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Abstract
This paper presents RANDCHAIN, a new family of decen-
tralised randomness beacon (DRB) protocol. Unlike existing
DRB protocols where nodes are collaborative, i.e., contribut-
ing local entropy and aggregating them to a single output,
nodes in RANDCHAIN are competitive: nodes compete with
each other on becoming the next leader, who solely prepares
and proposes the next random output. RANDCHAIN employs
Sequential Proof-of-Work (SeqPoW), a Proof-of-Work
(PoW) puzzle that cannot be solved faster by using multiple
processors in parallel. To propose a random output, a node
needs to solve a SeqPoW puzzle derived from the last random
output and the node’s identity. Nodes execute Nakamoto
consensus to agree on a unique vector of random outputs.

RANDCHAIN achieves promising security and performance
without relying on strong assumptions. With Nakamoto con-
sensus, RANDCHAIN does not rely on trustworthy leaders
or lock-step synchrony, and achieves linear communication
complexity. Biasing or predicting future random outputs is
infeasible, as nodes cannot choose their own SeqPoW inputs
and SeqPoW solutions are unpredictable. Also, RANDCHAIN,
for the first time, achieves non-parallelisable mining, where
each node can only use a single processor to mine.

1 Introduction

Randomness is a key building block for various protocols
and applications. Decentralised Randomness Beacon (DRB)
allows a group of participants (aka nodes) to jointly generate
random outputs. DRB protocols have been deployed by
well-known organisations [8] and integrated into various
applications, especially blockchains [31, 54, 68, 72].

Most DRB protocols are constructed from periodically
executing a Distributed Randomness Generation (DRG)
protocol, where a group of nodes contribute their local
entropy and aggregate them into a single random output. DRG
protocols can be constructed from various cryptographic
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primitives, including threshold cryptosystems [41, 49, 68],
Verifiable Random Functions (VRFs) [54,64,67], and Publicly
Verifiable Secret Sharing (PVSS) [42, 43, 72, 74, 93, 95].

Limitations of DRG-based DRBs. DRG-based DRBs suffer
from two limitations, namely round synchronisation and high
communication overhead. First, nodes execute DRG in rounds,
so have to ensure they are executing the same round of the
protocol. If nodes disagree on the round numbers, then the
DRB may lose safety and/or liveness forever [82]. In addition,
to agree on random outputs, nodes have to make all-to-all
broadcasts, leading to communication complexity of at least
O(n2) [41, 42, 72, 74, 93].

The crux: nodes are collaborative. We attribute the two
limitations to the design that nodes are collaborative: nodes
contribute their local inputs and aggregate them into a single
output. The collaborative process ensures that no node can
fully control random outputs, making them hard to bias
or predict. However, in order to collaborate, nodes should
continuously broadcast messages to and synchronise with each
other. The former incurs at least quadratic communication
complexity, and the latter introduces the round synchronisation
problem. All extra designs incorporated with DRG – e.g., using
leaders [41–43, 49, 54, 64, 67, 68, 72, 95], sharding [68, 95],
cryptographic sortition [67], Byzantine consensus [67, 93],
and erasure coding [42, 43] – aim at reducing the impact of
the above two limitations. However, since all of them are in
the collaborative design, they inherently suffer from the two
limitations and cannot address them completely.

Blockchains: collaborative v.s. competitive. DRB can be
seen as a blockchain protocol (aka State Machine Replication),
the basic paradigm for designing decentralised systems such as
distributed ledgers [25,30,75,80,99]. A blockchain protocol or-
ganises system states as a blockchain, i.e., a chain of blocks, and
nodes continuously append blocks attaching new system states
to the blockchain. Blockchain protocols can be constructed
from two approaches, namely the traditional Byzantine Fault
Tolerant (BFT)-style consensus [44] and Nakamoto-style
consensus [80]. Similar to DRG-based DRBs, nodes in
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BFT-style consensus are collaborative: they vote to decide the
next block. On the contrary, nodes in Nakamoto consensus are
competitive with each other: they compete on becoming the
next leader, who solely prepares and proposes the next block.

The competitive design addresses several limitations of
blockchain protocols with BFT-style consensus. The leader
election eliminates the need of leaders and lock-step synchrony.
As the leader takes full charge of proposing the next block, the
only communication is the leader broadcasting its block, lead-
ing to linear communication complexity. Each node keeps
extending its local blockchain, so does not need to always syn-
chronise its round number with other nodes. Table 1 classifies
existing blockchain protocols. It shows that there exists a gap of
knowledge on designing and understanding competitive DRBs.

Table 1: Taxonomy of blockchain protocols.

Relationship of nodes
Collaborative Competitive

A
pp

lic
at

io
ns

Distributed
Ledger

Tendermint [75]
HL. Fabric [25]

Libra [30]

Bitcoin [80]
Ethereum [99]

Decentralised
Randomness

Beacon

DRG-based
DRBs [41–

43, 49, 54, 64, 67,
68, 72, 74, 93, 95]

RANDCHAIN
(This work)

Our proposal: RANDCHAIN. To fill this gap, we propose
RANDCHAIN, a new family of DRBs where nodes are com-
petitive. In RANDCHAIN, nodes run a leader election protocol,
and the elected leader derives the next random output based on
data generated during the leader election. As 1) nodes cannot
predict who will become the next leader, 2) the leader cannot
predict random outputs produced by itself, and 3) before being
replaced by a new leader, the leader can only produce a limited
number of random outputs (following the Poisson distribution
like in Nakamoto consensus [66, 80, 91]), random outputs re-
main unpredictable and unbiasible. Nodes execute Nakamoto
consensus to agree on a unique vector of random outputs.

RANDCHAIN can employ any leader election protocol com-
patible with Nakamoto consensus. We construct RANDCHAIN
from Proof-of-Work (PoW)-based leader election: each node
keeps solving PoW puzzles (aka mining), and the node who
first solves the puzzle becomes the leader. The leader determin-
istically derives the next random output from its PoW solution.

The mining process is usually centralised and energy-
inefficient. A promising solution to keep mining decentralised
and energy-efficient is non-parallelisable mining [2]: each
node can only mine by using a single processor. RANDCHAIN,
for the first time, achieves non-parallelisable mining in
permissioned networks where neach node has a unique
identity, by using Sequential Proof-of-Work (SeqPoW).
SeqPoW is a PoW variant that is sequential, i.e., cannot be
solved faster by using multiple processors in parallel. Unlike

existing time-sensitive cryptographic primitives such as Proof
of Sequential Work (PoSW) [51, 78] and Verifiable Delay
Functions (VDFs) [34, 87, 98], SeqPoW takes a random and
unpredictable (rather than fixed) number of steps, with a math-
ematical expectation parametrised by a difficulty parameter.
This makes SeqPoW useful for constructing other protocols
such as leader election and Proof-of-Stake (PoS)-based
consensus, while being a building block of RANDCHAIN.

Our contributions are summarised as follows.
• We introduce a new notion and identity new design space for

DRBs. Differ from all the existing concepts and DRBs, in
our design nodes are competitive rather than collaborative.

• We introduce the concept of SeqPoW, including formal-
isation, two constructions based on VDFs [87, 98] and
Sloth [76], and security and efficiency analysis (§2).

• We provide RANDCHAIN (§3) as a concrete instantiation
of DRB in the identified design space, where nodes are
competitive. We provide an analysis on its security and
efficiency (§4).

• We provide an implementation of SeqPoW and RAND-
CHAIN, and evaluate their performance (§5). For SeqPoW,
we show that SeqPoW with Pietrzak’s VDF [87] is most
suitable for RANDCHAIN, given its trade-off between
computing/verifying proofs and the proof size. For
RANDCHAIN, we show that in a cluster with up to 1024
nodes, a random output can be propagated to the majority
of nodes within 1.3 seconds; nodes have comparable chance
of producing random outputs; and the average bandwidth
utilisation is less than 200KB/s even when the interval
between two random outputs is only one second.

• We establish a unified evaluation framework of DRBs,
and compare RANDCHAIN with existing DRBs under
this framework (§6). Our comparison results show that
RANDCHAIN is the only DRB that is leaderless, secure
and efficient simultaneously, without relying on lock-step
synchrony or trusted parties.
We conclude the paper in §7, and provide additional details

in the appendix. In particular, Appendix A provides prelim-
inary formal definitions; Appendix B-C provides security
proofs for SeqPoW and RANDCHAIN; and Appendix D
discusses some practical considerations.

2 Sequential Proof-of-Work

Sequential Proof-of-Work (SeqPoW) is the key building block
of RANDCHAIN. We formalise SeqPoW, provide two con-
structions, and formally analyse their security and efficiency.

2.1 Preliminaries

Notations. Table 2 summarises notations in this paper.
Proof-of-Work (PoW) [59] is a computationally hard puzzle
that is hard to solve but efficient to verify. PoW can be con-
structed from hash functions: the prover searches for a nonce
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Table 2: Summary of notations.

Notation Description
H(·), H ′(·) Hash functions mapping {0,1}∗ to {0,1}κ

X ,Y Domains
pp Public parameter

t Time parameter of VDFs (t∈N+)
π Proof
ψ Step parameter of SeqPoW (ψ∈N+)
T Difficulty parameter of (Seq)PoW (T ∈(1,∞))

sk,pk Secret key and public key
G,g Cyclic group and its generator

HG(·) Hash function from {0,1}∗ to an element on G
Si,bi The i-th SeqPoW solution and its validity

πi Proof of i-th SeqPoW solution
{p1,...,pn} Nodes in the network

skk,pkk Secret key and public key of node pk
Ck The local blockchain of node pk

M C k The the main chain of node pk
B` The `-th block

α,β Fraction of faulty and correct nodes (α+β=1)

x such that H(in‖x)≤ 2κ

T , where H :{0,1}∗→{0,1}κ is a cryp-
tographic hash function, in is the input, and T ∈ (1,∞) is the
difficulty parameter. As hash functions produce pseudorandom
outputs, brute-force searching is the prover’s only strategy. Sta-
tistically, with a larger T , the prover needs to try more nonces.
Verifiable Delay Function (VDF) [34,87,98] allows a prover
to evaluate an input, and produce a unique output with a
succinct proof. The evaluation process takes non-negligible
and parameterisable time to execute, even with parallelism.
With the input, output and proof, anyone can verify whether
the output is generated from the input. Specifically, a VDF is
a tuple of four algorithms VDF=(Setup,Eval,Prove,Verify):

Setup(λ)→ pp : On input security parameter λ, outputs
public parameter pp. Public parameter pp specifies an
input domain X and an output domain Y . We assume X
is efficiently sampleable.

