
Bug Searching in Smart Contract
1st Xiaotao Feng

Swinburne University of Technology
Melbourne, Australia

101973718@student.swin.edu.com

2nd Qin Wang
Swinburne University of Technology

Melbourne, Australia
qinwang@swin.edu.au

3rd Xiaogang Zhu
Swinburne University of Technology

Melbourne, Australia
xiaogangzhu@swin.edu.au

4th Sheng Wen
Swinburne University of Technology

Melbourne, Australia
swen@swin.edu.au

Abstract—With the frantic development of smart contracts on
the Ethereum platform, its market value has also climbed. In
2016, people were shocked by the loss of nearly $50 million
in cryptocurrencies from the DAO reentrancy attack. Due to
the tremendous amount of money flowing in smart contracts,
its security has attracted much attention of researchers. In
this paper, we investigated several common smart contract
vulnerabilities and analyzed their possible scenarios and how they
may be exploited. Furthermore, we survey the smart contract
vulnerability detection tools for the Ethereum platform in recent
years. We found that these tools have similar prototypes in
software vulnerability detection technology. Moreover, for the
features of public distribution systems such as Ethereum, we
present the new challenges that these software vulnerability
detection technologies face.

Index Terms—Blockchain, Smart Contract, Ethereum, Formal
Verification, Fuzzing, Symbolic Execution

I. INTRODUCTION

Decentralized cryptocurrencies have gained tremendous at-
tention from both academia and industry. The emerging novel
technology originated from these systems is blockchain, a
sequentially ordered ledger system. The system possesses the
properties of being distributive, irreversible, unforgeable, and
traceable. Ethereum [1], as the most accessible blockchain
platform, supports distributed applications in different sce-
narios through the underlying online virtual machine called
EVM, which is a fundamental layer for the complete execution
of the smart contracts. Smart contract [2] [3] is a collection
of code and data (also known as states) executing on the
blockchain system. It is Turing-complete which allows us to
write the pre-defined rules. Smart contract is pretty suitable
for the scenarios requiring dependable security, irreversible
persistence, and high trusts, such as the digital assets, online
voting, gambling games, insurance, property managements,
and financial applications.

However, there are many vulnerabilities in smart contracts
[4] [5] [6] [7] [8] [9] [10], and the high financial status brings
higher interaction risks. Unlike traditional distributed appli-
cation platforms, smart contract platforms such as Ethereum
allow anyone to join. This high openness makes the EVM
environment very vulnerable. Also, some vulnerabilities can
only be exploited in some of Ethereum’s unique new features

(such as timestamp design, gas settings and fallback function).
For example, The DAO [11] exploits a variety of well-
documented reentry attacks, resulting in the theft of Ethernet
worth more than $50 million. As a result, the security issue
of smart contracts on Ethereum has attracted much attention.

In the world of vulnerability detection, researchers have
developed many tools to find vulnerabilities in programs.
We focus on three tools, including fuzz testing [12], formal
verification, and symbolic execution, that have already found
many vulnerabilities. However, as for such tools applying in
the smart contract, it is still at the beginning of the research.
The nature of fuzzing is to generate inputs for programs and
tries to find vulnerabilities based on the results of executing
programs [12]. The biggest challenge of fuzzing comes from
the fact that it tests a program in random behavior. Formal
verification is a method based on logical deduction and tries
to prove or disprove the correctness of a program. Researchers
have to prove their conclusions strictly so that the target
program can be fully trusted or abandoned. The last tool we
introduce is symbolic execution, which treats variables in a
program as symbolic values. It regards each condition in the
program as a constraint and tries to find a possible solution
along with an execution path. The main challenge of symbolic
execution is path explosion which results from loops or arrays.
When such tools are applied in smart contract, researchers
have to figure out specific methods to fit tools into smart
contracts. The details will be discussed in the following.

In this paper, we survey some common vulnerabilities on
EVM and their triggering mechanisms. We also introduce
some of the tools in the software vulnerability detection
industries on this new platform and their work-flow as well as
features. Further, for some new features of the EVM platform,
we also present some new challenges for these software
vulnerability detection tools.

II. OVERVIEW OF EVM
A. EVM Model

Ethereum Virtual Machine (EVM) provides a practical envi-
ronment for the execution of smart contracts in the distributed
Ethereum platform. It refers to a complete suite of logic
processes of deploying, compiling, and executing [1]. Users

ar
X

iv
:1

90
5.

