
A PUBLIC KEY CRYPTOSYSTEM AND A SIGNATURE 
SCHEME BASED ON DISCRETE LOGARITHMS 

TaherElGamal' 

Hewlett-Packard Labs 
1501 Page Mill Rd 
Palo Alto CA 94301 

A new signature scheme is proposed together with an implementation of the Diffie - Eell- 

man key distribution scheme that achieves a public key cryptosystem. The security of both 

systems relies on the d i fhul ty  of computing discrete logarithms over finite flelds. 

1. 1NTRODUCTION 

In 1976. Diffie and Hellman [3] introduced the concept of public key cryptography. Since 

then, several attempts have been made to flnd practical public key systems (see for example 

[8.7.9]) depending on the  dwiculty of solving some problems. For example, the RSA system 

[9] depends on the difficulty of factoring large integers. This paper presents systems that 

rely on the difficulty of computing logarithms over finite flelds. 

Section 2 shows a r a y  to implement the public key distribution scheme introduced by 

Diffie and Hellman [3] to encrypt and decrypt messages. The security of this system is 

equivalent to that of the  distribution scheme. Section 3 introduces a new digital signature 

scheme tha t  depends on the difficulty of computing discrete logarithms over finite flelds. It is 

not yet proved that breaking the system is equivalent to  computing discrete logarithms. Sec- 

tion 4 develops s o m e  attacks on the signature scheme, none of which seems to break it. 
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Section 5 gives some properties of the system. Section 6 concludes and gives some remarks. 

2. THE PUBLIC KEY SYSTEM 

First. the Diffie - Hellman Key distribution scheme is reviewed. Suppose that A and B 

want to share a secret  Km where A has a secret 2". and B has a secret ZB. Let p be a large 

prime and a be a primitive element modp ,  both known. A computes yA = a" mod p,  and 

sends YA. Similarly B computes y~ = a=* n o d  p and sends yB. Then the secret Km is com- 

puted as 

KAB = a ~ A ~ B  mud p 
= yAz* m o d p  
= v ~ = ~  mod p . 

Hence both A and B are able to compute Ka. But for an intruder computing Ka appears to 

be difficult. Note tha t  i t  is not yet proved that breaking the system is equivalent to computing 

discrete logarithms. For more details refer to [3]. 

In any of the cryptographic systems that are based on discrete logarithms, p must be 

chosen such that p - 1 has at least one large prime factor. If p - 1 has only small prime fac- 

tors, then computing discrete logarithms is easy (see [a]). 

Now suppose that A rants to send B a message m.  where 0 d rn p - 1. First A chooses 

a number k uniformly between 0 and p - 1. Note that k wiU serve as the secret ZA in the key 

distribution scheme. Then A computes the "key" 

K = y~~ m o d p  , (1) 
where 

ciphertext) is then the pair ( c c ), where 

= as# nrod p is either in a public file, o r  is sent by B. The encrypted message (or 

c , = u *  m o d p ,  c g  = K m  m o d p .  
and K is computed in (1). 

Note that the size of the ciphertext is double the size of of the message. Also note that 

the multiplication operation in (2) can be replaced by any other invertible operation such as 

addition mod p. 

"he decryption operation splits into 2 parts. The fist  step is recovering K. which is easy 

for B since K = ( a* )'B = c y *  mod p .  and rB is k n o w n  t o  B only. The second step is to divide 

c g  by K and recover the message m .  

The public file consists of ane entry for each user. namely vt for user i (since a and p are 

known for all users). I t  is possible that each user chooses his own a and p ,  which is preferable 
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from the security point of view but that  will triple the size of the public Ale. 

I t  is not advisable to use the same value k for enciphering more than one block of the  

message, since if k is used more than once, knowledge of one block m, of the message 

enables an intruder t o  compute other blocks as follows: 

Let 

c l , l  = ak m o d p ,  c 2 , ]  = m ,  K m o d p ,  
and 

c , . ~ = [ x *  m o d p .  ~ 2 . 2 = m 2 K  m o d p .  