Eval(pp,x,t)→y : On input public parameter pp, input x∈X ,
and time parameter t∈N+, produces output y∈Y .

Prove(pp,x,y,t)→π : On input public parameter pp, input
x, and time parameter t, outputs proof π.

Verify(pp,x,y,π,t)→{0,1} : On input public parameter pp,
input x, output y, proof π and time parameter t, produces
1 if correct, otherwise 0.

VDF satisfies three properties:

• completeness: all outputs from honest evaluations can pass
the verification;

• soundness: all outputs from malicious evaluations cannot
pass the verification; and

• σ-sequentiality: Eval(·, ·, t) cannot be evaluated within
parallel time σ(t).

VDFs are usually constructed from an iteratively sequential
function (ISF) and a succinct proof attesting the ISF’s execu-
tion results [87, 98]. An ISF f (t,x)=gt(x) is implemented by
composing g(x) for t times, where g(·) is a sequential function
that cannot be solved faster by using multiple processors in
parallel. Given g(·)’s sequentiality, the fastest way of com-
puting f (t,x) is to iterate g(x) for t times. In addition, f (·)
is self-composable: for any x and (t1,t2), let y← f (x,t1), we
have f (x, t1 + t2) = f (y, t2). VDFs usually inherit the self-
composability from ISFs, i.e., for all λ,t1,t2, let pp←Setup(λ)
and y ← Eval(pp, x, t1), it holds that Eval(pp, x, t1 + t2) =
Eval(pp, y, t2). Such VDFs are known as self-composable
VDFs [57]. Appendix A provides formal definitions of VDF.

2.2 Basic idea

SeqPoW is a PoW that cannot be solved faster by using
multiple processors in parallel. As shown in Figure 1, given
an initial SeqPoW puzzle S0, the prover keeps solving it by
incrementing an ISF. Each iteration takes the last output Si−1
as input and produces a new output Si. For each output Si, the
prover checks whether it satisfies a difficulty parameter T . If
yes, then Si is a valid solution, and the prover can generate
a proof πi on it. Given Si and πi, the verifier can check Si’s
correctness without solving the puzzle again.

Prover SeqPoW
puzzle

Verifier

...

Diff checkDifficulty
T

Diff check Diff check

Iteratively
Sequential
Function

Figure 1: Sequential Proof-of-Work.

Comparisons with relevant primitives (Table 3). SeqPoW
differs from VDFs and other time-sensitive cryptographic
primitives, e.g., Timelock Puzzle (TLP) [89] and Proofs of
Sequential Work (PoSW) [51, 78], that, the SeqPoW prover
iterates an ISF for a randomised (rather than given) number
of times. In addition, compared to TLP where outputs are not
publicly verifiable, SeqPoW outputs are publicly verifiable.
Compared to existing PoSW constructions [51, 78] where
proofs are not unique, SeqPoWSloth provides unique outputs.
SeqPoW differs from PoW that SeqPoW is sequential. Se-
qPoW differs from memory-hard functions (MHFs) [24,32,86]
that, SeqPoW is bottlenecked by the processor’s frequency,
whereas MHF is bottlenecked by the memory bandwidth.

Two concurrent works [55,77] suggest ways of randomising
the number of iterations of VDFs. While they use ideas similar
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to SeqPoW, we are the first to formally study such primitives,
including formal definitions, concrete constructions with
security proofs, implementation and evaluation. We also
provide SeqPoW with uniqueness that cannot be achieved in
their constructions.

Table 3: SeqPoW v.s. relevant primitives.

Primitive
Execution Output

Seq
uen

tia
l

#S
tep

s

Bott
len

eck

Unique

Veri
fiab

le

Time-
sensitive

TLP 3 Fixed Proc. freq. 3 7

PoSW 3 Fixed Proc. freq. 7 3

VDF 3 Fixed Proc. freq. 3 3

Resource-
consuming

MHF 3or 7 Fixed Mem. bandw. 3 3

PoW 7 Random
Proc. freq. +
# of procs. 7 3

Our work
SeqPoWVDF 3 Random Proc. freq. 7 3

SeqPoWSloth 3 Random Proc. freq. 3 3

Applications. The hardness property implies that, the prover
cannot predict in which step it will solve the SeqPoW puzzle.
This makes SeqPoW useful in various protocols, such as
leader election and Proof-of-Stake (PoS)-based consensus.

1) Leader election. Mining in PoW-based consensus can
be seen as a way of electing leaders: given a set of nodes,
the first node proposing a valid PoW solution becomes
the leader and proposes a block. SeqPoW can be a drop-in
replacement of PoW for the leader election purpose. Later
in §4, we will show that compared to parallelisable PoW,
SeqPoW-based leader election can be fairer and more
energy-efficient.

2) PoS-based consensus. In Proof-of-Stake (PoS)-based
consensus [73], each node’s chance of mining a block is
in proportion to its stake, e.g, the node’s balance. Most PoS-
based consensus protocols [28, 53, 54, 63, 72] select block
proposers in a predictable [29] way: for every round, a node
can predict whether it will be the block proposer before
mining the block. Predictable PoS-based consensus is vul-
nerable to a class of prediction-based attacks, and therefore
tolerates less Byzantine mining power [29] than PoW-based
consensus. To make PoS-based consensus unpredictable,
one can randomise the process of selecting block proposers.
SeqPoW can provide such functionality: each node solves
a SeqPoW with its identity, the last block, and the difficulty
parameter inversely proportional to its stake as input,
and the first node solving its SeqPoW becomes the block
proposer. Two concurrent and independent works [55, 77]
provide concrete constructions following the similar idea.

2.3 Definition

We formally define SeqPoW as follows.

Definition 1 (Sequential Proof-of-Work (SeqPoW)). A
Sequential Proof-of-Work SeqPoW is a tuple of algorithms

SeqPoW=(Setup,Gen,Init,Solve,Verify)
Setup(λ,ψ,T )→ pp : On input security parameter λ, step

ψ∈N+ and difficulty T ∈ [1,∞), outputs public parameter
pp. Public parameter pp specifies an input domain X , an
output domain Y , and a cryptographically secure hash
function H :Y →X , where X is efficiently sampleable.

Gen(pp)→(sk,pk) : A probabilistic function, which on input
public parameter pp, produces a secret key sk ∈ X and a
public key pk∈X .

Init(pp,sk,x)→(S0,π0) : On input public parameter pp,
secret key sk, and input x ∈ X , outputs initial solution
S0 ∈Y and proof π0. Some constructions may use public
key pk as input rather than sk. This also applies to Solve(·)
and Prove(·).

Solve(pp,sk,Si)→(Si+1,bi+1) : On input public parameter
pp, secret key sk, and i-th solution Si∈Y , outputs (i+1)-th
solution Si+1∈Y and result bi+1∈{0,1}.

Prove(pp,sk,i,x,Si)→πi : On input public parameter pp, se-
cret key sk, i, input x, and i-th solution Si, outputs proof πi.

Verify(pp,pk,i,x,Si,πi)→{0,1} : On input public parameter
pp, public key pk, i, input x, i-th solution Si, and proof πi,
outputs result {0,1}.

We define honest tuples and valid tuples as follows.

Definition 2 (Honest tuple). A tuple (pp, sk, i, x, Si, πi) is
(λ,ψ,T )-honest if and only if for all pp←Setup(λ,ψ,T ), the
following holds:
• i=0 and (S0,π0)← Init(pp,sk,x), and
• ∀i ∈ N+, (Si, bi) ← Solve(pp, sk, Si−1) and

πi←Prove(pp,sk,i,x,Si), where (pp,sk,i−1,x,Si−1,πi−1)
is (λ,ψ,T )-honest.

Definition 3 (Valid tuple). For all λ, ψ, T , and pp ←
Setup(λ,ψ,T ), a tuple (pp,sk,i,x,Si,πi) is (λ,ψ,T )-valid if
• (pp,sk,i,x,Si,πi) is (λ,ψ,T )-honest, and
• Solve(pp,sk,Si−1)=(·,1)

SeqPoW should satisfy completeness, soundness, hardness
and sequentiality, plus an optional property uniqueness. We
start from completeness and soundness.

Definition 4 (Completeness). A SeqPoW scheme satisfies
completeness if for all λ,ψ,T ,

Pr

 Verify(pp,pk,i,
x,Si,πi)=1

∣∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)
(pp,pk,i,x,Si,πi)
is (λ,ψ,T )-valid

=1

Definition 5 (Soundness). A SeqPoW scheme satisfies
soundness if for all λ,ψ,T ,

Pr

 Verify(pp,pk,i,
x,Si,πi)=1

∣∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)
(pp,pk,i,x,Si,πi)

is not (λ,ψ,T )-valid

≤negl(λ)
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We define hardness with difficulty T such that each attempt
of Solve(·) has the success rate of 1

T .

Definition 6 (Hardness). A SeqPoW scheme satisfies
hardness if for all (λ,ψ,T )-honest tuple (pp,sk,i,x,Si,πi),

Pr
[

bi+1=1
∣∣∣∣ (Si+1,bi+1)←
Solve(pp,sk,Si,πi)

]
≤ 1

T
+negl(λ)

Similar to VDF, we define sequentiality: even with parallel
processors, the fastest way of computing Si is incrementing
Solve(·) for i times, which takes time σ(i ·ψ). Sequentiality
also captures the unpredictability that, the adversary cannot
predict Si’s value before finishing computing Si.

