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Abstract. Traditionally, cryptographers assume a “worst-case” adver-
sary who can act arbitrarily. More recently, they have begun to consider
rational adversaries who can be expected to act in a utility-maximizing
way. Here we apply this model for the first time to the problem of Byzan-
tine agreement (BA) and the closely related problem of broadcast, for
natural classes of utilities. Surprisingly, we show that many known re-
sults (e.g., equivalence of these problems, or the impossibility of toler-
ating t ≥ n/2 corruptions) do not hold in the rational model. We study
the feasibility of information-theoretic (both perfect and statistical) BA
assuming complete or partial knowledge of the adversary’s preferences.
We show that perfectly secure BA is possible for t < n corruptions
given complete knowledge of the adversary’s preferences, and charac-
terize when statistical security is possible with only partial knowledge.
Our protocols have the added advantage of being more efficient than BA
protocols secure in the traditional adversarial model.

1 Introduction

The problem of Byzantine agreement (BA) was introduced by Lamport, Shostak,
and Pease [15] as an abstraction of their earlier work on distributed computation
among fallible processors [18]. The problem comes in two flavurs, called consen-
sus and broadcast. In consensus, we have n players each having an input and it
is required that they all agree on an output y (consistency), where if all correct
players have the same input x then y = x (correctness). In broadcast, only one
player (the sender) has input, and the requirements are that all players should
agree on an output y (consistency), such that if the sender correctly follows the
protocol then y is equal to its input (correctness).

In the original work of Lamport et al. [15] BA was motivated by the so-
called Byzantine generals problem: The generals of the Byzantine army, along
with their troops, have encircled an enemy city. Each general is far away from the
rest and messengers are used for communication. The generals must agree upon
a common plan (to attack or to retreat), though one or more of the generals may
be traitors who will attempt to foil the plan. The good generals do not know
who the traitors are. If the good generals agree upon the plan unanimously, the
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plan will succeed. The traitors, however, may choose to coordinate in a manner
that would mislead the good generals into disagreement.

In the formal definition of the problem, the destructive behavior of the
traitors is modeled by assuming that they are corrupted by a (central) adversary
who coordinates them and tries to break the security. Breaking the security of
BA corresponds to violating some of the aforementioned properties, i.e, correct-
ness or consistency (or both). But imagine that the generals had some additional
preferences. Say, for example, the traitors wanted to cause inconsistency among
the honest generals but, if they can’t do that, they would at least prefer the hon-
est generals retreat rather than attack. Or maybe they just want as few generals
to attack as possible. In short, it is realistic to assume that the traitors are not
acting arbitrarily, but instead have a clear set of preferences, and prefer some
outcomes over others.

In this paper, we model the above by assuming rational adversaries. A ratio-
nal adversary prefers a particular outcome of the protocol and may deviate in an
attempt to achieve its preference. This is different from the traditional malicious
adversary setting, wherein the only goal of the adversary is to break the security
of a protocol. We investigate feasibility of rational Byzantine agreement (RBA)
under various assumptions regarding the adversary’s preferences. Interestingly,
in addition to providing a conceptually simple way of capturing realistic situa-
tions like the one described above, the model yields significant differences with
respect the traditional (non-rational) BA setting. In particular, many properties
— even some well-established impossibility results — that are taken for granted
in the traditional model are no longer true in the rational setting.

1.1 Our Results

We present, for the first time, a definition of Byzantine agreement taking into
account rational behavior on the part of the adversary. In our work, we adopt
a somewhat different approach than that taken in some other work blending
game theory and cryptography (see below): rather than treating all players as
rational, we assume that some players are honest and will follow the protocol
without question, while other players (those controlled by the adversary) are
rational and will attempt to alter the outcome so as to increase their utility.

We study rational broadcast and Byzantine agreement for a natural class of
adversarial utility functions defined by the adversary’s preferences over the possi-
ble outcomes: agreement on 0, agreement on 1, and disagreement. Interestingly,
many of the statements that are considered self-evident in the BA literature
break down in the rational setting. Examples include the impossibility of con-
sensus for t ≥ n/2, the usefulness of setups for statistical (and computational)
security, as well as the reduction of consensus to broadcast for t < n/2. We
also study of feasibility of RBA for all possible orderings on the adversary’s
preferences in the following two cases: (1) the utility function of the adversary
is known, and (2) only the adversary’s preference between agreement and dis-
agreement is known (but among the possible outcomes for agreement, it is not
known which one is more preferred).



