
A Practical Scheme for Non-interactive Verifiable Secret Sharing

Paul Feldman

Massachusetts Institute of Technology

AbJtract: This paper presents an extremely efficient,
non-interactive protocol for verifiable secret sharing.
Verifiable secret sharing (VSS) is a way of bequeathing
information to a set of processors such that a quorum of
processors is needed to access th.e information. VSS is a
fundamental tool of cryptograpby and distributed com­
puting. Seemingly difficult problems such as secret bid­
ding, fair voting, leader election:, and flipping a fair coin
have simple one-round reductions to VSS. There is a
constant-round reduction from l~yzantine Agreement to
non-interactive VSS. Non-interactive VSS provides
asynchronous networks with a constant-round simula­
tion of simultaneous broadcast n.etworks whenever even
a bare majority of processors are good. VSS is constantly
repeated in the simulation of fault-free protocols by
faulty systems. As verifiable secret sharing is a
bottleneck for so many results~, it is essential to find
efficient solutions.

1. Introduction

1.1 TIle Problem

Informally, verifiable secret sharing is a protocol in
which a distinguished processor" or dealer, selects and
encrypts a "secret message", s, and gives a "share" of s
to each of n processors. Ther,e exist parameters t,u
such that no t processors can recover s, but any set of
u processors are guaranteed that they can easily com­
pute s. When u=t+l, we say t is a threshhold. The
efficiency of a VSS protocol 1s measured by other
parameters as well:

1. The number of rounds of com:munication required.

2. The number of bits which must be communicated
between processors.

3. The number of computations the processors must do.

Another important characteristic is the way in
which the processors are guaranteed that they can
recover the secret from their shares. All previous
schemes have been interactive; the validity -of a share is
proven by an interactive protocol. Here we introduce

0272-5428/87/0000/0427$OI.00© 1987 IEEE

the concept of a non-interactive VSS, in which a share
"proves its own validity". This widens the applicability
of VSS to scenarios in which interaction is infeasible,
such as sharing a secret among an entire nation. Also,
several executions of non-interactive protocols may be
run in parallel. By contrast, interactive schemes may
have to be run serially. Thus, non-interaction allows us
to use VSS as a subroutine without increasing the round
complexity.

1.2 History of the Problem

Chor, Goldwasser, MicaH, and Awerbuch [CGMA]
introduced the notion of VSS. They present a constant
round interactive scheme for verifiable secret sharing
based on the assumed intractability of factorization. In
their solution, t=O(logn), u=O(n); the communica­
tion complexity is exponential in t.

The powerful zero-knowledge proof system of Gol­
dreich, Micali and Wigderson [GMW] can be used to
create a constant round interactive verifiable secret shar­
ing protocol for any threshhold t. Their solution may be
based on the existence of any one-way function.

Benaloh [Be] assumes a reliable public "beacon",
and uses it to demonstrate a verifiable secret sharing for
any threshhold t running in a constant number of
rounds. The beacon may be replaced by an interactive
verification. This VSS assumes the existence of hard-to­
invert encryption functions with certain properties.

Our contribution is the first non-interactive VSS
protocol. Our protocol measures favorably on all of the
above parameters. The protocol works for any thresh­
hold t and requires 2 rounds of communication. The
communication and computation complexity are small,
O(nk) and O((nlogn+k)(nk logk)) respectively, where
k is a security parameter (we assume unit cost for
broadcasts). We assume the existence of hard-to-invert
encryption functions with certain properties; we show
that discrete log encryption in either finite fields or on
e1liptic curves, encryption based on r-th residues, and
RSA -all have the required properties.

427

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

2. Preliminaries

2.1 TIle Network

We consider a network of n processors with identi­
ties 1,2, ... ,n. Each processor, or player, is a probabilis­
tic polynomial-time algorithm (PPTA). We assume that
every processor has a broadcast channel; a message sent
on such a channel is received by all processors. Addi­
tionally, we assume that there is a private channel from
each processor to every other processor. We consider a
semi- synchronous network. Messages sent at the r-th
pulse are received by the r+l-st pulse. The period
between the r-th and r+1st pulses is called the r-th
round. We shall see, in Section 7, that the assumptions
of the broadcast channels and private channels may be
relaxed; a complete network is sufficient. A processor
may initiate a protocol P with common input x by broad­
casting P,x. A protocol is non- interactive if all mes­
sages are sent by one processor (the leader).