Definition 7 (σ-Sequentiality). A SeqPoW scheme satisfies
σ-sequentiality if for all λ, ψ, T , i, x, A0 which runs in less
than time O(poly(λ,ψ,i)) and A1 which runs in less than time
σ(i·ψ) with at most poly(λ) processors,

Pr

 (pp,sk,i,x,Si,πi)
is (λ,ψ,T )-honest

∣∣∣∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)

A1←A0(pp,sk)
Si←A1(i,x)

πi←Prove(pp,sk,i,x,Si)


≤negl(λ)

We also define an optional property uniqueness that,
each SeqPoW puzzle only has a single valid solution Si.
Before finding Si each Solve(·) attempt follows the hardness
definition, but after finding Si no Solve(·) attempt leads to a
valid solution. Uniqueness implies that, once finding a valid
solution Si, the prover stops incrementing Solve(·).

Definition 8 (Uniqueness). A SeqPoW scheme sat-
isfies uniqueness if for any two (λ, ψ, T )-valid tuples
(pp,sk,i,x,Si,πi) and (pp,sk,i,x,S j,π j), i= j holds.

2.4 Constructions
We propose two SeqPoW constructions. Let H : {0,1}∗ →
{0,1}κ be a cryptographic hash function. Let G be a cyclic
group. Let HG(·) be a hash function that takes an arbitrarily
long string {0,1}∗ to an element of G. Let g be a generator of
G. Let sk be the secret key, and pk=gsk be the public key.

SeqPoW from VDFs (Figure 2a). Let ψ be a step parameter,x
be the input, and T be the difficulty parameter. The prover runs
Init(·), which generates the initial solution S0 = HG(pk‖x).
Then, the prover keeps running Solve(·), which calculates
an intermediate output Si =VDF.Evali(pp,S0,ψ) and checks
whether H(pk‖Si) ≤ 2κ

T . If true, then Si is a valid solution,
and the prover runs Prove(·), which outputs proof πi attesting
Si =VDF.Evali(pp,S0,ψ). Note that VDF.Evali(pp,S0,ψ)=
VDF.Eval(pp,S0,i·ψ) for self-composable VDFs. The verifier
runs Verify(·), which checks 1) whether Si =Evali(pp,S0,ψ)
by running VDF.Verify(ppVDF, pk, i · ψ, x, Si, πi), and 2)
whether Si satisfies the difficulty T .

Unique SeqPoW from Sloth (Figure 2b). SeqPoWVDF does
not provide uniqueness: the prover can keep incrementing the
ISF to find as many valid solutions as possible. We construct
SeqPoWSloth with uniqueness from Sloth [76], a slow-timed
hash function. In Sloth, the prover square roots (on a cyclic
group G) the input t times to get the output. The verifier squares
the output for t times to recover the input and checks if the
input is same as the one from the prover. Verification is faster
than computing: on cyclic group G, squaring is O(log |G|)
times faster than square rooting. Similar to SeqPoWVDF,
SeqPoWSloth takes each of Si = f (i·ψ,S0) as an intermediate
output and checks if H(pk‖Si) ≤ 2κ

T . To make the solution
unique, SeqPoWSloth only treats the first solution satisfying
the difficulty as valid. When verifying Si, if the verifier finds
an intermediate output S j ( j< i) satisfying the difficulty, then
Si is considered invalid (line 6 in Verify(·) of Figure 2b).

Other possible constructions. SeqPoW is mainly based on
the succinct proof of ISFs. In addition to VDFs and Sloth,
Incremental Verifiable Computation (IVC) [96] can also
provide such proofs. IVC is a powerful primitive that, a
prover can produce a succinct proof on the correctness of any
historical execution, and for any further step of computation,
the prover can update the last step’s proof with little effort,
rather than computing a new one from scratch.

The advantage of IVC-based SeqPoW is that it supports any
ISFs. This means IVC-based SeqPoW can be more egalitarian
by using ISFs that are hard to parallelise and optimise.
However, IVC is usually constructed from complicated
cryptographic primitives, such as SNARKs [33, 37, 38, 81, 96],
making it inefficient and challenging to implement. In addition,
when generating proofs takes non-negligible time, IVC-based
SeqPoW may not be fair, as miners with powerful hardware
can execute SeqPoW.Prove(·) and provide proofs faster.

Non-outsourceable SeqPoW. If Init(·), Solve(·) and
Prove(·) take the public key rather than the secret key as input,
then the construction cannot prevent outsourcing: with others’
public keys, the adversary can solve others’ SeqPoW puzzles.
To prevent outsourcing, one can replace H(pk‖Si+1)≤ 2κ

T with
VRFHash(sk,Si+1)≤ 2κ

T in SeqPoW’s difficulty mechanism,
where VRFHash(·) is a VRF evaluation [19]. As long as
secret keys are kept in secret, the adversary cannot execute
VRFHash(·) for other nodes. This modification introduces
negligible overhead to SeqPoWVDF, but non-negligible
overhead to SeqPoWSloth, as the verifier should verify all VRF
outputs and proofs for assuring no prior solution satisfies the
difficulty. More efficient non-outsourceable unique SeqPoW
constructions are considered as future work.

2.5 Security and efficiency analysis

Security. Appendix B provides full security proofs for our
SeqPoW constructions. Completeness and Soundness directly
follow the completeness, soundness and self-composability of
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Setup(λ,ψ,T )

1 : ppVDF=({0,1}∗,G,g)

←VDF.Setup(λ)

2 : pp←(ppVDF,ψ,T )

3 : return pp
Gen(pp)

1 : ({0,1}∗,G,g,ψ,T )← pp

2 : Sample random sk∈N

3 : pk←gsk∈G

4 : return (sk,pk)
Init(pp,pk,x)

1 : ({0,1}∗,G,g,ψ,T )← pp

2 : S0←HG(pk‖x)
3 : return S0

Solve(pp,pk,Si)

1 : (ppVDF,ψ,T )← pp

2 : ({0,1}∗,G,g)← ppVDF

3 : Si+1←VDF.Eval(ppVDF,Si,ψ)

4 : bi+1←H(pk‖Si+1)≤
2κ

T
? 1:0

5 : return (Si+1,bi+1)

Prove(pp,pk,i,x,Si)

1 : (ppVDF,ψ,T )← pp

2 : ({0,1}∗,G,g)← ppVDF

3 : S0←HG(pk‖x)
4 : πVDF←VDF.Prove(ppVDF,S0,Si,i·ψ)
5 : return πVDF

Verify(pp,pk,i,x,Si,πi)

1 : (ppVDF,ψ,T )← pp

2 : ({0,1}∗,G,g)← ppVDF

3 : S0←HG(pk‖x)
4 : if VDF.Verify(ppVDF,S0,Si,πi,i·ψ)=0

5 : return 0

6 : if H(pk‖Si)>
2κ

T
then return 0

7 : return 1

(a) SeqPoWVDF.

Setup(λ,ψ,T )

1 : pp←({0,1}∗,G,g,ψ,T )

2 : return pp
Gen(pp)

1 : ({0,1}∗,G,g,ψ,T )← pp

2 : Sample random sk∈N

3 : pk←gsk∈G

4 : return (sk,pk)
Init(pp,pk,x)

1 : ({0,1}∗,G,g,ψ,T )← pp

2 : S0←HG(pk‖x)
3 : return S0

Solve(pp,pk,Si)

1 : ({0,1}∗,G,g,ψ,T )← pp

2 : Si+1←S
1

2ψ

i

3 : bi+1←H(pk‖Si+1)≤
2κ

T
? 1:0

4 : return (Si+1,bi+1)

Prove(pp,pk,i,x,Si)

1 : return ⊥

Verify(pp,pk,i,x,Si,πi)

1 : ({0,1}∗,G,g,ψ,T )← pp

2 : y←Si

3 : if H(pk‖y)> 2κ

T
, then return 0

4 : repeat i times

5 : y←y2ψ

6 : if H(pk‖y)≤ 2κ

T
then return 0

7 : g←HG(pk‖x)
8 : if g 6=y then return 0

9 : return 1

(b) SeqPoWSloth.

Figure 2: Construction of SeqPoW.

Sloth and VDFs. By pseudorandomness of HG(·) and sequen-
tiality of Sloth and VDFs, Solve(·) outputs unpredictable so-
lutions. Then, by H(·)’s pseudorandomness and Solve(·)’s un-
predictability, the probability that the solution satisfies the dif-
ficulty is 1

T , leading to hardness. Sequentiality directly follows
the sequentiality and self-composability of Sloth and VDFs.

VDFs may use cyclic groups that require trusted setup, e.g.,
two prevalent VDFs [87, 98] use RSA groups. In practice,
trusted setup can be done by a trusted party, or a specialised
multi-party protocols [47, 48].

Efficiency (Table 4). SeqPoWVDF and SeqPoWSloth employ
repeated squaring on an RSA group and repeated square
rooting on a prime-order group as ISFs, respectively. Let s
be the size (in Bytes) of a group element, and ψ be the step
parameter. Each Solve(·) executes ψ steps of the ISF, and the
prover attempts Solve(·) for T times on average to find a valid
solution. Thus, Prove(·) generates proofs on ψT steps, and
Verify(·) verifies proofs of ψT steps.

We analyse SeqPoWVDF with Wesolowski’s VDF
(Wes19) [98] and Pietrzak’s VDF (Pie19) [87] seaparately,
without considering optimisation or parallelilsation tech-
niques [27,87,98]. According to the existing analysis [35], the
proving complexity, verification complexity and proof size of
Wes19 are O(ψT ), O(logψT ) and s Bytes, respectively; and

those of Pie19 are O(
√

ψT logψT ), O(logψT ) and slog2ψT ,
respectively. When ψT = 240 and s = 32 Bytes, the proof
sizes of SeqPoWVDF with Wes19 [98] and with Pie19 [87]
are 32 and 1280 Bytes, respectively. SeqPoWSloth has the
verification complexity of O(ψT ) and does not have proofs.

