
ar
X

iv
:1

90
7.

04
26

2v
2

 [
cs

.P
L

]
 1

6
M

ar
 2

02
0

solc-verify: A Modular Verifier for Solidity

Smart Contracts

Ákos Hajdu1⋆ and Dejan Jovanović2

1 Budapest University of Technology and Economics, Budapest, Hungary
hajdua@mit.bme.hu

2 SRI International, New York City, USA
dejan.jovanovic@sri.com

Abstract. We present solc-verify, a source-level verification tool for
Ethereum smart contracts. solc-verify takes smart contracts written
in Solidity and discharges verification conditions using modular program
analysis and SMT solvers. Built on top of the Solidity compiler, solc-

verify reasons at the level of the contract source code, as opposed to
the more common approaches that operate at the level of Ethereum
bytecode. This enables solc-verify to effectively reason about high-
level contract properties while modeling low-level language semantics
precisely. The properties, such as contract invariants, loop invariants,
and function pre- and post-conditions, can be provided as annotations
in the code by the developer. This enables automated, yet user-friendly
formal verification for smart contracts. We demonstrate solc-verify by
examining real-world examples where our tool can effectively find bugs
and prove correctness of non-trivial properties with minimal user effort.

Authors’ manuscript. Published in S. Chakraborty and J. A. Navas (Eds.):
VSTTE 2019, LNCS 12031, 2020. The final publication is available at Springer via
https://doi.org/10.1007/978-3-030-41600-3_11.

1 Introduction

Distributed blockchain-based applications are gaining traction as a secure and
trustless alternative to more centralized solutions that require trusted interme-
diaries such as banks. The focus of early blockchain implementations, such as
Bitcoin [34], was to provide the infrastructure for one particular application:
digital money (cryptocurrency). Public blockchains allow arbitrary parties to
transact with each other in a secure and trustless manner, with no central au-
thority. In this setting a blockchain is a distributed ledger of transactions, where
nodes in a peer-to-peer network are processing and validating transactions to
maintain integrity. The next step in the evolution of blockchains was to extend
the blockchain to a setting where the digital money can also be programmable.
This is achieved by generalizing the ledger to allow deployment of programs
(termed smart contracts [39]) that operate over ledger data. Blockchains with
support for smart contracts provide a general distributed computing platform
and allow a set of mutually distrusting parties to execute and enforce their
contractual terms (expressed as code) automatically. At the moment, the most
popular such platform is the Ethereum blockchain [41,3].

⋆ The author was also affiliated with SRI International as an intern during this project.

http://arxiv.org/abs/1907.04262v2
https://doi.org/10.1007/978-3-030-41600-3_11

2 Á. Hajdu and D. Jovanović

However, smart contracts are often prone to errors with potentially devastat-
ing financial effects (see, e.g., [4] for a survey). The infamous DAO bug [16] is an
illustrative example of the difficulties involved in deploying a smart contract. The
DAO was a relatively small contract (2KLOC of Solidity code) that was heavily
scrutinized by the wider Ethereum community before deployment. Nevertheless,
an attacker managed to exploit a subtle reentrancy bug to steal $60M worth of
cryptocurrency. Examples such as the DAO highlight the mission-critical nature
of smart contracts. Although the code of the contract is usually small by the stan-
dards of modern software, if the contract attracts a large amount of investment,
the code carries a significant amount of value per line of code. Moreover, since the
contract code is stored on the blockchain, once deployed, the code is immutable
and making upgrades or bug-fixes is impossible without complex solutions that
involve a central authority. There has been a great interest in applying formal
methods to verify smart contracts [4,23,32]. While there are ongoing projects
based on identifying specific vulnerability patterns [8,22,40,29,35,13,20], theo-
rem provers [24,25,37], finite automata [30,1] or SMT [2,26,27], they all have
limitations in terms of scalability, precision, expressiveness and ease of use.

In this paper we present solc-verify, a tool for formal verification of Ethere-
um smart contracts that integrates seamlessly with developer tools. solc-verify

follows the modular software verification approach (e.g., VCC [11], HAVOC [10],
and ESC/Java [21]), in the context of Solidity. Given a Solidity contract, anno-
tated with specifications, solc-verify translates the contract into the Boogie
intermediate verification language [15,28], and discharges verification conditions
by SMT solvers [7]. Developers can define the expected behavior of their con-
tracts using annotations within the contract code, including assertions, contract
and loop invariants, and function pre- and post-conditions. Verification of smart
contracts brings domain-specific challenges. To start with, the semantics of So-
lidity include Ethereum-specific constructs such as the blockchain state, trans-
actions, and data-types not common in general programming languages. As an
example, Ethereum smart contracts generally operate on 256-bit integers, mak-
ing precise reasoning about low-level properties, such as the absence of overflows,
infeasible with standard SMT techniques. Furthermore, some common high-level
properties of smart contracts, such as “the sum of user balances is always equal
to the total supply”, cannot be expressed in first-order logic or in Solidity, and
therefore need domain-specific treatment. solc-verify addresses these issues
through an SMT-friendly encoding of Solidity into Boogie that is expressive
enough to capture the properties of interest, and takes advantage of recent ad-
vances in SMT solving to enable effective reasoning. We describe solc-verify

through examples and demonstrate how solc-verify can both find non-trivial
bugs in real-world examples and prove correctness after the bugs have been fixed
(e.g., the BEC token [36] hack). As far as we know, solc-verify is the first tool
that allows specification and modular verification of Solidity smart contracts
that is practical and automatic. solc-verify is implemented as an add-on to
the open-source Solidity compiler and is available on GitHub.3

3 https://github.com/SRI-CSL/solidity

https://github.com/SRI-CSL/solidity

solc-verify: A Modular Verifier for Solidity Smart Contracts 3

2 Background

Ethereum. Ethereum [41,3] is a generic blockchain-based distributed computing
platform. The Ethereum ledger is a storage layer for a database of accounts
and data associated with those accounts, where each account is identified by
its address. Ethereum contracts are usually written in a high-level programming
language, most notably Solidity [38], and then compiled into the bytecode of
the Ethereum Virtual Machine (EVM). A compiled contract is deployed to the
blockchain using a special transaction that carries the contract code and sets
up the initial state with the constructor. At that point the deployed contract is
issued an address and stored on the ledger. From then on, the contract is publicly
accessible and its code cannot be modified. A user (or another contract) can
interact with a contract through its public API by calling public functions. This
can be done by issuing a transaction with the contract’s address as the recipient.
The transaction contains the function to be called along with the arguments, and
an execution fee called gas. Optionally, some value of Ether (the native currency
of Ethereum) can also be transferred with transactions. The Ethereum network
then executes the transaction by running the contract code in the context of the
contract instance. During their execution, each instruction costs some predefined
amount of gas. If the contract overspends its gas limit, or there is a runtime error
(e.g., an exception is thrown, or an assertion is triggered), the entire transaction
is aborted and has no effect on the ledger (apart from charging the sender for
the used gas).