Then 2= % mad p .  and m2 is easily computed if rn is known. 
m2 c 2 . 2  

I t  can be easily seen tha t  breaking the system is equivalent to breaking the Diflte - Hell- 

man distribution scheme. First. if m can be computed from c,. c2. and y. then K can also be 

computed from y. c,. and c 2  (which appears like a random number since k and m are unk- 

nown). That is equivalent t o  breaking the distribution scheme. Second. (even if m is known) 

computing k or z from clr cz. and y is equivalent to computing discrete logarithms. The rea- 

son is that both r and k appear in the exponent in y and cl. 

3. A DIGITAL SIGNATLJRE SCHEME 

A new signature scheme is described in this section. The public dle contains the same 

public keys for encrypting messages as well as verifying signatures. 

Let m be a document t o  be signed, where 0 s m s p - 1. The public me still consists of 

the public key y = a' mod p for each user. To sign a document, a user A should be able to  

use the secret key tA to flnd a signature for m in such a way that all users can verify the  

authenticity of the signature using the  public key YA (together with a and p ) .  and no one can 

forge a signature without knowing the  secret 2,. 

The signature for m is the  pair (r , s). 0 4 r , s < p - I. chosen such that the equation 

a" = y' T' mod p 
is satisfled. 

3.1. The Signing Procedure 

The signing procedure consists of the following 3 steps: 

A. Choose a random number k. uniformly between 0 and p - 1, such that 

gcd (k . p  - 1) = 1. 

(3) 
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B. Compute 

t = ak mod p . 
C. Now (3) can be written a s  

am = as r s m o d p  .. 
whish can be solved for s using 

m = z r + k s  m o d ( p - 1 ) .  
Equation (6) has  a solution for s if k is chosen such that gcd ( k , p - 1 ) = 1. 

3.2. The Veriflcation Procedure 

Given m , T , and s, i t  is easy t o  verify the authenticity of the  signature by computing 

both sides of (3) and checking t h a t  they  a re  equal. 

Note 

As will be  shown in section 4. the value of k chosen in step A should never be used more  

than once. This c a n  be guaranteed, for  example. by using as a "k generator" a DES chip used 

in the counter  mode as a stream cipher. 

4. SOME ATTACXS ON THE SIGNATURE SCHEME 

This section introduces some of t h e  possible attacks on the signature scheme. Some of 

these at tacks are easily shown t o  be equivalent t o  computing discrete logarithms over GF(p) .  

It is not  yet  proved that breaking t h e  signature scheme is equivalent t o  computing discrete 

logarithms. or  equivalent to  breaking t h e  distribution scheme. However, none of t h e  at tacks 

shown in this section appear  t o  break  the  system. The reader is encouraged t o  develop new 

attacks, or And fast algorithms t o  perform one of the attacks described in this section. The 

at tacks r i l l  be  divided into two groups. The f is t  group includes some attacks for recovering 

the  secre t  key z. a n d  in  the  second group we show some attacks for forging signatures 

without recovering z .  

4.1. Attacks aiming t o  recover z 

4.1.1. Given I m, : i = 1 , 2 ,  . . . , 1 { documents. together with the corresponding signa- 

tures  

Since there  are I + 1 unknowns (since each signature uses a different k). the system of 

(ri , S,) : i = I , 2 , . , l I ,  a n  intruder may try to solve l equations of the form (6 ) .  
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equations is underdetermined and the number of solutions is large. The reason is t h a t  each  

value for 1: yields a solution for  the 4 ' s  since a system of linear equations with a diagonal 

matrix of coefficients ri l l  result. Since p - 1 is chosen to have a t  least one large prime factor  

q.  recovering z mod q requires a n  exponential number of message-signature pairs. 

