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Abstract. Improving transaction throughput is one of the main chal-
lenges in decentralized payment systems. Attempts to improve trans-
action throughput in cryptocurrencies are usually a trade-off between
throughput and security or introduce a central component.
We propose Hydra, a decentralized protocol that improves transaction
throughput without the security trade-off and has no central component.
Our novel approach distributes blocks over multiple blockchains. Hydra
makes a trade-off between transaction throughput and finality, the time
it takes to stabilize the record of a transaction in the blockchain. We
rigorously analyze the double spend attack in a multiple-blockchain pro-
tocol. Our analysis shows that the number of transactions per second can
be increased significantly while finality is within acceptable boundaries.

1 Introduction

Decentralized cryptocurrencies like Bitcoin [14] serve as a payment system with-
out the need for a centralized trusted third party. However, there is a large gap
between the transaction throughput of decentralized cryptocurrencies and that
of mainstream payment processors. Bitcoin, for example, can currently process
only a maximum of 7 transactions per second (tps) [12], compared to VISA’s
2000 tps [3]. If decentralized cryptocurrencies are to challenge centralized pay-
ment processors, then their transaction throughput must clearly be improved.

Transaction throughput in blockchain-based cryptocurrencies can be im-
proved by increasing the frequency in which sets of transactions (called blocks)
are generated by network nodes. Although increasing the block frequency in
Bitcoin would increase the transaction throughput, it also leads to a critical in-
stability where the system is in disagreement over its current state with regards
to its most recent transactions [4]. This instability is caused by forks, where
multiple valid blocks are proposed that all point to the same previous block.

In this work we propose Hydra, a decentralized blockchain protocol. Hydra
is in principle similar to Bitcoin, but with an increased block frequency. Hydra

ar
X

iv
:1

91
0.

06
68

2v
1 

 [
cs

.D
C

] 
 1

5 
O

ct
 2

01
9



achieves this performance improvement by randomly distributing the blocks over
multiple independent blockchains. The trade-off Hydra makes is that of transac-
tion finality, which slightly increases compared to Bitcoin. Additionally, Hydra
equally distributes mining capacity over multiple chains so that all chains grow at
the same rate, on average. Hydra achieves this by delaying the decision to which
chain a block is appended. To the best of our knowledge, this way of improving
transaction throughput has not been examined before in the literature.

The remainder of our work is structured as follows: In Section 2 we we intro-
duce the terms and concepts of blockchain technology. We make the following
three contributions. First we describe Hydra in Section 3. Our second contri-
bution is a rigorous analysis of the effect of an increased block frequency on
transaction finality in our multi-blockchain protocol in Section 4. As the in-
stability of the system caused by forks is critical for any blockchain, we solely
analyze the effect of an increased block frequency in our work. Our third contri-
bution is a discussion of the results of our analyses in Section 5. We determine
the probability of a successful double spend in Hydra, and compare the outcomes
to Bitcoin. Here we show that in Hydra it takes slightly longer to reach a small
probability of a fork occurring. Lastly, we describe the work related to improv-
ing transaction scalability in Section 6. In Section 7 we discuss the limitations
of Hydra and discuss its future work, and in Section 8 we conclude our paper.

2 Background

Blockchain implements an immutable ledger, which is stored on every partic-
ipating node in the network and contains all the valid transactions that ever
took place. Ledger accounts are a representation of a cryptographic public key.
Ownership of the account value can be transferred by a transaction. Bitcoin
transactions are based on an unspent transaction output (UTXO) model, which
works as follows. Each transaction consists of inputs and outputs. Each input is
cryptographically signed to prove ownership of the value transferred by a previ-
ous transaction and each input contains a reference to a previous transaction’s
output. An output contains the requirements that are set for proving ownership.
When the cryptographic signature of the input matches with the requirements
set in the output, the sender has proven ownership. Each transaction consumes
an output and therefore each output can be used only once.

Transactions are sent to all nodes in the network. To achieve unique trans-
action ordering, network participants called miners bundle transactions in a set
called a block. Note that each block contains a sequential number called the
block height. Each block consists of a block body and block header. The body
contains a set of valid transactions chosen by the node. From the body trans-
actions a Merkle tree (a type of binary hash tree) is calculated and its root is
added to the header. The header also contains the hash of its predecessor block
and a nonce. Each miner calculates a hash over the header, with the aim of
finding a specific hash value. This value must be smaller than the current target.
This target is shared amongst all miners and determines how hard it is to find



the hash value. A miner must sequentially increase the nonce and re-calculate
the hash over the header to find a value that matches the target. This process
is called proof-of-work (PoW). Once a valid hash has been found the block is
broadcast to, verified and stored by all nodes.