A processor is considered good as long as he has
followed the protocol, and 1aulty once he has deviated
from the protocol. The most general (and difficult to
guard against) faulty behavior occurs when an adversary
coordinates the faulty processors.

Definition: A (static) t-adversary acting on P is a PPTA
A, which need not be one of the n processors, such that

1. A can immediately read any message sent on a non­
private channe1.

2. At pulse 0, A takes as input the common input x and
outputs a t-tuple of processor identities, (al, ... ,at),
which are immediately corrupted. When i is corrupted,
his current state and the contents of his tapes become
inputs of A. A can replace i's finite state control with
any other finite state control. Without loss of generality,
A sends messages to i, which i copies instantaneously
onto its output tapes.

As a PP'fA, A has an output tape; this enables us
to formalize the concept that A must "know" something
by saying that A outputs it.

We say that A is a dynamic t- adversary if A may
corrupt as many as t processors in the network at any
time. When A corrupts a processor i during P, A
receives as input only i's current (and future) state (s)
and tapes.

2.. 2 Polynomial TIme and the Security Parameter

r\ll cryptographic protocols must assume bounds on
the computational power of the players. A parameter of
the protocol is a security parameter k. Informally, any
parti~ula.r adversary has a good chance of "defeating"
the protocol only for sufficiently small values of k.

428

We assume the existence of polynomials
Qo= Qo(n,k), Q1= Ql(n,k) such that all processors
can execute Qo(n,k) steps between pulses, and no pro­
cessor, or the adversary, can execute Ql(n,k) steps
between pulses. An algorithm is polynomial- time if
there exists a polynomial Q such that Q(s) is an upper
bound on its running time on inputs of length s. When­
ever we say that k is an input to an algorithm, we refer
to the k-bit string 111...1.

2.3 Mathematical Notation
For a language L, L k consists of all k-bit strings in

L. For a string a, la I is the num ber of bits in a. Impli­
cit in the notation {a,b, ...}CS is the fact that a,b, ...
are distinct members of S.

A function U is a probability distribution if it assigns
to each YE{O,l}* a non-negative value U(Y) such that
EU(Y)=l.

A poly-size lamily 01 circuits is a family C={LJ Ck }
kEZ

of probabilistic circuits such that for some polynomial
Q, Ck has at most Q(k) inputs and gates.

To emphasize that an algorithm A receives one
input we write A (.); if it receives two inputs we write
A (.,.) and so on. If U is a probability distribution, then
y +- U denotes the algorithm which assigns to Y an ele­
ment randomly selected according to U; that is, Y is
assigned the value X with probability U(X). If S is a
finite set, then (Yl,. •. ,Yd)+-S assigns to (Yl, ... ,Yd) a d­
tuple of elements of S with uniform probability. We let
Pr[J(X, Y, ...): X+-S; Y+-T(X); ...] denote the probabil­
ity that the predicate J(X, Y, ...) will be true, after the
ordered (left to right) execution of X+-S, Y+-T(X) ,
etc.

2.4 Indistinguishability of Probability Distributions
and Zero-Knowledge

Goldwasser, MicaH, and Rackoff [GMR] define the
notion of computational indistinguishability; we shall
adapt their definition to our needs.

Let U= {U Ux } and V {U Vx } be families of
xEL xEL

probability distributions. Let C be a poly-size family of
circuits, and let
P(C,U,x)=Pr[b=O: Y+-Ux;b+-Clxl(Y)]. Intuitively,

U and V are indistinguishable if, for large x, C Ix I can­
not distinguish the output of Ux from the output of Vx •

Definition: Two families of probability distributions U
and V over a language L are indistinguishable if for any
poly-size family of circuits C, Y c >0, 3 ko·:;,-·k ~ko~
Pr[IP(C,U,x)- P(C,V,x) I>k- c: x+-L,,] <k- c.