Solidity. Figure 1 shows a Solidity contract SimpleBank that illustrates some of
the common features that Ethereum contracts use in practice. A contract can
have state variables, which define the persistent data that the contract will store
on the ledger. The state of SimpleBank consists of a single variable balances,
which is a mapping from addresses to 256-bit integers. Further Solidity types
include value types, such as Booleans, signed and unsigned integers (of vari-
ous bit-lengths), addresses, fixed-size arrays, enums, and reference types, to be
used with arbitrary-size arrays and structures. Once deployed, an instance of
SimpleBank will be assigned its address and since no constructor is provided, its
data will be initialized to default values (in this case an empty mapping).

Contracts define functions that can act on their state. Functions can receive
data as arguments, perform computation, manipulate the state variables and
interact with other accounts. In addition to declared parameters, functions also
receive a msg structure that contains the details of the transaction. Our exam-
ple contract defines two public functions deposit and withdraw. The deposit

function is marked as public and payable, meaning that it can be called by
anyone and is allowed to receive Ether as part of the call. This function reads
the amount of Ether received from msg.value and adds it to the balance of the
caller, whose address is available in msg.sender. The withdraw function allows
users to withdraw a part of their bank balance. The function first checks that
the sender’s balance in the bank is sufficient using a require statement. If the
condition of require fails, the transaction is reverted with no effect. Otherwise

4 Á. Hajdu and D. Jovanović

1 /** @notice invariant sum(balances) == this.balance */

2 contract SimpleBank {

3 mapping(address => uint256) balances;

4

5 function deposit() payable public {

6 balances[msg. sender] += msg. value;

7 }

8

9 function withdraw(uint256 amount) public {

10 require(balances[msg.sender] > amount);

11 if (!msg .sender.call.value(amount)("")) {

12 revert();

13 }

14 balances[msg. sender] -= amount;

15 }

16 }

Fig. 1. An example Solidity smart contract
implementing a simple bank. Users can de-
posit and withdraw Ether with the corre-
sponding functions, and the contract keeps
track of user balances. The top level anno-
tation states that the contract will ensure
that the sum of individual balances is equal
to the total balance in the bank.

1 /** @notice invariant x == y */

2 contract C {

3 int x;

4 int y;

5

6 /** @notice precondition x == y

7 @notice postcondition x == (y + n) */

8 function add_to_x(int n) internal {

9 x = x + n;

10 require(x >= y); // Catch overflow

11 }

12

13 function add (int n) public {

14 require(n >= 0);

15 add_to_x(n);

16 /** @notice invariant y <= x */

17 while (y < x) {

18 y = y + 1;

19 }

20 }

21 }

Fig. 2. An example Solidity smart
contract illustrating the annotation
features of solc-verify, including
contract-level invariants, pre- and post-
conditions and loop invariants.

the function sends the required amount of Ether funds by using a call on the
caller address with no arguments (denoted by the empty string). The amount
to be transferred is set with the value function. The recipient of the call can
be another contract that can perform arbitrary actions on its own (within the
gas limits) and can also fail (indicating it in the return value). If call fails, the
whole transaction is reverted with an explicit revert, otherwise the balance of
the caller is deducted in the mapping as well.

SimpleBank contains a classic reentrancy vulnerability that can be exploited
to steal funds from the bank. As the control is transferred to the caller in line 11,
before their balance is deducted in line 14, they are free to make another call
to withdraw to perform a double (or multiple) spend. Although this flaw seems
basic, it is the issue that lead to the loss of funds in the DAO hack [16].

3 Overview and Features

solc-verify is implemented as an extension to the Solidity compiler. It takes
a set of Solidity contracts including specification annotations and discharges
verification conditions using the Boogie verifier and SMT solvers. An overview
of the architecture is shown in Figure 3.

Specification. Solidity provides only a few error handling constructs (e.g., assert,
require) for the programmer to specify expected behavior. Therefore, solc-

verify supports in-code annotations to specify contract properties, as illus-
trated in Figure 2. Annotations are side-effect free Solidity expressions, which
can reference any variable in the scope of the annotated element. Contract-level
invariants (line 1) must hold before and after the execution of every public

solc-verify: A Modular Verifier for Solidity Smart Contracts 5

Extended
compiler

boogie

verifier
Result
mapper

z3, cvc4, yices2
Solidity contracts
with annotations

Verification
results

Boogie
program

Intermediate
results

Verification
conditions

Fig. 3. Overview of the solc-verify modules. The extended compiler creates a Boogie
program from the Solidity contract, which is checked by the boogie verifier using SMT
solvers. Finally, results are mapped back and presented at the Solidity code level.

function and after the contract constructor. Non-public functions are inlined to
a depth of one by default, but can also be specified with pre- and postconditions
(lines 6–7). Moreover, loop invariants (line 16) can be attached to loops. As an
extension, we also provide a special sum function over collections (arrays and
mappings) in the specification language, as seen for example for SimpleBank in
Figure 1. The sum function is modeled internally by associating a ghost variable
to the collection tracked by the sum: each collection update also updates the
ghost variable. This encoding is a sufficient abstraction for our needs.