Table 4: Efficiency of two SeqPoW constructions.

Solve(·) Prove(·) Verify(·) Proof size
(Bytes)

SeqPoWVDF

O(ψ) O(ψT ) O(logψT ) s
O(ψ) O(

√
ψT logψT ) O(logψT ) slog2ψT

SeqPoWSloth O(ψ) 0 O(ψT ) 0

3 RANDCHAIN: DRB from SeqPoW

Figure 3 describes the full construction of RANDCHAIN.
System setting. Similar to other DRBs, RANDCHAIN works
in a permissioned network. Nodes P = {p1,...,pn} register
themselves into the system through a Public Key Infrastructure
(PKI). The PKI assigns each registered node pk∈P with a pair
of secret key skk and public key pkk. Each node is uniquely
identified by its public key in the system. Each node is only
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mainChain(Ck)

1 : M C k←ε

2 : foreach C t
k∈Ck

3 : M C k←max(C t
k ,M C k)

4 : return M C k

MainProcedure(pp,skk,pkk)

1 : Synchronise chain as Ck

2 : MineRoutine(pp,skk,pkk,Ck)

in a thread

3 : SyncRoutine(pp,Ck)

in a thread
SyncRoutine(pp,Ck)

1 : while True

2 : Wait for a new block as B

3 : (h−,h,i,S,pk,π)←B

4 : if h− /∈Ck then Discard B

5 : if h 6=H(pk‖S) then Discard B

6 : if SeqPoW.Verify(pp,pk,i,h−,S,π)=0

7 : Discard B

8 : Append B to Ck after block with hash h−

9 : Propagate B

MineRoutine(pp,skk,pkk,Ck)

1 : while True

2 : M C k←mainChain(Ck)

3 : B−←M C k[−1]

4 : i←0

5 : S←SeqPoW.Init(pp,skk,B
−.h)

6 : while S,b←SeqPoW.Solve(pp,skk,S)

7 : if b=1 then Break

8 : i+=1

9 : M C ′k←mainChain(Ck)

10 : if M C k 6=M C ′k
11 : M C k←M C ′k
12 : Repeat line 3-5

13 : h←H(pkk‖S)
14 : π←SeqPoWVDF.Prove(pp,sk,i,B−.h,S)

15 : B←(B−.h,h,i,S,pkk,π)

16 : New random output B.rand←H ′(pkk||S)
17 : Append B to M C k after B−

18 : Propagate B

Figure 3: Construction of RANDCHAIN.

directly connected to a subset of peers, and does not know the
exact number of nodes in the system.

Blockchain structure (Figure 4a). Each block B is of the
format (h−,h,i,S,pk,π), where h− is the previous block ID, h
is the current block ID, i is the SeqPoW solution index, S is the
SeqPoW solution, pk is the public key of this block’s creator,
and π is the proof that S is a valid SeqPoW solution on input h−.
Let H,H ′ : {0,1}∗→{0,1}κ be two different hash functions.
The ID B.h and random output B.rand of block B are calculated
as B.h=H(pk‖S) and B.rand=H ′(pk‖S), respectively.

Each node pk has its local view Ck of the blockchain. View
Ck may have forks, i.e., multiple blocks are following the same
block. RANDCHAIN applies Nakamoto consensus that, nodes
always mine on the longest chain, as specified inmainChain(·).
Protocol execution (Figure 4b). Node pk runs two rou-
tines: the synchronisation routine SyncRoutine(·) and the
mining routine MineRoutine(·). In SyncRoutine(·), node pk
synchronises its local blockchain Ck with other nodes. The
synchronisation process is the same as in other blockchains:
node pk keeps receiving blocks from other nodes, verifying
them, and adding valid blocks to its local blockchain Ck.

In MineRoutine(·), node pk keeps appending new blocks to
the main chain M C k. In particular, node pk solves a SeqPoW
puzzle S derived from SeqPoW.Init(pp,skk,B−.h), where pp

is the public parameter, skk is its secret key, and B−.h is the
hash of M C k’s last block. To solve puzzle S, node pk keeps
executing SeqPoW.Solve(·) until finding a solution that satis-
fies the difficulty. With a valid solution S, node pk constructs a
block B consisting of a random output, and appends B to M C k.

Non-parallelisable mining. PoW mining is usually
centralised and energy-inefficient. Nodes with more computa-
tional power have more advantage, leading to an arms race of
mining hardware between nodes. Eventually, few nodes with
massive mining hardware dominate the mining, which leads
to various security issues, e.g., 51% attacks, and cost a great
amount of electricity [4]. A promising solution to keep mining
decentralised and energy-efficient is non-parallelisable
mining [2], where each node with its unique key pair can
use at most a single processor to mine. Compared to PoW
mining that is parallelisable, non-parallelisable mining is
more energy-efficient as a fully operating processor costs less
energy than massively parallel mining hardware, and more
decentralised as powerful nodes cannot obtain much speedup
on mining. RANDCHAIN, for the first time, achieves mining
non-parallelisable. This is because 1) each node has a unique
input of the PoW puzzle, and 2) the PoW puzzle is sequential.
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(a) Beacon structure. A block includes the last block hash h−, current
block hash h, node’s public key pk, SeqPoW solution S and its index
i and proof π. The block hash h should satisfy the difficulty parameter
T . The random output is calculated as H(pk‖S).

SeqPoW puzzles
...

...

...

Puzzle solved

Construct
block

(b) Process of mining. Each node keeps solving its own SeqPoW
puzzle. The node who first solves its SeqPoW puzzle (the red one)
proposes the next block.

Figure 4: Structure and process of RANDCHAIN.

4 Security analysis of RANDCHAIN

In this section, we analyse the security of RANDCHAIN. We
formally define DRBs with security properties, and prove that
RANDCHAIN implements a DRB satisfying all properties.

4.1 Security model

We consider a synchronous network: all messages are
delivered within a known time bound ∆. There is no round or
lock-step synchrony. The network consists of n nodes, each of
which controls an unlimited number of processors. Processors
of the same node execute at the same speed, but processors
of different nodes may have different execution speed.

Let α and β be the total mining power of the adversary
and the honest nodes on a single block, where α+β=1. The
adversary is adaptive: it can corrupt any set of nodes with
at most α mining rate at any time; can coordinate corrupted
nodes without delay; and can arbitrarily delay, drop, forge and
modify messages from its nodes. Honest nodes only mine on
the latest block, and the adversary can mine on any block.

DRBs are usually used for supporting other applications
(e.g., jackpot) that rely on randomness. We make the following
assumptions for the external environment for DRBs: 1)

randomness-based applications can securely access the
RANDCHAIN blockchain; 2) users (e.g., gamblers) participate
in randomness-based applications, and can also securely
access the RANDCHAIN blockchain; and 3) nodes, users and
applications are controlled by different sets of people who do
not collude with each other.

4.2 Defining DRBs

DRBs should satisfy five properties, namely consistency,
liveness, fairness, uniform distribution and unpredictability.

Consistency and liveness. Similar to Nakamoto consensus,
DRB should satisfy consistency and liveness [45, 65, 85, 88].
Consistency specifies that nodes can only have different views
on the latest ` blocks, where ` is the degree of consistency
guarantee. Some randomness-based applications require RB
to have finality [97], i.e., at any time, correct nodes do not have
conflicted views on the blockchain, which is equivalent to
0-consistency or agreement in Byzantine consensus [40]. In
Appendix D.2 we discuss how to add finality to RANDCHAIN.

Definition 9 (`-Consistency). A DRB satisfies `-consistency
if for any two correct nodes at any time, their chains can differ
only in the last `∈N blocks.

Liveness specifies the lower and upper bound of the mining
speed, i.e., the number of random outputs produced per time
unit. If the speed does not reach the lower bound, then the
DRB cannot satisfy the requirement of real-world applications.
If the speed exceeds the upper bound, then this means an
adversary is producing random outputs faster than all honest
nodes. Such adversary can take advantage in time-sensitive
applications to gain extra profit.

Some papers define termination [41, 67, 74] or Guaranteed
Output Delivery (G.O.D.) [42, 43, 49, 92] for DRBs that, for
every round, a new random output will be produced. We do
not follow their definitions, as 1) competitive DRBs do not
have the concept of rounds, and 2) these definitions do not
specify the upper bound for mining speed.

Definition 10 ((t, τ−, τ+)-Liveness). A DRB satisfies
(t,τ−,τ+)-liveness if for any time period t, every correct node
receives [t ·τ−,t ·τ+] new outputs, where t,τ−,τ+∈R+.

Fairness. Unlike collaborative DRBs that are usually
“one-man-one-vote”, nodes in competitive DRBs may have
different mining power. We define fairness to specify
the maximum mining power difference among nodes in
the network. A node’s mining power is quantified by the
probability that it mines the next block before other nodes.
Fairness implies the decentralisation level of DRBs. If few
powerful nodes control mining power much greater than other
nodes, then the DRB is dominated by these powerful nodes,
making the network highly centralised.
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Definition 11 (µ-Fairness). The DRB satisfies µ-fairness
if the following holds for the largest possible µ ∈ (0, 1].
Assuming all messages are delivered instantly and nodes in
a DRB agree on a blockchain of length `. Let X(pk) be the
event that node pk mines the (`+1)-th block earlier than other
nodes. For any two nodes pi and p j,

µ≤ Pr [X(pi)]

Pr [X(p j)]

When µ = 1, the DRB achieves ideal fairness and the
network is fully decentralised, and vice versa when µ→0.
Uniform distribution. As a DRB, each output should be
uniformly distributed, i.e., pseudorandom. Some papers [36]
refer this property as unbiasability.