1.2 Related Work

Byzantine agreement and broadcast have been studied extensively, and we limit
ourselves to a discussion of the main results. Early work showed that (without
any setup), Byzantine agreement is possible if and only if the number of cor-
rupted parties t is strictly less than 1/3 of the total number of parties n. The
situation changes when a trusted setup allowing digital signatures (e.g., a public-
key infrastructure (PKI)) is assumed. Such a setup does not make a difference for
perfect security as there is always some (possibly negligible) probability that the
adversary guesses the secret keys of the honest parties and breaks the security of
the BA protocol. However, as shown in [18], computationally secure broadcast
can be achieved for arbitrary t < n if it is assumed that honest players can
sign the messages they send. The same bound was shown to be achievable for
the case of statistical security, assuming a setup for information-theoretically se-
cure (pseudo-)signatures [4, 19]. It follows from the definition (for a traditional,
worst-case adversary) that consensus is impossible in any setting when t ≥ n/2.

There has recently been a significant amount of interest in bridging crypto-
graphic and game-theoretic models and definitions; see, e.g., [12, 13, 10, 1, 17, 3,
11]. We refer to [14] for a (now slightly outdated) survey. Most closely related to
our own work, the BAR model [2] was developed to capture Byzantine, altruistic,
and rational behavior in a distributed system; protocols that tolerate a combi-
nation of Byzantine and rational nodes were proposed for reliable broadcast [6],
state machine replication, and gossip-based multicast [16]. In contrast to these
works, our model considers some nodes to be rational and the rest to be honest.
In work done concurrently with our own, Bei et al. [5] have shown that rational
consensus is impossible in the presence of colluding rational agents and crash
failures. Their model assumes that each player is individually rational, and wants
to strategically manipulate the protocol according to his own set of preferences.
In addition, some of these agents could have crash failures. This is incomparable
to our model where we assume that some players honestly follow the protocol
while the rest are under the control of a centralized, rational adversary.

2 Byzantine Agreement

We briefly review the traditional definitions of broadcast and consensus. We
let P1, . . . , Pn denote the parties running the protocol, and let t be (an upper
bound on) the number of deviating parties. We let vi and wi denote the input
and output, respectively, of Pi. We assume the standard network model, where
all pairs of players have (authenticated) point-to-point channels. We assume
synchronous communication and allow a computationally unbounded adversary.
We refer to a (static) adversary who corrupts up to t parties as a t-adversary.

Definition 1 (Consensus) Each player Pi initially has input vi. A protocol is
a perfectly secure consensus protocol if it satisfies the following properties:

1. (Consistency): All honest players output the same value w.



2. (Correctness): If all honest players begin with the same input value, i.e.
vi = v for all i, then w = v.

Definition 2 (Broadcast) We refer to player P1 as the sender, who is trans-
mitting his input v1 to the remaining n − 1 receivers. A protocol is a perfectly
secure broadcast protocol if it satisfies the following properties:

1. (Consistency): All honest players output the same value w.
2. (Correctness): If the sender P1 is honest then w = v1.

The definitions of BA for statistical and computational security are obtained
by requiring that the corresponding properties are satisfied except with negligible
probability in the presence of an unbounded and a computationally bounded
adversary, respectively.

Detectable Broadcast. A useful primitive in our constructions is detectable broad-
cast, which was defined by Fitzi et al. in [7] as a relaxation of the definition of
broadcast. Informally, a detectable broadcast guarantees that at the protocol
termination, either a successful realization of broadcast has been achieved or all
honest parties have agreed that the protocol has been aborted.

The formal definition for detectable broadcast [7] is as follows. For simplicity,
we describe the definition for the case where the input is a bit.

Definition 3 (Detectable broadcast) A protocol for detectable broadcast must
satisfy the following properties:

1. (Correctness): All honest players either abort or accept and output 0 or 1. If
any honest player aborts, so does every honest player. If no honest players
abort, then the output satisfies the security conditions of broadcast (according
to Definition 2).