00
79

9v
1

 [
cs

.S
E

]
 2

 M
ay

 2
01

9

Externally Owned Account

Smart Contract

Bytecode

PUSH
POP
DUP

SWAP
ADD
MUL

MLOAD
J UMP

SSTORE
RETURN

…

Stack

Top

Memory

Storage

Compile Execution

Transaction

Block Block Block…

start

end

Fig. 1. EVM Model

can make their contracts automatically be executed according
to the pre-defined rule via transaction-based state transitions
[2]. To achieve the state machine transition, the smart contract
can be seen as one type of shared-state. The globally shared-
state is made up by small units, called account, which can
interact with each other through messaging. Each account
associates with a state and a 20-byte address as the identifier.
There are two different types of accounts:

• Externally owned account, controlled by a private key
without any associated code.

• Contract account, controlled by the corresponding con-
tract code, which sets the actions and operations.

The externally owned account sends the message to another
externally owned account or contract account by creating and
signing the transaction under the private key. The message
transmitted between two externally owned account is just
a simple value transfer. But a message from an externally
owned account to a contract account will activate the code
in the contract account, performing the corresponding actions
(such as transferring tokens, logging storage, generating new
contracts, minting new tokens, calculating values, etc.). Unlike
an externally owned account, the contract account cannot
initiate a transaction by its own. Instead, the contract account
triggers the transaction only after receiving a transaction. The
EVM model is presented in the Fig.1.

There are four components in both types of the accounts:
• Nonce: It represents the transaction number sent by the

externally owned account, and it also represents the
contract number created by the contract account.

• Balance: It means the remaining value of the address,
dominated as Wei where 1 Ether=1018 Wei.

• Root: The root represents the hash value of the Merkle
Patricia tree which encodes the Superimposed hash of the
stored content in each account.

• CodeHash: It is specially used for contract account,
where the code of smart contract is saved as codeHash.
For externally owned accounts, this field is an empty
string.

B. Features in EVM

a) Gas As Fee: Every defined calculation generated by
transactions requires an amount of cost to be paid. Gas is
used to measure the unit of cost in each specific calculation.
Correspondingly, Gas price is the value spent on each gas,
measured by “gwei” where 1 gwei=1,000,000,000 wei. For
each transaction, the sender needs to set two parameters
including gas limit and gas price. The total amount represents
the cap that the sender is willing to pay for the execution of
the transaction. The total amount is calculated by the gas limit
and the gas price limit as follow.

Gas Limit × Gas Price = Total amount

Any unused gas at the end of the transaction will be returned
to the sender for redemption. If there does not exist enough gas
to execute the transaction, the transaction will be considered
invalid. In this case, the process terminates where all changed
states return back to the initial states. Since the system is still
working on calculation before running out of gas, no gas will
theoretically be returned back to the sender. Instead, all fees
used in execution are sent to the miners as the reward who have
already made an effort to calculate and verify the transaction.

b) Fallback Function in Solidity: The fallback func-
tion, is an uniquely unnamed function in the solidity. It is
automatically executed only when no other function matches
the specified function identifier [2]. At the same time when-
ever the address of the contract receives plain Ether without
messages, the function can be called. fallback function
has no arguments or return nothing. More specifically, when
we transfer tokens without any readable data via the function
address.send(ether), the contract will automatically
execute the fallback function to make the transition of
state proceed. To make the send outputs TRUE, the fallback
function must be marked payable.

Since the send function always calls fallback, it is dan-
gerous to be attacked by malicious attackers such as DAO
[11]. Especially in the scenario of dividend where the send
operation is deployed on a series of accountsif there exists at
least one malicious account holding fallback functions to
infinite loop, it will cause all send processes to fail where
the gas is used out. In order to solve this problem, the send
function sets a limited 2300 gas as the maximum even if the
gas is sufficient. Therefore, except for the operations such as
log in the fallback function, one can hardly do anything to
keep the liveness of the whole system.

c) Timestamp: Timestamp, as one kind of identifier of
blocks and transactions, contained in each block header in
the form of Unix time. In addition, the irreversible times-
tamp avoids the faking of blocks by adversaries. Based on
timestamp, blockchain system confirms that each block is
sequentially connected. The timestamp proves the sequence

of events in which no one can tamper with it. Timestamp can
be seen as the role of notary in blockchain, which is credible
for the public participants.

