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Abstract

The Bitcoin backbone protocol [Eurocrypt 2015] extracts basic properties of Bitcoin's un-
derlying blockchain data structure, such as �common pre�x� and �chain quality,� and shows how
fundamental applications including consensus and a robust public transaction ledger can be
built on top of them. The underlying assumptions are �proofs of work� (POWs), adversarial
hashing power strictly less than 1/2 and no adversarial pre-computation�or, alternatively, the
existence of an unpredictable �genesis� block.

In this paper we show how to remove the latter assumption, presenting a �bootstrapped�
Bitcoin-like blockchain protocol relying on POWs that builds genesis blocks �from scratch� in
the presence of adversarial pre-computation. The only known previous result in the same setting
(unauthenticated parties, no trusted setup) [Crypto 2015] is indirect in the sense of creating a
PKI �rst and then employing conventional PKI-based authenticated communication.

With our construction we establish that consensus can be solved directly by a blockchain pro-
tocol without trusted setup assuming an honest majority (in terms of computational power). We
also formalize miner unlinkability, a privacy property for blockchain protocols, and demonstrate
that our protocol retains the same level of miner unlinkability as Bitcoin itself.

1 Introduction

As the �rst decentralized cryptocurrency, Bitcoin [27] has ignited much excitment, not only for its
novel realization of a central bank-free �nancial instrument, but also as an alternative approach to
classical distributed computing problems, such as reaching agreement distributedly in the presence
of misbehaving parties. Formally capturing such reach has been the intent of several recent works,
notably [18] where the core of the Bitcoin protocol, called the Bitcoin backbone, is extracted and an-
alyzed. The analysis includes the formulation of fundamental properties of its underlying blockchain
data structure, which parties (�miners�) maintain and try to extend by generating �proofs of work�
(POW, aka �cryptographic puzzle� [15, 30, 4, 20])1, called common pre�x and chain quality. It is
then shown in [18] how applications such as consensus (aka Byzantine agreement) [29, 25] and a
robust public transaction ledger (i.e., Bitcoin) can be built �on top� of such properties, assuming
that the hashing power of an adversary controlling a fraction of the parties is strictly less than 1/2.

∗Research supported by ERC project CODAMODA.
1In Bitcoin, solving a proof of work essentially amounts to brute-forcing a hash inequality based on SHA-256.
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Importantly, those properties hold assuming that all parties�honest and adversarial��wake
up� and start computing at the same time, or, alternatively, that they compute on a common
random string only made available at the exact time when the protocol execution is to begin (see
further discussion under related work below). Indeed, the coinbase parameter in Bitcoin's �genesis�
block, hardcoded into the software, contains text from The Times 03/Jan/2009, issue [6], arguably
unpredictable.

While satisfactory in some cases, such a trusted setup/behavioral assumption might be unrealis-
tic in other POW-based systems where details may have been released a lot earlier than the actual
time when the system starts to run. A case in point is Ethereum2, which was discussed for over a
year before the system o�cially kicked o�. That's from a practical point of view. At a foundational
level, one would in addition like to understand what kind of cryptographic primitives can be realized
without any setup assumption and based on POWs, and whether that is in particular the case for
the Bitcoin backbone functionality and its enabling properties mentioned above.

This question was addressed by Andrychowicz and Dziembowski [1], who showed how to per-
form secure multiparty computation (MPC) [32, 19] without trusted setup by creating a PKI �rst
using POWs. Given such PKI and assuming honest majority, MPC can then be performed using
standard techniques and realize any cryptographic functionality. While this in principle addresses
the foundational concerns, it leaves open the question of designing a blockchain protocol that is
provably secure without trusted setup.

Our results. In this paper we answer the above question in the a�rmative, by presenting a Bitcoin-
like protocol that neither assumes a simultaneous start nor the existence of an unpredictable genesis
block. E�ectively, the protocol starting �from scratch� enables the coexistence of multiple genesis
blocks with blockchains stemming from them, eventually enabling the players to converge to a
single blockchain. This takes place despite the adversary being allowed (polynomial in the security
parameter) pre-computation time. We work in the same model as [18] and we assume a 1/2 bound
on adversarial hashing power. We call this protocol the bootstrapped (Bitcoin) backbone protocol.

The unique features of our blockchain protocol are as follows.

No trusted setup and individual genesis block mining. Parties start without any prior coordina-
tion and enter an initial challenge-exchange phase, where they will exchange random values that
will be used to construct �freshness� proofs for candidate genesis blocks. The parties will run
the initial challenge-exchange phase for a small number of rounds, and subsequently will try to
mine their own genesis blocks individually. Once they mine or accept a genesis block from the
network they will engage in mining further blocks and exchanging blockchains as in Bitcoin's
blockchain protocol. On occasion they might switch to a chain with a di�erent genesis block.
Nevertheless, as we will show, quite soon they will stabilize in a common pre�x and a single
genesis block.

Freshness of genesis block impacts chains' total weight. Chains rooted at a genesis block will
incorporate its weight in their total valuation. Genesis blocks can be quite �heavy� compared
to regular blocks and their total valuation will depend on how fresh they are. Their weight
in general might be as much as a linear number of regular blocks in the security parameter.
Furthermore, each regular block in a chain accounts for 3 units in terms of the total weight
of the chain, something that, as we show, will be crucial to account for di�erences in terms of
weight that are assigned to the same genesis block by di�erent parties running the protocol.

Personalized chain selection rule. Given the co-existence of multiple genesis blocks, a ranking
process is incorporated into the chain selection rule that, in addition to its basic function (check-

2The Ethereum Project, https://www.ethereum.org/.
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ing the validity of a chain's content) and picking the longest chain, it now also takes into account
the freshness degree of a genesis block from the perspective of each player running the protocol.
The ranking process e�ectively yields a graded list of genesis blocks and is inspired by the �key
ranking� protocol in [1], where it is used to produce a �graded� PKI (see further discussion
below). The weight value for each genesis block will be thus proportional to its perceived �fresh-
ness� by each party running the protocol (the fresher the block the higher its weight). It follows
that honest players use di�erent chain selection procedures since each predicate is �keyed� with
the random coins that were contributed by each player in the challenge-exchange phase (and
thus guaranteed to be fresh from the player's perspective). This has the side e�ect that the
same genesis block might be weighed di�erently by di�erent parties. Despite these di�erences,
we show that eventually all parties accept the same chains as valid and hence will unify their
chain selection rule in the course of the protocol.

Robustness is achieved after an initial period of protocol stabilization. All our modi�cations
integrate seamlessly with the Bitcoin backbone protocol, [18], and we are able to show that our
blockchain protocol is a robust transaction ledger, in the sense of satisfying the properties of
persistence and liveness. Nevertheless, contrary to [18], the properties are satis�ed only after
an initial period of rounds where persistence is uncertain and liveness might be slower; this is
the period where the parties still stabilise the genesis block and they might more susceptible to
attacks. Despite this, a ledger built on top of our blockchain will be available immediately after
the challenges exchange phase. Furthermore, once the stabilization period is over the robust
transaction ledger behavior is guaranteed with overwhelming probability (in the length of the
challenges-exchange phase).

A high-level depiction of the protocol's phases, preceded by a period of potential precomputation
by the corrupt players, is given in Figure 1.

Figure 1: Timeline and phases of the bootstrapped Bitcoin backbone protocol.

We also formalize �miner unlinkability,� which captures the property of a blockchain protocol
to hide the identity of players (called �miners�) assuming the network layer itself does not reveal
this information. Unlinkability is formalized as follows: the adversary is incapable of distinguishing
between a normal execution of the protocol and an execution of the protocol where all player
messages are delivered via a �mix-net� [11]. It follows that if one wants to enjoy unlinkability
in practice, a mix-net should be deployed among the players running the unlinkable blockchain
protocol. This is feasible as it has been recently demonstrated by implementing a �peer-to-peer�
anonymous broadcast; see [31] for a construction based on DC-nets [12].

We prove that our bootstrapped backbone protocol enjoys the same unlinkability level as the
Bitcoin protocol; speci�cally, it is passively unlinkable and not actively unlinkable (see Section 2.3),
as we construct an active attack against both protocols. It is worth stressing that passive unlinka-
bility is another bene�t of our direct design; protocols that build a PKI and subsequently use it to
run a primitive such as authenticated broadcast cannot be unlinkable, even in the passive sense.

Finally, as mentioned above, besides the robust transaction ledger application, it is shown in [18]
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how a (randomized) consensus protocol can be built on top of the backbone protocol, assuming an
honest majority (in terms of computational power) and trusted setup (an unpredictable genesis
block). By applying the same construction on top of our bootstrapped backbone protocol, we
immediately obtain a randomized consensus protocol for honest majority without a trusted setup,
thus marking a contrast with the 2

3 lower bound in the traditional network setting with no setup [7].

Related work. Nakamoto [26] proposed Bitcoin, the �rst decentralized currency system based on
POWs while relaxing the anonymity property of a digital currency to mere pseudonymity. This
work was followed by a multitude of other related proposals including Litecoin3, Primecoin [24],
and Zerocash [5], and further analysis improvements (e.g., [17, 16]), to mention a few.

As mentioned above, we work in a model that generalizes the model of [18], who abstracted
out and formalized the core of the Bitcoin protocol�the Bitcoin backbone. As presented in [18],
however, the protocol considers as valid any chain that extends the empty chain, which is not going
to work in our model. Indeed, if the adversary is allowed polynomial-time pre-computation, he can
prepare a very long, private chain; then, by revealing blocks of this chain at the rate that honest
players compute new blocks, he can break security. As also mentioned above, to overcome this
problem one can consider that at the time honest parties start the computation, they have access to
a fresh common random string (a �genesis� block). Then, if we consider as valid only the chains that
extend this block, all results proved in [18] follow, since the probability that the adversary can use
blocks mined before honest players �woke up� is negligible in the security parameter. In this paper
we show how to establish such genesis block �from scratch,� and directly, as the next comparison
illustrates.

The problem of generating a genesis block (�unpredictable beacon�) from scratch was also consid-
ered in [2], as part of the more general goal of investigating MPC without trusted setup assumptions.
No trusted assumptions means no PKI (public-key infrastructure), a �graded� version of which is
what the authors show how to build, based on POWs, in such a way that the number of identities
each party gets is proportional to his hashing power.

