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Abstract

In this paper, we present an implementation scheme of an RTGS1 on Quorum using
the Solidity language. It is heavily inspired by the Schnorr signature protocol to verify the
identity of the participants. We have implemented a distributed ledger solution for Delivery
vs Payment that promises to offer increased efficiency and resilience. Our architecture mimics
current market structure. For such needs, we added an extra layer of security that allows
our solution to comply with the requirements of the regulator while enabling competitive
actors to collaborate using the shared registry. It also leaves room for regulation, while still
running in a decentralised way with coordinating agents.

We use non-interactive zero-knowledge algorithms, which are cryptographic protocols
with numerous applications in the fields of cryptocurrencies. They allow an agent to verify
that another agent holds a specific information, while the latter never discloses this information.

For the sake of our experimentations, we had to use very small integers in our protocols.
These integers are too small to comply with current security standards in finance, although
the architectural principles can be easily transposed with better performing protocols. We
present suggestions to improve our proof of concept and our architecture in the last part.

1 Introduction

1.1 Disclaimer

The present document reflects the research on blockains carried with the support of the
Lab Banque de France , in application of the Banque de France policy to support the
experimentation of innovative solutions based on new technologies, during summer 2017 by the
team of the three authors.

It is not a position statement, nor an official approval or an endorsement by the Banque de
France of any technology or protocol. The possible application for a Delivery versus Payment
system, particularly for a mission critical system such as the RTGS, does not reflect the vision
of the Banque de France regarding the future of such systems.

The names of the agents in the proposed scheme were chosen to facilitate the understanding
of the reader, and do not reflect the vision of the Banque de France. These names only
represent a theoretical representation and do not refer to any existing entity or person.

1.2 Background

The significant growth of the number of financial transactions and the imperious need to
secure them involves a continuous rise of the cost of market infrastructures. Moreover, the

1Real Time Gross Settlement

1

mailto:espel.thomas@gmail.com
mailto:robinguillaume.pro@gmail.com
mailto:laurentkatz01@gmail.com


historical fragmentation infrastructures where each actor uses to maintain its separate database
has resulted in duplicated IT systems and costly reconciliation processes between them. In this
context, several public and private financial institutions are exploring the opportunity to leverage
blockchain technologies to build a more streamlined, efficient and robust common backbone.

On the one hand, current regulations in most countries requires an institution to monitor
the system. It needs easy access to all transactions. However, in most blockchain systems
all the information is made public to ensure the security of the ledger. This is a real issue
regarding business secrecy and confidentiality since two competitors can have access to each
other’s transactions.

Finally, the reliability and the trust of the actors in blockchain systems should be based on the
protocol itself, instead of relying on a monitoring institution as the current financial system works
today. Hiding some information from the rest of the network must not undermine confidence in
the system.

1.3 Security and secrecy

In this paper, we propose an architecture for an RTGS system which both complies with
current regulations and protects business secrecy.

We aim at protecting the value of all balances and transaction amounts. The proof we created
is inspired by the structure of the Schnorr signature protocol.

1.4 Zero Knowledge Proof

Zero Knowledge Proofs are cryptographic methods by which one party can prove another
one it holds a secret information, without revealing any clue on the latter. Those methods are
particularly interesting in the field of secured financial networks because they are resistant to a
man in the middle attack. The parties are called "prover" and "verifier". Guillou and Quisquater
proposed an interesting way to picture how Zero Knowledge Proofs work in their work [1].

Any Zero Knowledge Proof must satisfy the properties given below.

1. Completeness: If the protocol is followed with the appropriate inputs, the verifier always
accepts the proof.

2. Soundness: There is only a low probability that a malicious prover can trick an "honest"
verifier.

3. Zero-Knowledge: The verifier can not learn any information about the secret because of
the proof, as long as the prover follows the protocol.

Any protocol which satisfies the first two properties is a proof of knowledge.
A class of protocols, called Σ-protocols, allow us to obtain Honest Verifier Zero Knowledge

(HVZK). They are of the following 3-move form.