III. VULNERABILITIES

In this section, we will discuss three common vulnerabilities
in smart contract and present the examples of attacks.

A. Reentrancy

Recursion is a widespread logical processing method in
traditional programming languages, but this operation is likely
to become a vulnerability in Solidity.

Fig. 2 Ebank contract shows the implementation of a
contract for a public bank. Any user can deposit Ether
to EBank and the contract records the Ether of each ac-
count. In this scenario, when the contract withdraws the
saving (withdraw(address to, uint256 amount)), it en-
sures that the account has enough balance (require (bal-
ances[msg.sender] >amount)) and that the bank has suf-
ficient funds for the withdrawal. If the above two con-
ditions are satisfied, the contract will send the Ether to
user(to.call.value(amount)()) and change the balance of cor-
responding value(balances[msg.sender] -= amount).

In programming languages such as C and C++, the code
in Fig.2 Ebank contract can be run correctly. However, such
piece of code may be vulnerable in Ethereum‘s smart contract
due to its own grammar. In Fig.2 Ebank contract, the contract
utilises call.value()() to send user Ether. Distinguished from
the functions send() and transfer(), function call.value()()
gives all the rest of gas to external call (fallback function).
If the target address is a contract address when making an
Ether transaction, the contract‘s fallback function is called by
default.

To show how attackers can exploit this vulnerability, we
design an attack contract in Fig.2. In startAttack(), the
contract firstly deposit() the specified amount tokens in bank,
and one token is taken through the withdraw(). Because the
bank contract uses call function to send Ether to the target,
this will call the target contract‘s fallback function which calls
the withdraw(). The users balance is modified after the Ether
is transferred, the balance on the attackers account remains
unchanged and the attacker can always take out Ether from
the bank. Therefore, the two contracts of bank and attack fall
into a recursive state until that Ether in the bank is sent to the
attacker or attacker stops the contract.

B. Gasless

The EVM usually sets the gas limit at 2,300, and the miners
who are good at calculating can use the delicate contract
structure combined with fallback function to run out of gas.
This will result in an error in the running contract so that the
miner can get profits from it or achieve other goals.

There is a game called KingOfTheEtherThrone [13] and
the game is played by sending Ether to a smart contract called
KotEt(as shown in Fig.3). Players who want to be king must
pay some Ether to the current king, plus a small amount of

fee to KotET contract. Then, the king will get profit from the
difference between the price he paid for the throne and the
price other player pays to be a new king.

Supposing a player wants to be king, he wants KotET
to send a certain amount(msg.value) of Ether. The fallback
function of KotET is called and it will check if msg.value is
greater than the quote for the previous king setting. If it is less
than the quote for the previous king setting (i.e., the auction
failed), it will be abandoned. On the contrary, the player will
get the throne and become the new king.

This contract seems to be fine, but there will be a gasless
send bug. When king.send(profit) fails to execute (gas is not
enough to execute fallback()), the throne will be held by this
contract.

C. Timestamp

In Solidity language, it defines many block state variables
[14] like timestamp, random seed and block number. Since
these state variables are written at the head of each block, the
malicious miner may modify it and get profit from it. These
block state variables can make the Ether flows along different
program paths. Here we use timestamp to illustrate how such
a vulnerability is exploited by malicious miners.

Block timestamps have traditionally been used for a variety
of applications, such as functions for random numbers, locking
contract for a period of time, and various conditional state-
ments based on time-varying states. Miners have the ability
to adjust the timestamp slightly, and if the block timestamp is
misused in a smart contract, it can prove to be quite dangerous.

Block.timestamp (or now) can be manipulated by miners
if they have incentives to do so. We build a simple contract
that is vulnerable to exploitation by miners (Fig.4).

In the Fig.4, this contract is a simple lottery. Each block
has a trade to bet 1 Ether and get the chance to win the entire
balance in the contract. The assumption here is that the last
two digits of block.timestamp are evenly distributed. If so,
there will be a 1% chance to win this lottery.

However, as far as we know, miners can adjust the time
stamp according to their wishes. In this particular case, if there
is enough Ether in the contract, the miner who digs out a block
will be motivated to choose a block.timestamp (or now) to
100 with a timestamp of 0. In doing so, they may win Ether
and block rewards in this contract.