In fact, the idea of using POWs as an identity-assignment tool was put forth earlier by Aspnes
et al. [3], as a way to combat Sybil attacks [14], in such a way that the number of identities assigned
to the honest and adversarial parties can be made proportional to their aggregate computational
power, respectively. For example, by assuming that the adversary's computational power is less
than 50%, one of the algorithms in [3] results in a number of adversarial identities less than half
of that obtained by the honest parties. By running this procedure in a pre-processing stage, it is
then suggested in [3] that a standard authenticated reliable broadcast protocol [13] could be run.
Such protocols, however, would require that the PKI be consistent, details of which are not laid
out in [3]. They are in [2], achieving the �graded� version mentioned above, with which parties
can run MPC protocols in the setting of honest majority computing power, and reliable broadcast
and unpredictable-beacon generation in the dishonest-majority (and random oracle) setting. As
in [2], Katz et al. [22] also consider achieving pseudonymous broadcast and MPC from POWs
(�cryptographic puzzles�) and the existence of digital signatures without prior setup, but under the
assumption of an unpredictable beacon.

In terms of additional properties for blockchain protocols and enhanced models, Kiayias and
Panagiotakos [23] de�ne �chain growth,� together with chain quality and common pre�x, and provide
black-box arguments for reducing the properties of a robust transaction ledger (persistence and
liveness�see Section 5) to these three properties. Here we follow a similar approach in the layout
of our security arguments. Pass et al. [28] consider a partially synchronous model of communication
where parties are not guaranteed to receive messages at the end of each round but rather after a

3http://www.litecoin.com.
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speci�ed delay ∆, and show that the backbone protocol can be proven secure in this setting. It is
an interesting direction to extend our results about the bootstrapped backbone protocol to their
setting.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we
describe the network model, introduce some basic blockchain notation, and enumerate the varios
security properties�the Bitcoin backbone's mentioned above as well as the new miner unlinkability
property. In Section 3 we present the bootstrapped Bitcoin protocol, while in Section 4 its analysis.
We conclude in Section 5 with a robust public transaction ledger as an application of the protocol,
and the evaluation of its miner unlinkability.

2 Model and De�nitions

We describe our protocols in a model that extends the synchronous communication network model
presented in [18] for the analysis of the Bitcoin backbone protocol (which in turn is based on
Canetti's formulation of �real world� execution for multi-party cryptographic protocols [8, 9]). As
in [18], the protocol execution proceeds in rounds with inputs provided by an environment program
denoted by Z to parties that execute the protocol.

Next we provide a high level overview of the model, focusing on the di�erences that are intrinsic
to our setting where the adversary has a precomputation advantage. The adversarial model in
the network is actively malicious following the standard cryptographic approach. The adversary is
rushing, meaning that in any given round it gets to see all honest players's messages before deciding
its strategy. Message delivery is provided by a �di�usion� mechanism that is guaranteed to deliver
all messages, without however preserving their order and allowing the adversary to arbitrarily inject
its own messages. Importantly, the honest parties are not guaranteed to have the same view of the
messages delivered in each round, except for the fact that all honest messages from the previous
round are delivered. Furthermore, the adversary is allowed to change the source information on
every message (i.e., communication is not authenticated). In the protocol description, we will use
Diffuse as the message transmission command to capture the �send-to-all� functionality that is
available in our setting.4 Note that, as in [18], an adversarial sender may abuse Diffuse and
attempt to confuse honest parties by sending and delivering inconsistent messages to them.

In contrast to [18], where all parties (the honest ones and the ones controlled by the adversary),
are activated in the same round, in our model the environment will choose the round at which all
the honest parties will become active; the corrupted parties, on the other hand, are activated in
the �rst round. Once honest parties become active they will remain active until the end of the
execution. In each round, after the honest parties become active, the environment activates each
one by providing input to the party and receives the party's output when it terminates. When
activated, parties are able to read their input tape Input() and communication tape Receive(),
perform some computation that will be suitably restricted (see below) and issue a Diffuse message
that is guaranteed to be delivered to all parties at the beginning of the next round.

In more detail, we model the execution in the following manner. We employ the parameterized
system of ITM's from [9] (2013 version) that is comprised of an initial ITM Z, called the environ-
ment, and C, a control function that is speci�ed below. We remark that our control function C
is suitably restricted compared to that of [9, 10] to take into account restrictions in the order of
execution that are relevant to our setting.

The execution is de�ned with respect to a protocol Π, a set of parties P1, . . . , Pn and an adversary
A. The adversary is allowed to corrupt parties adaptively up to a number of t < n parties. The

4In [18] the command name Broadcast is used for this functionality, which we sometimes also will use informally.
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protocol Π has access to two resources or �ideal functionalities,� the random oracle, and the di�usion
channel. Initially, the environment may pass input to either the adversary A or spawn an instance
running the protocol Π which will be restricted to be assigned to the lexicographically smallest honest
party (such restrictions are imposed by the control function [9]). After a party Pi is activated, the
environment is restricted to activate the lexicographically next honest party, except in the case
when no such party is left, in which case the next program to be activated is the adversary A;
subsequently, the round-robin execution order between the honest parties will be repeated.

Whenever a party is activated the control function allows for q queries to be made to the
random oracle while in the case of an activation of A a number of t · q queries are allowed where t
is the number of corrupted parties. Honest parties are also allowed to annotate their queries to the
random oracle for veri�cation purposes, in which case an unlimited amount of queries is permitted.
Note that the adversary is not permitted to take advantage of this feature of the execution. With
foresight, this asymmetry will be necessary, since otherwise it would be trivial for the adversary
to break the properties of our protocols by simply �jamming� the incoming communication tape of
the honest parties with messages whose veri�cation would deplete their access quota to the random
oracle per activation. Furthermore, for each party a single invocation to the di�usion channel is
permitted. The di�usion channel maintains the list of messages di�used by each party, and permits
the adversary A to perform a �fetch� operation so that it obtains the messages that were sent. When
the adversary A is activated, the adversary will interact with the di�usion channel, preparing the
messages to be delivered to the parties and performing a fetch operation. This write and fetch mode
of operation with the communication channel enables the channel to enforce synchrony among the
parties running the protocol (cf. [21]).

The term {viewP
Π,A,Z(κ, z)}κ∈N,z∈{0,1}∗ denotes the random variable ensemble describing the

view of party P after the completion of an execution with environment Z, running protocol Π, and
adversary A, on auxiliary input z ∈ {0, 1}∗. We often drop the parameters κ and z and simply refer
to the ensemble by viewP

Π,A,Z if the meaning is clear from the context. Following the resource-
bounded computation model of [9], it holds that the total length of the execution is bounded by
a polynomial in the security parameter κ and the length of the auxiliary string |z|, provided that
the environment is locally bounded by a polynomial (cf. Proposition 3 in [9]). Note that the above
execution model captures adversarial precomputation since it permits the environment to activate
the adversary an arbitrary number of times (bounded by a polynomial in the security parameter κ
of course) before the round-robin execution of the honest parties commences.

We note that the above modeling obviates the need for a strict upper bound on the number of
messages that may be transmitted by the adversary in each activation (as imposed by [2]). In our
setting, honest parties, at the discretion of the environment, will be given su�cient time to process
all the messages delivered via the di�usion channel including all messages that are injected by the
adversary.

The concatenation of the view of all parties ever activated in the execution, say, P1, . . . , Pn, is
denoted by viewΠ,A,Z . As in [18], we are interested in protocols Π that do not make explicit use of
the number of parties n or their identities. Further, note that because of the unauthenticated nature
of the communication model the parties may never be certain about the number of participants in
a protocol execution.

In our correctness and security statements we will be concerned with properties of protocols Π
running in the above setting (as opposed to simulation-based notions of security). Such properties
will be de�ned as predicates over the random variable viewΠ,A,Z(κ, q, z) by quantifying over all
locally polynomial-bounded adversaries A and environments Z (in the sense of [9]). Note that
all our protocols will only satisfy properties with a small probability of error in κ as well as in a
parameter k that is selected from {1, . . . , κ}. (Note that, in practice, one may choose k to be much
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smaller than κ, e.g., k = 6.)

2.1 Blockchain notation

Next, we introduce some basic blockchain notation, following [18]. A block is any triple of the form
B = 〈s, x, ctr〉 where s ∈ {0, 1}κ, x ∈ {0, 1}∗, ctr ∈ N are such that satisfy predicate validblockDq (B)
de�ned as

(H(ctr,G(s, x)) < D) ∧ (ctr ≤ q),
where H,G are cryptographic hash functions (e.g., SHA-256) modelled as random oracles. The
parameter D ∈ N is also called the block's di�culty level. The parameter q ∈ N is a bound that in
the Bitcoin implementation determines the size of the register ctr; in our treatment we allow this
to be arbitrary, and use it to denote the maximum allowed number of hash queries in a round. We
do this for convenience and our analysis applies in a straightforward manner to the case that ctr is
restricted to the range 0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block is the head of
the chain, denoted head(C). Note that the empty string ε is also a chain; by convention we set
head(ε) = ε. A chain C with head(C) = 〈s′, x′, ctr′〉 can be extended to a longer chain by appending
a valid block B = 〈s, x, ctr〉 that satis�es s = H(ctr′, G(s′, x′)). In case C = ε, by convention any
valid block of the form 〈s, x, ctr〉 may extend it. In either case we have an extended chain Cnew = CB
that satis�es head(Cnew) = B.

Consider a chain C of length m and any nonnegative integer k. We denote by Cdk the chain
resulting from the �pruning� the k rightmost blocks. Note that for k ≥ len(C), Cdk = ε. If C1 is a
pre�x of C2 we write C1 � C2.

2.2 Security properties

We are going to show that the blockchain data structure built by our protocol satis�es a number
of basic properties, as formulated in [18, 23]. At a high level, the �rst property, called common
pre�x, has to do with the existence, as well as persistence in time, of a common pre�x of blocks
among the chains of honest players [18]. Here we will consider a stronger variant of the property,
presented in [23, 28], which allows for the black-box proof of application-level properties (such as
the persistence of transactions entered in a public transaction ledger built on top of the Bitcoin
backbone�cf. Section 5).