1. The prover sends a message h.

2. The verifier sends the prover a random e.

3. The prover answers the verifier according to e, and the verifier can either accept or reject
the proof subsequently.
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Σ-protocols allow us to create Honest Verifier Zero Knowledge since we suppose the verifier will
not cheat when sending e to try to obtain information on the secret of the prover. "Pure" Zero
Knowledge Proof are hard to find since many rely on the generation of random numbers.

Fiat and Shamir proposed in 1986 a technique to create Non-Interactive Zero Knowledge
Proof (NIZK) based on Interactive Zero Knowledge Proof like Σ-protocols. We can use the
Fiat-Shamir Heuristic to create a digital signature. This method relies on generating the
random e by a random oracle. The random Oracle model relies on the existence of perfectly
random oracles. Since it is not possible to create a perfectly random oracle with modern
computers, we can use hash functions assuming they can perform as good as a random oracle.
This assumption cannot be formally proved. However, the complexity of modern hashes allows
us to make this heuristic assumption [2, 3].

2 Theoretical considerations

2.1 Implementing standard protocols

To implement an adequate proof, we experimented two protocols, which inspired us for our
proposal.

2.1.1 Schnorr Protocol

The Schnorr protocol is one of the most famous Σ-protocols. It relied on the discrete logarithm
problem and was introduced by Schnorr in 1991 [4].

2.1.2 Guillou-Quisquater Protocol

The Guillou-Quisquater Protocol was first introduced in 1988 by Louis Guillou and Jean-Jaques
Quisquater [5]. It is a practical implementation of the scheme of Fiat-Shamir.

We used this protocol to implement our first Non-Interactive Zero-Knowledge utilising the
scheme of Fiat-Shamir.

2.1.3 1-bit Schnorr Signature

The 1-bit Schnorr signature is a variant of the regular Schnorr protocol. The sole difference is
that the choice of the random sent by the verifier is restricted to one byte. This version of the
Schnorr protocol can be proven perfect Zero-Knowledge, but it offers inferior security since the
probability for a corrupted prover to guess the random number is 1

2 .
It offers several advantages, as it is as easy to implement as the regular Schnorr protocol and

can be easily converted to NIZK using the scheme of Fiat-Shamir. By repeating several times
the proof, we can improve the security exponentially. However, repeating the proof leads to the
same problem as in the conventional Schnorr protocol, which is that it can only be proven HVZK
[6].

2.2 Current implementation

We were inspired by the Schnorr signature and implemented the following protocol. The main
idea is to perform two simultaneous non-interactive Schnorr signatures using the same random
given by the same Oracle. Because the verifier must be considered honest, we have to add an
extra layer of security.
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A non-interactive scheme of the Schnorr Protocol First of all, here is the "standard"
Schnorr protocol we decided to work with, inspired by the one described by Cramer, Ronald
and Damgård [7]. Let (p, q) ∈ N2 two prime integers where q divides p − 1. g = pq. Let P
be the prover and V the verifier. P has chosen a secret s ∈ Z∗q at random and h = gs mod p is
public. Using the Fiat-Shamir scheme, we introduce O the oracle.

1. P chooses a random r ∈ Z∗q and calculates k = gr mod p.

2. O chooses a challenge e ∈ Z2t at random. 2t < q.

3. P sends its proof Π = r − es mod q to V . V performs the following calculation : k′ =
gΠhe mod p. Iff k′ = k′ then V accepts the proof.

This protocol has been proven complete, sound and zero-knowledge in the random oracle
model [8].

Our variant We decided to run two signature checks in parallel, with a shared random chosen
by a single oracle. The generation of the random e requires three elements to improve security.
We called these elements the three keys to the signature.

1. The first key is a random number generated by the oracle itself.

2. The second key is the time-stamp which ensures a unique seed to generate a random
number.

3. The third key is the exact amount of the transaction.

The first key allows our protocol to remain in the random oracle model. The second key
prevents agents from trying to re-use e later on. The third key is only held by the agents
involved in the transaction and by the Market Authority(described later). Altogether, it makes
it very hard for an enemy to correctly guess e.

Since our variant is essentially two simultaneous Schnorr signature protocols with a shared
oracle, our proof verifies the soundness and completeness properties of ZKP. If the oracle’s
first key is generated in the random oracle model, our proposal is also zero-knowledge in the
Fiat-Shamir scheme.