IV. TOOLS

A. Fuzzing

Fuzzing [12] is a technique that randomly generates inputs
to examine testing programs. In most situations, fuzzing in-
tends to crash a testing program. Moreover, when it crashes,
we can check whether the crash is a bug or not. Fig.5 shows
the typical procedure of fuzzing. At the very first execution,
fuzzing needs original inputs to be mutated. Then, new inputs
are mutated and generated from the original inputs, which will
examine the testing program. After the examination, fuzzing
will check whether the new inputs are interesting or not. The
interesting inputs are saved to be seeds, which will be chosen

Contract Attack {

address owner;

address bank;

function Attack() payable { owner = msg.sender; }

function deposit(uint256 amount) payable {

if (this.balance > amount){

bank.call.value(amount)(bytes4(keccak256(“deposit()”)));

 }

}

function withdraw(uint256 amount) {

bank.call(bytes4(keccak256(“withdraw(address,uint256)”)), this, amount); }

function startAttack(uint256 amount) { deposit(amount); withdraw(1); }

function() payable{

if (msg.sender == bank){

bank.call(bytes4(keccak256(“withdraw(address,uint256)”)), this, msg.value);

}

}

}

Contract Ebank {

address owner;

mapping (address => uint256) balances;

function Ebank(){ owner = msg.sender; }

function deposit() payable

{ balances[msg.sender] += msg.value; }

function withdraw(address to, uint256 amount) {

require (balances[msg.sender] > amount);

require (this.balance > amount);

to.call.value(amount)();

 balances[msg.sender] -= amount;

}

function balanceOf() returns (unit256)

{ return balances[msg.sender]; }

function balanceOf(address addr) returns (uint256)

{ return balances(addr); }

/* Other functions hide */

}

Fig. 2. Ebank and Attack contracts

Contract KotET {

address King;

address owner;

unit public claimPrice = 1;

function KotET() {

owner = msg.sender;

King = msg.sender;

}

function() {

 if (msg.value < claimPrice) throw;

unit profit = calculateProfit();

King.send(profit);

King = msg.sender;

claimPrice = newPrice();

}

 /* Other functions hide */

}

Fig. 3. KotET contract

as inputs. If the testing program crashes, we have to verify
whether the crash is a bug.

In Jiang’s work [15], they create a new fuzzer, named
ContractFuzzer, which is a novel fuzzer to fuzz Ehereum smart
contracts. ContractFuzzer is vulnerability detecting tool which
is built based on traditional fuzzing combining with static
analysis. Fig.6 shows how ContractFuzzer works on fuzzing
smart contract. It provides an offline EVM instrumentation
tool which can monitor the execution of smart contracts
for subsequent analysis. The ContractFuzzer firstly works on
analyzing the ABI interface and bytecode of the smart
contract which is collected in contract dataset. Then the ABI
function arguments and signatures will be extracted for the

Contract Lottery {

unit pastBlockTime

function() payable{

require(msg.value == 1 ehter);

require(now != pastBlockTime);

pastBlockTime = now;

if(now % 100 == 0){

msg.sender.transfer(

this.balance);

}

}

/* Other functions hide */

}

Fig. 4. Lottery contract

inputs mutation
new

inputs

examine

testing

program

crash
interesting

inputs?
seeds

Y

verify the crashN

Fig. 5. The typical procedure of fuzzing. Original inputs are mutated into
new inputs, and these new inputs will examine the testing program. The aim
is to crash the testing program, and then check whether the crash is a bug.

ABI signature analysis. ContractFuzzer generates the input
seed for online fuzzing based on the two types of analysis,
and finally, it starts to do fuzzing test and detect security

 EVM

Contract

dataset

Categorized

contracts

Fuzzing

Inputs

ABI and

bytecode of

contract

ABI arguments

& signatures of

functions

Excutio

n Log

Fuzzing

Results

ABI signature analysis Static Analysis

Fuzzing

Vulnerability

Analysis

Fig. 6. Overview of the ContractFUzzer Tool

Solidity

EVM*EVM

Solidity*

Verify

Verify

F*

Equivalence

Proof

Verified Decompilation

Verified Decompilation

Fig. 7. Outline of our verification architecture

vulnerabilities via analyzing execution logs.