Occasionally, nodes mine blocks almost simultaneously. These blocks may
contain different transactions, but point to the same previous block. This results
in two branches of the blockchain which is called a fork. Forks are an issue
because they represent possibly conflicting histories. Forks are resolved due to
the ‘longest chain’ rule. This rule states that only the chain with the most
cumulative PoW is valid. In essence, a fork divides the total computational
power of all honest miners. This allows an attacker to create blocks faster than
the rest of the network, because the attacker’s computational power is increased
relative to the rest of the network. This allows the attacker to perform a double-
spend attack. This attack can be described as follows. Consider a transaction
t of the attacker that is present in the main chain c. Also assume that the
attacker received goods related to this transaction. The attacker now creates a
longer chain c′ that does not include transaction t. Once the attacker publishes
chain c′, transaction t will be discarded. In this attack scenario the attacker thus
received goods for free.

3 The Hydra Protocol

Hydra is designed to increase transaction throughput. Our main idea is to use
N blockchains, where N ≥ 1. We distribute blocks randomly over chains, which
allows to significantly increase the block frequency. Despite the high block fre-
quency, the probability of a fork is divided evenly over N different chains.

3.1 Hydra Accounts and Transactions

Hydra is UTXO based, similar to Bitcoin. To abstract from the UTXO concept,
we consider that an account a stores some monetary value v. Account numbers
are the hash of a public key. The corresponding private key controls the account,
by signing transactions that transfer value from this account. A transaction t
transfers value from one single account to another single account.

We write a → b : v to denote that a transaction transfers v units of value
from account a to account b. Each transaction t is assigned a label label(t) ∈
{0, . . . , N−1} that determines on which chain this transaction must be recorded.
The label of a transaction is based on its incoming account a: label(a → b :
v) = a mod N . This ensures that all transactions from the same account are
always recorded in the same chain. This allows us to determine the validity of a
transaction without considering the state of the other chains.

3.2 The Account Tree

Hydra does not only maintain N blockchains, but also an account tree F which
records a value F [a] for each account a. The account tree helps to reduce space



requirements and to speed up transaction validation. Each node maintains a
copy of the account tree, a data structure that can be used to store all bindings,
e.g. a public key and an account value. The account tree F is associated with a
certain height h(). Initially, h(F ) = 0, and all accounts are empty. An account
tree corresponds to the state of the accounts after processing all transactions in
the blocks up to and including height h(F ) on the valid branches of all chains
Ci. Hydra defines a constant ∆ that defines the ‘lag’ of the account tree w.r.t.
the height of the blockchain h(Ci). The account tree moves forward along the
blockchains when all chains have grown high enough to do so. To be precise, we
always ensure that h(F ) is ∆ less than the shortest chain.

3.3 Hydra Chains

Hydra uses N blockchains. Each chain is assigned a fixed label label(Ci) ∈
{0, . . . , N − 1}, see Figure 1. The head head(Ci) of a chain Ci is the block
with the largest height in the chain. We call the path from the head to the gen-
esis block on (the first block of a chain) chain Ci the active branch and write
active(Ci). As in Bitcoin, this active branch is considered to contain the transac-
tions that are ‘active’ and contribute to the current state. We define the height
of a chain h(Ci) to be the height of its head, i.e. the length of its active branch.

Block header
Block label = 0

Block body
txids label = 0

Block header
Block label = 0

Block body
txids label = 0

Block header
Block label = 1

Block body
txids label = 1

Block header
Block label = 1

Block body
txids label = 1

Block header
Block label = 0

Block body
txids label = 0

Chain 0, label = 0

Chain 1, label = 1

Chain 0 head

Chain 1 head

Fig. 1. Two simplified Hydra blockchains, containing two heads.

3.4 Mining Hydra Blocks

Like transactions, blocks B have a label that determines to which chain a block
must be added. Blocks obtain their label only after they are successfully mined.
In fact, the label of a block equals its hash modulo N . This, in essence, distributes
the network’s total mining capacity over multiple chains. However, this raises
the question of which transactions to add to a block, as the transactions have
fixed labels while the block only receives its label after it is mined. The solution
is to prepare sets of transactions, one for each label and only include the set that
corresponds to the final label of the block.