This notion had already been used by Goldwasser
and MicaH [GM] in the context of encryption. and by
Yao [Y] in the context of pseudo-random num ber gen­
eration.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Intuitively, a protocol is zero-knowledge if for any
dynamic adversary A acting on it, there is a PPTA
which could output strings indistinguishable from those
output by A. If all processors have initially blank tapes,
then all protocols are zero-knowledge by this definition,
since one can construct a PPTA simulating the entire
network, including the adversary. Zero-knowledge
becomes meaningful when we allow processors to start
with private auxiliary inputs which are not easily com­
putable functions of the common input. For example,
assuming NP is not contained in BPP, one processor
may start with a satisfying assignment of a SAT for­
mula, where the formula is given as input to the net­
work.

We define zero-knowledge for a non-interactive
protocol P in which all processors except the leader start
with blank tapes. The leader, i, runs a PPTA Start on
input (k,n), where k is the security parameter and n is
the size of the network. The outputs of Start are the
common input to P, x, and an auxiliary input for i. We
assume that A may not corrupt i. Let A output strings
according to probability distribution Us when P is ini­
tiated on input x.

Definition: A non-interactive protocol P is t-zero­
knowledge if for every dynamic t- adversary A, there
exists a PPTA A' which takes as input xEL and outputs
strings according to Vs such that the families of proba­
bility distributions {Us} and {Vs } are indistinguishable.

3.VeriflaNeS~retSharing

We begin by describing ordinary secret sharing in a
framework which generalizes naturally to VSS.

3.1. Ordinary Secret Sharing
Ordinary secret sharing enables a dealer to split

information among a network so that a quorum of pro­
cessors is needed to recover the information. An
(n, t, 11,) secret sharing is a pair of PPTAs
(Share(·,.),Recover(...)); Recover takes 11,+1 inputs
and is deterministic. The first input of both Share and
Recover is xEL for some language L. We call
MESs =D omain(Share (x,.» the message space;
IMESs 1>1. ClPHs=Range(Share(x,» is the cypher­
text space. We consider a particular xEL and omit the
argument x. The input of Share is a secret wE MES ,
and Share outputs an ordered n-tuple
(d1,···,dn)ECYPH. Each di is called a piece, or share,
of w. The input of Recover is a u-tuple of ordered pairs
«al,cl),···,(au'cu»' where aiE [l,n], ciECYPH, and
the ai are distinct. The output is an element of MES.
When the input to Recover is any labelled subset of u
pieces output by Share on input wEMES, Recover out­
puts w. Formally,

{61'...,4,.)......SAare(w)+V {cz--t-t.nt,au }ell,nJ, (2.1)

-&COt1er{< 61 ,441-h••·'-{ .4fI ,-aa;,)1 = w.

Finally, we require that w be hard to compute given
only t pieces output by Share; no static adversary
should be able to guess w significantly better than ran­
domly given t labelled pieces.

Definition: We say (Share (·,.),Recover(...)) is an
(n, t,u) secret sharing if for a language L ,

1. V xEL V wEMESs ,(dl, ... ,dn).-Share(x ,w)=>
V {a 1" •• ' au}C [I,n1, Recover(x ,(a I' da1) , ••• ,(au, da.))=w.

2. V PPTAs A(.), Guess(...), V c >0,3 ko, Ix l2::ko9
Pr[w= Guess(x,(al,da), ••• ,(at,da,)): (al, ... ,at).-A(x);
w.-MESs ;(d1,. .. ,dn).-Share(x,w)] <1/ IMESz 1+ Ix 1- c.

Later, we shall strengthen property 2, by allowing a
dynamic adversary to choose which pieces of the secret
to take as input.

Shamir [S) presents an (n,t,t+I) secret sharing for
any threshhold t. Let L be the set of prime numbers
greater than n. For pEL, we define Share=Share(p,.)
as follows. The domain is MES=Zp. Protocol Share,
on input wEMES, sets yo=w and lets (Yl' ...'Yt)'-Zp'

t .
Let Q(8) be the polynomial L; Yis·. Then the output of

i=O
Share is Q(1),Q(2), ..•,Q(n) mod p. Recover is polyno-
mial interpolation, which is used to find Q(O)=w.
Informally, we argue that t pieces are no help in recov­
ering w. Given the value of Q at any t points, then the
value at 0, namely Yo= w, uniquely specifies a polyno­
mial Q. Since all other coefficients were chosen uni­
formly, the chance that a particular polynomial was
picked is directly proportional to the probability that its
constant term was the secret chosen. Therefore, seeing t
pieces gives no additional information.