B. Formal Verification

In the context of hardware and software systems, formal
verification is the act of proving or disproving the correctness
of intended algorithms underlying a system concerning a
certain formal specification or property, using formal methods
of mathematics.

Compare with the dynamic detection methods like fuzzing,
for Ethereum, static methods such as the formal verification
does not require a simulated execution environment and pro-
vides better precision and false positive rate in vulnerability
analysis [16]. In general, automatic formal verification can be
divided into three main types: 1) Automated theorem proving,
2) Model checking and 3) Abstract interpretation. For smart
contract platforms, model checking is appropriate because of
the smaller size of smart contracts.

Inspired by the process of processing JavaScript [17], Bhar-
gavan‘s team [18] outlines a framework to verify Ethereum
smart contracts using formal verification. After translating
and decompiling the Solidity code and EVM bytecode into
a functional programming language named F*, they will

determine the existence of a vulnerability in the contract by
verifying the equivalence of the two in the F* language results
(See Fig.7 for details).

However, there are still significant limitations to this ap-
proach. Bhargavan also mentioned in their evaluation part
that this language-based process cannot support many Solidity
language features. It can only translate and typecheck 46 out
of the 396 contracts they collected from https://etherscan.io.

ZEUS [19] did more work on translating the smart contract
language. Zeus consists of three parts: a) policy builder, b)
source code translator, and c) verifier. The policy builder
performs static analysis on the smart contract code, extract
the predicate from the policy condition and then insert the
assertion into the contract code. Unlike [18], Zeus does not
directly deal with the source code of Solidity but converts it
into LLVM bytecode by the source code translator. Finally, the
verifier will check the assertion inserted by the policy builder
before, and then determine violations. Fig.8 is an example
to explain how the Zeus works on smart contract. Firstly,
ZEUS formalises Solidity Semantics into Abstract language.
For the condition policy in these codes, ZEUS creates an
XACML-Styled [20] five-tuple policy specification to describe
and convert these policies into assert statements. The LLVM
translator then helps ZEUS convert these solidity codes into
LLVM’s bytecode and finally validate the code with the CHC
[21] symbolic model checker.

C. Symbolic Execution
Symbolic execution is a technique based on formal verifi-

cation. It analyses programs to test whether specific properties
can be violated. This technique can yield strong guarantees on
the checked property due to the nature of symbolic execution,
which is it can simultaneously explore multiple paths. The key
idea of symbolic execution is to analyze programs based on
symbolic values, rather than concrete input values.

In symbolic execution, the execution part [22], which is
performed by an engine, maintains each explored control flow
path. This engine contains two parts: 1) a first-order Boolean
formula describes the conditions included in branches of paths,
and 2) a symbolic memory store maps variables to symbolic
expressions. Branch execution updates the formula while a
model checker verifies whether there are any violations.

Luu [16] created a static analysis tool named OYENTE
based on symbolic execution technique to help developers
avoid the vulnerabilities in writing smart contracts. Fig.9 is
an overview of OYENTE. After extracting the smart contract
bytecode from the EVM, CFGBuilder plots the main control
flow graph (CFG) for each smart contract. Then, Explorer
performs the Symbolic execution on these CFGs, and uses the
Z3 solver [23] to complete the CFG block entry condition
according to the path constraints. Core Analysis performs a
vulnerability analysis on the collated CFGs, and at the end
Validation will verify the analysis results.

D. Language Translation
Language translation is a common support tool for software

vulnerability detection. In general, it can transform some

Fucntion transfer() {

msg.sender.send(msg.value);

balance = balance – msg.value;

}

<Subject> msg.sender </Subject>

<Object> msg.value </Object>

<Operation trigger="pre"> send </Operation>

<Condition> msg.value <= balance </Condition>

<Result> True </Result>

havoc balance

B@δ() {

assert(value <= balance)

post B`@δ()

balance = balance - value

}

define void @transfer() {

entry:

% value = getelementptr %msgRecord* @msg, i32 0, i32 4

%0 = load i256* % value

%1 = load i256* @balance

%2 = icmp ule i256 %0, %1

br i1 %2, label %"75", label %"74"

"74": ; preds = %"64"

call void @ VERIFIER error()

br label %"75"

"75": ; preds = %"74", %"64"

% sender = getelementptr %msgRecord* @msg, i32 0, i32 2

%3 = load i160* % sender

%4 = call i1 @send(i160 %3, i256 %0)