The details are as follows. A miner that wishes to mine a block constructs N
sets of valid transactions T0, . . . , TN−1. Thus Ti contains only transactions with



label i. It then computes the Merkle root hash H(Ti) for each Ti and stores these
in the block header, together with the hashes of the head of each of the chains
C0, . . . , CN−1. Note that from each of these sets of hashes a Merkle root could
be created to save space in the block header. However, the space saved has no
significant impact on Hydra’s transaction throughput.

When the miner finds a matching nonce, such that the hash of the block
header becomes less than the target value, the block label (say it is i) is fixed.
The miner then moves the transactions in Ti to the block body, and stores the
transactions in all other sets Tj . These will be considered again for inclusion
in another block. The block with label i is only added to chain Ci, to which
it already links as it includes the head of that chain. Note that a miner could
output blocks only with a particular label, but at the cost of reducing the miner’s
block rate by N .

3.5 The Effect of a Single Fork on Multiple Chains

As in Bitcoin, transactions that were active first suddenly may become inactive
due to a fork. Because Hydra maintains multiple chains, such a change in active
transactions on one chain could have an impact on the validity of other chains.
Consider the following example, where we have two chains C0 and C1, and
four accounts a, b, c, and d. Let the current state of the account tree hold the
following values for the accounts: F [a] = 10, F [b] = 0, F [c] = 20, and F [d] = 0.
Now consider a transaction a → c : 5 added to a block at height h on chain 0.
The value in account c now equals 25. This is followed by a transaction c→ b : 25
which is added to a block at height h+1 in chain 1. Now suppose a fork in chain
0 occurs, and a new active branch is created with a transaction a→ d : 10 added
to the block at height h+ 1 on chain 0. The transaction a→ c : 5 on chain 0 is
no longer active, but this invalidates the transaction c→ b : 25 on chain 1.

This scenario shows that there is a risk of cascading invalidations due to a
single chain fork. This increases the adversary’s power beyond the single chain,
thus reducing security. It also wastes mining power.

3.6 Block Processing and Validity of Transactions

We sever the effect of a fork and multiple chains by waiting at least ∆ blocks
on all chains. Consider a state of accounts, which is set by the transactions in
block height h−1 of all N chains. A new state of accounts is computed from the
transactions at block height h, of all N chains. This occurs when the shortest of
these chains contains at least ∆ new blocks from height h, see Figure 2. Now, if
a fork at height h + 1 occurs on a particular chain, then only that single chain
is affected by the fork because the account tree is not updated yet.

However, since there is a brief delay in transaction processing, an account can
be charged more than it holds. Note that in the above scenario the transaction
c→ b : 25 is considered valid because there was a previous transaction a→ c : 5
that increased the current value of account c beyond what was recorded in the
account tree. We therefore introduce a ‘strict validity’ rule to prevent this. If we
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Fig. 2. Severing the link between a fork and account state (z = 5).

restrict transactions in the current active branch of a chain to never spend more
(in total) than what is recorded in the account state for that account, then the
scenario is prevented. Here we use the fact that transactions from a particular
account always have the same label and hence end up on the same chain.

Consider the account tree F at height h(F ). Consider a transaction a→ b : v.
Let i = label(a) be a’s label. Consider the active branch of chain Ci, call it Xi,
on which this transaction will end up. Consider all blocks Bih+1, . . . with height
larger than h on Xi. There are at least ∆ of these. Consider all transactions from
account a, i.e. a→ ai : vi, in all these blocks. Let S(a) =

∑
i vi be the sum of all

values transferred from account a on the active branch that are not accounted
for yet in the value F [a] stored in the account tree for account a. Transaction
a→ b : v is considered valid if F [a]− S(a) > v.

To advance the account tree from height h to height h+ 1, for each chain Ci

all transactions in the block on height h+1 are collected and executed to update
the values of all the accounts. Because of the ‘strict validity’ rule the order in
which transactions are processed to update the account tree is no longer relevant.