Note 

If any k is used twice in t h e  signing, then the system of equations is uniquely determined 

and 1: can be  recovered. So for the system to be secure, any value of k should never be used 

twice. 

4.1.2. Trying to  solve equations of the form (3) is always equivalent to  computing discrete 

logarithms over CF(p) .  since both unknowns z , and k appear in the exponent. 

4.1.3. A n  int ruder  might t ry  t o  develop some linear dependencies among the  unknowns 1 
4 , i = 1. 2 ,  . . 8 , L j. This is also equivalent t o  computing discrete logarithms since if 

kt = c k~ mod (p - 1). then r, = rjc mod p .  and if c can be computed then computing 

discrete logarithms is easy. 

4.2. Attacks for Forging Signatures 

4.2.1. Given a document  m. a forger may t r y  to  find r , s such that  (3) is satisfied. If 

T = aJ mod p is Axed for  some j chosen a t  random, then computing s is  equivalent t o  solving 

a discrete logarithm problem over CF@). 

If the  forger !hes  s first then  r could be computed from the equation 

r' y' = A mod p . (7) 
solving equation (7) for r is not  yet. proved t o  be at least as hard as computing discrete  loga- 

rithms, but we believe that i t  is not feasible to  solve (7) in polynomial time. The r e a d e r  i s  

encouraged to  find a polynomial time algorithm for solving (7). 

4.2.2. I t  seems possible t h a t  (3) can be solved for both T and s simultaneously. bu t  we 

have not been able t o  Bnd an efficient algorithm to do that. 

4.2.3. The signature scheme allows the  following attack, whereby the intruder, knowing 

one legitimate signature for one message, can generate other legitimate signatures and mes- 

sages. This a t tack does not  allow the  intruder to  sign an arbitrary message and therefore  

does not break the system. This property exists in all the existing digital signature schemes 

and can be avoided by ei ther  requiring tha t  m has to be of certain structure, or by applying a 
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one-way function to the message m before signing it. 

Given a signature ( t , s )  for the message (m). then 

am = yr T' mod p .  
Select integers A , 8. and C arbitrarily, such that (Ar  - 0) is relatively prime t o p  - 1. Set 

r '  = r A  aB yc mod p .  

and m' = r ' ( h  + Bs)/(Ar - [=s) mod (p - 1). 
S' = ~ r ' / ( A r  - CS) mod (p - 1). 

Then it is claimed tha t  ( r ' , s ' )  signs the message (m'). Calculate 

yr' -' = tlr'(tA aB y C ) m ' / ( k  - Q)  

- - (yr'Av -r'D + r ' 0  rkr' a 8 h ' ) I / ( A r  - a) 
=((vr +)k* a h r ' ) 1 / ( , 4 r  -a) 
=&(w **w* - 0)  

=a"' (dl calculations mod p). 
As a special case, setting A = 0. legitimate signatures can be generated with corresponding 

messages without ever seeing any signatures: 

r*  = a B  yc mod p .  

m ' =  - r ' B / C  mod (p - 1). 
s ' = - T ' / C  mod@ -1). 

I t  can be shown tha t  ( r ' . ~ ' )  signs (m'). 

5. PROPERTIES O F  O U R  SYSTEM AND COMPARISON TO OTHER SIGNATURE SCHEMES AND PUB- 

LJC KEY SYSTEMS 

Let m be the  number of bits in either p for the discrete logarithm problem. or TI for the 

integer factoring problem. Then the best known algorithm for both computing discrete loga- 

rithms and factoring integers (which is the function used in some of the existing systems such 

a the RSA system [Q]) is given by (see [ 1.5.101) 

O(exp-Jc rn  h r n  1 ,  (8 )  
where the  best estimate for c is c = 0.89 for factoring integers, (due to Schnorr and Lenstra 