Correctness. solc-verify targets functional correctness of contracts with re-
spect to completed4 transactions and different types of failures. An expected
failure is a failure due to an exception deliberately thrown to guard from the
user (e.g., require, revert). An unexpected failure is any other failure (e.g.,
assert, overflow). We say that a contract is correct if all transactions (public
function calls) that do not fail due to an expected failure also do not fail due to
an unexpected failure and satisfy their specification.

Translation to Boogie. solc-verify relies on the Solidity compiler that parses
the contracts and builds an abstract syntax tree (AST) where names, references
and types are resolved. solc-verify then traverses the internal AST and pro-
duces a Boogie [15,28] representation of the program. We discuss the details and
properties of the translation in more detail in Section 4.

Boogie and SMT. Boogie transforms the program into verification conditions
(VCs) and discharges them using SMT solvers. By default, Boogie can use z3 [33]
and cvc4 [6] but we also extended it to support yices2 [18]. A notable feature
of our encoding is that it allows quantifier-free VC generation, permitting to use
SMT solvers that do not support quantifiers (e.g., yices2). Boogie reports vio-
lated annotations and failing assertions in the Boogie program and solc-verify

4 Due to the usage of gas, total and partial correctness are equivalent. Furthermore,
currently we do not model gas: running out of gas does not affect correctness as the
transaction is reverted. However, we might model it in the future in order to verify
liveness properties or to be able to specify an upper bound.

6 Á. Hajdu and D. Jovanović

maps these errors back to the Solidity code using traceability information. The
final output of solc-verify is a list of errors corresponding to the original
contracts (e.g., line numbers, function names).

4 Translation Details and Properties

The core of solc-verify is a translation from Solidity contracts to the Boogie
IVL, supporting a majority of the Solidity language.5

Contracts. The input of the translation is a collection of contracts to be verified
and the output is a single Boogie program with all contracts. solc-verify can
reason about single and multiple contracts as well. If the code of all contracts
is available, solc-verify can take all available annotations into account when
reasoning. However, this can be unsafe as EVM addresses are not typed (any
address can be cast to a contract type) and is to be used with care. solc-verify

also supports inheritance by relying on the compiler to perform flattening and
virtual-call disambiguation.

Types. solc-verify supports basic Solidity types such as Booleans, integers
and addresses. Several modes are provided for modeling arithmetic operations
that can be selected by the user. In the simplest mode, integers are unbounded
mathematical integers. This mode does not capture the exact semantics of the
operations (e.g., overflows) but is scalable and well supported by SMT solvers.
Precise arithmetic can be provided by relying on the SMT theory of bitvectors.
solc-verify supports this mode but can suffer from scalability issues due to
the 256-bit default integer size of Solidity. In order to provide both precision
and scalability, solc-verify provides a modular arithmetic mode that encodes
arithmetic operations using mathematical integers with range assertions and
precise wraparound semantics of all operations. Addresses are modeled with un-
interpreted symbols as they can only be queried for equivalence. solc-verify

also supports mappings and arrays using SMT arrays [31,14]. Structures, enu-
merations and tuples are currently not supported but there are no technical
difficulties in supporting them and they are planned in the future. Events (a log-
ging mechanism) are ignored as they are not relevant for functional correctness.6

State Variables. State variables are mapped to global variables in Boogie. How-
ever, multiple instances of a contract can be deployed to the blockchain at dif-
ferent addresses. Since aliasing of contract storage is not possible, solc-verify

models each state variable as a one-dimensional global mapping from contract
addresses to their respective type (in essence treating the blockchain as a heap
in a Burstall-Bornat model [9]). For example, the state variable x with type int

5 The paper and the experiments are based on compiler version v0.4.25, but we keep
solc-verify up to date with the latest development branch.

6 We might model events in the future to be able to specify that an event is expected
to be triggered.

solc-verify: A Modular Verifier for Solidity Smart Contracts 7

at line 2 of Figure 4 (left) is transformed to the global variable x with mapping
type [address]int at line 1 of Figure 4 (right).

1 contract A {

2 int public x;

3 function set(int _x) public { x = _x; }

4 }

5 contract B {

6 A a;

7 function setXofA(uint x) public { a.set (x); }

8 function getXofA() public returns (uint) {

9 return a.x();

10 }

11 }

1 var x: [address]int;

2 procedure set (_this: address , _x: int) {

3 x := x[_this :=_x];

4 }

5 var a: [address]address;

6 procedure setXofA(_this: address , x: int) {

7 call set(a[_this], x);

8 }

9 procedure getXofA(_this: address) returns (r: int) {

10 r := x[a[_this]];

11 }

Fig. 4. Solidity contract (left) and its Boogie translation (right), illustrating the rep-
resentation of the blockchain data as a heap and the receiver parameter of functions.

Functions. Each function in Solidity is translated to a procedure in Boogie with
an additional implicit receiver parameter [5] called _this, which identifies the
address of the contract instance. As an example, consider the set function of the
Solidity contract A in Figure 4. Updating x in the Boogie program becomes an
update of the map x using the receiver parameter _this. Consider also the call
a.set(x) in the Solidity function setXofA. The Boogie program first gets the
address of the A instance corresponding to the current B instance using a[_this].
Then it passes this address to the receiver parameter of the function set.

Functions can be declared view (cannot write state) or pure (cannot read or
write state), but these restrictions are checked by the compiler. Additional user-
defined function modifiers are a language feature of Solidity to alter or extend the
behavior of functions. In practice, modifiers are commonly used to weave in extra
checks and instructions to functions. For example, the pay function in Figure 5
(left) includes the modifier onlyOwner (defined in line 4), which performs an
extra check before calling the actual function (denoted by the placeholder _).
solc-verify simply inlines statements of all modifiers of a function to obtain a
single Boogie procedure (e.g., pay procedure in Figure 5 right).

Statements and expressions. Most of the Solidity statements and expressions
can be directly mapped to a corresponding statement or expression in Boogie
with the same semantics, including variable declarations, conditionals, while
loops, calls, returns, indexing, unary/binary operations and literals. There are
also some statements and expressions that require a simple transformation, such
as mapping for loops to while loops or extracting nested calls and assignments
within expressions to separate statements using fresh temporary variables. solc-

verify currently does not support inline assembly and creating new contracts
from within another contract (new expressions). Furthermore, the availability
of some arithmetic operations depends on the expressiveness of the underlying
domain (e.g., bitwise operations).