4 Detailed Double Spend Analysis

In this section we model the double spend attack in a multi-blockchain protocol,
and find the equation that allows for determining the probability of a successful
double spend in Hydra. We choose the following values as variables:

1. P[A], as the probability P of a successful double spend on any chain.
2. p and q, representing the mining capacity of the honest users and attacker

respectively, where q + p = 1. We assume p > q.
3. N , representing the number of chains of the blockchain protocol.
4. w, the tipping point, the number of blocks that have to be present on each

chain before a take-over can occur.
5. λ and µ, describing the block’s arrival intensity per chain for the honest

nodes and attacker respectively. These values depend on the relative mining
capacity, the number of chains and the expected time between finding blocks
(predetermined, T0). This leaves us with λ = p

T0·N and µ = q
T0·N .

We start to set up the base of our formula. It is important to note that a take-
over can occur on each of the N chains. We can, however, make a distinction



between these chains, namely that there always is exactly one short chain S.
This chain receives its w’th block last and will surely have w blocks when the
tipping point occurs. The N−1 other chains are denoted by C. We are sure that
there are at least w blocks on these chains after the tipping point.

It is important to note that all chains behave independently. Based on the
work by Bowden et al. [2], we assume that the time between finding blocks is
exponentially distributed and the blocks arrive according to a Poisson process.

Upon arrival they are assigned to chain j with probability 1/N , for all j ∈
{0, ..., N−1}. As this procedure is independent from past arrivals, we find that on
every chain a separate independent Poisson process occurs. The Poisson process
on a single chain is independent of the Poisson processes of other chains.

We present the base equation for the probability of a successful double spend
attack P[A] in (1). To determine this probability we have to find three distinct
formulas. Part one of the equation is the probability of a take-over on the short
chain P[AS ], given that it took X time to get to the tipping point. Part 2
describes the probability of a take-over on any of the other chains, P[AC ]. Finally,
in part three we determine the density function for the time to the tipping point.

P[A] = 1−
∞∫

x=0

(1− P[AS | X = x])︸ ︷︷ ︸
part 1

· (1− P[AC | X = x])N−1︸ ︷︷ ︸
part 2

· fX(x)dx.︸ ︷︷ ︸
part 3

(1)

Part 1: take-over on the short chain. On the short chain there are only
two possible cases. The attacker either has already taken over the short chain
by finding more than w blocks after the tipping point, or he is not ahead of the
honest nodes after x time units. In the first case the probability of a take-over is
1. In the latter case, the probability of a take-over simplifies to a one-dimensional
random walk. Denote the number of blocks found by the attacker with b, then
we consider the case b ≤ w, such that the honest nodes have a non-negative head
start of w−b blocks. If the first block after the tipping point is found by the honest
nodes or attacker, this difference w−b increases or decreases by one respectively.
When this difference ever becomes negative, a take-over has occurred. We can
model this as a random walk Sn that has a non-negative starting point S0 = w−b,
and we are interested in the probability of the random walk ever reaching −1.
The probability to go one level up or down is the probability that the next
block found is for the honest nodes or the attacker, and are given by p

q+p and
q
q+p respectively. These are independent of past events due to the memoryless
property of the exponential distribution that models the arrival times of blocks
for attacker and honest nodes. The probability of ever reaching −1 is given by

∃ n ∈ N such that P [Sn = −1 | S0 = w − b] = min

{(
q

p

)w−b+1

, 1

}
. (2)



As we assumed the capacity of the attacker to be smaller than that of the
honest nodes, we find the probability of an eventual take-over is denoted by(

q
1−q

)w−b+1

.

We assumed the time it took for the honest nodes to reach w to be fixed at x
time units, so we can calculate the probability that the attacker found i blocks
in this time by conditioning on this number BA. We find that the probability of
a successful take-over on the short chain S is

P[AS | X = x] =

∞∑
i=0

P[AS | X = x,BA = i] · P[BA = i]

=

∞∑
i=0

(
1[i ≤ w] ·

(
q

1− q

)w−i+1

+ 1[i > w]

)
· e−xµ · (xµ)i

i!
.

(3)

Part 2: take-over on the other chains. For the remaining chains C, the
number of blocks obtained by the honest nodes is not fixed anymore, since blocks
are randomly distributed over chains. Instead of conditioning on the number of
blocks found by the attacker immediately, we condition over the difference of
blocks (Z) first. In this case ‘difference’ can either be zero, or positive (a head
start for the honest nodes), or negative (a head start for the attacker). Again,
in the latter case the probability of a take-over is 1. In the former case the
probability can be modeled as a random walk, and we can apply (2).