De�nition 1 ((Strong) Common Pre�x Property). The strong common pre�x property Qcp with
parameter k ∈ N states that the chains C1, C2 reported by two, not necessarily distinct honest parties

P1, P2, at rounds r1, r2, with r1 ≤ r2, satisfy Cdk1 � C2.

The next property relates to the proportion of honest blocks in any portion of some honest
player's chain.

De�nition 2 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and k, k0 ∈ N states that for any honest party P with chain C in viewΠ,A,Z(κ, q, z), it holds that
for any k consecutive blocks of C, excluding the �rst k0 blocks, the ratio of adversarial blocks is at
most µ.

Further, in the derivations in [18] an important lemma was established relating to the rate at
which the chains of honest players were increasing as the Bitcoin backbone protocol was run. This
was explicitly considered in [23] as a property under the name chain growth. Similarly to the variant
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of the common pre�x property above, this property along with chain quality were shown su�cient
for the black-box proof of application-level properties (in this case, transaction ledger liveness; see
Section 5).

De�nition 3 (Chain Growth Property). The chain growth property Qcg with parameters τ ∈ R
(the �chain speed� coe�cient) and s, r0 ∈ N states that for any round r > r0, where honest party P
has chain C1 at round r and chain C2 at round r+s in viewΠ,A,Z(κ, q, z), it holds that |C2|−|C1| ≥ τ ·s.

2.3 Miner unlinkability

Next, we formalize a blockchain protocol property that concerns the privacy of the parties (�miners�).
At an intuitive level, miner unlinkability requires that it is hard for an adversary observing the
network to distinguish between them, even at the level of linking the messages of a single miner
across di�erent rounds in the protocol execution.

Unlinkability is a relevant property for the Bitcoin backbone and other blockchain protocols
that build �permissionless� blockchains since they do not require sender authentication in order to
operate. Given this, it is easy to observe that the protocols can operate even if all message passing
is performed via a �mix-net.� A mix-net, introduced by Chaum in [11], is a network overlay that
enables the delivery of a sequence of messages coming from a set of parties in some arbitrary random
order so that it is not feasible to link the messages to their sources. We can incorporate an abstract
mix-net in our execution model by augmenting the di�usion channel so that when it collects all
messages transmitted by honest parties (or the empty message if no message is transmitted by an
honest party), concatenate them and permute them according to some permutation over n elements.
The di�usion channel will otherwise operate in the same fashion: after the adversary fetches the
mixed sequence of messages, it will provide the list of messages for each party as before. We denote
the view of the adversary in the execution of the protocol Π when the di�usion is passed via a
mix-net (i.e., a random permutation in each round is applied each time the adversary performs a
fetch operation.) by viewA,mix

Π,A,Z(κ, z). We are now ready to de�ne the property.

De�nition 4 (Miner Unlinkability). A protocol Π satis�es statistical (resp., computational) miner
unlinkability if the random variables viewAΠ,A,Z(κ, z) and view

A,mix
Π,A,Z(κ, z) are statistical (resp.,

computationally) indistinguishable for all z.

As a special case of the above, a protocol will be said to satisfy passive miner unlinkability if it
satis�es the de�nition against an adversary A that acts �semi-honestly,� i.e., it does not change the
program of the corrupted parties. In contrast, in the general case of De�nition 4, we will use the
term miner unlinkability against an active attacker.

3 The Bootstrapped Backbone Protocol

In this section we present the �bootstrapped� Bitcoin backbone protocol; its security analysis is
presented in the next section. In a nutshell, the protocol is a generalization of the protocol in [18],
which is enhanced in two ways: (1) an initial challenge-exchange phase, in which parties contribute
random values, towards the establishment of an unpredictable genesis block, despite the precompu-
tation e�orts of corrupt players, and (2) a ranking process and chain-validation predicate that, in
addition to its basic function (checking the validity of a chain's content), enables the identi�cation
of �fresh� candidate genesis blocks. The ranking process yields a graded list of genesis blocks and
is inpired by the �key ranking� protocol in [1], where it is used to produce a �graded� PKI, as
mentioned in Section 1.
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The bootstrapped Bitcoin backbone protocol is executed by an arbitrary number of parties
over an unauthenticated network (cf. Section 2). For concreteness, we assume that the number
of parties running the protocol is n; however, parties need not be aware of this number when
they execute the protocol. Communication over the network is achieved by utilizing a send-to-all
Diffuse functionality that is available to all parties (and may be abused by the adversary in the
sense of delivering di�erent messages to di�erent parties). After an initial (�challenge�) phase, each
party is to maintain a data structure called a �blockchain,� as de�ned above. Each party's chain
may be di�erent, but, as we will prove, under certain well-de�ned conditions, the chains of honest
parties will share a large common pre�x.

As in [18], the protocol description intentionally avoids specifying the type of values that parties
try to insert in the chain, the type of chain validation they perform (beyond checking for its structural
properties with respect to the hash functions G(·), H(·)), and the way they interpret the chain. In
the protocol description, these actions are abstracted by the external functions V (·), I(·), R(·) which
are speci�ed by the application that runs �on top� of the backbone protocol.

Algorithm 1 The bootstrapped backbone protocol, parameterized by the input contribution function
I(·), the chain reading function R(·), and parameter l.

1: C ← ε
2: st← ε
3: round← 1 . Global variable round
4: Gen← ∅ . Set of candidate genesis blocks
5: Rank ← 〈ε〉
6: (c,A, c)← exchangeChallenges(1κ)
7: while True do

8: k ← round− l − 2
9: MGen ← {(〈s′, x′, ctr′〉, 〈A′l+1, . . . , A

′
l+1−k〉)} from Receive()

10: MChain ← chains C′ found in Receive()
11: (Gen,Rank)← updateValidate(c, A,MGen, Gen,Rank)
12: C̃ ← maxvalid(C,MChain, Gen,Rank)
13: 〈st, x〉 ← I(st, C̃, round, Input(),Receive())
14: Cnew ← pow(x, C̃, c)
15: if C 6= Cnew then

16: if C = ε then . New genesis block has been produced
17: Diffuse( (Cnew, 〈Al+1, . . . , Al+1−(k+1)〉) )
18: end if

19: C ← Cnew
20: Diffuse(C)
21: end if

22: round← round+ 1
23: if Input() contains Read then

24: write R(xC) to Output()
25: end if

26: end while

The bootstrapped backbone protocol. The protocol is speci�ed as Algorithm 1. At a high
level, the protocol �rst executes a challenge-exchange phase for l + 1 rounds (l will be determined
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later), followed by the basic backbone functions, i.e., mining and broadcasting blocks; a crucial
di�erence here with respect to the original backbone protocol is that the chain validation process
must also verify candidate genesis blocks, which in turn requires updating the validation function
as the protocol proceeds. (This, however, only happens in the next l rounds after the challenge
phase.) The protocol's supporting algorithms are speci�ed next.

The challenge-exchange phase. In order to generate an unpredictable genesis block, players �rst
execute a �challenge-exchange� phase, where they broadcast, for a given number of rounds (l + 1),
randomly generated challenges that depend on the challenges received in the previous rounds. The
property that is assured is that an honest player's k-round challenge, 1 ≤ k ≤ l, depends on the
(k− 1)-round challenges of all honest players. This dependence is made explicit through a one-way
hash function. The code of the challenge-exchange phase is shown in Algorithm 2.

Algorithm 2 The challenge-exchange function. Note that variable round is global, and originally
set to 1.

1: function exchangeChallenges(1κ)

2: c1
R← {0, 1}κ

3: Diffuse(c0)
4: round← round+ 1
5: while round ≤ l + 1 do
6: Around ← κ-bit messages found in Receive()

7: rround
R← {0, 1}κ

8: Around ← Around||rround
9: cround ← H(Around) . Compute challenge
10: Diffuse(cround)
11: round← round+ 1
12: end while

13: return (〈c1, . . . cl〉, 〈A2, . . . Al+1〉, cl+1)
14: end function

Validation predicate update. In the original backbone protocol [18], the chain validation func-
tion (called validate�see below) performs a validation of the structural properties of a given chain
C, and remains unchanged throughout the protocol. In our case, however, where there is no initial
fresh common random string, the function plays the additional role of checking for valid genesis
blocks, and players have to update their validation predicate as the protocol advances (for the �rst
l rounds after the challenge phase).

Indeed, using the challenges distributed in the challenge-exchange phase of the protocol, players
are able to identify fresh candidate genesis blocks that have been shared during that phase and
are accompanied by a valid proof. In addition, the valid genesis blocks are ranked with a negative
dependence on the round they were received. In order to help other players to also identify the
same genesis blocks, players broadcast the valid genesis blocks they have accepted together with
the additional information needed by the other players for veri�cation. The validation predicate
update function is shown in Algorithm 3. Recall that Gen is the set of candidate genesis blocks.

Chain validation. A chain is considered valid if in addition to the checks performed by the basic
backbone protocol regarding the chain's structural properties, its genesis block is in the Gen list,
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which is updated by the updateValidate function (Algorithm 3). The chain validation function is
shown in Algorithm 4.

Algorithm 3 The validation predicate update function.