Definition 12 (Uniform distribution). A DRB satisfies
uniform distribution if every output is indistinguishable with
a uniformly random string with the same length, except for
negligible probability.

Unpredictability. Each output should be unpredictable:
given the current blockchain, no node can predict the next
random output before it is produced. If the adversary can
predict future random outputs, then it may take advantage in
randomness-based applications. Some papers [49, 92, 93, 95]
define unbiasibility that, the adversary cannot manipulate the
random output to its preferred value. This is a special case
of unpredictability: the adversary guesses its preferred value,
then attempts to choosing an input which makes the random
output equal to its preferred value.

Definition 13 (Unpredictability). A DRB satisfies unpre-
dictability if no adversary can obtain non-negligible advantage
on the following game. Assuming all messages are delivered
instantly and nodes in the DRB agree on a blockchain of length
`. Before the (`+1)-th block is mined (either by other nodes or
by the adversary), the adversary makes a guess on the random
output in the (`+ 1)-th block. Let r be the guessed random
output, and r′ be the real random output. The adversary’s
advantage is quantified as Pr [r=r′ ].

4.3 Security analysis

Consistency and liveness. RANDCHAIN achieves the same
consistency and liveness bound α ≤ 1

1+e as Proof-of-Space
(PoSpace)-based Nakamoto consensus [56]. Similar to
PoSpace-based Nakamoto consensus, the optimal attack on
RANDCHAIN is the grinding attack: the adversary allocates
a processor to mine on each of existing blocks. Compared
to 51% attacks on PoW-based consensus, grinding attack
amplifies the adversary’s mining power by up to e, and the
consensus protocol tolerates fewer faulty nodes, i.e., α≤ 1

1+e .
We refer readers to the papers [29, 56] for detailed analysis.
Fairness. RANDCHAIN achieves µ-fairness where µ > 1

5 .
With non-parallellisable mining, mining can only be acceler-
ated by using processors with higher clock rate. While laptops’

clock rate – as the baseline – is usually 2∼3 GHz, the highest
clock rate achieved by processors is 8.723 GHz [1]. Given
the voltage limit, the clock rate is hard to improve further [20].
Hence, one can accelerate solving SeqPoW for less than five
times, leading to µ> 1

5 . The limited speedup is also evidenced
by the recent VDF Alliance FPGA Contest [16–18], where
optimised VDF implementations are approximately four times
faster than the baseline implementation.

When network delay exists, the adversary can launch selfish
mining attacks, i.e., adaptively withhold blocks to mine the
portion of blocks more than its portion of mining power [62],
compromising the fairness guarantee of Nakamoto consensus.
We refer to existing countermeasures [69, 84, 105] to defend
against selfish mining attacks.

Uniform distribution. For every block B, B.rand is produced
by the hash function H ′(·). By pseudorandomness of hash
functions, B.rand is indistinguishable with a uniformly
random κ-bit string.

Unpredictability. Appendix C provides formal proofs of
unpredictability. In the prediction game, the (`+1)-th block
is either produced by correct nodes or the adversary’s nodes.
If the adversary’s advantage is negligible for both cases, then
RANDCHAIN satisfies unpredictability. When the (`+1)-th
block is produced by correct nodes, the adversary’s best
strategy is guessing, leading to negligible advantage. When
the (` + 1)-th block is produced by the adversary’s nodes,
the adversary’s best strategy is to produce as many blocks
as possible before receiving a new block from honest nodes.
By SeqPoW’s hardness, the adversary can only produce a
limited number of blocks in this time period. By SeqPoW’s
sequentiality, the adversary can make accurate guesses on its
SeqPoW solutions only with negligible probability. Therefore,
the adversary’s advantage on the prediction game is negligible.

If RANDCHAIN employs SeqPoW with uniqueness, then
the advantage is even smaller, as each of the corrupted nodes
can only mine a single block at height (`+1).

5 Implementation and evaluation

We implement SeqPoW and RANDCHAIN, and evaluate
their performance. For SeqPoW, the evaluation shows that all
SeqPoW constructions are practical, and SeqPoWVDF with
Pie19 [87] is most suitable for instantiating RANDCHAIN,
given its trade-off on generating/verifying proofs and the
proof size. For RANDCHAIN, the evaluation shows that on
a cluster with up to 1024 nodes, a random output can be
propagated to the majority of nodes within 1.3 seconds; nodes
have comparable chance of producing blocks; and the average
bandwidth utilisation is less than 200KB/s even when the
interval between two random outputs is only one second. We
will make all code and experimental data publicly accessible
after the paper is published.
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5.1 SeqPoW: microbenchmarks
We microbenchmark all SeqPoW constructions, including
Solve(·), Prove(·) and Verify(·) for SeqPoWVDF with two
VDFs, and Solve(·) and Verify(·) for SeqPoWSloth.
Implementation. We implement the the SeqPoW con-
structions in Rust. We use the rug [6] crate for big integer
arithmetic, and implement the RSA group with 1024-bit keys
and the group of prime order based on rug. We implement the
two SeqPoWVDF constructions based on the RSA group, and
SeqPoWSloth based on the group of prime order. Our imple-
mentations strictly follow their original papers [76, 87, 98].
Experimental setting. For each function, we test ψT ∈ [1000,
2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000],
where ψ is the step parameter and T is the difficulty. The
code for microbenchmarking is based on Rust’s native
benchmarking suite cargo-bench [5] and criterion [7].
We sample ten executions for each group (i.e., a function with
a unique set of parameters) of the experiments, and specify
O3-level optimisation for compilation. All experiments were
conducted on a MacBook Pro with a 2.2 GHz 6-Core Intel
Core i7 Processor and a 16 GB 2400 MHz DDR4 RAM.
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(a) SeqPoWVDF + Wes19 [98].
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(b) SeqPoWVDF + Pie19 [87].
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(c) SeqPoWSloth.

Figure 5: Evaluation of SeqPoW constructions.

Performance (Figure 5). For all SeqPoW constructions, the
running time of Solve(·) increases linearly with ψT . This is as
expected as Solve(·) is dominated by the ISF. For SeqPoWVDF

with Wes19, Prove(·) takes more time than Solve(·), as our
implementation does not apply optimisations (such as [27]).
For SeqPoWVDF with Pie19, Prove(·) and Verify(·) take
negligible time compared to Solve(·). According to the
efficiency analysis, the proof size of Pie19 is also acceptable.
Thus, without optimisation, SeqPoWVDF with Pie19 is more
practical than with Wes19.

For SeqPoWSloth, Solve(·) is approximately five times
slower than Verify(·). Although this is far from the theoret-
ically optimal value, i.e, log2|G|=1024 in our case [22], the
verification overhead is acceptable when random outputs are
not generated frequently.

5.2 RANDCHAIN: end-to-end evaluation
The evaluation focuses on three metrics as follows:
• Latency is the time taken for propagating a block to the

network. It is quantified by the block propagation delay
(BPD), i.e., the time taken for the majority of nodes to
receive a block.

• Decentralisation is the evenness of nodes’ chance of
producing blocks. It is quantified by the distribution of
nodes in terms of the number of blocks they produce on the
main chain.

• Network overhead is the overhead of data transfer during
the protocol execution. It is quantified by the average
bandwidth utilisation, i.e., the average amount of data
transferred in a time unit, of a node.
We compare these three metrics with state-of-the-art results

mentioned in HydRand [93] and RandHerd [95].

Implementation. We implement RANDCHAIN based
on Parity-bitcoin [12], a Bitcoin implementation in
Rust. It uses RocksDB [11] for storage, and Bitcoin’s Wire
protocol [21] for the P2P protocol stack. We adapt the
blockchain structure, SeqPoW and relevant message types to
RANDCHAIN’s setting specified in §3. Given the evaluation
result in §5.1, we use SeqPoW with Pie19 for RANDCHAIN.
The entire project takes approximately 23000 lines of code
(LoC), where the RANDCHAIN implementation adds/changes
approximately 4500 LoC over Parity-bitcoin. We use
dstat [10] for monitoring system resource utilisation.

Experimental setting. We specify O3-level optimisation
for compilation, and deploy the project to clusters with
{128, 256, 512, 1024} nodes on Amazon’s EC2 instances.
Specifically, we rent {16, 32, 64, 128} t2.micro EC2
instances (1 GB RAM, one CPU core and 60-80 Mbit/s
network bandwidth) in 13 cities around the globe (North
Virginia, North California, Oregon, Ohio, Canada, Mumbai,
Seoul, Sydney, Tokyo, Singapore, Ireland, Sao Paulo, London,
and Frankfurt), and each instance runs 8 RANDCHAIN nodes.
Each node maintains up to 8 outbound connections and 125
inbound connections, which is same as Bitcoin’s setting [21].
When a node starts, it randomly connects to 8 peers, accepts
connections from other peers, and starts gossiping messages
with them. We test blocktime (i.e., the average time interval
between two blocks) of {1,5,10} seconds by adjusting the
SeqPoW difficulty. For each group of the experiments, we
sample 30 minutes of the execution, collect logs from all
nodes, parse the logs and calculate the three metrics.

Block size. The major part of a block is the SeqPoW proof
that takes s·log2(ψT )Bytes, where ψT depends on 1) the time
taken to find a solution and 2) the number of iterations executed
in a time unit. For our SeqPoW implementation, the t2.micro
EC2 instance can increment Solve(·) for 233868 iterations
per second on average. Given blocktime t, the SeqPoW proof
size is s · log2(233868 · t)≈ s ·(18+ log2t). When blocktime
is {1,5,10} seconds and s=32 Bytes, the block size is about
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{576,1336,1912}Bytes. When blocktime is 60 seconds (the
setting of Drand [9] and the NIST randomness beacon [71]),
the block size is about 3402 Bytes.