2. (Completeness): If all players are honest, all players accept (and therefore
achieve broadcast without error).

3. (Fairness): If any honest player aborts then the adversary receives no infor-
mation about the sender’s bit.

A protocol for detectable broadcast was presented in [8] that satisfies the
above definition except with some negligible error probability in the presence
of an unbounded adversary (i.e., with statistical security) corrupting arbitrary
many parties (t < n). The protocol for detectable broadcast given by [8] requires
t + 5 rounds and O(n8(log n + k)3) total bits of communication, where k is a
security parameter and t < n.

3 Rational Byzantine Agreement

We next define our model of a rational adversary and within it the definitions of
rational BA. A rational adversary is characterized by some utility function which
describes his preference over possible outcomes of the protocol execution. In the



following we describe generic definitions of security in the presence of such an
adversary; subsequently, we specify a natural class of utilities for an adversary
attacking a BA protocol. Towards the end of the section, we also study the
relation between the traditional and the rational definition of BA.

The adversary’s utility In any analysis of security against rational adver-
saries, one needs to define the adversaries’ behavior. The first step to doing this
is to define their utility, which provides a method for deciding which outcomes
an adversary (or any other rational player) prefers to which others. We present
a definition of utility that we believe is natural, reasonable, and can be worked
with easily. In particular, we consider real utility, i.e., the utility is described
by real numbers associated with particular outcomes. For simplicity, we limit
ourselves to protocols that are attempting to broadcast or agree on a single bit.
The adversary’s utility is defined on the following events: (1) All honest players
output (agree on) 1, (2) all honest players output (agree on) 0, and (3) honest
players have disagreeing output. In particular we define the utility function of
the adversary as follows: For values u0, u1, u2 ∈ R:

U [agreement on 0] := u0, U [agreement on 1] := u1, and U [disagreement] := u2

For simplicity we assume that the values u0, u1, and u2 are distinct, but all
our proofs go through even if some of them are equal. We assume that rational
players will choose from the strategies available to them the one that results in
the most preferred outcome. However, since strategies and the protocol can be
randomized, a particular set of strategies will imply not a particular outcome
but a particular distribution over outcomes. The utility of a distribution is then
the expected value of the utility of an outcome drawn from that distribution.

Definition 4 (Utility) An expectation utility is a utility that conforms to the
following condition. Using Dz to represent the probability distribution where out-
come z ∈ Z occurs with probability 1, we require that U(D) = E[U(Dz)|z ← D].

The above utility function corresponds, of course, to a substantial simplifi-
cation of possible outcomes. For example, some sorts of disagreement could be
preferred over any unanimous output while other types are disliked. Neverthe-
less, these outcomes capture a meaningful portion of potential outcome variation.
In order to maximize the strength of our results, we assume that the adversary
knows the inputs of the honest players (which are disclosed very early in most
protocols anyway) and can therefore choose its strategy to maximize utility for
that particular input set.

Definition. We assume that all corrupted players are colluding. Equivalently,
there is a single adversary that directs the actions of up to t (non-adaptively)
corrupted players. The other players are honest, meaning that rather than acting
according to their selfish interests they simply run the protocol as specified. This
means that the “game” we are considering actually only has one player. We are
essentially considering what is a Nash equilibrium strategy for the adversary.



However, the Nash equilibrium of a one-player game is simply a straightforward
utility-optimization, so we leave out the complexities of Nash equilibria in our
definition. When we refer to a “strategy” we mean simply a function that takes
as input the view of the adversary so far and outputs its next message/action.

Definition 5 (Perfect security) A protocol for broadcast or consensus is per-
fectly secure against rational adversaries controlling t players with utility U if
for every t-adversary there is a strategy S such that for any choice of input for
honest players

1. (S is tolerable): S induces a distribution of final outputs D in which no
security condition is violated with nonzero probability, and

2. (S is Nash): For any strategy S′ 6= S with induced output distribution D′:
U(D) ≥ U(D′).

In addition to this standard notion, we will be considering a definition following
from statistical equilibria. Here we introduce a security parameter k. The strat-
egy sees the security parameter at the beginning of the game and can alter its
behavior based on that parameter. We require not that the security-respecting
strategy be perfectly optimal but that it is within a negligible distance to opti-
mal. This means that the incentive to deviate could be made arbitrarily small,
and would get extremely small very quickly as the security parameter is raised.

