $G F(\boldsymbol{p})$, since both unknowns x, and k appear in the exponent.
4.1.3. An intruder might try to develop some linear dependencies among the unknowns \{ $\left.k_{i}, i=1,2, \cdots, l\right\}$. This is also equivalent to computing discrete logarithms since if $k_{i}=c k_{j} \bmod (p-1)$, then $r_{i}=r_{j}{ }^{c} \bmod p$, and if c can be computed then computing discrete logarithms is easy.

4.2. Attacks for Forging Signatures

4.2.1. Given a document m, a forger may try to find r, s such that (3) is satisfed. If $r=\alpha^{j} \bmod p$ is fixed for some j chosen at random, then computing s is equivalent to solving a discrete logaritbm problem over $G F(p)$.

If the forger fixes s first then r could be computed from the equation

$$
\begin{equation*}
r^{2} y^{r}=A \bmod p \tag{7}
\end{equation*}
$$

Solving equation (7) for r is not yet, proved to be at least as hard as computing discrete logarithms, but we believe that it is not feasible to solve (7) in polynomial time. The reader is encouraged to find a polynomial time algorithm for solving (7).
4.2.2. It seems possible that (3) can be solved for both r and s simultaneously, but we have not been able to flid an efficient algorithm to do that.
4.2.3. The signature scheme allows the following attack. whereby the intruder. knowing one legitimate signature for one message, can generate other legitimate signatures and messages. This attack does not allow the intruder to sign an arbitrary message and therefore does not break the systern. This property exists in all the existing digital signature schemes and can be avoided by either requiring that m has to be of certain structure, or by applying a
one-way function to the message m before signing it.
Given a signature (r, s) for the message (m), then

$$
\alpha^{m}=y^{r} r^{v} \bmod p
$$

Select integers A, B, and C arbitrarily, such that $(A r-\infty)$ is relatively prime to $p-1$. Set

$$
\begin{gathered}
r^{\prime}=r^{A} a^{B} y^{c} \bmod p \\
s^{\prime}=s r^{\prime} /(A r-C s) \bmod (p-1) \\
\text { and } m^{\prime}=r^{\prime}(A m+B s) /(A r-C s) \bmod (p-1)
\end{gathered}
$$

Then it is claimed that $\left(r^{\prime}, s^{\prime}\right)$ signs the message (m^{\prime}). Calculate

$$
\begin{aligned}
& =\left(y^{r^{\prime} A r-r^{\prime} a r+r^{\prime} 0} r^{A B r \cdot} \alpha^{B a r}\right)^{1 /(A r-a)} \\
& =\left(\left(y^{r} r^{v}\right)^{*^{r}} a^{B-r}\right)^{1 /(t r-a)} \\
& =\alpha^{\left(m r^{*}+B a r\right)}\left(\mu_{r}-a\right) \\
& =a^{m} \quad(\text { all calculations } \bmod p) \text {. }
\end{aligned}
$$

As a special case, setting $A=0$. legitimate signatures can be generated with corresponding messages without ever seeing any signatures:

$$
\begin{aligned}
r^{\prime} & =\alpha^{B} y^{c} \bmod p \\
s^{\prime} & =-r^{\prime} / C \bmod (p-1) \\
m^{\prime} & =-r^{\prime} B / C \bmod (p-1)
\end{aligned}
$$

It can be shown that (r^{\prime}, s^{\prime}) signs (m^{\prime}).

5. PROPERTIES OF OUR SYSTEM AND COMPARISON TO OTHER SIGNATURE SCHEMES AND PUBLIC KEY SYSTEMS

Let m be the number of bits in either p for the discrete logarithm problem, or n for the integer factoring problem. Then the best known algorithm for both computing discrete logarithms and factoring integers (which is the function used in some of the existing systems such as the RSA system [9]) is given by (see [$1,5,10$])

$$
\begin{equation*}
O(\exp \sqrt{\mathrm{c} m \ln m}) \tag{B}
\end{equation*}
$$

where the best estimate for c is $c=0.69$ for factoring integers, (due to Schnorr and Lenstra [10]), as well as for discrete logarithms over GF (p) (see [5]). These estimates imply that we have to use numbers of about the size of the numbers used in the RSA system to obtain the same level of security (assuming the current value for c for both the discrete logarithms problem and the integer factorization problem). So, the size of the public file is larger than that for the RSA system. (For the RSA system, each user has one entry n as his public key together with the encryption key in the public flle.)