An (n, t, u) secret sharing (Share ,Recover) suggests
a non-interactive protocol in which the leader, or dealer,
can "split" a secret among n players in such a way that
only a quorum of 11 can recover the secret. Namely, the
dealer broadcasts x and sends piece di to player i via
private channel. When 'U players wish to recover the
secret, each broadcasts his labeled piece, and Recover
can be run to return the secret.

Can this protocol be used if t players may be
faulty? No! It is true that no set of t faulty players can
recover the secret themselves. However, even if
'U <n- t, in which case there are enough good players to
recover the secret, bad players may interfere. For

example, a bad player i may broadcast a spurious value
in place of die Good players cannot distinguish good
pieces from spurious pieces. If t=O(n), then a random
u-tuple consists entirely of good players with exponen­
tially small probability.

429

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Indeed, the dealer can prevent this problem by
authenticating the pieces. In this way, good players
could recognize which pieces truly came from the
dealer. However, a more endemic problem is the follow­
ing: what happens if the dealer is faulty? The good
players themselves might get authenticated yet spurious
pieces, and they will not be able to recover the secret.
Depending on the behavior of Recover on "invalid"
inputs, the good players may not be aware that different
sets of pieces would return different secrets. The secret
returned could depend on which bad players chose to
broadcast their authenticated, spurious pieces. The best
kind of secret sharing would allow any player to verify
during Share whether or not his piece is valid; more­
over, he should be able to check during Recover
whether or not the piece another player broadcast is
valid.

3.2 Verifiable Secret Sharing

Informally, a verifiable secret sharing protocol must
meet the following two requirements:

1. Verifiablility constraint: upon receiving a share of the
secret, a player must be able to test whether or not it is
a valid piece. If a piece is valid, there exists a unique
secret which will be output by Recover when it is run on
any 11 distinct valid pieces.

2. Unpredictability: there is no polynomial-time strategy
for picking t pieces of the secret, such that they can be
used to predict the secret with any perceivable advan­
tage.

This framework allows for an interactive protocol
proving validity of the pieces. A VSS protocol is non­
interactive if there is a polynomial-time algorithm Check
which tests validity of the pieces. Obviously, the same
pieces are not valid for different secrets; we introduce a
PPTA Encrypt to handle this.

Informal Definition: An (n, t, u) non-interactive verifiable
secret sharing is a quadruple of PPTAs
(Share ,Recover, Check ,Encrypt) such that

1. (Share ,Recover) is an (n, t,u) secret sharing over a
language L.

2. YxEL,VwEMESz,YI$.j$.n, Y~Encrypt(x,w);

(d1,···,dft)+-Share(x,w)::;>, Checlc(x. Y,.t',d.,.)=1. ·

3. VxEL ,V YERange(Encrypt(x,)), 3 wEMESz ·=::;-·

V {at, ...,au}C[I,n],V d1, ... ,du EMESz ,

(Check(x, Y,ai,di)=1 Vl~i~u)=>

Recover(x,(a1,d1), ... ,(au, du))= w.

Remark: Actually, we require that (Share,Recover)
remains an (n, t, u) secret sharing even when
Y~Encrypt(x,w) is given; Share itself may take Y as
an input. To formalize the definition, Share itself would
set Y+-Encrypt(x,w) and append Y to each piece.

3.3 Applications of Verifiable Secret Sharing
Verifiable secret sharing enables a communication

network to simulate a simultaneous broadcast network.
Informally, every processor is required to share his
round r message before any round r message is
revealed. This trivializes the design of protocols such as
secret bidding, leader election, and flipping a fair coin.

In the simulation of a simulataneous broadcast net­
work, each processor acts as dealer. For an interactive
VSS such as [GMW] , Chor and Rabin [CR] show that
logn rounds are sufficient for n processors to prove the
validity of their pieces; it is not known whether this can
be done in a constant number of rounds. In a non­
interactive VSS, all processors may deal secrets in paral­
lel; therefore, our protocol gives constant round solu­
tions to all these problems.