Definition 6 (Statistical security) A protocol for broadcast or consensus is
statistically secure against rational adversaries controlling t players with utility
U if for every t-adversary there is a strategy S such that for any choice of input
for honest players S induces a distribution of final outputs Dk when the security
parameter is k and the following properties hold:

1. (S is tolerable): no security condition is violated with nonzero probability in
Dk for any k, and

2. (S is statistical Nash): for any strategy S′ 6= S with induced output distribu-
tions D′k there is a negligible function negl(·) such that U(Dk) + negl(k) >
U(D′k).

Remark (Statistical tolerability and honestly perfect protocols). The above defi-
nition requires that the strategy S is perfectly tolerable. One could weaken this
definition to require statistical tolerability, i.e., require that the tolerability prop-
erty is satisfied except with some negligible probability. We argue that this does
not make a difference for any protocol which, assuming no party is corrupted,
satisfies the properties of BA with perfect security (we refer to such protocols
as honestly perfect). Indeed, for an honestly perfect protocol there exists a strat-
egy SH , namely the strategy corresponding to honestly executing the protocol,
which is perfectly tolerable. Let DH

k denote the distribution induced by SH and
Dk denote the distribution induced by the optimal strategy S from the above
definition where we require that S is only statistically tolerable. The statistical
tolerability of S implies that U(Dk) = U(DH

k ) ± negl(k). This, combined with
the fact that S is statistical Nash, implies that U(DH

k ) + negl(k) ≥ U(D′k) for
all D′k. Hence, DH

k is statistically Nash and perfectly tolerable.



We note that a computational security definition could also be considered.
Such a definition is equivalent to the statistical case except that the strategy
function is required to be computable in polynomial time (in k). We do not
consider computational security in this work. However, all our statements about
feasibility with statistical security hold also for computational security.

Relation to the Traditional Definition. In the following we show that rational
BA reduces to traditional BA. The proof is based on the observation that if a
protocol is secure according to the traditional definition of BA, then in RBA
every adversarial strategy is Nash.

Theorem 1 (BA implies RBA) If protocol Π perfectly securely realizes tra-
ditional consensus (resp., broadcast) in the presence of a (non-rational) t-adversary,
then Π is perfectly secure for consensus (resp., broadcast) against rational t-
adversaries with utility U . The statement holds also for statistical security as-
suming the protocol π is honestly perfect.1

4 Rational Byzantine Agreement: Basic Results

In this section, we motivate the study of feasibility of rational BA by demon-
strating that some of the results that are taken for granted in the traditional BA
literature become invalid in the rational setting.

The Traditional Impossibility of Consensus Fails. It is well-known that when
t ≥ n/2, there exists no consensus protocol which tolerates a t-adversary, even
when the parties have access to a broadcast channel. The idea of the proof is
the following: Consider the setting where the first n/2 of the parties have input
0, and the remaining have input 1. Assume the following adversarial scenarios:
(A) the adversary corrupts the first n/2 or (B) the adversary corrupts the last
n/2 parties; in both scenarios the adversary has the corrupted parties execute
their correct protocol. In Scenario A, the honest parties should all output 1,
whereas in Scenario B they should output 0. Consider now a third scenario (Sce-
nario C) where the adversary does not corrupt any party. Because this Scenario
is indistinguishable from Scenario B, the first half of parties should output 0;
however, because Scenario C is indistinguishable from Scenario A, the second
half of parties should output 1, which leads to contradiction.

We show that in the rational setting this impossibility does not, in general,
hold: Consider a rational adversary with utility u2 > u1 > u0. Then, as the fol-
lowing lemma suggests, assuming a (traditional) broadcast channel, there exists
a consensus protocol tolerating arbitrary many parties, i.e., t < n, even with
perfect security. The protocol, denoted as Π ′ works as follows:

1 Recall that a BA protocol is honestly perfect if it satisfies the perfect security defi-
nition in the absence of an adversary.



Protocol Π ′(v1, . . . , vn)
1. Every party Pi broadcasts his input vi.
2. If all parties broadcast the same value then output it, otherwise output 0.