We will only assume, due to the fact that we program customers to perform a restricted set
of actions, that our proposal is HVZK.

3 Implementation and architectural justification

3.1 Architectural choice

3.1.1 Ethereum Quorum

For our prototype we had the opportunity to choose from a large variety of blockchains
protocols, but we settled for Ethereum Quorum (or Quorum). Quorum is a second generation
blockchain protocol with permissions built from a fork of the original Ethereum source code. It
uses proof of work for mining new blocks in the chain, as well as an advanced voting system
which can force a specific signature to validate an action and commit it into the ledger. The
features that have driven our decision are the ones that follow.

• Native smart contract

• The Ethereum virtual machine

• Constellation private channels between nodes
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Another important reason for choosing Quorum is that it is built by JPMorgan Chase with
the support of Microsoft. By choosing Quorum, we can not only do our implementation of a Zero
Knowledge Proof for transactions but also study the maturity of a solution built by major actors
of the blockchain ecosystem. Finally, Quorum uses the GNU Lesser General Public License v3.0,
which enables us to work freely and fork the original protocol for our prototype.

3.1.2 Smart contracts

Smart contracts are a feature that was created to achieve greater Turing completeness and
create value chain ecologies on networks where the chain is deployed. The use of smart contracts
in our prototype is simple and enables us to do all the needed operations on the chain and not
in a tied program.

By themselves, smart contracts are code instructions stored in the chain, and that can be
called and executed on the Ethereum Virtual Machine. They can deploy an extensive range of
features. An example is the ability to deploy watchers on the blockchain network. This way a
regulatory authority can build a specific blockchain tool and have it deployed by private partners.
This way the regulatory authority can still wholly monitor the transactions transiting within its
tool as well as having the infrastructural cost of such a tool paid by the private sector.

3.1.3 Ethereum Virtual Machine

The Ethereum Virtual Machine or EVM is a distributed virtual machine that focuses on
providing a safe and sound runtime environment where the smart contracts can be executed.
For our model, the permissioned EVM2 of Quorum enables us to execute smart contracts in an
environment, we control, or at the least, we can keep an eye on.

3.1.4 Private channels

Using cryptography and segmentation, Quorum allows us to hide critical information to secure
our proof system [9]. The private channels have been a fundamental element in the realisation
of the prototype, and it would have been less secure without the possibilities they open.

3.2 Programming language used and library

3.2.1 Solidity

Solidity is a high-level language native to Ethereum; it is contract oriented. It aims specifically
to be executed on the EVM.

3.2.2 JavaScript

JavaScript is a dynamic object-oriented interpreted language. We used it for most of the off
chain development.

3.2.3 Keccak-256

Solidity uses Keccak-256 [10] hash function. It does not follow the FIPS-202 [11] because it
has been finalized in August 2015, the same month of the first release of Solidity programming
language.

2Ethereum Virtual Machine
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4 Our implementation on Quorum

Our Proof system

The tokens which define the balance of each client are defined into a single smart-contract
named Bank. It includes all the functions required to manage the zero-knowledge proof system
and is designed to simplify exchanges between MarketAuthority and Client smart-contracts.
This paper describes these functions and is inspired by the work of Christian Ludkvist [12]. The
blockchain records the output of these functions as logs which can be later processed to ensure
the security.

4.1 Constellation and Quorum

Quorum Quorum is a fork of the Ethereum open-source project to provide features which
allow to make financial applications and taking advantages of Ethereum smart-contracts and
blockchain principles. It has been made by J.P. Morgan Chase & Co., a U.S. banking and
financial services holding company.

Constellation Constellation is a network of nodes designed to ensure the security of exchanged
information. It implements two components named Transaction Manager and Enclave. Transaction
Manager manages transaction privacy and the Enclave leverages cryptographic techniques for
transaction authenticity, participant authentication, and historical data preservation.

Once these two technologies are gathered, they provide a permissioned implementation of
Ethereum that supports transaction and contract privacy. In this paper, we used Quorum
features to ensure the privacy of critical transactions which secures our proof system.

