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Abstract—In this paper we address the issue of identity and
access control within shared permissioned blockchains. We
propose the ChainAchor system that provides anonymous but
verifiable identities for entities on the blockchain. ChainAchor
also provides access control to entities seeking to submit
transactions to the blockchain to read/verify transactions on the
the permissioned blockchain. Consensus nodes enforce access
control to the shared permissioned blockchain by a simple
look-up to a (read-only) list of anonymous members’ public-
keys. ChainAnchor also provides unlinkability of transactions
belonging to an entity on the blockchain. This allows for an
entity to optionally disclose their identity when a transaction is
called into question (e.g. regulatory or compliance requirements),
but without affecting the anonymity and unlinkability of their
remaining transactions.

Index terms: Cryptography, Identity Management, Anonymity,
Digital Currency.

I. INTRODUCTION

The recent rise to prominence of the Bitcoin [[1] decentral-
ized digital currency system has generated broad interest in
blockchains as a new form of infrastructure for maintaining a
shared and cryptographically immutable ledger. Consequently
interest has also peaked in the possible development of per-
missioned and private blockchain systems, in contrast to the
permissionless and public blockchain in Bitcoin.

There are numerous use-cases for permissioned blockchain
systems whose goal is to provide an immutable ledger that
captures the existence of digital facts or artifacts (e.g. trans-
actions, documents, etc) in a given moment in time in a
non-repudiable manner. In order to understand the differences
among these private permissioned blockchain systems, we
believe it is useful to further distinguish between closed
and shared permissioned blockchain systems. We define a
closed permissioned blockchain as one in which the entities
having access to the private blockchain all belong to the same
organization having a common business interest. We define a
shared permissioned blockchain as a private blockchain where
the transacting entities belong to distinct organizations with
competing interests.

In looking at closed and shared permissioned blockchain
systems there a number of challenges with regards to identity
and access control to the blockchain:
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e Identity privacy: The issue of identity privacy can be
acute when a blockchain is shared among competing
entities. There is a potential that the behavior of an
identity on a blockchain may inadvertently disclose or
leak information to competitors transacting on the same
blockchain.

e Access control: In a shared permissioned blockchain,
controlling access (both read-access and write-access) is
crucial to the value of the blockchain. New approaches
are needed beyond the classic Enterprise access control
regime that prioritize the security of the infrastructure
and services over the identity privacy of entities using
the infrastructure.

o Optional disclosure & transaction privacy: New ap-
proaches are needed to provide transaction privacy in the
form of unlinkability of transactions. We believe that new
solutions are needed for optional disclosure of identities
relating to transactions that come into questions (e.g.
AML or regulatory compliance). This feature allows an
individual to own multiple unlinkable transaction keys
on the blockchain, and disclose ownership of a key (e.g.
upon legal challenge) without affecting the security and
privacy of his or her remaining other keys on the same
shared permissioned blockchain.

In this paper we propose the ChainAnchor system that
addresses these challenges. The current work expands and
generalizes our previous work [2] that addressed constrained
devices in an IoT environment. In the next section we describe
the ChainAnchor architecture and protocol steps. The design
of ChainAchor aims to be functionally independent from the
underlying blockchain system, with the goal of deployability
of ChainAnchor on various blockchains.

The current paper seeks to be readable to a broad audience,
and as such it does not cover in-depth the cryptography behind
EPID [3] and DAA [4] schemes that provide for identity
anonymity. We assume the reader is familiar with public-key
cryptography and with the basic operations of the blockchain
in the Bitcoin system. In order to assist the more curious
reader, we provide a brief summary of the EPID scheme in
the Appendix and provide pointers to the relevant equations
in the Appendix. The current paper focuses on an RSA-based
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EPID scheme based on the Camenisch-Lysyanskaya signature
scheme [5]] and the DAA scheme of Brickell, Camenisch and
Chen [4]. Readers are directed to the authoritative papers
of [4]] and [3] for an in-depth discussion. An EPID scheme
using bilinear pairings can be found in [6]. It is based on the
Boneh, Boyen and Schacham group signature scheme [7]] and
the Boneh-Schacham group signature scheme [J]].