The idea of the proof is that the adversary will never try to introduce an in-
consistency, as if he does so he will be punished with his worst preferred outcome
(i.e., 0).

Lemma 1 The protocol Π ′ described above is (perfectly) secure for consensus
against rational t-adversaries with t < n and utilities satisfying u2 > u1 > u0.

The Traditional Reduction of Consensus to Broadcast Fails. Traditional consen-
sus and broadcast are known to be equivalent assuming t < n/2 parties are cor-
rupted. The idea is the following: assuming consensus, broadcast can be achieved
by the sender sending his input to every party and then invoking consensus on
the received values. Similarly, assuming broadcast (and t < n/2) consensus can
be achieved by having every party broadcast his input and taking the majority
of the broadcasted values he receives to be his output.

Surprisingly, the above straightforward reduction of consensus to broadcast
does not transfer through to the rational setting. Informally, the reason for the
failure of the reduction is the inherent incomposability issue that appears in most
rational security models. In particular, for the case of the above reduction, it is
possible that when attacking a consensus protocol that uses broadcast protocols
as subroutines, that an adversary can achieve a desired outcome in the consensus
protocol by violating the security of the broadcast subroutines in ways that would
seem, on their own, undesirable.

Due to space limitations, we refer the reader to the full version of this work
for a concrete description of our counterexample and the corresponding analysis.

Luckily, the reduction in the other direction is still successful. The proof can
be found in the full version of this paper.

Theorem 2 Assume that a consensus protocol exists that is secure against ra-
tional adversaries with a particular utility. A protocol can be constructed for
broadcast that is secure against rational adversaries with the same utility.

Equivalence of Statistical and Perfect Security (Setup-Independent) Perhaps one
of the most unexpected differences between traditional and rational BA is the
fact that in the rational setting (with real utilities), a setup does not offer any-
thing with respect to feasibility in the information theoretic setting, as perfect
security is possible for t < n. This is in contrast to the traditional BA where a
setup is known to bring the exact bound for statistical complexity from t < n/3
(for both consensus and broadcast) down to t < n/2 for consensus and t < n
for broadcast. The following theorem states that the two levels of information
theoretic security, i.e., perfect and statistical security, are equivalent in the ratio-
nal setting. The idea for reducing perfect to statistical security is the following:
because the values u0, u1, and u2 are real numbers, in any statistical protocol
one can fix the security parameter to be large enough, so that the adversary does



not any more have an incentive to cheat, which will lead to a perfectly secure
protocol. A proof can be found in the full version of this work.

Theorem 3 There exists a statistically secure protocol for rational consensus
(resp., broadcast) tolerating some adversary A if and only if there exists a per-
fectly secure protocol for rational consensus (resp., broadcast) tolerating A.

5 Feasibility Assuming Complete Knowledge

In this section, we give a complete characterization of feasibility of RBA for
information-theoretic security. Note that as implied by Theorem 3, the bound
for statistical and perfect security is the same. In fact, this bound is t < n inde-
pendent of the adversary’s preference. This is stated in the following theorem.
Due to space limitations, we only describe the idea of the proof and sketch the
main argument for some of the cases, and refer to the full version of this work
for a complete handling of all the cases.

Theorem 4 There exists a protocol for perfectly secure Byzantine agreement
tolerating a rational t-adversary, where the utilities u0, u1, u2 ∈ R are known,
tolerating arbitrarily many corruptions, i.e., t < n. The statement holds both for
broadcast and consensus.

Proof (sketch). The general idea is, as in the proof of Lemma 1, to force the
adversary play the strategy which guarantees the security of the protocol by
having the protocol punish him in case he does not. Note that, by Theorem 2, it
suffices to describe consensus protocols; furthermore, by Theorem 3, it suffices
to achieve statistical security. The proof considers two cases: (1) the adversary’s
most favorable choice is not disagreement, and (2) the adversary’s most favorable
choice is disagreement. In the first case, the following consensus protocol works:

1. Every player Pi sends his input vi to every player Pj .

2. For every Pj : if the same value was received from every Pi then output it,
otherwise output the bit b′ which the adversary prefers least (i.e., ub′ <
min{u2, u1−b′}).

Intuitively, the above protocol is secure, as when there is pre-agreement among
the honest parties, then the adversary has no incentive to destroy it, and when
there is disagreement they will output b′.