8 Á. Hajdu and D. Jovanović

1 contract Wallet {

2 address owner;

3

4 modifier onlyOwner () {

5 require(msg.sender == owner);

6 _;

7 }

8 function receive() payable public {

9 // Actions could be performed here

10 }

11 function pay(address to, uint amount)

public onlyOwner {

12 to.transfer(amount);

13 }

14 }

1 var _balance: [address]int;

2

3 var owner: [address] address;

4

5 procedure receive(_this: address , _msg_sender : address ,

_msg_value : int) {

6 _balance := _balance[_this := _balance[_this] + _msg_value];

7 // Actions could be performed here

8 }

9 procedure pay(_this: address , _msg_sender : address , _msg_value :

int, to: address , amount: int) {

10 assume(_msg_sender == owner[_this]);

11 assume(_balance[_this] >= amount);

12 _balance := _balance[_this := _balance[_this] - amount];

13 _balance := _balance[to := _balance[to] + amount];

14 }

Fig. 5. A simple wallet, which can receive Ether from anyone but only the owner can
make transfers. This example illustrates various Ethereum and blockchain features in
Solidity (left) along with their representation in Boogie (right).

Transactions. Solidity includes Ethereum-specific functions and variables to
query and manipulate balances and transactions. Some examples can be seen
in Figure 5 (left) with the corresponding translation in Figure 5 (right). Each
address is associated with its balance, which can be queried using the balance

member of the address. Correspondingly, solc-verify keeps track of the bal-
ances in a global mapping from addresses to integers (line 1 of Figure 5 right).

Solidity offers the msg.sender field within functions (line 5 of Figure 5 left)
to access the caller address. solc-verify maps this to Boogie by adding an extra
parameter _msg_sender of type address to each procedure. When a procedure
calls another, the current receiver address (_this) is passed in as the sender.

Solidity functions marked with the payable keyword (line 8 of Figure 5
left) are capable of receiving Ether when called. The amount of Ether received
can be queried from the msg.value field. solc-verify models this in Boogie
by including an extra parameter _msg_value and updating the global balances
map at the beginning of the corresponding Boogie procedure (line 6 of Figure 5
right). When calling a payable function in Solidity, the amount of Ether to be
transferred can be set with the special value function (e.g., line 11 of Figure 1).
solc-verify translates this to Boogie by reducing the balance of the caller
before making the call and passing the value as the _msg_value argument.

The functions send and transfer are dedicated functions to transfer Ether
between addresses. solc-verify inlines these functions by manipulating the
global mapping of balances directly. If the recipient is a contract, a special fall-
back function is executed, but the gas passed is limited to raising events, which is
irrelevant for functional correctness.7 For example, the transfer in line 12 of Fig-
ure 5 (left) is mapped to lines 11–13 on the right. The sender not having enough
funds is an expected transaction failure, which is modeled with an assumption.

The function call can call a function by its name on any address and can
also pass arbitrary data. Since there can be an unknown code behind the called

7 Gas costs of certain write operations were about to change with Constantinople, al-
lowing a reentrancy attack, but it was reverted with the St. Petersburg upgrade [19].

solc-verify: A Modular Verifier for Solidity Smart Contracts 9

address, solc-verify treats such cases as an external call that can perform
arbitrary computation.8 solc-verify does not support low-level function calls
such as callcode and delegatecall as it is considered dangerous and would
require encoding of the EVM details (contract layout, EVM semantics).

Error handling. Solidity exceptions will undo all changes made to the global state
by the current call. Deliberately thrown exceptions (require, revert, throw)
are therefore mapped to assumptions in Boogie, which stop the verifier with-
out reporting an error. Assertions are mapped to Boogie assertions, causing a
reported error when their condition evaluates to false.

Detection of overflows. Neither the EVM nor Solidity performs any checking of
the results of arithmetic operations by default. Due to the wraparound semantics
of integers, this allows unexpected overflows and underflows to occur undetected
(e.g., the infamous BEC token [36]).

In general, overflows can be detected by checking the result of every operation
after it has been computed. However, reporting every such overflow would result
in an overwhelming number of false alarms. For example, it is common practice
for Solidity developers to perform arithmetic operations first, and then check for
overflows manually after the fact (see, e.g., line 10 of Figure 2). This practice of
overflow detection is an integral part of the SafeMath library [17] that is used in
almost all deployed contracts on the Ethereum blockchain and is part of Solidity
best practices [12].

To reduce the number of false overflow reports, solc-verify uses the follow-
ing approach. Whenever an arithmetic computation is performed, it computes
the overflow condition that captures whether the overflow has occurred (i.e., if
the result of the computation in modular arithmetic is different from the re-
sult over unbounded integers). However, instead of immediately checking this
condition, it is accumulated in a dedicated Boolean overflow-detection variable.
solc-verify then checks for overflow at the end of every basic block with an
assertion. This “delayed checking” gives space to developer to perform manual
checking for the overflow (in which case the assertion will not trigger) and will
avoid the false alarms. For example, the potential overflow in line 9 of Figure 2 is
not reported because in the very next line the programmer guards the overflow
and reverts the transaction.

5 Examples and Experiments on Real World Contracts

To demonstrate solc-verify we first discuss the coverage of currently-supported
language features and scalability by examining the (unannotated) contracts cur-
rently deployed on the Ethereum blockchain. We also pick a subset of the unan-
notated contracts and manually check what solc-verify can report on them.
Finally, we examine two contracts that had been exploited in the past, and show

8 Contract invariants are also checked before external calls as they can perform a
callback to the contract.

10 Á. Hajdu and D. Jovanović

Table 1. Etherscan results with different solvers and arithmetic encodings. Each cell
represents the number of successfully processed contracts (of 7836 total) and the aver-
age execution time per contract.