II. CHAINANCHOR ARCHITECTURE

As mentioned previously, we seek to address two important
aspects of blockchain systems, namely that of the privacy
of the identity of the user and that of providing access
control to a permissioned blockchain. Figure [I] summarizes
the ChainAnchor entities and interactions.

Our proposed ChainAnchor system generalizes our previ-
ous device-centric solution reported in [2]], and provides the
following features:

o Anonymous but verifiable identities: Firstly, ChainAnchor
allows participants in a shared permissioned blockchain
to maintain their privacy by allowing them to use a
verifiable anonymous identity when transacting on the
blockchain. The anonymity (pseudonymity) of their
identity is achieved using the EPID zero-knowledge
proof scheme [3], which allows the owner to remain
truly anonymous in transactions but allows other parties
to verify that the identity is genuine. The verification
process is such that no PII or other identifying
information disclosed about the owner of the identity.

e Access control to blockchain: Secondly, the anonymous
(but verifiable) identities make-up the “group” of entities
allowed to access the permissioned blockchain. An
entity who has proved their membership using the zero
knowledge proof (ZKP) protocol can then ‘“register”
their self-asserted transaction public-key (for transacting
on the blockchain). The consensus nodes collectively
enforce access control to the blockchain by only
processing transactions from the members’ transaction
public-keys. Transactions originated from (destined to)
unknown public-keys are simply ignored or dropped.

o Multiple unlinkable transaction keys: A member of a
shared blockchain can execute the ZKP protocol as many
times as they desire, each time registering a different
self-asserted transaction public-key. No one on the
blockchain (including the owner of the blockchain) has
the ability to link these keys to the single owner. This
allows a member to optionally disclose their identity
(e.g. when challenged in a regulatory context) without
endangering their other transactions public-keys.

When a user requests membership to the permissioned
blockchain, the user sends this request to the a Permissions
Issuer entity who implements the permissioned group on
behalf of the owner of the permissioned blockchain. For
simplicity, we assume that the group owner and the owner

of the permissioned blockchain are the same entity. In this
step, the real-world identity of the user will be known to the
group owner and Permissions Issuer entity. The user could
represent himself or herself, or represent an organization who
is a member of the group sharing the permissioned blockchain.
The precise credentials and attributes required for membership
approval is outside the scope of the current work.

Once the user is approved to join the permissioned
blockchain by the group owner, the Permissions Issuer pro-
vides the user with a number of user-specific keying material.
This keying material is crucial for the user to later prove
membership and to then register the public-key intended to
be used on the permissiond blockchain — referred to as the
user’s transaction public key.

The entity to whom the user must prove membership in an
anonymous fashion and register the user’s transaction public
key is the Permissions Verifier entity. This entity must be
distinct from the Permissions Issuer entity in order to protect
the privacy of the user. Note that since the user’s transaction
public-key pair is self-generated, only the user knows the
transaction private-key.

The user proves membership to the Permissions Verifier
by using the zero-knowledge proof ZKP protocol, which by
design protects the anonymity of the user. Once a user success-
fully completes this protocol, the user’s transaction public-key
is delivered by the user to the Permissions Verifier under a
secure channel. In turn the Permissions Verifier will add the
user’s transaction public-key to a Permissions Database for
that group.

This permissions database — which can be a simple list
— is maintained by the Permissions Verifier entity and is
read-accessible by the consensus nodes (i.e. “miners”) in the
permissioned blockchain. A user can have as many transaction
public-keys as they wish on the same blockchain. This is
achieved by the user executing a distinct run of the zero-
knowledge proof protocol, each time registering a different
transaction public-key.

The database only holds the transaction public-keys of the
members and the timestamp of the completion of the zero-
knowledge proof protocol execution. The Permissions Verifier
is not able to distinguish one user from another. Furthermore,
the Permissions Verifier is not able to know whether or not
a user has multiple transaction public-keys registered in the
permissions database.