[lo]). as well as for discrete logarithms over GF@) (see [ 5 ] ) .  These estimates imply that we 

have to use numbers of about the size of the numbers used in the RSA system to obtain the 

same level of security (assuming the current value for c for both the discrete logarithms 

problem and the  integer factorization problem). So, the size of the public file is larger than 

that for the RSA system. (For the RSA system. each user has one entry n as his public key 

together with the  encryption key in the public file.) 
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5.1. Properties of the public key system 

As shown above our system has some differences with the other known systems. First, 

due to the randomization in the enciphering operation, the cipher text for a given message m 

is not repeated, i.e. if we encipher the same message twice we will not get the same cipher 

text [ C  1 , cpj. This prevents attacks like a probable text attack where if the intruder suspects 

that the plain text is, for example, rn. then he tries to encipher rn and Ands out if it was 

really m. This attack. and similar ones, will not succeed since the original sender chose a 

random number k for enciphering, and different values of k will yield diflerent values of 

Ic, , ce{. Also. due to the structure of our system, there is no obvious relation between the 

enciphering of m,. m2. and m, m2, or any other simple function of m, and mz. This  is not the 

case for the known systems, such as the RSA system. 

Suppose that p is of about the same size as that required for n in the case of the RSA 

system. Then the size of the  cipher text is double the size of the corresponding RSA cipher 

text. 

For the enciphering operation two exponentiations are required. That is equivalent t o  

about 2 log p multiplications in GF(p).  For the deciphering operation only one exponentia- 

tion (plus one division) is needed. 

5.2. Properties of the signature scheme 

For the signature scheme using the above arguments for the sizes of the numbers in our 

system and the RSA system, the signature is double the size of the document. Then. the size 

of the signature is of the  same size as that needed for the RSA scheme, and half the size of the 

signature for the new signature scheme that depends on quadratic forms published by Ong 

and Schnorr[B]. and also Ong, Schnorr. and Shamir[7] (since both systems are based on the 

integer factoring problem). The Ong-Schnorr-Shamir system has been broken by Pollard and 

new variations are being suggested. Thus it is not clear at the present time whether a secure 

system based on modular equations can be found and hence no further remarks will be made 

regarding these schemes. 

Note that, since the  number of signatures is p 2  while the number of documents is on lyp ,  

that each document m has a lot of signatures, but any signature signs only one document. 

For the signing procedure. one exponentiation (plus a few multiplications) is needed. To 
verify a signature. it seems that three exponentiations are needed, but it was pointed to  the 

author by A. Shamir t ha t  only 1.675 exponentiations are needed. This is done by representing 
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the three exponents m , r , s in their binary expansion. A t  each step square the number 

u- 'yr and divide by the necessary factor to  account for the different expansions of rn, f , and 

s. The different multiples of a- , y , and T can be stored in a table consisting of eight 

entries. We expect tha t  0.875 of the time a multiplication is needed. That accounts for the 

1.875 exponentiations needed. 

6. CONCLUSIONS AND REMARKS 

The paper described a public key cryptosystem and a signature scheme based on the 

difficulty of computing discrete logarithms over flnite flelds. The systems are only described 

in G F f p ) .  The public key system can be easily extended to any GF(pm),  but due to recent 

progress in computing discrete logarithms over GF(pm),  where m is large (see [2 .5 ] ) ,  it is 

advisable to  use G F ( p )  instead since it seems that it is harder to compute logarithms over 

GF(p)  than over CF(gm) for large rn if p and q m  are of the same size. The subexponential 

time algorithm has been extended to GF($) [4] and it appears that it can be extended to all 

finite fields. Hence. it seems tha t  it is better to use GF(p)  for implementing any crypto- 

graphic system. The estimates for the running time of computing discrete logarithms and 

factoring integers are the best known so fa r .  These estimates imply that the public fle size is 

larger in this scheme than in the RSA scheme, but the difference is a t  most a factor of two 

due to  the structure of both schemes. Also the size of the cipher text is double that of the 

RSA system. 
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