%5 = sub i256 %1, %0

store i256 %5, i256* @balance

ret void

}

Extract Policy

Condition

 Translate to

 Abstract Language

Tranlate to

LLVM bitcode

Fig. 8. An example of Zeus working flow

Validator

ByteCode

Core

Analysis
Explorer Visualizer

Ethereum

State

CFG Builder

Z3 Bit-Vector Solver

Fig. 9. Overview of the OYENTE Tool. Oyente was built based on modular
design, and it consists of four main components: 1) CFG Builder draws a
control flow graph of whole Byte Code; 2) Explorer is an interpreter loop,
and it runs a single instruction when it gets a state from last the run; 3)
Core Analysis contains several sub-components that help it analyze different
security vulnerabilities; 4) Validation helps OYENTE remove false positive
via manually verifying the results provided by Core Analysis.

hard-to-read or unpopular languages into some well-known
programming languages. For the static method of vulnerability
analysis, if you need to analyze an executable file, the general
practice is to convert it into a high-level language that we know
well with the decompilation tool [24] for the researchers to
further processing. This kind of decompilation is a translation
of assembly language into high-level languages such as C,
C++, etc. Similarly, disassembly can help researchers solve
problems on binary files, and in essence, it is also a translation
technique. This translation technology can be used not only

in different levels of programming language but also help us
achieve the conversion of peer languages, such as C++ to
JAVA [25]. This kind of translation is not meaningless. It can
turn some hard-to-read languages (e.g., machine code) into
popular languages with many supporters, and then the program
will be easier to understand, and researchers can use some
sophisticated analytical techniques according to the language.

As a new language with the birth of new technologies,
the programming language environment for smart contracts
is far less sophisticated than other mature languages like C++
and so on. As a result, many research teams have chosen to
translate the language of smart contracts into the form they
want, and then use existing sophisticated software analysis
techniques to detect the vulnerability problems in smart con-
tracts. Bhargavan‘s team [18] translates Ethereum and smart
contracts into F*, which is a functional programming language
designed for program verification, to analyze the security and
functional correctness of the platform while it is running.
Similarly, in ZEUS’s [19] work, they implemented a tool to
translate solidity code into LLVM bytecode and proposed a
model detection scheme based on LLVM bytecode. Leveraging
LLVM bytecode helps their analytical work take advantage of
the support of robust industry tools on LLVM platform. Brent
et al. [26] used the decompilation method. They decompiled
and analyzed the bytecode of the smart contract extracted
from Ethereum, and got readable low-level mnemonics that
are annotated with program counter addresses and help Vandal
[26] generate the control flow graph of these smart contracts.

V. CHALLENGE

As we mentioned in this paper, software vulnerability
detection methods have been well applied to smart contract
platforms. However, due to the many differences among the
smart contracts, the traditional software programs, and the
bottlenecks of these vulnerability detection technologies, we
still face challenges in the detection of vulnerability in smart
contracts.

A. Fuzzing

Due to the concurrency of smart contracts and the dis-
tributed design of blockchain, fuzzing on smart contract plat-
forms has many differences from fuzzing in the traditional
sense. In software vulnerability mining, whenever fuzzing
causes the target program to crash once, we consider it a
potential vulnerability (requires tools or manual verification).
In smart contracts, the vulnerability we mentioned earlier is
almost impossible to crash the EVM, even though the collapse
of a single contract does not affect the entire EVM. Therefore,
as we mentioned in ContractFuzzer, when using fuzzing in
smart contracts, we also need to record the results of each
execution result of fuzzing and perform additional analysis to
verify vulnerabilities. ContractFuzzer uses a predefined test
oracle to solve this problem.

For example, for a gas-free problem, ContractFuzzer will
repeatedly execute a single contract and check if the residual
gas value of the send() function in the result analysis is zero.
However, the results of some single contract executions do not
reveal the vulnerability which requires special circumstances
(such as reentrancy attacks, which require interactive calls
between two smart contracts). In [15], for the reentrancy
attack, they created three kinds of accounts and two options
for call.value(). In this scenario, if a single contract is to
be fuzzed k times, the ContractFuzzer will perform 6(2*3)*k
times fuzzing, and then analyze the results. For this kind of
reentry attack, we can make this scene design more com-
plicated to cover more situations, but at the same time, the
fuzzing execution time and analysis time will be accompanied
by complexity growth. Therefore, how to find the balance
between scene complexity and vulnerability patterns coverage
is a challenge for fuzzing method.