Access-control for the permissioned blockchain is enforced
by the consensus nodes in the blockchain, based on the list of
(anonymous) public-keys in the permissions database. Prior
to processing an unconfirmed transaction, a consensus node
enforcing access-control must first verify that the public-key
associated with the transaction is present in the permissions
database for that blockchain. In other words, the consensus
nodes in the permissioned blockchain must ensure that the
blockchain contains transactions only from anonymous users
whose transaction public-keys are listed in the permissions
database.

In this paper we propose the functions of the Permissions
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Fig. 1. Overview of ChainAnchor interactions

Issuer and Permissions Verifier to be implemented by distinct
identity provider (IdP) entities. This is because the IdP is the
traditional issuer of a digital identities on the Internet and thus
possess the necessary infrastructure implementing standard
protocols relating to identity management and identity fed-
eration. Furthermore, many Enterprise organizations today are
already operating an IdP service (or server) internally. As such,
an Identity Federation (e.g. via SAML2.0 or OpenID-Connect)
can be established for organizations which are sharing a
permissioned blockchain.

A. Entities in the System

o Identity Provider and Permissions Issuer (1dP-PI):
The IdP-PI is the identity provider entity that establishes
the permissioned group on behalf of the group owner.
For a given permissioned group, there is exactly one
IdP-PI entity.

o Permissions Verifier (IdP-PV):

The IdP-PV is the identity provider entity that performs
the anonymous group-membership verification of a given
a User by running the zero-knowledge proof protocol
with that User. The IdP-PV maintains the Permissions
Database. For a given permissioned group, there can be
multiple independent IdP-PV entities (although only one
IdP-PI for the group).

o User:
The User is the entity wishing to join the permissioned

blockchain (i.e. group permissioned) implemetted by the
IdP-PI and the IdP-PV.

o Consensus node:
The Consensus Node (“miner”) is entity processing
transactions from valid group members of a permissioned
blockchain.

o Owner:
Although not shown explicitly in Figure[I] a permissioned
group must be owned by an organization or individual.
We use the term Owner for this entity.

B. Keys in the System

A major feature of the EPID zero-knowledge proof
scheme [3]] is its “signature of proof” mechanism, which
allows multiple distinct private-keys to be used with one
public-key. This allows each distinct User to deploy individu-
ally unique EPID private-keys (which they keep secret), from
which any signature can be verified by the IdP-PV using the
single EPID public-key. We refer to this public-key as the
membership verification public-key, and the multiple distinct
private-keys as the user-member private-key.

More specifically, for a given permissioned group PG there
is one (1) membership verification public key Kpg held
by the IdP-PV entity. That one public-key is used by the
IdP-PV to validate the membership of multiple (n) users
Ui,...,U, whose corresponding user-member private keys
are K;é_Ul yen ,K;é_Un.
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The keys in the ChainAnchor system are summarized below.
We adopt the notational convention of [3] by denoting a
public-key pair as (K, K1), with the public-key being K.

o Membership Issuing Private Key:
This key is denoted as K]\}ll px and is is generated by
the IdP-PI for each permissioned group that the IdP-PI
establishes. This key is unique for each permissioned
group. This key is used by the IdP-PI in enrolling or
adding new Users to the permissioned group. (This key
is shown in Eq. [J] in the Appendix).

o Membership Verification Public Key:
This key is denoted as Kpg and is generated by the
IdP-PI and is delivered over a secure channel to the
Permissions Verifier entity (IdP-PV). This key is unique
for each permissioned group. (This key is shown in
Eq.[I] in the Appendix).

o User-Member Private Key:
For a given User U; who is a member in a permissioned
group PG, the user-member private key is denoted as
K l;é—Ui' (This key is shown in Eq. |§Iin the Appendix).

o User’s Transaction Public-Key Pair:
This is the transaction public-key pair that the User
employs to transact. This key pair is generated by the
User (i.e. user’s computer or device). We denote this
public-key pair as (Kirans, Kt;}ws), with the public key
being Ktrans-

o User’s Identity Public-Key Pair:
This is the public-key pair that the User employs
to represent himself/herself as a member of the
permissioned-group. This key pair is generated by the
User (i.e. user’s computer or device). We denote this
public-key pair as (K4, K;;'), with the public key being
Kiq.