We split the events of a positive and a negative head start in (4). For a non-
negative head start of z we condition over all possibilities where the difference
of blocks between the honest nodes and the attacker is exactly z. This can be
done by, again, conditioning on the number of blocks for the attacker. Here it
is important to note that the honest nodes will always have at least w blocks,
otherwise the tipping point would not have occurred.

P[AC | X = x]

∞∑
z=−∞

P[AC | X = x, Z = z] · P[Z = z]

=

∞∑
z=0

[(
q

1− q

)z+1

·
( ∞∑
n=max{w,z}

e−xµ
(xµ)n−z

(n− z)!
e−xλ

(xλ)n

n!

1−
w−1∑
k=0

e−xλ
(λx)k

k!

)]

+

∞∑
z=1

[
1 ·
( ∞∑
n=w

e−xµ
(xµ)n+z

(n+ z)!
e−xλ

(xλ)n

n!

1−
w−1∑
k=0

e−xλ
(λx)k

k!

)]

(4)

Part 3: Density of the time to the tipping point. To find the density of
the time to the tipping point, we first look at the distribution function. Note that



when we set Xi, the time it takes for chain i to have at least w blocks, where
i ∈ {0, ..., N − 1}, the time to the tipping point X is equal to the maximum
of the set of Xi’s. Only when all chains have at least w blocks, the tipping
point occurs. Due to our assumption that the times between finding blocks is
exponential, we find that all Xi are defined as a sum of exponentially distributed
stochastic variables. As a result we find that the distribution function FXi

(x) of
a single Xi equals

FXi
(x) = 1− e−λx

w−1∑
k=0

(λx)k

k!
(5)

and due to all the Xi being independent and identically distributed from each
other, we find that the distribution function FX of X =

N
max
i
Xi is given by

FX(x) =

[
1− e−λx

w−1∑
k=0

(λx)k

k!

]N
. (6)

Now, we differentiate the above defined distribution function to find the density
function, to obtain

fX(x) = N ·
[
λ e−λx

(
(λx)w−1

(w − 1)!

)]
·

[
1− e−λx

w−1∑
k=0

(λx)k

k!

]N−1
. (7)

The final equation. With these three different formulas, we can construct the
formula that gives the probability of a successful take-over event on any of the
N chains. The final equation consists of (1), where we include (3), (4) and (7).
Below we present the simplified version of these substitutions, which allows for
implementing in a software program.

Theorem (The final equation) Let H be a Hydra system with N chains and
q be the capacity of the attacker, where q<0.5 and w denotes the number of blocks
to the tipping point. Then the probability of a successful take-over is given by

A(q,N,w) =1−
∞∫

x=0

(
e−xµ

w∑
i=0

(
1−

(
q

1− q

)w−i+1
)

(xµ)i

i!

)
·
([

1− e−λx
w−1∑
k=0

(λx)k

k!

]

−
( ∞∑
z=0

( q

1− q

)z+1

·

 ∞∑
n=max{w,z}

e−xµ
(xµ)n−z

(n− z)!
e−xλ

(xλ)n

n!


+

∞∑
z=1

[
1 ·
∞∑
n=w

e−xµ
(xµ)n+z

(n+ z)!
e−xλ

(xλ)n

n!

]))N−1

·N
[
λ e−λx

(
(λx)w−1

(w − 1)!

)]
dx.

(8)



5 Probability of a Successful Double Spend

In this section we compare the results of the analytic equation (8) and the
simulation results on Bitcoin provided by Rosenfeld [16], in Table 1. We used
numerical integration methods3 to generate the results.

Table 1. Comparing Bitcoin [16] and Hydra ((8), N = 32). The probability of a
successful take-over.