Similarly, some of the problems that appear in the software
fuzzing test also exist in smart contracts. Sanity checks (like
magic number or checksum condition checks) in programs
has always been a challenge for fuzzing, and its presence has
also increased the false positive rate of fuzzing experiments.
Due to the input generated by fuzzing has a high degree
of randomness, fuzzing is difficult to pass for a condition
check such as ‘Str == “HelloWorld”’, resulting in some paths
becoming difficult or inaccessible. This problem has become
more severe in smart contracts. Since many smart contracts
include external attributes as part of the verification (such as
timestamps), this leads to the fact that if the environment at
this time does not meet the requirements of the contract (the
date limit has passed). Then, the contract may not be able to

be entered, and the vulnerability hidden in the contract may
not be detected.

B. Language Translation

Because there are no related models or tools designed
for smart contract platform, both symbolic execution and
formal verification require language translation to transform
the unfamiliar languages into a familiar one.

For example, in symbol execution, its core model ‘SMT
solver’ has many existing tools (such as Z3, SMT-ART, etc.)
available, but these tools only support specific languages like
C++, Java or LLVM bytecode. This means that if we want to
use these tools, we must first convert the contract code written
by solidity into the language corresponding to the tools.
However, due to some unique features in the solidity language,
converting it to another language usually requires additional
manipulation of some of the instructions. For example, the
invocations in solidity can be divided into three types: internal,
external, and call(). Internal calls and external calls exist in
most programming languages, but the call(), which can call
methods in other contracts, is rare in other programming lan-
guages and requires special handling when translating. Formal
verification also faces the same problem. Often, when we use
model checking to guide the development of an application,
we need to convert the requirements into specifications using
abstract language or paradigm. After passing the detection
of the model detector, we can convert the specifications into
application code. When we need to verify that an application
has a problem, we need to convert the code to specifications
first, but at this time, the conversion may encounter many
problems. Bhargavan‘s team [18] wants to convert the code
in solidity to F* and also decompile bytecode in EVM to F*
then verify their equivalence. However, in the evaluation part,
they also mentioned that F* does not support many of the
syntactic features in Solidity, resulting in only 46 of the 396
contracts to be translated.

In general, both the symbolic execution and the formal
verification are developed well in software vulnerability min-
ing technology. For the new platform of smart contracts, the
challenge in applying this technology is how to translate
Solidity into the required language fully.

C. Analysis

Whether it’s fuzzing, symbolic execution or formal ver-
ification, they end up using static analysis methods when
mining vulnerabilities. In [15], for the 7 different vulnerabili-
ties proposed, they design corresponding oracles to determine
whether the contract is vulnerable when analyzing the fuzzing
execution results. For example, for the gasless problem, if the
gas value of the call() function in the contract is 0 during the
analysis, the contract is considered to have a gasless problem.
Here, whether the remaining number of gas of the call() in the
contract is 0 will be considered as a constraint for detecting
this vulnerability. Such constraints make the analysis simple
and easy to automate, but also bring false positives and false
negatives.

The highly customized static analysis method also brings
limitations to scalability. The existing analysis aims at some
vulnerabilities that have been studied, so these methods cannot
identify other vulnerabilities that are not discovered or appear
in unnoticed scenarios. Of course, a good constraint can help
us cover multiple manifestations of the same vulnerability,
but whether we recognize all the patterns of this vulnerability
depends on the triggering logic of the vulnerability itself.

In a nutshell, how to design a constraint that captures most
of the vulnerability patterns is a challenge for these static
analysis methods.

VI. CONCLUSION

In this paper, we survey several vulnerabilities focused on
smart contracts in Ethereum such as reentrancy attacks, gasless
send and vulnerability about timestamps. Then we present their
triggering logic. Also, we briefly introduce fuzzing, symbolic
execution, formal verification, and language translation meth-
ods that are often used for software vulnerability detection,
and overview some tools for applying these methods to smart
contract vulnerability detection.

These software vulnerability detection tools excel in detect-
ing vulnerabilities in smart contracts, but at the same time, for
such a new platform, the new features in smart contracts also
pose challenges to the application of these tools. For different
tools, we analyze the limitations imposed by the new features
of Ethereum and raise the challenges that may constrain their
development.