The somewhat more involved setting occurs when the top choice of the ad-
versary is to force disagreement. We consider the following consensus protocol:

1. Each Pi uses detectable broadcast [7] to broadcast his input vi.

2. If any abort occurs or there is disagreement among the broadcasted value,
then output the adversary’s least preferred bit b′ (i.e., ub′ < min{u2, u1−b′}).
Otherwise output the value broadcasted by all parties.



The fact that the above protocol is (statistically) secure is argued as follows:
Consistency follows trivially from the consistency of detectable broadcast; fur-
thermore, because the adversary has no incentive to break the detectable broad-
cast protocol, and, by the security of detectable broadcast, when it does not
abort it satisfies the correctness property, the following adversarial strategy is
a Nash equilibrium: allow all honest senders to broadcast their input and have
the corrupted senders broadcast 1− b′.

6 Feasibility with Partial Knowledge

So far we have been considering only cases where the protocol is designed with
full knowledge of the adversary’s preferences, but it is also possible to consider
cases where the adversary’s preferences are not fully known. The goal is to guar-
antee security against any adversary that has preferences consistent with the
limited information that we have. If no information about the adversary’s pref-
erences is known, this reduces to the traditional setting of a malicious adversary.
If some information exists, however, the situation can be more interesting.

In the full-information settings we have been considering up to this point,
statistical and perfect security are provably equivalent (Theorem 3). This result
does not hold in the case of partial information. In fact, we can give protocols
and impossibility results that prove that no such equivalence holds when setup
is allowed. Similarly, we give results that show that when no setup is allowed,
consensus and broadcast are not equivalent. In order to show these results, we
consider the situation where it is known whether or not the adversary wishes to
create disagreement between the parties, but it is not known what the adversary’s
preferences are among different potential agreeing outputs.

Disagreement is the Adversary’s Most Favorable Option. If we consider the set-
ting where disagreement is known to be the adversary’s most preferred outcome,
all the impossibility proofs from the traditional world apply. We can therefore
deduce that the bounds for both broadcast and consensus are the same as in the
traditional setting. We state this formally below and refer the reader to the full
version of this work for the proof. (This is a tight bound, since it matches the
possibility result from the malicious setting, which of course also applies in any
rational setting.)

Theorem 5 Assuming n ≥ 3, there does not exist a perfectly or statistically
secure rational consensus protocol that tolerates any t-adversary with t ≥ n/3
and disagreement as the most-preferred outcome.

Disagreement is the Adversary’s Least Favorable Option. Finally, we consider
the case where the adversary wants to avoid disagreement, but has unknown
preferences on the other outcomes. This case is interesting because it provides
an instance where what is possible is provably different for broadcast than it
is for consensus, in contrast to the traditional setting of a malicious adversary



(with perfect security). The proof of the following theorem can be found in the
full version.

Theorem 6 Assuming n ≥ 3, there exists a perfectly secure rational consen-
sus protocol tolerating any t-adversary with disagreement as the least-preferred
outcome if and only if t < n/2. The statement holds also for statistical security.

We complete our characterization by looking at feasibility of broadcast for the
case where disagreement is the adversary’s least-preferred outcome. As shown
in the following theorem, in that case broadcast can be achieved, by the trivial
multi-send protocol, tolerating an arbitrary number of corruptions. Combined
with Theorem 6, this proves that in this setting perfectly secure broadcast is
easier to achieve than consensus.

Theorem 7 There exists a perfectly secure rational broadcast protocol tolerating
any t-adversary for t < n with disagreement as the least-preferred outcome. The
statement holds for statistical security as well.

Proof. We use the following perfectly secure protocol: The sender sends his input
to every party who outputs the value received from the sender. If t = n− 1 the
security conditions are trivially satisfied. For the case where there are at least two
honest players, we consider two cases. In the first case, the sender is honest. As a
result, all honest players are sent the correct output and no error is made. In the
second case, the sender is not honest. In this case, the adversary would not have
the sender send disagreeing messages to honest parties, since disagreement is the
least-preferred outcome. However, because the sender is dishonest, any agreeing
output from the honest parties is consistent with the security conditions, so no
security violation can occur. Statistical security follows immediately, since it is
a weaker definition.
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