4.2 Algorithm Proposal

Goal In this section, we expose our proposal to implement a secured proof system which takes
advantage of Quorum features to ensure the privacy of critical transactions.

First, we will define several algorithms and principles to implement our proof system in a
RTGS3.

4.2.1 Requirements

1. MarketAuthority is an Ethereum smart-contract,

2. Client is an Ethereum smart-contract,

3. client is an internal data member representation of a client in a given smart-contract,

4. Bank is an Ethereum smart-contract,

5. Oracle is an Ethereum smart-contract,

4.2.2 Market Authority

Goal MarketAuthority is a smart-contract designed to manage the entrance of new service’s
customers in the market. It will compute and store unknown parameters to run our proof system.

3Real Time Gross Settlement System
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Market Authority A MarketAuthority is composed of a client list Clients, a list of secret
numbers Secrets and two proof system parameters, P and Q.

Entrance To manage entrance, the MarketAuthority will compute and store two specific
numbers based on P and Q. The first number is named Proof and the second one is named
V erifier.

Client definition A client is composed of three properties. First, a Secret number which
will be used to compute a proof for a transaction. Then, Proof and V erifier computed by the
MarketAuthority.

Adding a client To add a client in the market; we define the following algorithm.

Algorithm 1: AddClient
Data:
ClientAddress, which contains the Ethereum address of the new client.
Balance, which contains the initial balance of the new client.
Result: A new client added in the client list Clients
begin

if ClientAddress not in Clients then
index←− randomInt(0, NumberOfSecrets)
hashBalance←−sha3(Balance)
if index < numberOfSecrets then

Clients(ClientAddress).Secret←− Secrets(index)
Clients(ClientAddress).P roof ←− PQ

Clients(ClientAddress).V erifier ←−
Clients(ClientAddress).P roofClients(ClientAddress).Secret

delete (Secrets(index))
numberOfSecrets←− NumberOfSecrets− 1

P,Q Let (P,Q) ∈ N2 two prime integers where Q divides P − 1. Client Proof = PQ

Clients It is a map using ClientAddress as a key and storing a structure which contains three
member variables Secret, Proof and V erifier.

NumberOfSecrets It is the size of the network. It describes how many secret numbers are
already computed in the MarketAuthority which will finally be the maximum number of
clients.

Secrets It is an array of secret numbers known only by the Market Authority.

delete Removes a value in a given array at a specific index.

randomInt Let randomInt be a sampling function from the uniform distribution of support
|[a, b]|.

sha3 Computes the Ethereum-SHA-3 (Keccak-256) hash of the arguments.
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4.2.3 Bank

Goal Bank is a smart-contract designed to register in the public blockchain all the transactions
between two service’s customers. To keep the privacy of the transactions amounts and the balance
of each client, it contains tokens instead of the real values.

Bank A Bank is composed by a client list Clients, to keep track of all the Clients in the
market. It will perform the zero-knowledge verification on all the transactions before updating
the balances.

Entrance To manage the entrance in the Bank’s client list Clients, the MarketAuthority
will request to add a new client.

Client A client is composed of seven properties. First, a token, hashBalance, representing
the balance before the transaction. Another token, hashBalanceAfter, representing the balance
after a given transaction. Two proof numbers to perform zero-knowledge verification, zkV erifier
and zkProof . An array of proof numbers proof and its size proofSize. Finally, a proof token
proofToken.

Adding a client To add a new client we define the following algorithm.

Algorithm 2: AddClient
Data:
ClientAddress, contains the Ethereum address of the service’s customer.
Proof , contains the proof number computed by MarketAuthority.
V erifier, contains the verifier number computed by MarketAuthority.
HashBalance, contains the initial hashed balance generated by MarketAuthority.
Result: A new client added in the client list Clients
begin

if ClientAddress not in Clients then
Clients(ClientAddress).hashBalance←− HashBalance
Clients(ClientAddress).hashBalanceAfter ←− HashBalance
Clients(ClientAddress).zkProof ←− Proof
Clients(ClientAddress).zkV erifier ←− V erifier

Clients It is a map using ClientAddress as a key and storing structures of which everyone
describes a client.