1: function updateValidate(c,A,MGen, Gen,Rank)
2: k ← round− l − 2
3: if k ≥ l then
4: return Gen,Rank . No updates after round 2l + 2
5: end if

6: for each (〈s′, x′, ctr′〉, 〈A′l+1, . . . , A
′
l+1−k〉) in MGen do

7: if validblockDq (〈s, x, ctr〉) ∧ 〈s, x, ctr〉 6∈ Gen then
8: flag ← (H(A′l+1) = s) ∧ (cl−k ∈ A′l+1−k)
9: for i = l + 1− k to l do
10: if H(A′i) 6∈ A′i+1 then

11: flag ← False

12: end if

13: end for

14: if flag = True then

15: Gen← Gen ∪ 〈s, x, ctr〉
16: Rank[〈s, x, ctr〉]← l − k
17: Diffuse(〈s, x, ctr〉, 〈A′l+1, . . . , A

′
l+1−k, Al−k〉) . Augment A′ sequence with own

A value.
18: end if

19: end if

20: end for

21: return Gen,Rank
22: end function

Chain selection. The objective of the next algorithm in Algorithm 1, called maxvalid, is to �nd
the �best possible� chain when given a set of chains. The accepted genesis blocks have di�erent
weights depending on when a player received them. In addition, it is possible that the same genesis
block is received by honest players in two di�erent rounds (as we show later, those rounds have to
be consecutive). In order to take into account the �slack� introduced by the di�erent views honest
players may have regarding the same block, as well as the di�erent weights di�erent blocks may
have, we let the weight of a chain C be equal to the weight of its genesis block plus three times its
length minus one. (The reason for this will become apparent in the analysis�cf. De�nition 5.) The
chain selection function is shown in Algorithm 5.
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Algorithm 4 The chain validation predicate, parameterized by q,D, the hash functions G(·), H(·),
and the content validation predicate V (·). The input is C.
1: function validate(C, Gen)
2: b← V (xC) ∧ (C 6= ε) ∧ (tail(C) ∈ Gen)
3: if b = True then
4: 〈s, x, ctr〉 ← head(C)
5: s′ ← H(ctr,G(s, x))
6: repeat

7: 〈s, x, ctr〉 ← head(C)
8: if validblockDq (〈s, x, ctr〉) ∧ (H(ctr,G(s, x)) = s′) then
9: s′ ← s . Retain hash value
10: C ← Cd1 . Remove the head from C
11: else

12: b← False
13: end if

14: until (C = ε) ∨ (b = False)
15: end if

16: return b
17: end function

The proof-of-work function. Finally, we need to modify the proof-of-work function in [18], so
that when a genesis block is mined, the challenge computed in the last round of the challenge-
exchange phase will be included in the block. This, in addition to the proof of genesis information
sent in the backbone protocol, is required so that other honest players accept this block as valid
and rank it accordingly. The code is presented in Algorithm 6.

Algorithm 5 The function that �nds the �best� chain. The input is a set of chains and the list of
genesis blocks.

1: function maxvalid(C1, . . . , Ck, Gen)
2: temp← ε
3: maxweight← 0
4: for i = 1 to k do
5: if validate(Ci, Gen) then

6: wGeni ← Rank(tail(Ci))
7: weight← wGeni + 3(Ci| − 1)
8: if maxweight < weight then
9: maxweight← weight
10: temp← Ci
11: end if

12: end if

13: end for

14: return temp
15: end function
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Algorithm 6 The proof of work function, parameterized by q, D and hash functions H(·), G(·).
The input is (x, C, c).
1: function pow(x, C, c)
2: if C = ε then
3: s← c . c is required to prove freshness
4: else

5: 〈s′, x′, ctr′〉 ← head(C)
6: s← H(ctr′, G(s′, x′))
7: end if

8: ctr ← 1
9: B ← ε
10: h← G(s, x)
11: while (ctr ≤ q) do
12: if (H(ctr, h) < D) then . Proof of work found
13: B ← 〈s, x, ctr〉
14: break

15: end if

16: ctr ← ctr + 1
17: end while

18: C ← CB . Extend chain
19: return C
20: end function

Figure 2 presents the overall structure (phases and corresponding rounds) of the bootstrapped
backbone protocol. Next, we turn to its analysis.

Figure 2: The di�erent phases and corresponding rounds of the bootstrapped backbone protocol.
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4 Analysis of the Bootstrapped Backbone Protocol

First, some additional de�nitions that will become handy in the analysis. We saw in the previous
section that genesis blocks are assigned weights, and, further, that a single genesis block may have
di�erent weights for di�erent parties depending on when they received it. We extend this notion to
chains of blocks.

De�nition 5. Let wP (B) be the weight that P assigned to genesis block B. We de�ne the weight
of a chain C with genesis block B (with respect to party P )to be:

wP (C) = wP (B) + 3(|C| − 1).

If block B was not received by P until round 2l + 1, or if C = ε, then wP (C) = −1.

In [18], all parties assign the same weight to the same chain, i.e., the length of the chain; thus,
for all parties Pi, Pj we have that wPi(C) = wPj (C). In contrast, in our case the genesis block of
each chain may have di�erent weight for di�erent parties, akin to some bounded amount of �noise�
that is party-dependent being added to the chain weights. We are going to show that if the amount
of noise is at most 1, then by letting each new block weigh 3 units our protocol satis�es the chain
growth, common pre�x and chain quality properties.

De�nition 6. Regarding chains and their weight:

De�ne hC = maxP {wP (C)} and `C = minP {wP (C)}.
Let C(B) denote the truncation of chain C after its block B.
For a block B of a chain C, de�ne hC(B) = hC(B) and similarly for `C(B). (Sometimes we will
abuse notation and write `(B) instead of `C(B). As long as no collision happens `(B) is well
de�ned. The same holds for h(B).)

For chains C1 and C2, de�ne C1 ∩ C2 to be the chain formed by their common pre�x.

The following are important concepts introduced in [18], which we are also going to use in our
analysis:

De�nition 7. A round is called:

successful if at least one honest party computes a solution in this round;

uniquely successful if exactly one honest party computes a solution in this round.

Whether a block was mined by an honest party or by the adversary will be critical for our
analysis.

De�nition 8. In an execution blocks are called:

honest, if mined by an honest party,

adversarial, if mined by the adversary, and

u.s. blocks, if mined in a uniquely successful round by an honest player.

Recall that our model is ��at� in terms of computational power in the sense that all honest
parties are assumed to have the same computational power while the adversary has computational
power proportional to the number of players that it controls. The total number of parties is n
and the adversary is assumed to control up to t of them (honest parties do not know any of these
parameters). Obtaining a new block is achieved by �nding a hash value that is smaller than the
di�culty parameter D. Thus, the success probability that a single hash query produces a solution
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is p = D
2κ , where κ is the length of the hash. The total hashing power of the honest players is

α = pq(n − t), the hashing power of the adversary is β = pqt, and the total hashing power is
f = α+ β. Moreover, in [18], a lower bound on the probability that a round is uniquely successful
was established; denoted by γ and equal to α−α2. Notice that γ is also a bound for the probability
of a round being just successful.

For each round j, we de�ne the Boolean random variables Xj and Yj as follows. Let Xj = 1 i�
j was a successful round, i.e., at least one honest party computed a POW at round j, and let Yj = 1
i� j was a uniquely successful round, i.e., exactly one honest party computed a POW at round j.
With respect to a set of rounds S, let Z(S) denote the number of POWs obtained by the adversary
during the rounds in S (i.e., in qt|S| queries). Also, let X(S) =

∑
j∈S Xj and de�ne Y (S) similarly.

Note that γ|S| ≤ E[Y (S)] ≤ E[X(S)] ≤ α|S| and E[Z(S)] = β|S|.

Lemma 9. If |S| = k and γ ≥ (1 + δ)β for some δ ∈ (0, 1), then

Pr[Y (S) > (1 +
5δ

9
)Z(S)] > 1− e−Ω(δ2k).

Proof. By the Cherno� bound we have that:

Pr[Y (S) ≤ (1− δ

8
)E[Y (S)]] ≤ e− δ

2γk
128 and Pr[Z(S) ≥ (1− δ

9
)E[Z(S)] ≤ e− δ

2βk
243 .

Suppose none of the above events happens. Then, from the union bound, we get that with proba-

bility 1− e−(2 min( β
243

, γ
128

)δ2k−ln(2)) it holds that

Y (S) > (1− δ

8
)γk ≥ (1− δ

8
)(1 + δ)βk ≥ (1 +

5δ

9
)(1 +

δ

9
)βk > (1 +

5δ

9
)Z(S).

Remark 1. For ease of exposition, in our analysis we will assume that there are no collisions; that
is, for any two di�erent queries to the random oracle, always a di�erent response is returned. This
would generally be a problem since for example it would break independence of Xi, Xj , for i 6= j,
and we would not be able to apply the Cherno� bound in the previous lemma. However, since the
probability of a collision happening, as well as all other events we consider, is at most e−Ω(κ), we can
always use the union bound to include the event of no collision occurring to our other assumptions.
In addition, we assume that no two queries to the oracle are the same, as formalized by the Input
Entropy condition in [18].

Properties of the genesis block generation process. We now establish a number of properties
of the genesis block generation process.

Lemma 10 (Graded Consistency). If any honest party Pi accepts genesis block B with rank wPi(B) >
1, then all honest parties accept B with rank at least wPi(B)− 1.

Proof. Let wPi(B) = k > 1. Since Pi accepted B with rank k at some round r, he must have
received a message of the form (B,El+1, .., Ek+1), where

B is a valid block that contains H(El+1);

Ek+1 contains ck and for k + 2 < j ≤ l + 1, Ej contains H(Ej−1); and

ck is the challenge computed by Pi at round k.
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Since k > 0, according to Algorithm 3, Pi is going to broadcast (B,El+1, .., Ek+1, Ak), where
H(Ak) = ck is contained in Ek+1 and Ak contains all the messages received by Pi at round k. All
honest-party challenges of round k−1 were received in this round; therefore, all honest parties have
accepted or will accept block B by the next round and the lemma follows.

Lemma 11 (Validity). Genesis blocks computed by honest parties before round 2l+2, will be accepted
by all honest parties in the next round.

Proof. Suppose honest party Pi mined genesis block B at round m. According to Algorithm 1,
B contains the challenge he has computed in the last round of the challenge-exchange phase. In
addition, when the party broadcasts it, it includes the message sets Al+1, . . . , Ar, where Aj contains
the messages received by Pi at round j and r = 2l + 2−m. Since Pi is honest, the following hold:

B is a valid block that contains H(Al+1);

for r + 1 < j ≤ l + 1, Aj contains H(Aj−1);

if cr is the challenge sent by some honest party at round r, then cr is contained in Ar+1; and

all honest parties are going to receive the message.

Thus, all honest parties are going to accept B at round m+ 1 and the lemma follows.

Lemma 12 (Freshness). Let r ≤ l + 2. Every block computed before round r cannot be part of
some chain with genesis block B, where wP (B) ≥ r−1 for some honest party P , with overwhelming
probability in the security parameter κ.