↓Results of w
q ↓ 1 2 3 4 5 6 7 8 9

[16] 6 0.1200 0.0200 0.0039 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000
(8) 0.1589 0.3235 0.0068 0.0010 0.0003 0.0000 0.0000 0.0000 0.0000

[16] 16 0.3200 0.1372 0.0635 0.0305 0.0149 0.0074 0.0037 0.0019 0.0009
(8) 0.7726 0.4823 0.2720 0.1472 0.0785 0.0416 0.0221 0.0117 0.0062

[16] 26 0.5200 0.3353 0.2286 0.1603 0.1142 0.0823 0.0598 0.0438 0.0322
(8) 0.9935 0.9621 0.8938 0.7943 0.6790 0.5627 0.4555 0.3626 0.2850

[16] 46 0.9200 0.8802 0.8506 0.8261 0.8048 0.7857 0.7683 0.7523 0.7374
(8) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

We observe three significant differences in comparing the two outcomes. First,
the probability of a successful double spend in Hydra is significant higher than
in Bitcoin when there are only a few blocks. The reason for this is that Hydra
blocks are randomly assigned to chains and each time a new block is created there
exists a possibility of extending a chain which was already extended. Second, the
probability of a successful double spend in Hydra reaches 0, although this takes
more time than in Bitcoin. This can be explained by the fact that Bitcoin only
holds one chain on which a double spend can be performed. In contrast, Hydra
contains N chains, which allows for the possibility of N attempts of a double
spend. Third, Hydra is slightly less resilient to a successful double spend attack
when there is an imbalanced mining power distribution.

6 Related Work

This section describes previous work related to improving transaction scalability.
Aspen also uses multiple blockchains with the aim of scaling services [7]. In

contrast, Hydra aims at scaling transaction throughput.
A trade-off between transaction throughput and centralization is made in

HoneyBadger [13] and Omniledger [9] by using a Byzantine Fault Tolerant (BFT)
protocol. As Hydra uses PoW, Hydra can be fully decentralized.

In Bitcoin-NG [4] the block interval is used to create several mini-blocks by a
single miner. This, however, leaves the option for an attacker to perform a Denial
of Service (DoS) attack on the current leader. There also exist hybrid protocols,

3 implementedbyWolframMathematicaversion10,https://www.wolfram.com/

mathematica/

implemented by Wolfram Mathematica version 10,https://www.wolfram.com/mathematica/
implemented by Wolfram Mathematica version 10,https://www.wolfram.com/mathematica/


employing both PoW and a type of BFT protocol. Examples include, ByzCoin
[8], SCP [10], and Elastico [11]. In Hybrid protocols PoW is employed to form
groups of nodes called shards. These shards then reach consensus by employing a
BFT protocol. Some of these protocols are vulnerable to DoS attacks. In Hydra
there exists no single leader, which makes a leader DoS not possible.

Finally, payment channels such as the Lightning Network [15] and the Raiden
Network [1] significantly increase transaction throughput. Some nodes may lock a
large amount of funds which are required to sustain multiple channels. Therefore,
a possible downside of payment channels is that it may lead to more centraliza-
tion. In contrast, Hydra is as decentralized as Bitcoin.

7 Limitations and Future Work

A quick back-of-the-envelope calculation shows that Hydra improves transaction
throughput. If we assume that Hydra consists of 32 chains, each transaction is
240 bytes, the block size is 1 MB, and the block frequency is set to 18 seconds,
then Hydra would achieve (1 MB / 240 b) / 18 ≈ 231 tps, a significant im-
provement over Bitcoin’s 7 tps. All chains are updated in approximately 32*18
≈ 10 minutes, similarly to Bitcoin. However, bandwidth, network latency, and
the random assignment of blocks will influence the number of Hydra forks. An
implementation of Hydra will show how the protocol will hold up in practice.

Furthermore, we have shown that Hydra is resilient to a double spend attack.
This invites for further analysis such as selfish mining [5] and chain quality [6].

Finally, an attacker could attack a single chain by sending transactions from
multiple chains to one chain. Here, a single chain is flooded with transactions,
delaying other transactions. This requires the attacker to spend a large amount
on transaction fees. The exact impact of chain-flooding requires further analysis.

8 Conclusion

In this study we have proposed Hydra, a protocol that improves transaction
scalability within a single decentralized cryptocurrency. Current solutions make
a trade-off between transaction throughput and either security, or decentral-
ization, or significantly deviate from the Bitcoin protocol. Hydra’s trade-off is
between transaction throughput and finality. In Hydra, the block frequency is
significantly increased thus being able to process more transactions per second.
Our protocol shows that it is possible to distribute the probability of a fork over
multiple chains. Also, our labeling strategy safely shards mining power over these
chains. Although Hydra requires further analysis, in our work we have shown
that parallel blockchains offer a promising scalability solution for decentralized
cryptocurrencies.
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