REFERENCES

[1] “Ethereum white paper,” 2019. [Online]. Available: https://www.
ethereum.org

[2] “Introduction to smart contracts,” 2019. [Online]. Available: https:
//solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html

[3] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts sok,” in Proceedings of the 6th International Conference
on Principles of Security and Trust - Volume 10204. Springer-Verlag
New York, Inc., 2017, pp. 164–186.

[4] A. Juels, A. Kosba, and E. Shi, “The ring of gyges: Investigating the
future of criminal smart contracts,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 283–295. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978362

[5] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. ACM, 2018, pp. 67–82.
[Online]. Available: http://doi.acm.org/10.1145/3243734.3243780

[6] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor,
“Finding the greedy, prodigal, and suicidal contracts at scale,” in
Proceedings of the 34th Annual Computer Security Applications
Conference, ser. ACSAC ’18, 2018, pp. 653–663. [Online]. Available:
http://doi.acm.org/10.1145/3274694.3274743

[7] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 67–82.

[8] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. ACM, 2018, pp. 65–68.

[9] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, “Kevm: A
complete formal semantics of the ethereum virtual machine,” in 2018
IEEE 31st Computer Security Foundations Symposium (CSF), July 2018,
pp. 204–217.

[10] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 270–282.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978326

[11] (2016) analysis of the dao exploit. [Online]. Available: http:
//hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

[12] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
pp. 32–44, 1990.

[13] “King of the ether throne smart contract,”
2016. [Online]. Available: https://solidity.readthedocs.io/en/v0.4.24/
introduction-to-smart-contracts.html

[14] “Units and globally available variables,” 2016. [Online]. Available:
https://solidity.rtfd.io/en/develop/unitsandglobalvariables.html

[15] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[16] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978309

[17] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P.-Y. Strub,
and G. Bierman, “Gradual typing embedded securely in javascript,” in
ACM SIGPLAN Notices, vol. 49, no. 1. ACM, 2014, pp. 425–437.

[18] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short paper,”
in Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security. ACM, 2016, pp. 91–96.

[19] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in 25th Annual Network and Distributed System
Security Symposium (NDSS18), 2018.

[20] (2013) extensible access control markup language (xacml) xml media
type. [Online]. Available: https://tools.ietf.org/html/rfc7061

[21] K. L. McMillan, “Interpolants and symbolic model checking,” in
Proceedings of the 8th International Conference on Verification,
Model Checking, and Abstract Interpretation, ser. VMCAI’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 89–90. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1763048.1763057

[22] R. Baldoni, E. Coppa, D. C. Delia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, p. 50, 2018.

[23] (2018) z3. [Online]. Available: https://github.com/Z3Prover/z3
[24] (2015) ida. [Online]. Available: https://www.hex-rays.com/products/ida/
[25] (2019) the most accurate and reliable source code converters. [Online].

Available: https://www.tangiblesoftwaresolutions.com/index.html
[26] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,

and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” arXiv preprint arXiv:1809.03981, 2018.

https://www.ethereum.org
https://www.ethereum.org
https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html
https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html
http://doi.acm.org/10.1145/2976749.2978362
http://doi.acm.org/10.1145/3243734.3243780
http://doi.acm.org/10.1145/3274694.3274743
http://doi.acm.org/10.1145/2976749.2978326
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html
https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html
https://solidity.rtfd.io/en/develop/units−and−global−variables.html
http://doi.acm.org/10.1145/2976749.2978309
https://tools.ietf.org/html/rfc7061
http://dl.acm.org/citation.cfm?id=1763048.1763057
https://github.com/Z3Prover/z3
https://www.hex-rays.com/products/ida/
https://www.tangiblesoftwaresolutions.com/index.html

	I Introduction
	II Overview of EVM
	II-A EVM Model
	II-B Features in EVM

	III Vulnerabilities
	III-A Reentrancy
	III-B Gasless
	III-C Timestamp

	IV Tools
	IV-A Fuzzing
	IV-B Formal Verification
	IV-C Symbolic Execution
	IV-D Language Translation

	V Challenge
	V-A Fuzzing
	V-B Language Translation
	V-C Analysis

	VI Conclusion
	References