Proof. We �rst look into the case where the block in the statement is a genesis block. So for the
sake of contradiction, suppose the adversary mines some genesis block B before round r, and this
block is accepted by some honest party P with a value greater or equal to r− 1. In the worst case,
that means that the adversary also created sets Al+1, . . . , Ar such that:

B is a valid block that contains H(Al+1);

for r + 1 < j ≤ l + 1, Aj contains H(Aj−1); and

if cr−1 is the r − 1 round challenge of P , cr−1 is in Ar.

Due to the random nonce honest parties add to their challenges at every round, the probability that
the adversary can guess cr−1 before round r is negligible in κ. In addition, since H is modeled as
a random oracle, the probability that the adversary can create these sets, conditioned on the event
that he cannot calculate cr−1 before round r, is also negligible. Hence, the adversary cannot create
such a genesis block with overwhelming probability.

Otherwise, suppose that there exists some non-genesis adversarial block B′, that has been mined
before round r and is part of a chain with genesis block B, where for some honest party P , wp(B) ≥
r−1. If no collision has occurred, B must have been mined before B′, and thus as we proved for the
�rst case, the probability that a genesis block with these properties exists is negligible in κ. Hence,
the lemma follows.

Weak chain growth. We now turn our attention to the weight of chains and prove a weak chain-
growth property. In the original Backbone protocol [18], it was proved that chains grow at least at
the rate of successful rounds, independently of the adversary's behavior. Here, at least initially, the
chains of honest parties grow in a �weak� manner, in the sense that the adversary is able to slow
down this growth by using his own blocks. Later on, we will show that after some speci�c round
our protocol also achieves optimal chain growth.

Lemma 13. Let round r such that l+ 2 ≤ r < 2l+ 2, and suppose that at round r an honest party,
say, P1 has a chain C such that wP1(C) = d. Then, by round s, where r ≤ s < 2l + 2, every honest
party P will have received a chain C′ of weight at least wP (C′) = d− 2 + 3

∑s−1
i=r Yi −

∑s−1
i=r Zi.
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Proof. Since r < 2l + 2, the genesis blocks of the chains that honest players have at this or any
previous round, must have weight at least 1. Hence, by Lemma 10, for any chain C′ of these chains,
it should hold that hC′ ≤ `C′ + 1. Let `(r) = d i� d is the minimum value of the set {`C |P is honest
and at round r has chain C}. Then we can show the following:

Claim 1. Suppose round r is uniquely successful and `(r) = d. Then for any round s > r it holds
that `(s) ≥ d+2. Moreover, if the adversary has not broadcast by round s any chain C that contains
an adversarial block B = head(C) such that `C(B) = d+ 2, it holds that `(s) ≥ d+ 3.

Proof of Claim. The proof is quite straightforward. For the �rst part, since `(r) = d and r is
uniquely successful, an honest party will broadcast a chain C at round r where `C ≥ d + 3. Thus,
at round r+ 1 all parties will receive a chain that has weight at least d+ 3 according to their view.
This implies that, at worst, they may adopt a chain of the same weight, hence in any case it holds
that `(s) ≥ d+ 2.

Suppose that by round s, the adversary has not broadcast any block B′ = head(C′) such that
`C′(B

′) = d+ 2 and C′ is valid. For the sake of contradiction, suppose that there exists some round
s > r such that `(s) < d + 3. Since at round r + 1 honest parties receive C, they will all adopt a
chain that weighs in their view at least d+ 3. Otherwise, they would adopt C. Moreover, they will
never adopt a chain with smaller weight. Hence, the only way `(r+ 1) = d+ 2 is if a chain that has
weight d + 2 for some honest party was broadcast at some round. By our assumption, an honest
party has mined the head of this chain. Since `(r) = d, he must have done that before round r,
otherwise the chain would weigh at least d+3 for any honest party. However, if he mined this chain
before round r, at round r all honest parties would have received this chain and `(r) = d+ 2, which
is a contradiction. Hence, the claim follows. a

Observe that if at round r P1 has a chain C of weight wP1(C) = d, then he broadcast C at an
earlier round. It follows that every honest party P will receive C by round r and wP (C) ≥ d− 1. It
is easy to see that if each honest party P at some round r′ has received a chain C where wP (C) ≥ k,
then for every round s′ ≥ r′ it holds that `(s′) ≥ k − 1. Thus for every round s′ ≥ r it holds that
`(s′) ≥ d− 2.

We now have two cases. In the �rst case,
∑s−1

i=r Yi ≤
∑s−1

i=r Zi. The claim above guarantees
that every time a uniquely successful round r′ happens, `(r′ + 1) ≥ `(r′) + 2. Thus, by repeatedly
applying this argument we immediately get that:

`(s) ≥ d− 2 + 2
s−1∑
i=r

Yi ≥ d− 2 + 3
s−1∑
i=r

Yi −
s−1∑
i=r

Yi

≥ d− 2 + 3
s−1∑
i=r

Yi −
s−1∑
i=r

Zi,

which implies that at round s all honest parties have received a chain that has su�cient weight
according to the lemma.

Otherwise,
∑s−1

i=r Yi >
∑s−1

i=r Zi. Note that for every uniquely successful round, in order for the
condition of the claim above to hold, the adversary must broadcast di�erent blocks that have weight
at least `(r) + 2 = d. Thus, for at least

∑s−1
i=r Yi−

∑s−1
i=r Zi uniquely successful rounds the condition
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of the claim will not hold and for any such round r′, `(r′ + 1) ≥ `(r′) + 3. Thus,

`(s) ≥ d− 2 + 3(
s−1∑
i=r

Yi −
s−1∑
i=r

Zi) + 2
s−1∑
i=r

Zi

≥ d− 2 + 3

s−1∑
i=r

Yi −
s−1∑
i=r

Zi.

Universal chain validity. A novelty of our construction is that the same genesis block may
have di�erent weight for di�erent parties. Unfortunately, it could be the case that due to the
adversary's in�uence, a genesis block is valid for one party but invalid for another. This could lead
to disagreement, in the sense that some honest parties may adopt a chain that others don't because
it is not valid for them. We wiil show that with overwhelming probability such an event cannot
occur for our protocol; as such, chain validity is a �universal� property; if some honest party accepts
a chain C as valid, then C will also be valid for all other parties.

Lemma 14. Suppose that for some δ ∈ (0, 1), 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , and γ ≥ (1 + δ)β, and

that at round r an honest party P has chain C. Then C will also be valid for all other parties from
this round on with probability 1− e−Ω(δ2k).

Proof. For the sake of contradiction, suppose there exists some honest party P ′ such that P ′ has
received chain C at round r and it is not valid for him. The only reason this may happen is that P ′

has not accepted the C's genesis block B. By Lemma 11 all honest parties know the genesis blocks
mined by other honest parties, thus B must have been computed by the adversary. We have two
cases. In the �rst case, round r is before round 2l+ 2. Recall that 2l+ 1 is the last round when the
validation predicate is updated. Then, since P has adopted C in the previous round, he must have
also broadcast B in the previous round. Thus, all honest parties will accept B as a valid genesis
block at round r and will also accept C as valid, which is a contradiction.

Otherwise, suppose r = 2l + 2. Again, if B was received before round 2l + 1 by some honest
party, C will look valid to all parties. So B must have been received for the �rst time at round
2l + 1 by P ; no honest party accepts new genesis blocks after this round. We will show that with
overwhelming probability in k, no honest party will ever accept a chain based on B.

Without loss of generality, suppose that P is the �rst honest party that accepts a chain based
on B at round r. Let E1 be the event where the honest parties mine a genesis block after round
l+ 2 + ((1− δ)k− 1) for the �rst time. It holds that the probability of E1 is at most (1− γ)(1−δ)k <
e−(1−δ)kγ . So suppose that E1 does not happen and at round l+ 2 + ((1− δ)k− 1) (< r) the honest
parties have computed at least one genesis block that has weight at least l − (1 − δ)k. Hence, in
this case, it follows from Lemma 13 that every honest party at round r will have a chain of weight
at least l− (1− δ)k − 2 + 3(Y (S′)− 1)− Z1(S′), where S′ = {l + 2, . . . , r} and Z1(S′) is the set of
blocks the adversary has broadcast to slow down chain growth during rounds in S′.

On the other hand, since block B is adversarial, and chain C is accepted for the �rst time by
an honest party at round r, all of its blocks must be adversarial; possibly C contains just B. By
de�nition block B weighs 1 for P . Thus, by Lemma 12 the adversary can start working building C
at round 2. However, the blocks that the adversary uses to slow down chain growth cannot also be
used for C, because they belong to chains whose genesis block has been announced earlier. So let
Z2(S) denote the blocks mined by the adversary in S = {2, . . . , r} that are not in Z1(S′). In order
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for C to be accepted by some honest party, it must hold that

1 + 3(Z2(S)− 1) ≥ l − (1− δ)k − 2 + 3(Y (S′)− 1)− Z1(S′).

Since Z1(S) and Z2(S′) are disjoint and S′ ⊆ S, the above implies:

3Z(S) ≥ l − (1− δ)k + 3Y (S′)− 3. (1)

Let E2 be the event that

Y (S′) ≤ Z(S′). (2)

From Lemma 9, if |S′| > k, which is the case here, Pr(E2) ≤ e−Ω(δ2k). Also, let E3 be the
event that Z(S \ S′) ≥ (1 + δ)lβ. Again, by an application of the Cherno� bound we have that
Pr(E3) ≤ e−Ω(δ2kβ), since |S \ S′| = l ≥ k. Suppose now that none of E2 or E3 holds. Then, since
by our assumptions we have that

3(1 + δ)lβ < l − (1− δ)k − 3, (3)

it follows that inequality 1 cannot hold and thus no honest party will ever accept a chain based on
B. By an application of the union bound the event E1 ∨ E2 ∨ E3 has probability at most e−Ω(δ2k)

and the lemma follows.
A subtle point here is that since the lemma holds for r = 2l+2, it follows that Lemma 13 should

hold for r = 2l+2. The same proof then can be applied for r = 2l+3 in this lemma, and inductively
it follows that both lemmas hold for any round of the execution. However, since we have to apply
repeatedly the universal validity proof for di�erent r, we must argue about the probability that the
statement holds for any r. Let E2(r) be the parameterized version of E2, where E2(r) is the event
where Y (S′) ≤ Z(S′) for S′ = {l + 2, . . . , r}. Then, for some ε > 0 it holds that∨

i≥2l+2

E2(i) ≤
∑

i≥2l+2

e−(εδ2k−ln(2)) ≤ e−(εδ2k−ln(2)+ln(1−e−εδ2 )) ≤ e−Ω(δ2k)

Thus, again by the union bound, the event E1∨
∨
i≥2l+2E2(i)∨E3 has probability at most e−Ω(δ2k).