Adding a proof Each Client has to provide an array containing his proof numbers to prove
that the current transaction has been requested by himself. The Bank will verify if every Client
taking part in the transaction can prove his identity using the proof system.

Computing a new balance We multiply the current hashBalance with the first proof
number, and we apply the sha3 function to it. We obtain a new token which will be used
to update the balance once the transaction has been verified.

The following algorithm describes how the proof numbers and the proof token of each client
are stored.
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Algorithm 3: AddProof
Data:
ClientAddress, contains the Ethereum address of the service’s customer.
Proof , contains an array of computed proof numbers given by a Client.
ProofSize, contains the number of proof numbers in Proof .
ProofToken, contains a boolean which indicate if it is a proof token or not.
Result: Add a new proof to a given client.
begin

if ClientAddress in Clients then
if ProofToken is false then

Clients(ClientAddress).P roof ←− Proof
Clients(ClientAddress).P roofSize←− ProofSize
Clients(ClientAddress).hashBalanceAfter ←−
sha3(Clients(ClientAddress).hashBalance ∗ Proof(0))

else
Clients(ClientAddress).P roofToken←− Proof

Clients It is a map using ClientAddress as a key and storing a structure which describes a
client.

sha3 Computes the Ethereum-SHA-3 (Keccak-256) hash of the arguments.

Verifying a transaction To perform the verification of a transaction, we use a protocol
inspired by a non-interactive version of the Schnorr protocol. We use a "three key system" to
unlock the right to perform a transaction. Each key is held by a group of agents and allows to
generate a unique random.

• Current time stamp The timestamp of the transaction is accessible to every agent of
the network. The use of the timestamp prevents the random number generated to be used
later.

• Transaction value The exact transaction value is only known by the agents taking part
in the transaction.

• Random value The random value, which performs as a salt, is generated by the oracle
itself. It prevents any agent to try to predict the value of the random, even if it holds the
other information.

Each one of these three keys allows the generation of the random to perform the verification of
the identities.
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Algorithm 4: VerifyTransaction
Data:
SenderAddress contains the Ethereum address of the service’s customer meant as the
sender.
ReceiverAddress contains the Ethereum address of the service’s customer meant as the
receiver.
E contains a random number generated by the Oracle specifically for this transaction.
Result: Returns a boolean indicating if the proof is correct or not.
begin

i←− 0
while i < Clients(ReceiverAddress).P roofSize do

mask ←− (1� i)

k ←− Clients(SenderAddress).zkProofClients(SenderAddress).P roofToken

kp←− (Clients(ReceiverAddress).zkV erifier(E∧mask)�i) ∗
(Clients(ReceiverAddress).zkProofClients(ReceiverAddress).P roof(i))
if k 6= kp then

return (false)

i←− i+ 1

return (true)

Clients It is a map using ClientAddress as a key and storing a structure which describes a
client.

Sending amount of money To perform a transaction between two Clients, we have to
verify if the proofs given by the Clients are correct. If the proofs are verified, we can update
the balances with the hashBalanceAfter computed before and contained in each client. We can
define the following algorithm.

Algorithm 5: SendAmount
Data:
SenderAddress contains the Ethereum address of the service’s customer meant as the
sender.
ReceiverAddress contains the Ethereum address of the service’s customer meant as the
receiver.
E contains a random number generated by the Oracle specifically for the current
transaction.
Result: Updates the client’s balances.
begin

if SenderAddress in Clients and ReceiverAddress in Clients then
if VerifyTransaction(SenderAddress, ReceiverAddress, E) and
VerifyTransaction(ReceiverAddress, SenderAddress, E) then
Clients(SenderAddress).hashBalance←−
Clients(SenderAddress).hashBalanceAfter
Clients(ReceiverAddress).hashBalance←−
Clients(ReceiverAddress).hashBalanceAfter
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Clients It is a map using ClientAddress as a key and storing a structure which describes a
client.

4.2.4 Client

Goal The Client smart-contract is the interface between the Bank and the service’s customer
Ethereum node. Its goal is to be the intermediary to perform transactions.