Encoding int bv mod mod-overflow

Translated 4096 3919 3926 3926
cvc4 4090 (0.71s) 3837 (0.99s) 3921 (0.72s) 3911 (0.79s)
yices2 3892 (1.15s) 3854 (0.86s) 3903 (0.75s) 3859 (0.87s)
z3 3897 (1.24s) 3831 (1.10s) 3892 (0.87s) 3894 (0.88s)

how solc-verify could have found the issues, with minimal annotation burden,
and prove that the fixed versions of the contracts are correct.

5.1 Language Coverage

To analyze the coverage of currently-supported language features and the scal-
ability of solc-verify, we collected 37531 contracts available on Etherscan.9

These contracts were compiled with various versions of the Solidity compiler and
not all of them are supported by version 0.4.25 that solc-verify used at the
time of writing the paper. We therefore selected 7836 contracts that do com-
pile. The results of running solc-verify on the selected contracts is shown in
Table 1. Columns correspond to different arithmetic modes, with the last col-
umn representing modular arithmetic with overflow checking enabled. The first
row shows that roughly 50% of the contracts can be successfully translated to
Boogie in each mode. Contracts that cannot be translated contain constructs
not yet handled by solc-verify, such as structures, enumerations or special
transaction and blockchain members. Some features (e.g., exponentiation) also
depend on the arithmetic mode, resulting in slight differences in feature coverage.
The remaining three rows show the number of contracts for which solc-verify

terminates within 10s with a given SMT solver as a backend. Note, that the ef-
fectiveness of the different SMT solvers on this set of contracts should be taken
with a grain of salt. For example, the bitvector encoding seems to be nearly as
efficient as modular arithmetic. However, this is because the assertions in these
contracts do not depend on complex (e.g., nonlinear) arithmetic. With more
complex invariants, the bitvector encoding becomes infeasible for reasoning, as
we demonstrate it with the BEC token example later in this section. The take-
away of these results is that the average execution time per contract is around
a second, meaning that solc-verify is applicable and effective for a significant
amount of real-world contracts, but scalability might depend on the complexity
of the properties.

5.2 Unannotated Contracts

The contracts available at Etherscan are not annotated and solc-verify can
only consider assert and require statements, and overflows as implicit speci-
9 http://csl.sri.com/users/dejan/contracts.tar.gz

http://csl.sri.com/users/dejan/contracts.tar.gz

solc-verify: A Modular Verifier for Solidity Smart Contracts 11

fication. Furthermore, the ground truth about the contracts (whether they are
correct or not) is unknown. Nevertheless, we systematically selected a subset of
the contracts and manually checked the results given by solc-verify.

We took all 3897 contracts that solc-verify could translate and process
with z3 in integer mode. At the first glance we discovered that a majority of the
contracts (2754) use the popular SafeMath library [17], which has just recently
adopted the proper usage of assert and require.10 We updated these con-
tracts to properly guard against user input with require (instead of assert).
Afterwards, we checked for assertion failures and overflows using solc-verify.

Assertion checking. Surprisingly, only 88 contracts (out of the 3897) contain as-
sertions. solc-verify reported an error for 80 contracts, which we all checked
manually. Out of those errors, 78 are clearly false alarms caused by a bad spec-
ification – the developer wrote assert where require should have been used –
and fit into one of the following categories:

– Enforcing input validity with assertion (e.g., input arrays are of equal size).
– Enforcing time locks with an assertion (e.g., now > 100).
– Enforcing success of functions calls with an assertion (e.g. addr.call()).
– Enforcing permissions with an assertion (e.g., checking msg.sender).
– Enforcing correct result of arithmetic operations with an assertion.

As described in the Solidity documentation [38] assert should only be used to
check for internal errors and invariants, and all cases highlighted above should
use require instead. After replacing the spurious assertions with require, solc-

verify reports no false alarms.
The 2 reported errors worth discussing in more detail are illustrated in Fig-

ure 6. The example on the left is a pre-sale contract that accepts Ether until
a sale cap is reached. The invariant of the contract, i.e. that (raised <= max)

is enforced with a (stronger) assertion at the beginning of function. It could
be argued that this fits within the mentioned prescribed usage for the assert

construct. However, as solc-verify performs modular analysis, and nothing is
assumed about the state before a function call, it will report such an assertion as
a potential error. To fix this, the invariant (raised <= max) should be specified
as a contract invariant, and require should be used to check the stronger pre-
condition at function entry (followed by an assert at the end of the function).

The example on the right is a token transfer function. The function checks
whether the sender has enough balance, and then it transfers the tokens to the
recipient. Finally, the assertion checks that no overflow has occurred using an
assert statement on the result of the addition. As is, solc-verify reports an
error because increasing the balance of the recipient might overflow. As argued
above, if the purpose of the assertion is to guard against overflows require

should be used instead. On the other hand, one could argue that for fixed-cap
tokens such an overflow should never occur since no address can hold enough
tokens to trigger the overflow. This assumption can be explicitly specified, i.e., by

10 For discussion, see https://github.com/OpenZeppelin/openzeppelin-solidity/issues/1120 .

https://github.com/OpenZeppelin/openzeppelin-solidity/issues/1120

12 Á. Hajdu and D. Jovanović

1 uint max = 1000 ether;

2 uint raised = 0;

3

4 function () payable {

5 assert(raised < max);

6 require(msg.value != 0);

7 require(raised + msg. value <= max);

8 raised += msg.value;

9 }

1 mapping (address => uint) balances;

2

3 function transfer(address to, uint val) {

4 require(balances[msg .sender] >= val);

5 require(msg .sender != to);

6 balances[msg.sender] = balances[msg .sender] - val;

7 balances[to] = balances[to] + val ;

8 assert(balances[to] >= val);

9 }

Fig. 6. Examples of failing assertions reported by solc-verify.

stating a contract invariant sum(balances) <= cap. With this invariant, solc-

verify avoids the false alarm by inferring that overflow is no longer possible.