If this event does not occur, as we have argued universal validity holds for any r. Hence, the lemma
follows.

The complete version of the weak chain growth lemma follows from the argument we've made
above.

Corollary 15. Suppose that for some δ ∈ (0, 1), 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , and γ ≥ (1 + δ)β.

Let round r such that r ≥ l + 2, and suppose that at round r an honest party, say, P1 has a chain
C such that wP1(C) = d. Then, by round s, where r ≤ s < 2l + 2, every honest party P will have
received a chain C′ of weight at least wP (C′) = d− 2 + 3

∑s−1
i=r Yi−

∑s−1
i=r Zi with probability at most

1− e−Ω(δ2k).

A bound on adversarially precomputed blocks. The honest parties begin mining right after
the challenge-exchange phase. Note that it does not help the adversary to precompute blocks before
the challenge-exchange phase, except for the small probability of the event that some of his blocks
happen to extend future blocks. We have shown that the adversary cannot create a private chain
that honest parties will adopt if he starts mining at the �rst round of the challenge-exchange phase.
It is though possible to start mining after the �rst round in order to gain some advantage over the
honest parties. The following lemma provides a bound on the number of blocks mined during the
challenge-exchange phase with su�cient weight so that they can be later used by the adversary.
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Lemma 16 (Precomputed blocks). Assume 3(1 + δ)f < 1 and l > (1−δ)k+3
1−3(1+δ)f , for some δ ∈ (0, 1).

Let R be the set that contains any adversarial block B mined before round l + 2, where h(B) >
l − 1− (1− δ)δ2k. Then Pr[|R| > 5δ

9 kβ] ≤ e−Ω(δ4k).

We are now ready to prove the security properties listed in Section 2.2.

4.1 Common Pre�x

Every time a uniquely successful round happens all honest players converge to one chain, unless the
adversary broadcasts some new block. This turns out to be a very important fact and a consequence
of it is described in the next lemma.

Lemma 17. Suppose block B in chain C is a u.s. block and consider a chain C′ such that B 6∈ C′.
If `C′ ≥ `C(B) − 1 then there exists a unique adversarial block B′ such that `C′(B

′) ∈ [`C(B) −
1, `C(B) + 1]. Moreover, if B is not a genesis block, then B′ will also not be a genesis block.

Proof. Assume block B was mined at some round r. If B is not a genesis block, then for any honest
block B′′ mined before round r it should hold that `(B′′) ≤ `(B) − 2. Otherwise, at round r no
honest party would choose the parent of B to mine new blocks. If B is a genesis block, then no
other honest party has mined a block in some previous round. On the other hand, for any honest
block B′′ mined after round r it must hold that `(B′′) ≥ `(B) − 1 + 3 = `(B) + 2, since honest
parties will only extend chains of length at least `(B) − 1 after this round. Thus, if a block with
weight in the given interval exists, it must be adversarial.

For the sake of contradiction, suppose B is not a genesis block while B′ is a genesis block and let
B′′ be the parent of B. Then hC(B

′′) < `C′(B
′) since hC(B

′′) ≤ `C(B)− 2. This implies than every
honest party received B′ before block B′′. But then, no honest party would mine on the parent of
B, because he would have lower weight than B′, which leads to a contradiction. Hence, the lemma
follows.

Next, we use Lemma 17 in order to show that the existence of a fork implies that the adversary
must have mined blocks proportional in number to the time the fork started. The proof is in the
Appendix.

Theorem 18. Assume 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Let

S be the set of the chains of the honest parties from round 2l + 2 and onwards of the bootstrapped
backbone protocol. Then the probability that S does not satisfy the strong common-pre�x property
with parameter k is at most e−Ω(δ4k).

4.2 Chain Growth

We proved that after round 2l + 1 the strong common-pre�x property is satis�ed. This implies
that all players share a common genesis block after this round. The next lemma shows that this is
su�cient in order to get chain growth at the same level as in the original Backbone protocol.

Lemma 19. Suppose that at round r an honest party P1 has a chain C of weight wP1(C) = d and all
honest parties after round r − 1 adopt chains that share the same genesis block B. Then, by round
s ≥ r, every honest party P will have received a chain C′ of weight at least wP (C′) = d−1+3

∑s−1
i=r Xi.

Proof. Since all parties adopt chains with the same genesis block after round r − 1, and P1 has
adopted a chain C of weight d, there are two cases: either (1) `C = d− 1 and any chain that honest
parties adopt after round r− 1 has a weight according to their view that is congruent to d or d− 1

20



modulo 3, or (2) `C = d and the weight is congruent to d or d + 1 modulo 3. This observation is
implied from the fact that each extra block adds 3 units of weight to the chain and the B can only
have two di�erent weights under the views of honest parties.

It is su�cient to study only one of the two cases so w.l.o.g. suppose that the weight of the chains
is congruent to d or d− 1 modulo 3. The proof is by induction on s− r ≥ 0. For the basis (s = r),
observe that if at round r P1 has a chain C of weight wP1(C) = d, then he broadcast C at an earlier
round (than r). It follows that every honest party P will receive C by round r and wP (C) ≥ d− 1.

For the inductive step, note that by the inductive hypothesis every honest party P has received
a chain C′ of weight at least wP (C′) = d′ = d− 1 + 3

∑s−2
i=r Xi by round s− 1. When Xs−1 = 0 the

statement follows directly, so assume Xs−1 = 1. Observe that every honest party queried the oracle
with a chain of weight at least d′ at round s − 1. It follows that every honest party P successful
at round s− 1 broadcast a chain C′ of weight at least wP (C′) = d′ + 3. For every other party P ′ it
holds that wP ′(C′) ≥ d′+2 ≥ d−1+3

∑s−1
i=r Xi−1. However, no chain that an honest party adopts

can have length d′+ 2, because d′+ 2 is congruent to d− 2 modulo 3. Thus all honest parties adopt
chains that have length at least d′ + 3 and the lemma follows.

It can be easily shown that Lemma 19 implies the chain growth property after round 2l + 1.

Theorem 20. Assume 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). The

bootstrapped Bitcoin protocol satis�es the chain growth property for r0 = 2l+ 2 with speed coe�cient
(1− δ)γ and probability at least 1− e−Ω(δ4s).

4.3 Chain Quality

We �rst observe a consequence of Theorem 18.

Lemma 21. Assume 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). From

round 2l+2 and onwards of the bootstrapped backbone protocol, the probability that the adversary has
a chain which is more than k blocks longer than the chain of some honest party is at most e−Ω(δ4k).

Proof. Given any execution and an adversary that at a round r has a chain C which is k blocks
longer than the chain C′ of an honest party P , we can de�ne an adversary such that at round r+ 1
the common-pre�x property does not hold for parameter k. The adversary simply sends C to P ′ 6= P
at round r.

Theorem 22. Assume 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1/2).

Suppose C belongs to an honest party and consider any k consecutive blocks of C computed after
round 2l+2 of the bootstrapped backbone protocol. The probability that the adversary has contributed
more than (1 + δ

2)βγ · k ≤ (1− δ
3)k of these blocks is less than e−Ω(δ5k).

Proof. Let us denote by Bi the i-th block of the chain C of an honest party P at some round r and
consider any k consecutive blocks Bu, . . . , Bv. De�ne K as the least number of consecutive blocks
Bu, . . . , Bw that include the k given ones (i.e., v ≤ w) and have the property that there exists a
round at which an honest party was trying to extend the chain ending at block Bw. Observe that K
is well de�ned since C belongs to an honest party. De�ne also r1 as the round that Bu was created,
r2 as the �rst round that an honest party attempts to extend Bw, and let S = {r : r1 ≤ r ≤ r2}.

Now let x denote the number of blocks from honest parties that are included in the k blocks
and�towards a contradiction�assume that

x ≤
[
1−

(
1 +

δ

2

)β
γ

]
k ≤

[
1−

(
1 +

δ

2

)β
γ

]
K.
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Let Z be the random variable that corresponds to the POWs obtained by the adversary during the
rounds in S and X the successful rounds of the honest players in the same sequence of rounds.

Suppose �rst that all the K blocks {Bj : u ≤ j ≤ w} have been computed during the rounds in
the set S. Then

Z ≥ K − x ≥
(

1 +
δ

2

)β
γ
K ≥

(
1 +

δ

2

)β
γ

(
X − γδk

8f

)
The �rst inequality comes from the fact that the adversary computed K − x of the K blocks. The
second one comes from the postulated relation between x and K. To see the last inequality, assume
X − γδk

8f > K. But then, by Lemma 21 for k = γδk
8f and Lemma 19, the assumption than an honest

party is on Bw at r2 is contradicted as all honest parties should be at chains of greater length.
To obtain the stated bound, note that if |S| < (1− δ)K/f , then, since f is bounded away from

1 by a constant, the Cherno� bound implies that in |S| rounds the total number of solutions is at
least K with probability at most e−Ω(δ2k). Otherwise, |S| ≥ (1−δ)K/f ≥ (1−δ)k/f and the bound
follows from an application of the Cherno� bound, since E[Z] = β|S|, while (using E[X] ≥ γ|S|,
E[X] ≥ (1− δ)γk/f > γk/2f , and (1 + δ

2)(1− δ
4) ≥ (1 + δ

8))

E
[(

1 +
δ

2

)β
γ

(
X − γδk

8f

)]
≥
(

1 +
δ

2

)β
γ
· E
[
X − δ

4
· E[X]

]
≥
(

1 +
δ

8

)
β|S|.