o User & IdP-PV Pairwise Shared Key (PSK):
As part of proving group-membership, the User and the
DB-PV will establish a pairwise shared key (PSK). The
PSK is a symmetric key.

o IdP-PI and IdP-PV Certificates:
These are traditional public-key pairs and X509 certifi-
cates:

— IdP-PI public-key pair: We denote the public key
pair of the IdP-PI as (Kps, Kp;) with the public
key being Kpj.

— IdP-PV public-key pair: Similarly, we denote the
public key pair of the IdP-PV as (Kpy, Kp;,) with
the public key being K py .

C. ChainAnchor Protocol Steps

In the following, we describe the steps of the ChainAnchor
design (see Figure |1)).

[Step 0] IdP-PI Establishes Permissioned Group:

This step is not shown in Figure [T} As part of the creation
of a permissioned group, the IdP-PI generates a number
parameters that are unique to the permissioned group and are
used to create two important keys related to the function of
the IdP-PI as the Permissions Issuer:

o Membership Verification Public Key: Kpg
The IdP-PI creates this key to be used later by the
Permissions Verifier entity (IdP-PV) when engaging
the User in the zero-knowledge proofs protocol. (See
Equation [T] in Appendix A).

o Membership Issuing Private Key: Kyripx
The IdP-PI creates this key in order to issue unique keys
to Users in the system that allows the User later to prove
membership to the IdP-PV. (See Equation [2] in Appendix
A). This issuing private key is kept secret by the IdP-PI.

[Step 1] IdP-PI Shares Verification Public Key with 1dP-PV:

In this step, the IdP-PI makes known the Membership
Verification Public Key (Kpg) to the IdP-PV. We assume a
secure channel with mutual authentication is used between the
IdP-PI and IdP-PV entities.

[Step 2] User Authenticates & Requests Membership

To join the permissioned group the User sends the request
to the IdP-PI that manages the permissioned group of interest.
The User must first authenticate itself to the IdP-PI. The
method used to authenticate is outside the scope of the current
paper.

At this point in the ChainAnchor protocol the User
is not anonymous to the IdP-PI, and it knows the
true identity of the User (e.g. has an account such as
alice@idp-issuer.com at the IdP-PI).

A User who has successfully authenticated and obtained
approval to join the group is then given a copy of the
Membership Verification Public Key Kpg by the IdP-IP
using a secure channel.

[Step 3] User Delivers Blinded Commitment Parameters
After obtaining Membership Verification Public Key Kpg
for the relevant group, the User perform the following tasks:

o User validates the Membership Verification Public
Key: Prior to using Kpg the User must verify that the
components in Kp¢ are formed correctly (see Equation 1]
in Appendix A).

o User generates blinded commitment parameters: The
User employs some of the parameters in Kpg to create
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his/her own commitment parameters that “blinds” the
User’s own secret keying material to the IdP-PI. (See
Equations [3] and [4] in Appendix A).

e User sends blinded commitment parameters to the
IdP-PI: The User sends the commitment parameters to
the IdP-PI, who in-turn must verify that these parameters
are formed correctly.

It is important to note here that the cryptographic blinding
(in the commitment values) is done to retain the anonymity of
the User to the IdP-PI. The IdP-PI must unable to distinguish
one user from another at this point based on a user’s blinded
commitment parameters.

[Step 4] IdP-PI Responds with Group-Member Keying Pa-
rameters

In this step, after validating the blinded commitment
parameters the IdP-PI generates a number of parameters
associated with the Member Private Key and sends them to
the User. (This is shown in Eq. [5]in the Appendix). In-turn the
User uses these parameters to generate its own user-member
private key (in the next step).