Overflow checking. We also checked for overflows and manually verified the
results for the 68 contracts (out of 3897) that have at least 100 transactions.
solc-verify reports 33 alarms of which 29 are false and 4 can be considered
as real. All false alarms are due to implicit assumptions on the magnitude of
used numbers. There are 20 false alarms due to missing range assumptions for
array lengths causing false overflow alarms for loop counters. For example, in
a loop for (uint i = 0; i < array.length; i++) {} solc-verify reports
that i++ might overflow. It is reasonable to assume that array lengths remain
small due to the gas costs associated with growing an array. Other false alarms
are caused by implicit assumptions on Ether balances or time. For example, it is
assumed that a counter for the total amount of Ether received by a contract, or
multiplying msg.value by 20000 cannot overflow because the amount of Ether
is limited. Similarly, adding days or even weeks to the current timestamp will
not overflow any time soon. We plan to include such implicit assumptions to a
limited extent but, in general, it is best if the developer explicitly specifies them.
The four issues found that could be considered real are the following:

– A pre-sale contract sets the hardCap in its constructor based on a cap pro-
vided as argument with hardCap = cap*(10**18). Although the construc-
tor is only called once by the deployer, providing a large cap can result in
an unintentional overflow.

– A crowd-sale contract sets the unit cost based on the argument perEther

by calculating unitCost = 1 ether / (perEther*10**8). The problem-
atic function is guarded so that it can only be called by the contract owner.
Nevertheless, overflow can happen and can lead to an inconsistent unit price.

– A utility contract for mass distribution of tokens has a function to transfer an
array of values to an array of recipients as a batch. The total amount trans-
ferred is kept accumulated in a contract counter and can overflow. However,
as the counter is not used otherwise, the overflow might be benign.

– A food store contract first calculates the cost based on the bundles ordered,
by computing cost = bundles * price, where bundles is provided by the
caller. The function then checks if msg.value >= cost holds, but this check
can be bypassed with the overflow, opening the door for a potential exploit.

solc-verify: A Modular Verifier for Solidity Smart Contracts 13

1 library SafeMath {

2 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

3 uint256 c = a * b;

4 require(a == 0 || c / a == b);

5 return c;

6 }

7 // Similar for add, sub, div

8 }

9

10 /** @notice invariant totalSupply == sum(balances) */

11 contract BecToken {

12 using SafeMath for uint256;

13

14 uint256 public totalSupply ;

15 mapping(address => uint256) balances;

16

17 function batchTransfer (address [] _receivers , uint256 _value) public returns (bool) {

18 uint cnt = _receivers. length;

19 uint256 amount = uint256(cnt) * _value; // Overflow

20 // uint256 amount = uint256(cnt).mul(_value); // Correct version

21 require(cnt > 0 && cnt <= 20);

22 require(_value > 0 && balances[msg. sender] >= amount);

23 balances[msg. sender] = balances[msg .sender].sub(amount);

24 /** @notice invariant totalSupply == sum(balances) + (cnt - i) * _value

25 @notice invariant (i <= cnt) */

26 for (uint i = 0; i < cnt ; i++) {

27 balances[_receivers[i]] = balances[_receivers[i]]. add(_value);

28 }

29 return true;

30 }

31 }

Fig. 7. Annotated part of the BECToken contract relevant for the “batchOverflow”
bug [36]. While the contract uses the SafeMath library for most of its operations, there
is a multiplication in line 19 that can overflow.

5.3 Annotated Contracts

While solc-verify can find violations to implicit specifications in unannotated
contracts, its main target is to allow developers to check custom, high-level
properties by the means of annotations. We demonstrate this by annotating two
contracts, finding bugs and proving the correctness of the fixed versions.

Reentrancy detection (DAO). Reentrancy is a common source of vulnerabili-
ties and the cause of the infamous DAO bug [16]. As explained in Section 2, the
SimpleBank contract presented in Figure 1 suffers from the same reentrancy bug.
Using solc-verify, the developer can specify the consistency of the bank con-
tract state through a contract-level invariant, and solc-verify can detect the
bug. For example, we can annotate the contract with a property sum(balances)

== this.balance. As the balance of the contract is deducted before the external
call, the contract invariant is violated and solc-verify reports a (real) error.
However, if the user fixes the issue by first reducing the balance of the recipient
in the mapping and then transferring the amount, the invariant will hold before
making the external call and solc-verify proves the specification successfully.
For both the buggy and correct versions of the contract, the verification with
solc-verify is instant.

Overflow detection (BEC token). We now consider the BEC token vulnerabil-
ity [36] that has been exploited and resulted in significant financial losses. The
relevant part of the contract is shown in Figure 7. The contract is a typical token

14 Á. Hajdu and D. Jovanović

contract, tracking balances of users in terms of their BEC tokens and allowing
transfers of tokens between users. The function batchTransfer shown in the
figure is intended to be used for transferring some value of BEC tokens to a
group of recipients in a batch. To do so, the contract multiplies the requested
value with the number of recipients. Unfortunately, this multiplication can re-
sult in an overflow (line 19), causing the total transfer amount to be invalid
(e.g., 0). This allows attackers to “print” large amounts of tokens and send them
to other users, while keeping their own balance constant. Running solc-verify

with the modular encoding of arithmetic successfully detects the overflow issue
of BEC token and does not report any other potential overflows. After fixing
the contract (line 20), solc-verify shows that no overflows are possible. We
also annotated the BEC contract with a specification that the contract main-
tains the correct token balances throughout the operation. As before, we add
the invariant totalSupply == sum(balances) to the contract, and adapt it to
the loop invariant. The loop invariant introduces extra complexity as it involves
nonlinear arithmetic and illustrates the need for precise reasoning at large bit-
sizes. Running solc-verify on the annotated contract in the bitvector mode
does not terminate regardless of the SMT solver used.11 On the other hand, us-
ing modular arithmetic with overflow detection solc-verify discharges all VCs
(with 256-bit integers) in seconds for both the buggy and correct version of the
contract (with cvc4).