To �nish the proof we need to consider the case in which these K blocks contain blocks that the
adversary computed in rounds outside S. To manage this for a block he computed before the rounds
in S implies he predicted the hash of a block in {Bj : u′ ≤ j ≤ v′}; this occurs with probability
negligible in logD. If the block was computed after the rounds in S, then it was inserted between
two existing blocks; this implies a collision.

Corollary 23. Assume 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1/2).

The bootstrapped Bitcoin protocol satis�es the chain-quality property with parameters µ = (1 + δ
2)βγ ,

k0 = 2f(1 + ε)(l + 1), and k, with probability at least 1− eΩ(δ5k).

Proof. Note that the next two events occur with probability at least 1 − eΩ(ε2l), for any ε ∈ (0, 1).
The honest parties in the �rst l + 1 rounds have computed at most α(1 + ε)(l + 1) blocks. The
adversary, who might have been mining also during the challenges phase, has computed at most
2β(1+ε)(l+1). The statement then follows from Theorem 22, since α(1+ε)(l+1)+2β(1+ε)(l+1) <
2f(1 + ε)(l + 1).

5 Robust Public Transaction Ledger

In [18] an instantiation of the functions V(·),R(·), I(·) was given, in order for the Bitcoin backbone
protocol to implement a robust public transaction ledger, i.e., a public and permanent summary
of all transactions that honest parties can agree on as well as add their own, despite the poten-
tially disruptive behavior of parties harnessing less than 1/2 of the hashing power. We denote the
instantiation of our protocol with the same functions by ΠBoot

PL .

De�nition 24. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting without trusted setup if there is a round r0 so that the following two properties
are satis�ed:

Persistence: Parameterized by k ∈ N (the �depth� parameter), if in a certain round after r0 an
honest player reports a ledger that contains a transaction tx in a block more than k blocks away
from the end of the ledger, then tx will always be reported in the same position in the ledger
by any honest player from this round on.
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Liveness: Parameterized by u, k ∈ N (the �wait time� and �depth� parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds after round r0, then there exists an honest party
who will report this transaction at a block more than k blocks from the end of the ledger.

Chain quality, chain growth and the strong common pre�x property were shown in [23] to
be su�cient to implement such a ledger5 in a black-box manner. Our protocol satis�es all these
properties after a speci�c condition is met; chain quality holds after the 2f(1 + ε)(l + 1) block in
the chain of any player, as Corollary 23 dictates, and common-pre�x and chain growth hold after
round 2l + 2 according to Theorem 18. Finally, due to chain growth, after at most (2(1 + δ)(1 −
δ)f/γ+ 2)(l+ 1) ≤ 14(l+ 1) rounds all necessary conditions will have been met with overwhelming
probability.

Lemma 25 (Persistence). Assume 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real

δ ∈ (0, 1/2). Then for all k ∈ N protocol ΠBoot
PL satis�es Persistence after round 2l+2 with probability

1− e−Ω(δ5k), where k is the depth parameter.

Lemma 26 (Liveness). Assume 3(1+δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1+δ)β, for some real δ ∈ (0, 1/2).

Further, assume oracle Txgen is unambiguous. Then for all k ∈ N protocol ΠBoot
PL satis�es Liveness

after round 14(l + 1) with wait time u = 3
(1−δ)γ · max(k, 1

1−(1+ δ
2

)β
γ

) rounds and depth parameter k

with probability at least 1− e−Ω(δ5k).

Corollary 27. Assume 3(1+δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1+δ)β, for some real δ ∈ (0, 1/2). Then,

the protocol ΠBoot
PL implements a robust transaction ledger with parameter r0 equal to 14(l + 1).

Miner unlinkability. We now turn our attention to the miner unlinkability of the bootstrapped
backbone protocol. We examine this property in the speci�c instantiation of the ledger application
because unlinkability is impossible to show without taking into account the de�nition of the input
selection function I(·); indeed, in the general case, it is always possible to de�ne I(·) so that the
miners leak their identity in the way they prepare the current block and thus enable the adversary
to learn their identity. Following [18], the de�nition of I(·) can be performed so that a fresh bitcoin
account is selected at each round as the recipient of the coinbase block reward. Using this we can
prove the following proposition, which we prove both for the original bitcoin backbone as well as
our bootstrapped version.

Proposition 28. Both the bootstrapped Bitcoin backbone protocol and the original Bitcoin back-
bone protocol [18] satisfy passive miner unlinkability for the choice of I(·) stated above. Neither
protocol satis�es active miner unlinkability.

Proof. (sketch) Regarding passive unlinkability, it is easy to see that under the conditions suggested
the protocol satis�es perfect miner unlinkability. Indeed, the way that miners produce fresh bitcoin
accounts in I(·) is indistinguishable. On the other hand, it is easy to see that there is an attack in
the active setting for both protocols. We describe it in the case of but the attack operates as follows:
the adversary corrupts t players and performs the proof of work operation honestly until a block
is computed. Subsequently, it delivers the new block to exactly half the honest parties in order to
create two sets of honest players working on two di�erent chains, say A and B (we assume without
loss of generality that n − t is even). The adversary will remain passive until the honest parties

5A similar de�nitional approach was pursued in [28].
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compute a new block. When this happens, the adversary will associate a position in the message
sequence with the corresponding set, A or B. Subsequently, once the honest parties converge in
a single chain, the adversary will repeat the same division in the sets A,B for a total number of
k times for the same sets A,B. It is easy to see that in the case of execution viewAΠ,A,Z(κ, z),
the assignment of A and B will always be consistent, i.e., a position marked with A will never be
marked as B and vice versa. On the other hand, in the case of execution viewA,mix

Π,A,Z(κ, z), a position
marked with A initially, may be marked as B in the next iteration with probability 1/2. It follows
that the event that the execution will be consistent is an event that happens with probability 2−k

and hence this provides an e�ective distinguisher between the two distributions.

Remark 2. It is worth pointing out that in case one bootstraps a blockchain protocol on top of the
PKI forming stage following [2], the resulting protocol will not even be passively unlinkable. Indeed,
posting a proof of work for a certain public-key and subsequently submitting a digital signature under
this key, immediately breaks unlinkability, even passively, as it is only with negligible probability in
the number of players that the randomly mixed execution will appear indistinguishable to a regular
execution.
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A Proofs

A.1 Proof of Theorem 18.

We �rst prove a weaker lemma.

Lemma 29. Let 3(1 + δ)f < 1, l > (1−δ)k+3
1−3(1+δ)f , γ ≥ (1 + δ)β for some δ ∈ (0, 1). Suppose that

at round r(≥ 2l + 2) an honest party P1 adopts chain C1 and and some honest party P2 (possibly
the same) has or adopts C2. The probability that C1 and C2 diverge at round r′ < r is at most
e−Ω(δ4β(r−r′)).

Proof. We �rst show that a fork between two chains implies that the adversary must have mined a
number of blocks proportional to the uniquely successful blocks associated with these chains.

Claim 2. Let C1, C2 be chains at some round r and B′0, . . . , B
′
k be u.s. blocks in chains C′0, . . . , C′k

in increasing order of round mined. Then, if `C1∩C2 < `(B′0) − 1 and for all C ∈ {C1, C2} \ C′k:
`C ≥ `(B′k) − 1, there exist di�erent adversarial blocks B0, . . . , Bk such that for i ∈ {0, . . . , k}:
`(Bi) ∈ [`(B′0)− 1, `(B′k) + 1] and Bi ∈ {C′0, . . . , C′k} ∪ {C1, C2}.

Proof of Claim. We iterate over U = {(B′0, C′0), . . . , (B′k, C′k)} in the order of increasing index. Note
that by the Claim in Lemma 13, if (B, C) and (B′, C′) are two consecutive elements of U , then

`C′(B
′)− `C(B) ≥ 2 (4)

Consider (B, C) ∈ U and suppose all the previous elements have been associated with a distinct
adversarial block. In particular, let (B̄, C̄) be the previous one associated to (B̄′, C̄′). To choose
the adversarial block (B′, C′) to associate with (B, C) we consider the following cases (an example
is presented in Figure 3 covering most of the cases). In each case B′ is determined by C′ and
Lemma 17.

� If C /∈ {C1, C2} and C̄ ∈ {C1, C2}, then we have two cases. If B̄ 6∈ C and B̄′ 6∈ C, then let
C′ = {C1, C2} \ C̄′ and let B∗ in chain C∗ = C be the block guaranteed from Lemma 17 for
block B̄ in chain C. This block will be used in a subsequent step. Otherwise, B̄ ∈ C or B̄′ ∈ C.
Then C′ should be chosen appropriately from {C1, C2}, so that in the next transition from a
chain not in {C1, C2} to a chain in {C1, C2}, the corresponding block from Lemma 17 does not
intersect with the previously chosen block. This is always possible since any of the two chains
can be selected.

� If C ∈ {C1, C2} and C̄ /∈ {C1, C2}, then C′ ∈ {C1, C2} \ C. If C∗ is de�ned from a previous
application of the �rst rule, we match B with B∗.

� If C ∈ {C1, C2} and C̄ ∈ {C1, C2}, then let C′ ∈ {C1, C2} \ C.

� If C /∈ {C1, C2} and C̄ /∈ {C1, C2}, then {C1, C2} \ C̄′. The adversarial block guaranteed by
Lemma 17 for C′ is no common to C1, C2 due to `C1∩C2 < l(B′0)− 1.

� If B = B0, then if C ∈ {C1, C2}, C′ ∈ {C1, C2} \ C. Otherwise, as in the �rst case, C′ should be
chosen appropriately from {C1, C2}.

We need to verify that the above procedure does not assign the same block to two distinct
elements of U , (Bu, Cu) and (Bv, Cv).
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Note �rst that this is not possible if

|`Cu(Bu)− `Cv(Bv)| ≥ 3.

For example, by Equation (4), this is true if they are not consecutive in U . To see this, observe
that by Lemma 17,

`C′u(B′u) ∈ [`Cu(Bu)− 1, `Cu(Bu) + 1],

while
`C′v(B

′
v) ∈ [`Cv(Bv)− 1, `Cv(Bv) + 1].

Since these intervals are disjoint due to the inequality above, it follows that B′u 6= B′v.
Thus, we only need to consider the case

`Cu+1(Bu+1)− `Cu(Bu) = 2.