Another application is achieving a fast Byzantine
Agreement without any preprocessing. The best previ­
ously known algorithm which could tolerate a linear
number of faulty processors, due to Chor and Coan
[Ce] ,[C], required expected O(n /logn) rounds. Feld­
man and MicaIi [FM] show that running non-interactive
verifiable secret sharing without broadcast channels,
using Crusader Agreement instead, yields a constant
expected time Byzantine Agreement protocol.

Even beyond the protocols which directly follow
trom it, verifiable secret sharing now plays a central role
in cryptographic protocol design in a most dramatic way.
In [GMW] it is shown that all protocols can be designed
to resist t faulty players out of 2t+l. Verifiable secret
sharing is one of the three main blocks needed for their
simulation. This highlights even more the need for an
efficient verifiable secret sharing, as it may enter as a
key subroutine in a large class of protocols.

4. Motivation for Our Solution
The motivation behind our solution is to utilize

homomorphic relationships which may exist between
values and their encryptions. For a certain class of
encryption schemes, which we shall call homomorphic,
we can construct an algorithm Check which enables a
player to verify the validity of his piece.

4.1. Probabilistic Encryption

A problem with deterministic encryption schemes is
that it is easy to check whether or not a given ciphertext
is the encryption of any given message. Goldwasser and
Micali [GM] showed how to overcome this problem by
probabilistic encryption. They define the notion of a
family of unapproximable predicates. Let
H={Hardz : xEL} be a family of predicates, each Hardz
maps CYPHz --+ {O,1}. Elements which map to 0 (1) are
considered encryptions of 0 (1). Intuitively, such an

430

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

encryption is secure if there is no efficient way of com­
puting Hardz on random elements; H is unapproximable
if no poly-size family of circuits can compute Hardz(y)
significantly better than randomly guessing when x and
'Yare randomly selected.

Let C= {Ok: k E Z} be a poly-size family of circuits,
C/c{·") takes as inputxEL/c and yEOYPHz and outputs
a bit. For xELk , let
P{ C,k ,x)=Pr[Ok (x ,y)=Hardz(y): y+-CYPHz].

Definition: The predicate H is unapproximable if

VC={Ck : kEZ},V c >0, 3 ko·5·k ~k09 (4.1)

Pr[P(C,k,x».5+k- c : x+-L/c] <k- c,

To probabilistically encrypt a bi·t using HardEH, there
must be a way for the encrypter to find "random" ele­
ments which map to 0 (or 1). One possibility is if Hard
is a trapdoor function, that is, IIard is easy to compute
given a short string Hint. In this scenario, the encrypter
generates a pair x,Hintz ; he can then compute Hardz on
random elements of CYPHz , and picks one which maps
to the desired bit.

Another method exists if Hard is an easy predicate
composed with a one-way function, as we now explain.
Let MES be a message space, and let Encrypt be an
injection from MES --+ CYPH. Informally, Encrypt is
one-way if Encrypt is easy to cOJnpute, but Encrypt- 1 is
hard to compute. Let Predicat,e: MES--+ {O,I} be an
easily computable function. Suppose
Hard=Predicate(Encrypt- 1). Then the encrypter can
randomly pick yE CYPH, and c:ompute z=Encrypt(y)
and b=Predicate(y). By construction, Hard(z)=b,
hence z is a probabilistic encryption of b. All encryp­
tions we shall consider will be c:omputed by this latter
method, even though some are also trapdoor schemes.

Example: RSA probabilistic en(~ryption, developed by
Rivest, Shamir, and Adleman [R.SA] may be computed
either way. Let m be a product of large primes, and e a
number such that (e,<!J(m))=I. Let d=e- 1 mod
t,b(m); d, which is not easy to cOlnpute without knowing
the factorization of m, is the trapdoor hint. We define
CYPH=Z:n. For yEZ:n, we define Hard{y) to be the
parity of yd mod m. This is easy to compute for anyone
knowing d, but it is believed to be hard to compute oth­
erwise. We shall focus on the mt~thod of encrypting bits
without knowing d. Let Encrypt(y)=ye mod m and
Predicate (y) be the parity of y; both are easy to com­
pute. A 0 (1) is encrypted by raising a random even
(odd) element of Z:n to the e po,ver mod m.