Client In this case, a client is defined by six properties. First its Balance, which is not
encrypted and only available in the Client smart-contract. There are two numbers, mandatory
to perform transactions, Secret and V alue. The Secret is a critical number, unique to each
client, to compute proof numbers and being able to perform a transaction. The V alue is the
amount of money of the current transaction, only known by the two parties of the transaction (it
can also be known by the MarketAuthority). Q and P are two numbers used to perform the
transaction as well. Finally, N , the number of repetitions to do to compute a proof and being
able to perform a transaction.

Computing a proof number To compute a proof number, a Client will use a random
number E and its secret number Secret. It allows to prove the identity of the service’s customer
and being able to perform a transaction with another customer. In the end, the Bank will be
able to verify the identity of each party and perform the requested transaction. To compute a
proof, the following algorithm is applied.

Algorithm 6: ComputeProof
Data:
ProofToken, contains a proof token computed by the Client.
E, contains a random number generated by the Oracle specifically for the current
transaction.
Result: Returns a proof token.
begin

return (ProofToken− E ∗ Secret)

Secret It is a secret number known only by the MarketAuthority and the current Client.
It has been provided by the MarketAuthority.

Computing transaction proofs To perform a full transaction, a Client has to compute
several proof numbers. The number of repetitions N has been defined by theMarketAuthority
at the creation of the Client smart-contract. The following algorithm describes the procedure.
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Algorithm 7: ComputeTransactionProof
Data:
ProofToken, contains a proof token computed by the Client.
E, contains a random number generated by the Oracle specifically for the current
transaction.
Result: Returns an array of size N containing proof numbers.
begin

proofs←− An empty array
i←− 0
while i < N do

mask ←− (1� i)
proofs(i)←− ComputeProof(ProofToken, (E ∧mask)� i)
i←− i+ 1

return (proofs)

N It is the number of times a Client has to compute a proof number to prove its transaction.

Computing transaction proof token All the transactions need a unique proof token. The
following algorithm describes how to compute it. It has to be randomly chosen between 2 and
Q− 1.

Algorithm 8: ComputeTransactionProofToken
Result: Returns a random number between 2 and Q− 1.
begin

return (randomInt(2, Q− 1))

Q Let (P,Q) ∈ N2 two prime integers where Q divides P − 1.

randomInt Let randomInt be a sampling function from the uniform distribution of support
|[a, b]|.

4.2.5 Oracle

Goal TheOracle has to keep secret the function which generates random numbers for transactions.
If the random function is known by someone or controlled by someone, he will be able to anticipate
the generation of numbers and predict which number will be generated for a specific transaction.
Knowing the next generated number, he will be able to pretend to be someone else.

Oracle An Oracle smart-contract knows its owners and can recognize if the Client who calls
it is its owner or not. It also knows if all the owners have retrieved their random number. When
the random number has been retrieved by both clients, The Oracle destroys itself.

Computing a random value As it has been said earlier, the random function is only known
by the trusted party which has to be the MarketAuthority. According to this assumption, we
can write the following algorithm.

12



Algorithm 9: ComputeRandomValue
Data:
Timestamp, contains the current timestamp of the transaction.
V alue, contains the amount of the transaction.
Result: Returns a random value computed using Timestamp, V alue and a random

value.
begin

return (sha3(randomInt(1, MaxInt), Timestamp, V alue)

MaxInt It is the maximum integer on the current system architecture used to run the computation.

randomInt Let randomInt be a sampling function from the uniform distribution of support
|[a, b]|.

sha3 Computes the Ethereum-SHA-3 (Keccak-256) hash of the arguments.

5 Architecture Proposal

5.1 Simplified Transaction Schematics
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Figure 1: Simplified Transaction Scheme

We can make the analogy for our transaction scheme of an unforgeable form with signatures, official
stamps, and receipts for the parties involved in the proceedings.
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5.2 Full Transaction Schematics

5.2.1 Requires

Assumptions Each schematics below assumes that each service’s customer has a node in the
Quorum network and knows its own Constellation public key to perform private transactions.
Also, we assume that each service’s customer that wants to make a transaction can communicate
with the other party using an external communication channel. This external channel has to be
secured in order to not compromise critical information like the amount of the transaction and
the two parties identities.