It is not hard to see that this situation cannot occur when Bu+1 is a descendant of Bu. Moreover,
when the blocks assigned are on di�erent chains, it is guaranteed that they are di�erent. These
covers all di�erent cases, except two. The �rst one, is when the �rst rule is applied and B̄′ is in C.
Then, B′ will be di�erent than B̄′ because, either is on a di�erent chain ({C1, C2} \ C) or they are
on the same chain and `C(B)− `C(B̄′) ≥ 3. The other case is when C∗ has been de�ned by the �rst
rule and the second rule is applied. In this case however, the honest block is matched to B∗, so we
can safely ignore the matched block and still have a complete matching. Note that, B∗ is unique
since no block consecutive to the one matched on B∗ is matched in chain C∗. Hence, again it is
impossible that these two blocks are the same.
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Figure 3: An example of the chains selected for the matching described in the claim in Lemma 29.
B0, . . . , B7 are u.s. blocks.

Now we can proceed to the core of the proof. The idea is that if a fork exists, we will use the
previous claim multiple times and get a matching between a su�ciently large amount of uniquely
successful blocks and adversarial blocks. Then, we will show that it is only with small probability
that the adversary has mined this number of blocks.

We start by de�ning a �bad� event that will only happen with negligible probability. Afterwards,
we will show that if this event does not occur, then there cannot be a fork as described on the
statement of the Lemma. Let BAD be the event where at least one of the following events happens:
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� a successful rounds happens for the �rst time after round l + 1 + (1− δ)δ2(r − r′)

� the event of Lemma 16 does happen

� for any s ≤ r − r′, for the set of rounds S = {s, . . . , r}:

Y (S) ≤ (1 +
5δ

9
)Z(S)

The probability that any of these events happens is at most e−Ω(δ4β(r−r′)). It follows from an
application of the union bound to the disjunction of these events, that the probability that BAD
happens is at most e−Ω(δ4β(r−r′)).

We will �rst study the case where C2 has been adopted by P2. Suppose C1, C2 diverge at round
r′ and assume BAD does not occur. Let block B′0 ∈ C1 ∩C2 be the most recent u.s. block where all
subsequent u.s. blocks are descendants of B′0. If no such block exists, assume there exists a block
B′0, mined in round 0, that is the parent of all genesis blocks, as in Figure 4, but does not a�ect the
weight of the chains it belongs too. Thus, in this case, whenever we write for example C1 we mean
C1 augmented with B′0. In any case, any u.s. block mined after B′0 will be a descendant of B′0 and
B′0 ∈ C1 ∩ C2.

Now let B′1 be the most recently mined u.s. block in some chain C′1 where (1) the last block in
C1 ∩ C′1 is in C1 ∩ C2 and (2) for any u.s. block B′ in chain C′ mined after B′0 it holds that the last
block in C1 ∩C′1 is the same or an ancestor of the last block in C1 ∩C′. Note that B′1 6∈ C1, otherwise
it would satisfy the de�nition of B′0 which is a contradiction. Moreover, for the same reason, the
last block of C1 ∩ C′1 either is B′0 or it is not u.s. block. Hence, if B′ is the �rst u.s. block mined
after B′0 that is in some chain C ′, it follows that `C1∩C′1 ≤ `C′(B

′) − 3 < `C′(B
′) − 1. Additionally,

since some honest party has chain C1 at round r, it holds that `C1 ≥ `C′(B
′
1) − 1. Thus, we can

apply Claim 2 for the chains C1 and C′1 from the �rst u.s. block mined after B′0 up to block B′1.
We apply this process as many times as possible. So B′2 would be the most recently mined u.s.

block in some chain C′2 where (1) the last block in C1 ∩ C′2 is in C1 ∩ C2 and (2) for any u.s. block
B′ in chain C′ mined after B′1 it holds that the last block in C1 ∩ C′2 is the same or an ancestor of
the last block in C1 ∩ C′. Then we can again apply Claim 2 for the chains C1 and C′2, from the �rst
honest block mined in a u.s. round after B′1 up to block B′2. We will argue that the adversarial
blocks matched in the two applications of Claim 2 so far will be di�erent. Let B′ be the next u.s.
block mined after B′1. Notice that in the worst case B′1 has been matched to a block B′′ in C1.
Also, B′ will be a descendant of the (real) genesis block of C1. Hence, l(B

′)− l(B′′) = 3k since they
share the same genesis block. If l(B′) − l(B′′) = 0 then if follows that l(B′) − l(B′1) < 2 which is
impossible. Otherwise, l(B′)− l(B′′) ≥ 3, and thus the block that is going to be matched to B′ by
Lemma 17 cannot be B′′. This process ends when no block B′i, for some positive i, with the desired
properties exists. Notice that it may be the case that the process ends for i = 0, no block matching
the speci�cation of B′1 exists.

So for any remaining u.s. block B in some chain C, mined after B′i, it holds that the last block
of C ∩ C1 is not in C1 ∩ C2. Hence, we can apply Claim 2 for chains C1, C2 and for all remaining u.s.
blocks. Thus, there exists a mapping between all u.s. blocks mined after B′0 and distinct adversarial
blocks that are descendants of B′0.

Now we have two cases. If B′0 actually exists, all adversarial blocks of the matching must have
been mined after the round B′0 was mined. Also, since B′0 ∈ C1∩C2, it must have been mined before
round r′. Therefore, there exists a set of rounds S = {r0, . . . , r

′, . . . , r} such that Z(S) ≥ Y (S).
This implies that BAD does occur, which is a contradiction.
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Otherwise, the adversary may use blocks that he has precomputed. Since BAD does not hold,
the honest parties have computed at least one genesis block that weighs at least l− (1−δ)δ2(r−r′).
Then, all adversarial blocks in the matching must weigh at least l − (1 − δ)δ2(r − r′) − 1, and by
Lemma 16 there are at most 5δ/9 such blocks. This implies that for S = {1, . . . , r} it holds that
Y (S) ≤ (1 + 5δ

9 )Z(S), which is a contradiction.
Thus, ¬BAD implies that C1 and C2 diverge at some round greater or equal to r′. By con-

traposition we get that if C1 and C2 diverge at some round before r′, BAD is implied. Thus, the
probability of this event is at most the probability of BAD happening, and the lemma follows.

As a �nal note, if P2 has chain C2 at the beginning of round r and head(C1) is a u.s. block,
it may not have a corresponding adversarial block in our matching. In this case, there exists
players P ′1, P

′
2 that adopted the chain ending in the parent of head(C1) and C2 at round r − 1, and

these two chains diverge at round r − r′. Hence, again the proof holds with probability at most
e−Ω(δ4β(r−r′−1)) = e−Ω(δ4β(r−r′)).

B′0

C1

C2
B′1

B′2

B′3

C1

C2B′2

B′3B′1

B′0

G1

G2

Figure 4: An example of two scenarios for the matching described by Lemma 29. Notice that in the
second one an arti�cial block B′0 has been introduced.

The strong common-pre�x property follows from the above lemma as in [23].

A.2 Proof of Lemma 16

Proof. Let B = head(C) be a block that is contained in R and B′ be the genesis block of C. First, we
are going to show that if B′ was computed before round l+ 1− 2(1− δ)δ2k, then B must have been
computed after round l+ 1− (1− δ)δ2k. Suppose that block B′ was computed at round l+ 1− r∗
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of the challenges phase, for r∗ > 2(1− δ)δ2k; thus, by Lemma 12 it holds that hC(B
′) < l − r∗. In

order for C to have the required weight, the adversary must have mined at least

d(l − (1− δ)δ2k − 1− (l − r∗ − 1))/3e = d(r∗ − (1− δ)δ2k)/3e

blocks, starting from round l+ 1− r∗. Let E1 be the event that the adversary after r∗ − (1− δ)δ2k
rounds has computed more than (1 + δ)(r∗− (1− δ)δ2k)β blocks. By an application of the Cherno�
bound, Pr(E1) ≤ e−Ω(δ4k). By our assumptions, this number of blocks is not su�cient to get a
chain of the required weight, that is

(1 + δ)(r∗ − (1− δ)δ2k)β < d(r∗ − (1− δ)δ2k)/3e.

Therefore, if E1 does not hold, then the adversary will start mining B after round l+1− (1−δ)δ2k,
for any B in R.

Next, we are going to bound the number of blocks the adversary can compute in 2(1 − δ)δ2k
rounds; recall that we are interested in blocks that were mined after round l−2(1−δ)δ2k and before
round l + 2. Let E2 be the event that the adversary mines at least 2(1 + δ/8)(1− δ)δ2kβ(< 5δ

9 kβ)

blocks in 2(1−δ)δ2k rounds. By an application of the Cherno� bound, Pr(E2) ≤ e−Ω(δ4k). Since by
an application of the union bound E1 ∨ E2 happens with probability at most e−Ω(δ4k), the lemma
follows.

A.3 Proof of Proposition 28

Proof. (sketch) Regarding passive unlinkability, it is easy to see that under the conditions suggested
the protocol satis�es perfect miner unlinkability. Indeed, the way that miners produce fresh bitcoin
accounts in I(·) is indistinguishable. On the other hand, it is easy to see that there is an attack in
the active setting for both protocols. We describe it in the case of but the attack operates as follows:
the adversary corrupts t players and performs the proof of work operation honestly until a block
is computed. Subsequently, it delivers the new block to exactly half the honest parties in order to
create two sets of honest players working on two di�erent chains, say A and B (we assume without
loss of generality that n − t is even). The adversary will remain passive until the honest parties
compute a new block. When this happens, the adversary will associate a position in the message
sequence with the corresponding set, A or B. Subsequently, once the honest parties converge in
a single chain, the adversary will repeat the same division in the sets A,B for a total number of
k times for the same sets A,B. It is easy to see that in the case of execution viewAΠ,A,Z(κ, z),
the assignment of A and B will always be consistent, i.e., a position marked with A will never be
marked as B and vice versa. On the other hand, in the case of execution viewA,mix

Π,A,Z(κ, z), a position
marked with A initially, may be marked as B in the next iteration with probability 1/2. It follows
that the event that the execution will be consistent is an event that happens with probability 2−k

and hence this provides an e�ective distinguisher between the two distributions.
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