Other tools. As far as we know, solc-verify is the only available tool that
can reason effectively and precisely about Solidity code with specifications. The
Solidity compiler includes an experimental SMT checker [2], which is currently
limited to basic require/assert and overflow checking. For the BEC token the
latest version (v0.5.10) reports every arithmetic operation as a potential overflow,
including all false alarms in the SafeMath library. It cannot detect the reentrancy
issue in the SimpleBank example because external calls and the revert function
is not supported. Furthermore, it incorrectly reports that the condition for revert
is always true (possibly because call is skipped and the default return value is
false). Zeus [26] is not available publicly for comparison.12 VeriSol [27] does
not support libraries (like SafeMath) or the call function, which can cause
reentrancy so we could not apply it to our examples.

Two notable static analysis tools are mythril [13] and slither [20]. mythril

(v0.20.0) correctly reports the overflow issue with the BEC token in 200s, but
it also reports all spurious overflows. mythril detects the reentrancy issue with
the bank contract, but it also reports the same issue with the corrected version
of the contract. slither (v0.5.2), on the other hand, has a dedicated DAO-like
reentrancy issue check and correctly handles both the buggy and correct version
of the bank contract. However, slither doesn’t support overflow checking and
therefore doesn’t detect the BEC token issue.

11 With bit-size of 16 bits, z3 can discharge the VCs in 2295s while other solvers do
not terminate.

12 We could only obtain a spreadsheet of results from the authors.

solc-verify: A Modular Verifier for Solidity Smart Contracts 15

Our goal, as demonstrated by the annotated examples, is to provide a tool
that allows developers to check their own high-level annotations and business
logic properties. This makes solc-verify a good complementary to other auto-
mated verification tools that mainly target well known vulnerability patterns.

6 Related Work

The popularity of blockchain technology and many high-profile attacks and vul-
nerabilities have put focus on the need for formal verification for smart con-
tracts [4,23,32]. We mention prominent advances relying on vulnerability pat-
terns, theorem provers, finite automata and SMT, and relate them to our work.

Vulnerability pattern-based approaches. Bhargavan et al. [8] translate a fragment
of Solidity and EVM to F∗ and use its type and effect system to check for vul-
nerable patterns and gas boundedness. Grishchenko et al. [22] extend this work
on EVM by checking security properties such as call integrity, atomicity, and in-
dependence from miner controlled parameters. Securify [40] decompiles EVM
and infers data- and control-flow dependencies in Datalog to check for compliance
and violation patterns. Oyente [29] is a symbolic execution tool that can check
various patterns, including transaction ordering dependency, timestamp depen-
dency, mishandled exceptions and reentrancy. Maian [35] uses symbolic analysis
with concrete validation over a sequence of invocations to detect fund locking,
fund leaking and contracts that can be killed. mythril [13] uses symbolic analy-
sis to detect a variety of security vulnerabilities. slither [20] is a static analysis
framework with dedicated vulnerability checkers. Approaches based on vulner-
ability patterns, as the ones mentioned above, can be effective at discharging
specific properties, but are limited to built-in patterns (or a domain specific
language [40]). Furthermore, as they are mainly EVM-based it makes reasoning
about more general properties difficult. Our approach focuses on Solidity and
allows high-level, user-defined properties to be checked effectively.

Theorem prover-based approaches. Kevm [24] is an executable formal semantics
of EVM based on the K framework including a deductive program verifier to
check contracts against given specifications. Hirai [25] formalizes EVM in Lem,
a language used by various theorem provers and proves properties using inter-
active theorem proving. Scilla [37] is an intermediate language between smart
contracts and bytecode, using the Coq proof assistant for reasoning. Theorem
prover-based approaches offer the ability to capture precise, formal semantics of
the contracts but can be cumbersome as properties also need to be formalized in
the language of the theorem prover. Moreover, user interaction and assistance is
usually required impeding usability for contract developers.13 In our approach
the developer can specify the properties directly within the contract, as Solidity
annotations and modular verification is fully automated. Although loop invari-
ants might be required, complex loops are rare in contracts.
13 For an example of the difficulties in manually analyzing even trivial issues, see

https://runtimeverification.com/blog/erc-20-verification/.

https://runtimeverification.com/blog/erc-20-verification/

16 Á. Hajdu and D. Jovanović

Automata-based approaches. FSolidM [30] is a finite state machine-based de-
signer for smart contracts that can generate Solidity code. Security features and
design patterns (e.g., locking, access control) can be included in the state ma-
chine. Abdellatif and Brousmiche [1] model contracts and the blockchain man-
ually in BIP and use statistical model checking to simulate uncertainties in the
environment. Such model-based approaches are orthogonal to our approach, as
we are working on the source code directly. This has the advantage that the
developer does not need to learn a new (modeling) language and an extra step
of transformation (from model to source) is eliminated.

SMT-based approaches. Zeus [26] translates Solidity to LLVM bitcode and em-
ploys existing verifiers such as SeaHorn and Smack. Besides certain vulner-
ability patterns, it claims to have support for user-defined properties to some
extent. However, it is not publicly available for comparison. VeriSol [27] checks
for conformance between workflow policies and smart contract implementations
on the Azure blockchain. While the core of their method is a translation to Boo-
gie (similar to ours), it targets a specific problem limited in scope and does not
yet support features needed for typical smart contracts (see Section 5.3). The So-
lidity compiler itself also includes a built-in experimental SMT checker [2], which
executes the body of each function symbolically and checks for implicit speci-
fications, such as assertion failures, dead code and overflows. Their approach
is however, limited, by false overflow alarms and missing features (e.g., call,
revert). Furthermore, it has no support for developer-supplied specification be-
yond require and assert statements. Some of the challenges they mention in
their future work are solved by our approach, including contract level invariants
and the reduced number of false overflow alarms.

7 Conclusion

We presented solc-verify, a tool for automated verification of Solidity smart
contracts based on modular program reasoning and SMT solvers. Working at
the source level, solc-verify allows users to specify high-level properties such
as contract invariants, loop invariants, pre- and post-conditions and assertions.
solc-verify then discharges verification conditions with SMT solvers to verify
contract properties in a modular and scalable way. The approach offers precise
and scalable, yet automated and user-friendly formal verification for Solidity
smart contracts. solc-verify can already be used on real-world contracts and
can effectively find bugs and prove correctness of non-trivial properties with
minimal user effort.