[Step 5] User Generates User-Member Private Key

Upon receiving the user-specific group-member keying
parameters, the User uses these parameters to generate
his/her own User-Member Private Key, denoted as
Kpd.y, (See Equation 6| in Appendix A). Additionally,
the User also generates its blockchain transaction key pair
(KTT‘I”57 K;&ans)’
[Step 6] User Proves Membership to IdP-PV

The anonymous membership verification protocol consists
of a number of sub-steps following the challenge-response
model. The User sends a request to the IdP-PV, and in-turn
the IdP-PV challenges the User with some parameters that the
User must respond to.

The sub-steps of the anonymous membership verification
protocol are as follows (Figure [2):

o Step 6.1: The User sends a request to the IdP-PV for an

anonymous membership verification (Figure [2{a)).

o Step 6.2: The Permissions Verifier IdP-PV responds by
returning a challenge message m and a random nonce
npy to the User (Figure 2|b)).

o Step 6.3: Upon receiving the challenge message m and
the random nonce n,, from the verifier IdP-PV, the
User must compute a “signature of knowledge” of the
commitment parameter that the User supplied to the
IdP-PI in Step 2. (See Figure [J(c)). The signature-of-
knowledge is denoted as 0. (See Equation [§]in Appendix
A).

As input into the signature-of-knowledge o computation,
the User inputs:

— The Membership Verification Public Key (Kpg)
for the group which the User obtained from the
Permissions Issuer IdP-PI in Step 2. (See Equation
in Appendix A).

— The User’s own User-Member Private Key Kgé_Ui
which the User computed in Step 3. (See Equation [6]
in Appendix A).

— The challenge m and the nonce 7, obtained from
the Permissions Verifier IdP-PV.

o Step 6.4: The User sends the computed signature-of-
knowledge value o to the IdP-PV as proof of the user’s
membership in the group (Figure 2(d)).

o Step 6.5: The IdP-PV validates signature-of-knowledge
o, and returns an acknowledgement of a successful
verification process to the User together with some
parameters to establish a pair-wise shared key (PSK)
between the User and the IdP-PV.

o Step 6.6: The User and the IdP-PV engage in a key
agreement subprotocol that results in a pair-wise shared
key (PSK) — (Figure [J[e)). This PSK is shared between
the User (who is anonymous throughout Step 6) and the
IdP-PV.

e Step 6.7: The User delivers his or her transaction
public-key Ky,qns to the IDP-PV under a secure channel
created using the shared PSK. The IdP-PV then adds the
User’s transaction public key Kj.qns to the permissions
database. (Figure [2[f)).

[Step 7] IdP-PV Creates Anonymous Internet Identity
Optionally, as the result of a successful anonymous
membership verification of the User in the previous step, the
IdP-PV creates a new anonymous Internet identity for the
user (e.g. anonl23@idp-verifier.com). The IdP-PV
returns a copy of this new Internet identity to the User
(Figure [2{2)) under a secure channel created using the PSK.

[Step 8] User Transacts using Transaction Key-Pair

In this phase the User transacts on the blockchain in the
usual manner using the transaction private-key K, . to sign
transactions.

[Step 9] Consensus Receives or Fetches Transaction

The consensus node fetches a transaction (i.e. from the
pool of unprocessed transactions) and prepares to process
that transaction.

[Step 10] Consensus Node Validates User’s Public Key
Prior to processing a transaction, a consensus node
participating in the ChainAnchor permissioned-group must
check that the public-key found in the transaction has been
approved to participate in the permissioned-group. That is, the
consensus node must first look-up the permissions databases
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at the IdP-PV to ensure the public key is in the database.

[Step 11 & 12] Consensus Node Processes Transaction

If the public key Kyrqns used in the User’s transaction
exists in the permissions database at the IdP-PV, the consensus
node can proceed with processing the transaction. Otherwise
the consensus node can choose to ignore the transaction.

III. VERIFIABLE ANONYMOUS IDENTITIES

The identities in ChainAnchor — in the form of transaction
public-keys — are anonymous because the transaction public-
key pairs are self-generated by the user (just as in the Bitcoin
systems and in the PGP system). Only the user knows the
private key(s).