We shall find it convenien't to generalize this notion
by enlarging the range of Predica te, and hence Hard, to
[1,1]; the value of 1 is a paranleter of the particular
encryption function.

431

4.2 Homomorphic Encryption Functions

Often, a rich algabraic structure underlies an
encryption scheme. Relations among cleartext values
may imply relations among the encryptions. For exam­
pIe, in RSA encryption, Encrypt(yz) = (yz) e mod
m=Encrypt(y)Encrypt(z). More generally, when both
the domain and range of Encrypt are groups, Encrypt
may be a homomorphism of the groups. Benaloh [Be]
utilized such homomorphisms in his secret sharing, and
pointed out that our VSS extends to such a class of
encryption functions [Be2]. Let
MES=Domain(Encrypt) be an additive group, and
CYPH =Range(Encrypt) be a multiplicative group. The
key property is that for all B,CEMES,

Encrypt(B+C)=Encrypt(B)·Encrypt(C) (4.2)

For cEZ, we define the scalar product
c·B=B+B+...+B with c summands. Induction may be
used to show that V BEMES, V cEZ,
Encrypt (c'B) = (Encrypt(B)) C •

Security can only be achieved by picking among a
family of encryption functions. Let Generator (',') be a
PPTA which, on input k,n, selects x+-(Lkn L n) for
some language L; we define L n cL below. We impose
uniformity constraints by requiring a PPTA Encrypt(,,.)
such that Encrypt(x,.)=Encryptz(·)' and similarly for
Predicate(·,,). Likewise, there must be uniform algo­
rithms for computing the group operations, uniformly
sampling MES, and the following function Divide,
whose purpose will first become clear in Section 5.3. For
all BEMESz , Divide(x,n,n!·B)=Predicate(x,B). Since
scalar multiplication by n! need not be a 1-1 function,
the existence of Divide imposes a certain structure on
Predicate. Moreover, this says that Predicatez{B) is
easily computable given only n!'B as input. We define
MES:={BEMESz: Predicate (B)=s }. We define
L n={xEL: (Divide(x,n,.) is well defined) and

(IRange(Predicate (x,') I~ n) }.

If these properties are satisfied, and
Hard=Predicate(Encrypt- 1) is unapproximable, we say
Generator is a homomorphic probabilistic encrypt~'on scheme
generator. Equation (4.1) implies that NP is not con­
tained in BPP, so we will need to make certain unpro­
ven complexity assumptions to assert that we have such
generators.

In Section 8, we construct homomorphic probabilis­
tic encryption scheme generators based on different
problems. One is based on the difficulty of taking
discrete logs in a finite field; a suitable restriction of the
domain is required. The same method lets us base a
generator on the difficulty of taking discrete logs on a
elliptic curves. Benaloh [Be2] has pointed out that a
generator may be based on the difficulty of distinguish­
ing r-th powers in Z~, where r is a prime dividing
4> (m); the nature of these probabilistic ~ncryptions

differs slightly from the description given here. RSA is

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

sufficiently homomorphic for our purposes if we define
the "addition" on the domain MES=Z:n to be multipli-
cation mod m.

4.3. Using a Homomorphic Probabilistic Encryption
Scheme to Produce a Non-interactive (n,t,t+l) VSS

We restrict the rest of this chapter to an informal
discussion of our protocol. The formal presentation is
given in Section 5.

Given Encrypt, we show how to share a secret in
[1,l]; a longer secret may be shared by sharing blocks of
Il ~bit secrets in parallel. We convert Shamir's secret
sharing into a non-interactive VSS 9S follows. The dealer
uniformly picks a secret 8-+-[I,l), and YoEMES 8 and
sets Yo to be the constant term of a degree t polynomial
Q. He chooses the t other coefficients of Q uniformly
in MES. He then broadcasts encryptions of the
coefficients of Q, Encrypt(Yo), ••• ,Encrypt(Yt). As in
Shamir's scheme, he sends Q(i) to player i via a
private channel. The point is that i can verify his piece
by checking that

Encrypt(Q(i))= (4.3)

(Encrypt(Yo))·(Encrypt(YI)) j ... (Encrypt(Yt)) j'

Even for probabilistic encryption schemes, we must
still prove that broadcasting the encryptions does not
allow an adversary to guess the secret advantageously.
This is done by showing that the adversary can simulate
his view by himself. To facilitate the simulation, we
alter the protocol slightly by having the dealer encrypt a
certain multiple of the coefficients, as will be described
below.