Security Client,MarketAuthority andOracle smart-contracts have to be created as private
smart-contracts using private for Quorum functionality. The Bank smart-contract has to be
created in the public blockchain. A useful thing to do is to add a Constellation node, owned by
a trusted party, in each private for declaration in order to allow the trusted party to keep an
eye on each transaction. A trusted party could be a central bank for instance.

Registration Each Client has to be registered in the MarketAuthority by the trusted
party. The trusted party should register each Client in the Bank allowing them to perform
transactions.

5.2.2 Proof Token Generation

Step 1 Each service’s customer asks its Client smart-contract to create a proof token. As the
Client smart-contract is private for themselves, all the Ethereum transactions between the
service’s customer Quorum node and the Client smart-contract will be encrypted. The proof
token will be used in the next transaction as a unique number to compute a new proof using our
proof system.

Step 2 Each transaction needs a random number as defined in our proof system which has to
be generated under trusted conditions. A Client will ask the Bank to create a new Oracle
smart-contract to generate a new random number.

Figure 2: Proof Token Generation
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5.2.3 Oracle Creation

Step 3 The Bank smart-contract, which received the Oracle creation request, sends a 4global
event to create anOracle for the given service’s customer Ethereum addresses. TheMarketAuthority
will catch the event and create a new Oracle smart-contract private for the two given Clients
taking part in the transaction.

Step 4 The MarketAuthority is always listening on Oracle creation event. Once it receives
this event, it creates a new Oracle smart-contract which is private for the service’s customers
taking part in the current transaction. When theOracle is correctly mined, theMarketAuthority
will send back the Ethereum address of the smart-contract to the Bank.

Figure 3: Oracle Creation

5.2.4 Random Number Generation

Step 5 Once theOracle has been created, theBank will broadcast the Ethereum address using
a global event. As the Oracle smart-contract is private for two specific service’s customers,
only them can interact with it. The Clients have to listen to this event to catch the Ethereum
address up.

Step 6 EachClient sends a request to theOracle and gets a new random number. During this
process, critical information is exchanged. The amount of the transaction is needed to compute
the random number. As the amount of the transaction is a critical information, the Clients
perform a private for transaction with the Oracle smart-contract. Only the two service’s
customers will have access to this information in clear; otherwise, it will be encrypted.

Step 7 EachClient requests theOracle to get his unique random number and finally computes
his transaction proofs. Once both of them got the random number, the Oracle automatically
destroys itself.

4Means that all the ethereum nodes listening this event will receive it
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Figure 4: Random Number Generation

5.2.5 Proof Token Submission

Step 8 To perform a transaction between two service’s customers, each one has to compute a
proof token. To do that, they have to request it from their Client smart-contract and finally
submit it to the Bank. This step of the procedure is also a private Ethereum transaction.

Step 9 Once a Client got its proof token, it has to declare it to the Bank. It will use the
proof tokens to verify the proof of each Client and perform the requested transaction. All the
Ethereum transactions with the Bank are public. This enables every service’s customer on the
network to verify the proofs by himself.

Figure 5: Proof Token Submission

5.2.6 Transaction Proof Submission

Step 10 As for the Proof Token Submission, each service’s customer will request proof numbers
to their Client smart-contract and declare them to the Bank as well.
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Figure 6: Transaction Proof Submission

5.2.7 Performing Transaction

Step 11 The sender service’s customer will send a request to the Bank to perform the
transaction and update the balances.

Step 12 Once the Bank receives the request from sender, it verifies the proofs of each service’s
customer taking part in the transaction.

Step 13 If all the proofs are correct the Bank will the send a global event to broadcast the
updating of the balances. Each Client taking part in the transaction will catch the event up.

Step 14 All Clients receiving the Bank’s global event and taking part in the transaction will
update their balance. The difference with the Bank balances is that the Client balances are
not hashed. Each Client knows its exact balance. The Bank doesn’t know either the amount
of the transaction nor the balance of each Client. It only notifies the current hashed state of
the Clients balances.

Figure 7: Performing a Transaction
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5.2.8 Conclusion

Integrity In our proof system, even if neither the service’s customers nor the bank know about
the balances of each other and the amount of the transaction, they can prove that each of these
is correct. Unrolling the whole blockchain, each service’s customer can verify if the current state
of another one is valid or not.