These identities are verifiable because the user at any time
can execute the zero knowledge proof protocol with the IdP-
PV in order to prove membership in the given blockchain.
The unlikability of the multiple public-key pairs (belonging to
a single user) is also derived from the zero knowledge proof
protocol [3]].

o User remain anonymous to IdP-PV: The IdP-PV cannot
distinguish among validated users. More specifically,
if two Users U; and U, independently returns the
challenge message m with a signature-of-knowledge
(see Equation [8) created using keys K gé_Ul and K, I;é-Uz
then the IdP-PV can verify both signature using the one
verification public key Kpg but it will not be able to

distinguish between Users U; and Us.

e User remain anonymous to IdP-PI: When the User
requests membership to the group, the User (person) is
known to the IdP-PI. However, after Step S the User
becomes anonymous even to the IdP-PI because the
User injects a secret “blinding” parameter (in Step 3)
when generating the User’s User-Member Private Key
(see Equations [3] [] and [f] in the Appendix). Since the
IdP-PI is not involved in Step 5 onwards, the IdP-PI has
no knowledge of which transaction public-key pairs are
owned by the User.

o Optional Disclosure of Transaction Keys: A User can
deploy as many transaction keys as they wish within
the blockchain. This is achieved by the User executing
the ZKP protocol with the IdP-PV for each of the keys
he or she wishes to register and use in the blockchain.
This approach has the advantage that the User may
reveal (to the IdP-PV) the User’s ownership of a given
transaction key without affecting other transaction keys
(i.e. unlinkability).

IV. ACCESS CONTROL TO THE SHARED PERMISSIONED
BLOCKCHAIN

In ChainAnchor the term “consensus” includes the notion of
membership to a permissioned (private) blockchain. ChainAn-
chor employs the consensus nodes (miners) in the shared
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permissioned blockchain to collectively enforce access control,
by way of a simple “filtering” of transaction belonging to
members (see Figure[3). A consensus node needs to verify that
the public-key of a transaction that it wishes to process belongs
to a member of the permissioned blockchain. It does this
verification by a simple look-up to the permissions database
at IdP-PV. (Other list-sharing methods can also be deployed,
such as the node maintaining a local copy of the permissions
database).

However, in order to counter possible cheating from dishon-
est nodes, (who may allow non-member transaction to come
into the blockchain) ChainAnchor also requires that the I1dP-
PV and IdP-PI be Validator nodes that checks that transactions
belong to members of the blockchain. The issue of the weight
of a decision (vote) coming from the IdP-PV or IdP-PI (versus
coming from a consensus node) is outside the scope of the
current paper and will be the subject of further study.

V. ANONYMOUS IDENTITIES: BEYOND THE BLOCKCHAIN

ChainAnchor allows for further anonymous and addressable
identities (e.g. email-based identities) to be derived based on
the ZKP protocol that the user executed with the IdP-PV.
Figure [] illustrates as follows:

(a) User’s known Internet identity and the IdP-PI. When a
user seeks to participate within a permissioned group, he
or she must be approved by the group-owner (creator).
This is a normal requirement, particularly for ledgers
shared by business participants. In doing so the user
must use a real world identity. This implies that some
degree of personally-identifying information (PII) must be
disclosed from the user to the group-owner (and possibly
also the IdP-PI entity that is hosting the permissioned

group for the owner). In Figure [a) we show this real-
world identity as Alice’s Internet identity denoted by
alice@idp-issuer.com. We assume here the IdP-PI
knows all attributes relating to Alice.

(b) Regaining anonymity on the permissioned blockchain:
After the User has been approved to join the permissioned
group for the blockchain, the user is able to regain
anonymity by using cryptographic blinding function in
Step 3 of the protocol. This blinding function prevents
the IdP-PI entity from knowing that the User-Member
Private Key that was generated by the person (Alice)
whose Internet identity is alice@idp—issuer.comin
Figure

(c) Anonymity of wuser’s transaction public-key: The
anonymity of the User (obtained from the blinding
function) is further protected by the zero knowledge
proof protocol that is executed between the User and
the IdP-PV (Figure @{b)). The IdP-PV entity has no way
of correlating between the User’s transaction public-key
(which is self-generated by the User) and the Internet
identity alice@idp-issuer.com employed by the
User (Figure f[a)) to initially engage the Permissions
Issuer entity.