4.4 Tolerating a Dynamic Adversary

It would seem that a non-interactive VSS could not
be zero-knowledge with respect to a dynamic adversary.
On the one hand, by the intractability assumption, a
simulator cannot reconstruct the secret. On the other
hand, we wish that he can simulate the output of an
adversary, who could corrupt any t players and output
valid pieces with those indices. How,ever, if the sim ula­
tor knew all the pieces, he could compute the secret,
The resolution of this difficulty is to permute the shares
in a way unknown to the adversary; the adversary does
not know which share a player should have before cor­
rupting him. In this way, a simulator knowing t shares
can "fool" an adversary into thinking that these are the
correct shares for the players corrupted. Of course, this
leaves the problem of how to convince a player that he
is receiving the proper share.

This latter problem is solved by having the dealer
probabilistically ,encrypt a random permutation 1r ESn.
The dealer lets (AI-+-MES~(I)),...,(An+-MEs~(n)) and
broadcasts Encrypt(AI)' ... ,Encrypt(An). The dealer
sends Ah on theprlvate ~hannel to player i, wh-ere
h~7r-l(j); i eanverify that Prdi06te{Ah)==i. ~is
d~signatestha;t playerj -shouid subsequently r~-eeive

432

Q(h). Player J IS not convinced that the dealer
encrypted a real permutation, but he knows that the
h-th piece is designated exclusively for him, since only
Ah can encrypt to Encrgpt(Ah) and Predicate (Ah)= i.
To facilitate the simulation, this step will precede the
broadcast or the encrypted variables.

With respect to a static adversary, the simulation
may be done without permuting the shares. We argue
without proof, in Section Q.2, that the shares need not
be permuted even against a dynamic adversary,
although there are problems with the simulation in that
case.

5. Our Protocol

5.1 Initialization

Let Generator be a homomorphic probabilistic
encryption scheme generator. The dealer i sets
x+-Generator(k,n), where k is the security parameter,
and n is the size of the network. We omit the depen­
dence on x. Let MES=Domain(Encrypt) ,
CYPH =Range(EncryptJ.

The dealer i uniformly picks a secret 8+-[l,l], sets
yo+-MES', and computes Y=Encrypt(yo). The VSS is
initialized with common input i,x, Y. All players store
i,x, Y on a work tape; i additionally stores Yo as his
auxiliary input.

5.2. TIle Protocol Share

The dealer broadcasts messages in steps 1 and 3;
the players perform calculations in steps 2 and 4.

1. The dealer i selects 1r +-Sn, a uniformly chosen per­
mutation of [1,n]. He sets Aj +-MES1f (j) for each i and
broadcasts the probabilistic encryption this specifies,
Encrypt(A1), ...,Encrgpt(An). He sends h,Ah on the
private channel to i, where h=1r- I(i).

2. Each player i lets A=(Encrypt(AI), ...,Encrypt(An))
denote the values he received on i's broadcast channel
and h and C denote the values he received on the
private channel from i in round 1. We define
Checkid(i,h,C,A)=l iff Encrypt(C)=Encrypt(Ah) and
Predicate (C)=i.When this .is the case, i stores h but
not C=Ah ; if this fails, i immediately rejects the dealer
as faulty.

3. The dealer sets (Yl,. .. ,Yt)+-MES. He computes and
broadcasts
(Y I,···, yt)=(Encrypt(n! ·YI) ,••. ,Encrypt(n! ·Yt)). Let
Q: Z-+MfS denote the "polynomial" function,

Q(a)=Ea'·y,. The dealer privately sends Mh=Q(h)
1=0

to player i=1r(h).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 23,2010 at 17:12:39 EST from IEEE Xplore. Restrictions apply.