Security The security is ensured by our proof system. Indeed, no critical information is
exchanged between the public space of the network and the private space. Only authorised
smart-contracts can interact with the Clients and exchange critical information.

Business anonymity Finally, this proof system permits to keep the private aspect of each
transaction in a business meaning. Any service’s customer can do business with another service’s
customer without exposing the transaction amount it is applying for its 5customer. Keep in mind
that all the smart contracts are created by a trusted party which owns the MarketAuthority
smart-contract.

6 Proposed improvements

6.1 Clients management

Multiple bank scheme

To be able to deal with multiple banks in our system we need to build another layer of nodes
dedicated to the banks. Such a layer will do the usual work of routing queries from the client to
the bank that will then transfer such queries to the central authority and start the zero knowledge
system as described in our architecture.

6.2 Security improvement

6.2.1 Larger prime numbers

Due to the limited calculation power at our disposal, we used small prime numbers for our
implementation. In a more advanced build, our protocol will need larger prime numbers.

6.2.2 More efficient protocols

Our implementation is using the method of the discrete logarithm to put both parts of the
transaction to the test. The more recent zero-knowledge proof implementation is using the elliptic
curve method as first described by Miller [13] and Koblitz [14] .

New methods, such as zk-SNARKs who is using elliptic curve method are supposed to have a
better performance in both security and protocol speed [15] [16].

7 Author’s proposed application: Delivery versus Payment

In order to build a system similar to a real Delivery versus Payment system the protocol still
needs some upgrade.

• We need to be able to differentiate between cash and securities accounts. To do this, a
possible solution is to bound two separate smart contracts to each node on the network.
Each one of those nodes can be specialised in securities or cash.

5Meant as a business customer
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• In order to be able to store the various types of cash and securities, we should use mapping
types of structures as they exist in 6Solidity. Furthermore, we can reuse that solution for
storing our settlement system

• Another important feature if we want to build a real delivery versus payment system is
the implementation of a liquidity saving mechanism. In such a system it is possible by
design to delay the full payment of securities. Such a system can be built by adding to
every agent a smart contract responsible for keeping the historicity of the soon to be settled
transaction. Such a smart contract would be, obviously, inaccessible by any other entity
than it interfaces thanks to private for specifications.

• By reducing the gas cost of the various operation on the core system and implementing a
voting system to reach consensus as defined in the block voting function, it will be possible
to speed up the process even more and remove the gas limitation existing on the prototype.
In such a system only a majority of Market authority nodes (which are typically run by
central banks) can vote and validate a block and therefore execute the zero-knowledge
verify command.

• Lastly a soon to be released feature into quorum detailed in issue 142 of the Quorum
repository is supposed to add the ability to add new members to a private smart contract.
Once this feature is released some of the architecture will have to be reworked

However, the impact of a greater sophistication of the distributed system and its abilty to
scale remains uncertain. Moreover, from a business perspective, the benefits, risks and required
transformations of business processes are still not clearly evaluated would require more in-depth
studies.

8 Conclusion

The costs of IT infrastructure in the financial sector are rising due to the significant increase
in the number of transactions and the rise of security standards. Modern technologies, such as
blockchain and zero-knowledge proof protocols may help address this issue.

At the Lab Banque de France, we implemented an experimental RTGS architecture on a
Quorum platform based on HVZK proofs to demonstrate the potential of such methods. Our
architecture is highly inspired by the current structure of financial markets and may meet the
regulations needs currently enforced regarding the control of the markets and the role of central
banks.

Although we could not use the most efficient Zero-Knowledge protocols due to limited time
and computing power, our architecture is easily upgradable and scalable. With our proposed
improvements, such an architecture could be used for an efficient Delivery versus Payment
systems such as Target2Securities in the Eurozone.

The writer’s opinion is that Zero-Knowledge proofs will be of growing importance in the next
years and that blockchain -based architectures will allow the development of safe and reliable
banking networks. Indeed, the research and development of such architectures will probably
constitute a decisive element for the understanding and the regulation of markets by Central
Banks and financial institutions shortly.

6The Ethereum programming language for smart-contracts
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