(d) Derived anonymous Internet identity for the key-holder:
The cryptographically anonymous relationship between
the key-holder (i.e. our User) and the IdP-PV in Fig-
ure ffc) lends to the possible creation by the IdP-PV of a
new anonymous Internet identity for the User, shown as
anonl23@idp-verifier.com in Figure @{d).

Thus, in Figure [Fd) the IdP-PV can become an

Identity Provider and can issue a new identity

anonl23@idp-verifier.com for the anonymous

user (Alice). Furthermore, IdP-PV can bind (e.g. in an X509
certificate) this new identity with the transaction public-key

Kirans whose private-key (Kt;}ms) is known only to the

anonymous user (Alice). We believe this approach provides a

more scalable solution than PGP.

VI. CONCLUSIONS & FURTHER WORK

In this paper we have addressed the issue of identity and
access control within shared permissioned blockchains. We
proposed the ChainAchor system that provides anonymous but
verifiable identities for entities on the blockchain.

ChainAnchor allows participants in a shared permissioned
blockchain to maintain their privacy by allowing them to
use a verifiable anonymous identity when transacting on the
blockchain. The anonymous (but verifiable) identities make-
up the “group” of entities allowed to access the shared
permissioned blockchain.

In ChainAnchor the term “consensus” includes the notion of
membership to a permissioned (private) blockchain. An entity
who has proved their membership using the zero knowledge
proof protocol can “register” their self-asserted transaction
public-key (for transacting on the blockchain). The consensus
nodes collectively enforce access control to the blockchain by
only processing transactions from the members’ transaction
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public-keys. Transactions belonging to unknown public-keys
(i.e. non-members) are simply ignored or dropped.

A member of a shared blockchain can execute the zero
knowledge proof protocol as many times as they desire,
each time registering a different self-asserted transaction
public-key. No one on the blockchain (including the owner
of the blockchain) has the ability to link these keys to the
single owner. This allows a member to optionally disclose
their identity (e.g. when challenged in a regulatory context)
without endangering their other transactions public-keys.

APPENDIX A
SUMMARY OF EPID

ChainAnchor employs the EPID scheme [3|] due to a number
of advantages of the scheme. EPID is an extension of the
Direct Anonymous Attestation protocol (DAA) [4] for user
privacy in the TPMvl.2 hardware [9]. The EPID protocol
can be deployed without Trusted Platform Module (TPM)
hardware, with the option to add and enable a tamper-resistant
TPM at a later stage. This option may be attractive to service
providers who may wish to deploy TPM-based infrastructure
in a phased approach (see [[10], [11]). When a TPM hardware
is deployed, it can be used to provide protected storage for
the various keys used in the ChainAnchor system.

EPID is not the only anonymous identity protocol available
today. The work of Brickell et al. [4]] introduced the first RSA-
based DAA protocol in 2004. A related anonymity protocol
called Idemix [|12] employs the same RSA-based anonymous
credential scheme as the DAA protocol. However, Idemix can-
not be used with the TPMv1.2 hardware (or the new TPMv2.0
hardware). Another related protocol called U-Prove [13]] can

be integrated into the TPM2.0 hardware (see [14]). However,
the U-Prove protocol has the drawback that it is not multi-
show unlinkable [15], which means that a U-Prove token may
only be used once in order to remain unlinkable.

In the following we summarize the RSA-based EPID
scheme as defined in [3]].

A. Issuer Setup

In order to create a group membership verification instance,
the Issuer must choose a Group Public Key) and compute a
corresponding Group-Issuing Private Key).

For the Group-Issuing Private Key the Issuer chooses an
RSA modulus N = pygny where py = 2p/y + 1 and gy =
2q/ + 1 and where py, pn, p/y and g/ are all prime.