Latency. Figure 6 shows the distribution of BPD for different
sizes of clusters. The BPD never exceeds 1.3 seconds, meaning
that the system can produce more than 45 random outputs
per minute. The result is promising compared to HydRand
(∼7 random outputs per minute on a 128-node cluster) and
RandHerd (∼20 random outputs per minute on a 1024-node
cluster). The reason is that RANDCHAIN achieves linear
communication complexity, and a block can reach most nodes
within 2 hops. In Figure 6, BPD is usually either less than
0.4s or more than 0.6s, but is hardly in-between values. The
two peaks around the saddle of 0.4∼0.6s indicate the average
delays for 1-hop and 2-hop block propagation, respectively.

In addition, the average BPD increases slowly with
increasing number of nodes, which is consistent with other
linear blockchain protocols [104]. In linear protocols, the
average BPD is in proportion to the average number of
intermediate nodes of two random nodes. With Bitcoin’s
random peer selection mechanism, the network is structured as
an Erdos-Renyi random graph [61], where the average number
of intermediate nodes is O( logn

logk ), where n and k is the number
of nodes and the average degree of nodes, respectively.

A less important result is that BPD increases when blocks
are produced more frequently. This is because a t2.micro
instance only has a single processor and limited network
capacity, making the overhead of verifying and propagating
blocks non-negligible.

1.0 5.0 10.0
Blocktime (s)

0.0

0.5

1.0

1.5

B
P

D
. (

s)

0.5 0.8

(a) 128 nodes.

1.0 5.0 10.0
Blocktime (s)

0.0

0.5

1.0

1.5

B
P

D
. (

s)

0.5 0.8

(b) 256 nodes.
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(c) 512 nodes.
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(d) 1024 nodes.

Figure 6: Distribution of block propagation delay. The blue
and orange parts indicate the distribution of BPD when blocks
are propagated to 50% and 80% of nodes, respectively. Such
figures are known as violin plots [15].

Decentralisation. Figure 7 shows the distribution of nodes in
terms of the number of blocks they produce on the main chain.
The data is collected from the group of experiment with 1024

nodes and the blocktime of 1 second. The kernel estimated
distribution is close to the normal distribution, meaning that
nodes have roughly equal chance of producing blocks. The
result is consistent with our experimental setting where nodes’
processors share the same set of parameters, and comparable
with HydRand and RandHerd that are “one-man-one-vote”.
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Figure 7: Distribution of the number of blocks produced by
distinct nodes. The blue and black lines are the kernel density
estimation and the closest normal distribution, respectively.

Network overhead. Figure 8 shows the bandwidth utilisation
result. It shows that RANDCHAIN utilises less bandwidth
compared to HydRand and RandHerd: even with blocktime of
1 second, each node utilises∼200KB/s bandwidth per second,
which is comparable with HydRand (180∼310KB/s on a
128-node cluster) and RandHerd (∼200KB/s on a 1024-node
cluster). The bandwidth utilisation remains stable with
increasing number of nodes, as RANDCHAIN is linear. These
two results are as expected since RANDCHAIN is linear. The
inbound and outbound bandwidth are comparable, as the input
(i.e., the last block) and the output (i.e., the new block) are
comparable in terms of the size, leading to identical bandwidth
utilisation. With longer blocktime, the node requires less
bandwidth, as nodes send and receive blocks less frequently.
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Figure 8: Bandwidth utilisation.

6 Comparison with existing DRBs

In this section, we develop a unified evaluation framework
for DRBs, and compare RANDCHAIN with existing DRBs.
Our evaluation shows that RANDCHAIN is the only protocol
that is leaderless, secure and efficient simultaneously, without
relying on lock-step synchrony or trusted parties.
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Table 5: Comparison of RANDCHAIN with existing DRBs. Red indicates strong assumptions, unsatisfied security properties,
and poor efficiency. Yellow indicates moderate assumptions, partly satisfied security properties, and moderate efficiency. Green
indicates weak assumptions, satisfied security properties, and satisfactory efficiency.

Protocol System setting Security properties Efficiency

Nam
e

Prim
itiv

es

Net.
mod

el

Tru
st

Fau
lt tol

. ca
p.

Con
sis

ten
cy

Live
ness

Fair
ness

Unifo
rm

dist
.

Unpred
.

Pub.
ve

r.

Com
m. co

mpl.

Energ
y

DRG-based
DRBs

CKS00 [41] Thr. Sig. LS sync.� Leader 1/3 3 3 1 3 3 3 O(n3) 3
HERB [49] Homo. Thr. Enc. LS sync. Leader 1/3 3 3 1 3 3 3 O(n) 3
Dfinity [68] VRF + Thr. Sig. LS sync. Leader 1/3 3 3 1 3 3 3 O(cn)� 3

Ouro. Praos [54] VRF LS sync. Leader 1/2 3 3 1 3 7† 3 O(n) 3
GLOW20 [64] VRF LS sync. Leader 1/3 3 3 1 3 3 3 O(n) 3

Algorand [67] VRF LS sync. Leader 1/3 3 3 1 3 7† 3 O(cn)� 3

Ouroboros [72] PVSS LS sync. Leader 1/2 3 3 1 3 3 3 O(n3) 3

SCRAPE [42] PVSS LS sync. Leader 1/2 3 3 1 3 3 3 O(n3) 3

RandShare [95] PVSS LS sync. - 1/3 3 3 1 3 3 3 O(n3) 3

RandHound [95] PVSS LS sync. Leader 1/3 3 3 1 3 3 3 O(c2n)� 3

RandHerd [95] PVSS LS sync. Leader 1/3 3 3 1 3 3 3 O(c2logn)� 3

HydRand [93] PVSS LS sync. - 1/3 3 3 1 3 3 3 O(n2) 3
Albatross [43] PVSS LS sync. Leader 1/2 3 3 1 3 3 3 O(n) 3

KMS20 [74] HAVSS LS sync. - 1/3 3 3 1 3 3 3 O(n4) 3

SC-based
DRBs

RanDAO [13] VDF Async. Blockchain 1/2 3 3 1 3 7‡ 3 O(n) 7◦

YAGK20 [100] Escrow-DKG Async. Blockchain 1/3 3 3 1 3 3 3 O(n) 7◦

ISF-based
DRBs

Unicorn [76] Sloth Async. Setup (n-1)/n 3 7? - 3 3 3 O(1) 3
EFKS20 [60] Continuous VDF Async. Setup (n-1)/n 3 7? - 3 3 3 O(1) 3

RandRunner [92] Trapdoor VDF Async. Setup (n-1)/n 3 7? 1 3 3 3 O(n) 3

DRBs from
ext. entr.

CH10 [50] Rand. extractors Async. Data src. (n-1)/n 3 3 - 3 3 7 O(1) 3
BCG15 [36] Rand. extractors Async. Blockchain (n-1)/n 3 3 →0⊗ 3 3 7 O(1) 7◦

BGB17 [39] Proof-of-Delay Async. Blockchain (n-1)/n 3 3 →0⊗ 3 3 7 O(1) 7◦

This work RANDCHAIN
SeqPoW +

Nak. consensus Sync. - 1/(1+e) 3 3 > 1
5 3 3 3 O(n) 3

� For ALL DRG-based DRBs, without lock-step synchrony, nodes should either wait for a sufficient long time at every view when the network is synchronous, employ a trusted
pacemaker [103] or employ round synchronisation protocols [82, 83] for synchronising rounds.
† As analysed in [43], the leader can manipulate the random outputs.
�We use c to denote the size of groups in Dfinity [68], RandHound and RandHerd [95], and the size of the committee in Algorand [67].
‡ As analysed in [14, 23].
? In [60, 76], the fastest node always learns random outputs earlier than others. In [92], the adversary can keep corrupting leaders and producing random outputs through the trapdoor VDF.
◦ If based on PoW-based blockchains.

Entropy generated by external source is not verifiable.
⊗ In PoW-based blockchains, mining can be accelerated by using multiple processors in parallel. Nodes with massive mining machines overwhelmingly outperform normal nodes.

6.1 Overview of existing DRBs

RANDCHAIN, as a new family of DRBs, does not belong to
any existing types of DRBs. We categorise existing DRBs to
four types:

DRG-based DRBs. Nodes to execute the single-shot
DRG protocol periodically. DRG can be constructed
from various cryptographic primitives, such as threshold
cryptosystems [41, 49, 68], Verifiable Random Functions
(VRFs) [54, 64, 67], and Publicly Verifiable Secret Sharing
(PVSS) [42, 43, 72, 74, 93, 95].

Cachin et al. [41] construct DRG protocols from threshold
signatures. Dfinity [68] reduces communication complexity
by sharding. HERB [49] employs the homomorphic threshold
encryption, and employs a leader relaying messages to reduce
communication complexity.

Ouroboros Praos [54], Algorand [67] and Galindo et al. [64]
construct DRG protocols from VRFs. In Ouroboros Praos [54]
and Algorand [67], a leader evaluates the current blockchain

state with VRF, and uses the VRF output as the random
output. Galindo et al. [64] employ Distributed VRF (DVRF),
where nodes evaluate a common input to produce the random
output. It also employs a leader for reducing communication
complexity.

In PVSS-based DRG protocols [42, 43, 72, 74, 93, 95], each
node chooses a local random input and uses PVSS to share
it to other nodes, aggregates all received shares on different
random inputs to a single one, broadcasts aggregated shares,
and aggregating received shares again to recover the final
random output. To tolerate Byzantine nodes, HydRand [93],
RandHound and RandHerd [95] enforce nodes to run an
extra Byzantine consensus to agree on a subset of shares,
and SCRAPE [42] and Albatross [43] use erasure codes
for tolerating Byzantine shares. To reduce communication
complexity, RandHound and RandHerd [95] apply sharding
techniques, and Albatross [43] employs a leader for relaying
messages. To tolerate network asynchrony, Kogias et al. [74]
employs High-threshold Asynchronous Verifiable Secret
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Sharing (HAVSS), an asynchronous PVSS variant.