References

1. Abdellatif, T., Brousmiche, K.: Formal verification of smart contracts based on
users and blockchain behaviors models. In: 9th IFIP International Conference on
New Technologies, Mobility and Security. pp. 1–5. IEEE (2018)

solc-verify: A Modular Verifier for Solidity Smart Contracts 17

2. Alt, L., Reitwiessner, C.: SMT-based verification of Solidity smart contracts. In:
Leveraging Applications of Formal Methods, Verification and Validation. Industrial
Practice, LNCS, vol. 11247, pp. 376–388. Springer (2018)

3. Antonopoulos, A., Wood, G.: Mastering Ethereum: Building Smart Contracts and
Dapps. O’Reilly Media, Inc. (2018)

4. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts. In: Principles of Security and Trust, LNCS, vol. 10204, pp. 164–186. Springer
(2017)

5. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology 3(6),
27–56 (2004)

6. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Computer Aided Verification, LNCS, vol. 6806,
pp. 171–177. Springer (2011)

7. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer (2018)

8. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: Short paper. In: ACM Work-
shop on Programming Languages and Analysis for Security. pp. 91–96. ACM (2016)

9. Bornat, R.: Proving pointer programs in Hoare logic. In: International Conference
on Mathematics of Program Construction. pp. 102–126. Springer (2000)

10. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate for
analyzing low-level software. In: Tools and Algorithms for the Construction and
Analysis of Systems, LNCS, vol. 4424, pp. 19–33. Springer (2007)

11. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Theorem Proving in Higher Order Logics, LNCS, vol. 5674, pp. 23–42. Springer
(2009)

12. ConsenSys: Ethereum smart contract security best practices (2018),
https://consensys.github.io/smart-contract-best-practices/

13. ConsenSys: Mythril classic: Security analysis tool for Ethereum smart contracts.
https://github.com/ConsenSys/mythril-classic (2019)

14. De Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In:
Formal Methods in Computer-Aided Design. pp. 45–52. IEEE (2009)

15. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Tech. Rep. MSR-TR-2005-70, Microsoft Research (2005)

16. Dhillon, V., Metcalf, D., Hooper, M.: The DAO hacked. In: Blockchain Enabled
Applications, pp. 67–78. Apress (2017)

17. Dourlens, J.: Safemath to protect from overflows (2017),
https://ethereumdev.io/safemath-protect-overflows/

18. Dutertre, B.: Yices 2.2. In: Computer-Aided Verification, LNCS, vol. 8559, pp.
737–744. Springer (2014)

19. Ethereum Constantinople/St. Petersburg upgrade announcement (2019),
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement/

20. Feist, J., Greico, G., Groce, A.: Slither: A static analysis framework for smart
contracts. In: Proceedings of the 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain. pp. 8–15. IEEE (2019)

21. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: ACM SIGPLAN 2002 conference on Pro-
gramming Language Design and Implementation. pp. 234–245. ACM (2002)

https://consensys.github.io/smart-contract-best-practices/
https://github.com/ConsenSys/mythril-classic
https://ethereumdev.io/safemath-protect-overflows/
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement/

18 Á. Hajdu and D. Jovanović

22. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the se-
curity analysis of Ethereum smart contracts. In: Principles of Security and Trust,
LNCS, vol. 10804, pp. 243–269. Springer (2018)

23. Harz, D., Knottenbelt, W.: Towards safer smart contracts: A survey of languages
and verification methods (2018), http://arxiv.org/abs/1809.09805

24. Hildenbrandt, E., Saxena, M., Zhu, X., Rodrigues, N., Daian, P., Guth, D., Rosu,
G.: KEVM: A complete semantics of the Ethereum virtual machine. Tech. rep.,
IDEALS (2017)

25. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Financial Cryptography and Data Security, LNCS, vol. 10323, pp. 520–535.
Springer (2017)

26. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: Zeus: Analyzing safety of smart
contracts. In: Network and Distributed Systems Security Symposium (2018)

27. Lahiri, S.K., Chen, S., Wang, Y., Dillig, I.: Formal specification and verification of
smart contracts for Azure blockchain (2018), http://arxiv.org/abs/1812.08829

28. Leino, K.R.M.: This is Boogie 2 (2008)
29. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts

smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 254–269. ACM (2016)

30. Mavridou, A., Laszka, A.: Tool demonstration: FSolidM for designing secure
Ethereum smart contracts. In: Principles of Security and Trust, LNCS, vol. 10804,
pp. 270–277. Springer (2018)

31. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress.
pp. 21–28 (1962)

32. Miller, A., Cai, Z., Jha, S.: Smart contracts and opportunities for formal meth-
ods. In: Leveraging Applications of Formal Methods, Verification and Validation.
Industrial Practice, LNCS, vol. 11247, pp. 280–299. Springer (2018)

33. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, LNCS, vol. 4963, pp. 337–340. Springer
(2008)

34. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008),
http://www.bitcoin.org/bitcoin.pdf

35. Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer
Security Applications Conference. pp. 653–663. ACM (2018)

36. NIST National Vulnerability Database: CVE-2018-10299: Beauty Ecosystem Coin
(BEC) issue (2018), https://nvd.nist.gov/vuln/detail/CVE-2018-10299

37. Sergey, I., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level lan-
guage (2018), http://arxiv.org/abs/1801.00687

38. Solidity documentation (2018), https://solidity.readthedocs.io/en/v0.4.25/
39. Szabo, N.: Smart contracts (1994)
40. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M.:

Securify: Practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. pp. 67–82.
ACM (2018)

41. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2017),
https://ethereum.github.io/yellowpaper/paper.pdf

http://arxiv.org/abs/1809.09805
http://arxiv.org/abs/1812.08829
http://www.bitcoin.org/bitcoin.pdf
https://nvd.nist.gov/vuln/detail/CVE-2018-10299
http://arxiv.org/abs/1801.00687
https://solidity.readthedocs.io/en/v0.4.25/
https://ethereum.github.io/yellowpaper/paper.pdf

	solc-verify: A Modular Verifier for Solidity Smart Contracts