5.1. Properties of the public key system

As shown above our system has some differences with the other known systems. First, due to the randomization in the enciphering operation, the cipher text for a given message m is not repeated, i.e. if we encipher the same message twice we will not get the same cipher text $\left\{c_{1}, c_{2}\right\}$. This prevents attacks like a probable text attack where if the intruder suspects that the plain text is, for example, m, then he tries to encipher m and finds out if it was really m. This attack, and similar ones, will not succeed since the original sender chose a random number k for enciphering, and different values of k will yield different values of $\left\{c_{1}, c_{3}\right\}$. Also, due to the structure of our system, there is no obvious relation between the enciphering of m_{1}, m_{2}, and $m_{1} m_{2}$, or any other simple function of m_{1}, and m_{2}. This is not the case for the known systems, such as the RSA system.

Suppose that p is of about the same size as that required for n in the case of the RSA system. Then the size of the cipher text is double the size of the corresponding RSA cipher text.

For the enciphering operation two exponentiations are required. That is equivalent to about $2 \log p$ multiplications in $G F(p)$. For the deciphering operation only one exponentiation (plus one division) is needed.

5.2. Properties of the signature scheme

For the signature scheme using the above arguments for the sizes of the numbers in our system and the RSA system, the signature is double the size of the document. Then, the size of the signature is of the same size as that needed for the RSA scheme, and half the size of the signature for the new signature scheme that depends on quadratic forms published by Ong and Schnorr[8], and also Ong, Schnorr, and Shamir[7] (since both systems are based on the integer factoring problem). The Ong-Schnorr-Shamir system has been broken by Pollard and new variations are being suggested. Thus it is not clear at the present time whether a secure system based on modular equations can be found and hence no further remarks will be made regarding these schemes.

Note that, since the number of signatures is p^{2} while the number of documents is only p. that each document m has a lot of signatures, but any signature signs only one document.

For the signing procedure, one exponentiation (plus a few multiplications) is needed. To verify a signature, it seems that three exponentiations are needed, but it was pointed to the author by A. Shamir that only 1.875 exponentiations are needed. This is done by representing
the three exponents m, r, s in their binary expansion. At each step square the number $\alpha^{-1} y r$ and divide by the necessary factor to account for the different expansions of m, T, and s. The different multiples of α^{-1}, ψ, and τ can be stored in a table consisting of eight entries. We expect that 0.875 of the time a multiplication is needed. That accounts for the 1.875 exponentiations needed.

6. CONCLUSIONS AND REMARKS

The paper described a public key cryptosystem and a signature scheme based on the difficulty of computing discrete logarithms over finite fields. The systems are only described in $G F(p)$. The public key system can be easily extended to any $G F\left(\boldsymbol{p}^{m}\right)$, but due to recent progress in computing discrete logaritbms over $G F\left(\mathcal{p}^{m}\right)$, where m is large (see [2,5]), it is advisable to use $G F(p)$ instead since it seems that it is harder to compute logarithms over $G F(p)$ than over $G F\left(q^{m}\right)$ for large m if p and q^{m} are of the same size. The subexponential time algorithm has been extended to $G F\left(p^{2}\right)$ [4] and it appears that it can be extended to all Anite flelds. Hence, it seems that it is better to use GF (p) for implementing any cryptographic system. The estimates for the running time of computing discrete logarithms and factoring integers are the best known so far. These estimates imply that the public file size is larger in this scheme than in the RSA scheme, but the difference is at most a factor of two due to the structure of both schemes. Also the size of the cipher text is double that of the RSA system.

ACKNOWLEDGEMENT

The author would like to thank a referee for including the attack described in section 4.2.3.

REFERENCES

[1] L. Adleman, A Subexponential Algorithm for the Discrete Logarithm Problem with Applications to Cryptography, Proc. 20th IEEE Foundations of Computer Science Symposium (1979), 55-60.
[2] D. Coppersmith, Fast Evaluation of Logarithms in Fields of Characteristic two. IEEE Transactions on Information Theory IT-30 (1984), 587-594.
[3] W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory, IT-22 (1976), 472-492.
[4] T. ElGamal. A Subexponential-Time Algorithm for Computing Discrete Logarithms over $G F\left(p^{2}\right)$. submitted to IEEE Transactions on Information Theory.
[5] A. Odlyzko, Discrete Logarithms in Finite Fields and Their Cryptographic Significance, to appear in Proceedings of Eurocrypt '84.
[6] H. Ong and C. Schnorr, Signatures Through Approximate Representations by Quadratic Forms, to be published.
[7] H. Ong, C. Schnorr, end A. Shamir, An efficient Signature Scheme Based on Quadratic Forms, pp 208-216 in Proceedings of 16th ACM Symposium on Theoretical Computer Science, 1984.
[8] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over $G F(p)$ and its cryptographic significance, IEEE Transactions on Information Theory It-24 (1978). 106-110.
[9] R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and Public Key Cryptosystems, Communications of the ACM, Feb 1978, volume 21, number 2, 120126.
[10] C. Schnorr and H. W. Lenstra Jr., A Monte Carlo Factoring Algorithm with Finite Storage. to appear in Mathematics of Computation.