Smart contract (SC)-based DRBs. Nodes participate in
a smart contract dedicated for generating random outputs.
RANDAO [13] allows anyone to submit their random inputs to
the smart contract, and the smart contract combines submitted
inputs to a single random output. Yakira et al. [100] construct
SC-based DRBs from Escrow Distributed Key Generation
(DKG) [101], a DKG variant with game-theoretical security
against rational adversaries.

DRBs from external entropy. Nodes periodically extract
randomness from real-world entropy, e.g., real-time financial
data [50] and public blockchains [26, 36, 39].

Iteratively sequential function (ISF)-based DRBs. Nodes
use intermediate outputs of an ISF as random outputs,
and succinct proofs for the ISF to make outputs verifiable.
Such ISFs include Sloth [76] and Continuous VDFs [60].
RandRunner [92] extends this paradigm by allowing nodes
to execute the ISF in turn.

6.2 Evaluation framework for DRBs
Existing DRBs work in permissioned networks where each
node has a unique identity. The framework consists of three as-
pects, namely system setting, security properties and efficiency.
System setting considers network model, trust assumption and
fault tolerance capacity. Network model specifies the timing
guarantee of messages. A network is lock-step synchronous if
the protocol executes in rounds and all messages are delivered
before the end of each round; is synchronous if messages are
delivered within a known finite time-bound; is asynchronous
if messages are delivered without a known time-bound; or is
partially synchronous [58] if messages are delivered within a
known finite time-bound with some clock drift. Trust means the
trustworthy components that the DRB relies on in order to guar-
antee all security properties. Fault tolerance capacity means
the threshold of Byzantine nodes that the DRB can tolerate.

Security properties are defined in §4. We also consider
public verifiability: whether a random output is publicly ver-
ifiable. Efficiency considers communication complexity [102]
and energy efficiency, i.e., the amount of communication and
energy needed for running the DRB, respectively.

6.3 Evaluation
Table 5 summarises the comparison.

System setting. All DRG-based DRBs have to assume lock-
step synchrony, regardless of their underlying DRGs’ network
models. As nodes execute in rounds, DRG-based DRBs require
round synchronisation [82], i.e., nodes are always executing
the same round of the protocol. If nodes do not agree on the
round number, then the system may lose consistency or live-
ness forever [83]. To guarantee round synchronisation without
assuming lock-step synchrony, DRG-based DRBs should

either assume synchronous networks while enforcing nodes
to stay in every view for more than the network delay; employ
a trusted pacemaker [103] for announcing round numbers; or
enforce nodes to additionally run a round synchronisation pro-
tocol [82, 83]. All of these approaches introduce extra trust or
overhead. The other three types of DRBs work in asynchronous
networks: SC-based DRBs rely on periodical execution of
smart contracts, and ISF-based DRBs and DRBs from external
entropy allow nodes to compute random outputs locally.

A large number of DRG-based DRBs rely on leaders.
SC-based DRBs and DRBs from external entropy should rely
on trustworthy smart contracts and the entropy source, respec-
tively. ISF-based DRBs rely on trusted setup (e.g., [48, 70])
of the random seed, otherwise the adversary who previously
knows the seed can learn random outptus earlier than honest
nodes. All of the DRBs achieve satisfactory fault tolerance
capacity. Notably, for ISF-based DRBs and DRBs from
external entropy, as long as there is a node is honest, the system
works as expected, as nodes can compute random outputs
locally without interacting with other nodes.

Security properties. All DRG-based DRBs achieve consis-
tency and liveness, except that ISF-based DRBs do not satisfy
liveness. For Sloth and Continuous VDF-based DRBs [60, 76],
nodes with fastest processors can learn random outputs earlier
than other nodes. In RandRunner [92], the adversary can keep
corrupting leaders and computing random outputs via the trap-
door. All DRBs achieve the ideal fairness, i.e., µ= 1, except
for DRBs from PoW-based blockchains [36, 39] with µ→0 as
mining can be accelerated by massive parallelism, and RAND-
CHAIN with µ > 1

5 . All DRBs satisfy uniform distribution.
Ouroboros Praos [54] and Algorand [67] do not satisfy unpre-
dictability, as the leader can manipulate random outputs [43].
RanDAO does not satisfy unpredictability as analysed in [14,
23]. All DRBs from external entropy do not satisfy public
verifiability, as the external entropy is not publicly verifiable.

Efficiency. All DRBs achieve communication complexity
of less than O(n2), except for leaderless DRG-based DRBs.
This is because without leaders, DRG requires nodes to make
all-to-all broadcasts to agree on a unique random output. All
DRBs are energy-efficient except for SC-based DRBs and
DRBs using public blockchains, as public blockchains usually
rely on PoW-based consensus that is energy-greedy.

7 Conclusion

In this paper, we identify a new family of Decentralised
Randomness Beacon (DRB) protocols where nodes are com-
petitive, and construct the first DRB protocol RANDCHAIN that
belongs to this class. The theoretical analysis and experimental
evaluation show that RANDCHAIN achieves promising secu-
rity and performance without relying on strong assumptions.
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A Preliminaries of Verifiable Delay Functions

Definition 14 (Verifiable Delay Function). A Verifiable Delay
Function VDF is a tuple of four algorithms

VDF=(Setup,Eval,Prove,Verify)

Setup(λ)→ pp : On input security parameter λ, outputs
public parameter pp. Public parameter pp specifies an
input domain X and an output domain Y . We assume X
is efficiently sampleable.

Eval(pp,x,t)→y : On input public parameter pp, input x∈X ,
and time parameter t∈N+, produces output y∈Y .

Prove(pp,x,y,t)→π : On input public parameter pp, input
x, and time parameter t, outputs proof π.

Verify(pp,x,y,π,t)→{0,1} : On input public parameter pp,
input x, output y, proof π and time parameter t, produces
1 if correct, otherwise 0.

VDF satisfies the following properties

• Completeness: For all λ, x and t,

Pr

 Verify(pp,x,y,
π,t)=1

∣∣∣∣∣∣
pp←Setup(λ)

y←Eval(pp,x,t)
π←Prove(pp,x,y,t)

=1

• Soundness: For all λ and adversary A ,

Pr
[

Verify(pp,x,y,π,t)=1
∧Eval(pp,x,t) 6=y

∣∣∣∣ pp←Setup(λ)
(x,y,π,t)←A(pp)

]
≤negl(λ)

• σ-Sequentiality: For any λ, x, t, A0 which runs in time
O(poly(λ,t)) and A1 which runs in parallel time σ(t),

Pr

 Eval(x,y,t)=y

∣∣∣∣∣∣
pp←Setup(λ)

A1←A0(λ,t,pp)
y←A1(x)


≤negl(λ)

We formally define self-composability for VDFs as follows.

Definition 15 (Self-Composability). A VDF
(Setup, Eval, Prove, Verify) satisfies self-composability
if for all λ, x, (t1,t2),

Pr
[

Eval(pp,x,t1+t2)
=Eval(pp,y,t2)

∣∣∣∣ pp←Setup(λ)
y←Eval(pp,x,t1)

]
=1

Lemma 1. If a VDF (Setup, Eval, Prove, Verify) satisfies
self-composability, then for all λ, x, (t1,t2),

Pr

 Verify(pp,x,y′,
π,t1+t2)=1

∣∣∣∣∣∣∣∣
pp←Setup(λ)

y←Eval(pp,x,t1)
y′←Eval(pp,y,t2)

π←Prove(pp,x,y′,t1+t2)

=1

B Security proof of SeqPoW

We formally prove the security guarantee of two SeqPoW
constructions. We start from SeqPoWVDF.

Lemma 2. SeqPoWVDF satisfies completeness.

Proof. Assuming a (λ,ψ,T )-valid tuple (pp, sk, i, x,Si,πi),
by completeness and Lemma 1, VDF.Verify(·) will pass. As
hash functions are deterministic, difficulty check will pass.
Therefore,

SeqPoWVDF.Verify(pp,pk,i,x,Si,πi)=1

Lemma 3. SeqPoWVDF satisfies soundness.

Proof. We prove this by contradiction. Assuming a tuple
(pp,sk,i,x,Si,πi) that is not (λ,ψ,T )-valid and

SeqPoWVDF.Verify(pp,pk,i,x,Si,πi)=1
By soundness and Lemma 1, if (y, y+, π+,ψ) is generated
by A , VDF.Verify(·) will return 0. As hash functions are
deterministic, if Si >

2κ

T , difficulty check will return 0. Thus,
if (pp,sk,i,x,Si,πi) is not (λ,ψ,T )-valid, then the adversary
can break soundness. Thus, this assumption contradicts
soundness.
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Lemma 4. SeqPoWVDF satisfies hardness.

Proof. We prove this by contradiction. Assuming

Pr
[

bi+1=1
∣∣∣∣ Si+1,bi+1←
Solve(pp,sk,T,Si)

]
>

1
T

By sequentiality, the value of Si+1 is unpredictable before
finishing Solve(·). By pseudorandomness of hash functions,
H(pk‖Si+1) is uniformly distributed, and the probability
that H(pk‖Si+1)≤ 2κ

T is 1
T with negligible probability. This

contradicts the assumption.

Lemma 5. SeqPoWVDF does not satisfy uniqueness.

Proof. By hardness, each of Si has the probability 1
T to be a

valid solution. As i can be infinite, with overwhelming proba-
bility, there exists more than one honest tuple (pp,sk,i,x,Si,πi)

such that H(pk‖Si)≤ 2κ

T .

Lemma 6. If the underlying VDF satisfies σ-sequentiality,
then SeqPoWVDF satisfies σ-sequentiality.