The Group Public Key for the particular group instance will
be:

(N,gl,9,h, R, S, Z,p,q,u) (1)

The Group Issuing Private Key (corresponding to the Group
Public Key) is denoted as:

(P'nsa'y) 2

which the Issuer keeps secret).

In order to communicate securely with a User, the Issuer
is assumed to possess the usual long-term public key pair
denoted as (K, K 171), where K7 is publicly know in the
ecosystem.

Any User who has a copy of the Group Public Key can
verify this public key by checking the following:

o Verify the proof that g, h € (g/) and R, S, Z € (h).

o Check whether p and ¢ are primes, and check that ¢ |

(p—1),q /f@ and u? =1 (mod p)

o Check whether all group public key parameters have the

required length.

B. Join Protocol: User and Issuer

In the join protocol, a given User seeks to send to the Issuer
the pair (K, U) which are computed as follows.
o The User chooses a secret f and seeks to convey to the
Issuer a commitment to f in the form of the value U.
e The value U is computed as

U= RS (3)

where v/ is chosen randomly by the User for the purpose
of blinding the chosen f.
o Next the User computes

K =B;/ (mod p) “4)

where By is derived from the basename of the Issuer
(denoted as bsny).
The goal here is for the User to send (K, U) to the Issuer and
to convince the Issuer that the values K and U are formed
correctly.
In the above Equation[d} a User chooses a base value B and
then uses it to compute K. The purpose of the (B, K) pair
is for a revocation check. We refer to B the base and K as
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the pseudonym. To sign an EPID-signature, the User needs to
both prove that it has a valid membership credential and also
prove that it had constructed the (B, K) pair correctly, all in
zero-knowledge. In EPID and DAA, there are two (2) options
to compute the base B:

e Random base: Here B is chosen randomly each time
by the User. A different base used every time the
EPID-signature is performed. Under the decisional Diffie-
Hellman assumption, no Verifier entity will be able to
link two EPID-signatures using the (B, K) pairs in the
signatures.

e Named base: Here B is derived from the Verifier’s
basename. That is, a deterministic function of the name
of the verifier is used as a base. For example, B could
be a hash of the Verifier’s basename. In this named-base
option, the value K becomes a “pseudonym” of the User
with regard to the Verifier’s basename. The User will
always use the same K in the EPID-signature to the
Verifier.

C. Issuer generates User’s Membership Private Key

In response, the Issuer performs the following steps:
e The Issuer chooses a random integer v// and a random

prime e.
o The Issuer computes A such that

A°US" =7 (mod p)

e The Issuer sends the User the values
(A, e, vl )

Note that the CL-signature [5]] on the value f is (A, e,v :=
vl + vM). As such, the User then sets his/her Membership
Private Key as:

(Aye, f,v) (6)

where v := v/ + v//. Recall that f is the secret chosen by the
User at the start of the Join protocol.

D. User proving valid membership

When a User seeks to prove that he or she is a group
member, the User interacts with the Verifier entity. This is per-
formed using the Camenisch-Lysyanskaya (CL) signature [5]]
on some value f.

This can be done using a zero-knowledge proof of knowl-
edge of the values f, A, e, and v such that

A°R/SY = Z (mod N) (7)

The User also needs to perform the following:

o The User computes K = B/ (mod p) where B is a
random base (chosen by the User).

o The User reveals B and K to the Verifier.

o The User proves to the Verifier that the value loggz K is
the same as in his/her private key (see Equation [)).

In proving membership to the Verifier, the User as the prover

needs to send the Verifier the value

g = (O-la0-270-3) (8)

where each of the values are as follows:

e o7: The value o, is a “signature of knowledge” regarding

the User’s commitment to the User’s private key and that
K was computed using the User’s secret value f.
o9: The value o9 is a “signature of knowledge” that the
User’s private key has not been revoked by the Verifier
(i.e. not present in the signature revocation list sig-RL).
os3: The value o3 is a “signature of knowledge” that the
User’s private key has not been revoked by the Issuer (i.e.
not present in the issuer revocation list Issuer-RL).
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