Proof. We prove this by contradiction. Assuming there exists
A1 which runs in less than time σ(i·ψ) such that

Pr

 (pp,sk,i,x,Si,πi)
∈H

∣∣∣∣∣∣∣∣∣∣

pp←Setup(λ,ψ,T )

(sk,pk) R←Gen(pp)
A1←A0(λ,pp,sk)

Si←A1(i,x)
πi←Prove(pp,sk,i,x,Si)


By σ-sequentiality, A1 cannot solve VDF.Eval(ppVDF,y,ψ)
within σ(ψ). By Lemma 1, Si can and only can be computed by
composing VDF.Eval(ppVDF,y,ψ) for i times, which cannot
be solved within σ(i·ψ). This contradicts the assumption.

The completeness, soundness, hardness and sequentiality
proofs of SeqPoWSloth are identical to SeqPoWVDF’s. We
prove SeqPoWSloth satisfies uniqueness below.

Lemma 7. SeqPoWSloth satisfies uniqueness.

Proof. We prove this by contradiction. Assuming there
exists two (λ, ψ, T )-valid tuples (pp, sk, i, x, Si, πi)
and (pp, sk, i, x, Si, πi) where j < i. According
to SeqPoWSloth.Solve(·), we have H(pk‖Si) ≤ 2κ

T
and H(pk‖S j) ≤ 2κ

T , and initial difficulty check in
SeqPoWSloth.Verify(·) will pass. However, in the for
loop of SeqPoWSloth.Verify(·), if Si is valid, then verification
of S j will fail. Then, SeqPoWSloth.Verify(·) returns 0, which
contradicts the assumption.

C Proof of unpredictability for RANDCHAIN

In the prediction game, the (`+1)-th block is either produced
by correct nodes or the adversary’s nodes. If the adversary’s
advantage is negligible for both cases, then RANDCHAIN
satisfies unpredictability. When the (` + 1)-th block is
produced by correct nodes, the adversary’s best strategy is

guessing, leading to negligible advantage. When the (`+1)-th
block is produced by the adversary’s nodes, the adversary’s
best strategy is to produce as many blocks as possible before
receiving a new block from honest nodes. First, consider
RANDCHAIN using SeqPoW without uniqueness.

Lemma 8. Assuming all messages are delivered instantly and
nodes agree on a blockchain of length `. If the (`+1)-th block
is produced by a correct node, then the adversary’s advantage
on the prediction game is 1

2κ .

If the next output is produced by the adversary’s nodes,
the adversary’s best strategy is to produce as many blocks as
possible before receiving a new block from honest nodes. First,
consider RANDCHAIN using SeqPoW without uniqueness.

Lemma 9. Consider RANDCHAIN using SeqPoW without
uniqueness. Assuming all messages are delivered instantly and
nodes agree on a blockchain of length `. If the (`+1)-th block
is produced by the adversary, then the adversary’s advantage
on the prediction game is k

2κ with probability (eα)kβ

(eα+β)k+1 .

Proof. With grinding attacks, the adversary amplifies its
mining rate by factor e [29, 56]. Thus, the probability that
the adversary and honest nodes mine the next block are eα

eα+β

and β

eα+β
, respectively. Note that α ≤ 1

1+e for satisfying
conssitency, and α+β=1.

Let Vk be the event that “the adversary mines k blocks at
height (`+ 1) before correct nodes mine a block at height
(` + 1)”. When SeqPoW is not unique, a node can mine
unlimited number of blocks after a single block. Thus, we have

Pr [Vk ]=(
eα

eα+β
)k · β

eα+β
=

(eα)kβ

(eα+β)k+1

When Vk happens, the adversary’s advantage is k
2κ .

Therefore, with probability (eα)kβ

(eα+β)k+1 , the adversary mines
k blocks before correct nodes mine a block, leading to the
advantage of k

2κ .

Then, we analyse RANDCHAIN using SeqPoW with
uniqueness. Without the loss of generality, we assume all
nodes share the same mining rate.

Lemma 10. Consider RANDCHAIN using SeqPoW with
uniqueness. Assuming all nodes share the same mining rate,
all messages are delivered instantly and nodes agree on a
blockchain of length `. If the (`+1)-th block is produced by the
adversary, then the adversary’s advantage on the prediction
game is k

2κ with probability Pr
[
V ′k
]
, where

Pr
[
V ′k
]
=

k−1

∏
i=0

(αn−i)e
(αn−i)e+βn

· β

eα+β

Proof. Similar to Lemma 9, the adversary and the honest
nodes control mining rate eα

eα+β
and β

eα+β
, respectively. When

all nodes share the same mining rate, the adversary and the
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honest nodes control αn and βn nodes, respectively. Let V ′k be
the event that “the adversary mines k blocks at height (`+1)
before correct nodes mine a block at height (`+1)”, where
k≤αn. By uniqueness, each node can only mine a single block
at height (`+1), and the adversary can mine at most αn blocks
at height (`+1). Then, we have

Pr
[
V ′0
]
=

β

eα+β
(1)

Pr
[
V ′1
]
=

eα

eα+β
· β

eα+β
(2)

Pr
[
V ′2
]
=

αn−1
αn eα

αn−1
αn eα+β

· eα

eα+β
· β

eα+β
(3)

... (4)

Pr
[
V ′k
]
=

k−1

∏
i=0

αn−i
αn eα

αn−i
αn eα+β

· β

eα+β
(5)

=
k−1

∏
i=0

(αn−i)e
(αn−i)e+βn

· β

eα+β
(6)

When V ′k happens, the adversary’s advantage is k
2κ . There-

fore, with probability Pr
[
V ′k
]
, the adversary mines k blocks

before correct nodes mine a block, leading to the advantage
of k

2κ (where k≤αn).

Remark 1. The adversary’s advantage in RANDCHAIN with
unique SeqPoW is always smaller than in RANDCHAIN with
non-unique SeqPoW. That is, for every k, Pr

[
V ′k
]
< Pr [Vk ].

Given k, we have

Pr
[
V ′k
]

Pr [Vk ]
=

∏
k−1
i=0

(αn−i)e
(αn−i)e+βn ·

β

eα+β

( eα

eα+β
)k · β

eα+β

(7)

=
∏

k−1
i=0

(αn−i)e
(αn−i)e+βn

( eα

eα+β
)k (8)

=
k−1

∏
i=0

(αn−i)e
(αn−i)e+βn

eα

eα+β

(9)

As 0≤ i<αn, it holds that
Pr [V ′k ]
Pr [Vk ]

<1 for all k.

D Discussion

D.1 Frontrunning attacks
In DRBs, the adversary may launch the frontrunning attack,
i.e., learn random outputs earlier than honest nodes. For
collaborative DRBs, the adversary can collect inputs from
all honest nodes, and solely aggregate them with its inputs to
obtain the output. Honest nodes cannot learn the output before
the adversary reveals its own inputs. Such adversary is known
as rushing adversary [52]. In competitive DRBs, the adversary
may mine a random output before all honest nodes, and
withhold it until honest nodes mine another output. Compared

to competitive DRBs, the adversary has less advantage in
collaborative DRBs, as honest nodes can receive enough
inputs to reconstruct the random output in a short time period.

Identifying and preventing frontrunning attacks is not trivial,
due to the difficulty of distinguishing whether a message is
delayed by the network or withheld by the adversary. We
consider concrete study of defences against frontrunning
attacks in DRBs as future work.

D.2 Achieving finality

There are various ways to achieve finality in RANDCHAIN.
First, RANDCHAIN can follow the same approach of
RANDAO [13] and Proofs-of-Delay [39], namely execute
a VDF over each random output with time parameter longer
than a block becoming stable. In addition, we consider two
approaches in Byzantine consensus research, namely the
quorum mechanism and herding-based consensus.

Quorum mechanism. Quorum [79] is the minimum number
of votes that a proposal has to obtain for being agreed by nodes.
A vote is usually a digital signature with some metadata, and
a quorum of votes is called a quorum certificate. The quorum
size is n− f , where n and f be the number of nodes and faulty
nodes in the system, respectively. Achieving agreement in
synchronous networks and partially synchronous networks
require n≥2 f +1 and n≥3 f +1, respectively [58, 79].

RANDCHAIN can employ the quorum mechanism as fol-
lows. The the system should assume n≥3 f +1. A node signs
to vote a block. A node’s view is represented as the latest block
hash. Nodes proactively propagate their votes, i.e., signatures
on blocks. A node finalises a block if collecting a quorum
certificate, i.e.,≥ 2 f +1 votes, on this block. RANDCHAIN
still keeps Nakamoto consensus as a fallback solution. If there
are multiple forks without quorum certificates, nodes mine on
the longest fork. A block can be considered finalised with a
sufficiently long sequence of succeeding blocks, even without
a quorum certificate.

Herding-based consensus. Herding is a social phenomenon
where people make choices according to other people’s
preference. Herding-based consensus allows nodes to decide
proposals according to neighbour nodes’ votes only, rather
than a quorum of votes. Existing research [46, 90] shows
that, herding-based consensus can achieve agreement with
overwhelming probability in a short time period.

RANDCHAIN can employ herding-based consensus as fol-
lows. Upon a new block, nodes execute a herding-based con-
sensus on it. If a block is the only block in a long time period,
then nodes will agree on this block directly. If there are mul-
tiple blocks within a short time period, then nodes will agree
on the most popular block among them with overwhelming
probability. This approach has also been discussed in Bitcoin
Cash community, who seeks to employ Avalanche [90] as a
finality layer for Bitcoin Cash [3].
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D.3 Dynamic difficulty
PoW-based blockchains dynamically adjust difficulty param-
eters for stabilising the rate of generating new blocks. This
is necessary when churn [94] is high. Although we analyse
RANDCHAIN while assuming a fixed difficulty and a fixed
set of nodes, RANDCHAIN can support dynamic difficulty
adjustment with little change. First, similar to PoW-based
blockchains, RANDCHAIN can include a timestamp to each
block, so that RANDCHAIN can infer historical block rate
using timestamps. In addition, RANDCHAIN includes the
number i of iterations running SeqPoW.Solve(·), and i can
also infer the historical block rate. If historical values of i are
large, then this means that mining is too hard and the difficulty
should be reduced, and vice versa.
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