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1 | INTRODUCTION

Software transparency is defined as the condition that all functions of software are disclosed to its users'. Most software is
complex, which makes it easy for developers to hide specific functions, either deliberately or inadvertently?. This complexity
reduces transparency. In this paper we study blockchain-related software, and in particular smart contracts on Ethereum, written
in Solidity. Smart contracts on Ethereum are not normally complex®, which should improve their transparency. Ethereum smart
contracts execute on a complex infrastructure, the backbone of which, the blockchain, is a globally replicated data structure that
is available for public scrutiny. This should also contribute to transparency of the infrastructure®.

One of the tools commonly used for the analysis of the public blockchain is the blockchain explorer. It interprets the blockchain
and shows the complete history of every contract ever made. The most prominent blockchain explorer for Ethereum is Etherscan.
In addition to the standard features of a blockchain explorer, such as listing blocks and transactions, Etherscan allows developers
to upload the source code of a smart contract. Etherscan then verifies that the bytecode that is deployed on the blockchain can
be reproduced by compiling the uploaded source. This allows the user of a verified smart contract to inspect the source code of
the contract. But what if the user is not able to audit the source code? An alternative approach would be to deploy sophisticated
program analysis tools to analyse the contract. Such approaches work with abstractions that must be proved sound. We discuss
the merits of the most prominent approaches in Section




Our approach to analyse contracts is a different one. We propose to “Try the simplest thing first”. By this we mean executing
the contract in a minimal testing environment, and then to compare the execution results to the historic execution results of
the contract on the blockchain. We will work with the Solidity source of a smart contract. It would be possible to decompile
something resembling source code from bytecode but this will never be as transparent as the original source because comments
cannot be recovered by decompilation. We use standard tools to execute smart contracts, which means that soundness is not
an issue. We have developed a tool that generates a test script for a verified smart contract from its historic transactions on the
blockchain. If the contract fails, it must depend either on other contracts, or on the infrastructure. This is evidence of opacity. In
theory it is possible to discover the dependencies of a smart contract by analysing the blockchain. However, current blockchain
explorers do not disclose all dependencies. This made it necessary to develop ContractVis to discover (a) all dependencies, and
(b) the extent to which dependencies hide functions of smart contracts, thereby reducing transparency.

The tool can be used in three different ways. Firstly, when a test is executed in the minimal test environment, the historic
transactions are replayed. If the contract does not have any dependencies on other contracts, or on the infrastructure, it will
successfully execute. This is evidence of transparency.

Secondly, when the contract, the test, and / or the configuration of the environment are changed prior to replaying, we can run
experiments. For example we can explore what-if questions, such as what if the time stamp of the current block is a sequence
(e.g. 1,2,3)? Would our lottery contract still be fair?

Thirdly, a generated test can be used as a regression test in further development of the contract, or as input to other testing
tools, such as fuzzers and mutators.

Debuggers and fuzzers can also replay smart contracts. The Truffle development framework (See http://truffleframework.com)
represents the state-of-the-art in smart contract debugging. By specifying the unique hash of a transaction to the command
truffle debug it is possible to replay an existing transaction on the blockchain, stepping into and over calls, single-stepping
the execution of the bytecode etc. Other development environments offer similar facilities. However, debuggers usually do not
generate test scripts that developers can experiment with, hence exploring what-if questions is infeasible with existing debuggers.

Fuzzers” generate tests with well-chosen, random inputs to drive the contract into an error state. The developer can then use
the information about the inputs and the error state to improve the contract. Our approach is different in that we use historic
inputs to drive the contract into a correct state. If this fails and the contract reaches an error state, the developer has gained
insight into the contract.

Smart contracts are unique in the sense that the complete set of historic inputs to each contract is available on the blockchain.
For programs other than smart contracts, some logging information is usually available, but this is rarely sufficient to replay the
program. For example checkpoint restart systems® take great care to augment logs with the minimum information necessary
to replay an execution efficiently. Debugging systems for concurrent programs require significant sophistication to be able to
reproduce concurrent executions faithfully.

Smart contracts should not need extra information for accurate replay. After all, each full node that joins the Ethereum peer-to-
peer network replays all historic transactions. The question is, to what extent the historic transactions of a smart contract can be
replayed on a minimal testing environment. By a minimal testing environment we mean using (a) the source of smart contracts
and historic transactions (i.e. Etherscan), (b) the testing framework to replay the contracts (i.e. the Truffle framework), and (c)
bespoke scripting (i.e. ContractVis) to translate historic transactions into truffle test scripts.

Our contributions are as follows. Firstly, we measure to what extent smart contracts depend on other contracts and on the
environment. To learn of all the functionalities of such contracts, users have to study not only the source, but also the dependen-
cies. The more dependencies a contract has, the more effort will be required to achieve transparency. Secondly, we show that
certain aspects of the behaviour of smart contracts can be tracked intuitively with automatically generated heat maps. Thirdly,
we suggest improvements to current blockchain explorers that give users and developers automated insight into the dependen-
cies. Finally, the paper contains details on the implementation of smart contracts on Ethereum that is available on the web but
not in one place. We hope that by exposing this information we contribute to transparency.

The next section discusses the background and presents the research questions. Section[3|describes the experimental approach
and Section[d]presents the results of the experiments. Recommendations for the developers of blockchain explorers are provided
in Section@ This is followed by the discussion, related work, limitations, conclusions and future work.


http://truffleframework.com

2 | BACKGROUND

We summarise how smart contracts are executed, how they can be replayed and how the accuracy of the replay scripts can be
measured. We then formulate a number of research questions.

2.1 | Smart contracts

A smart contract is a program that executes and stores its data on a globally replicated database called a blockchain. The
constructor and the methods of a smart contract encode the business logic of a distributed web application called a Distributed
Application (DApp). The call to the constructor and every method call made by the DApp create one or more transactions,
which are stored in a specific block on the blockchain. The blockchain is basically an append-only, replicated database. A global
peer-to-peer network operated by so-called miners manages the Ethereum blockchain. The miners run a distributed agreement
protocol to decide which blocks are append to the blockchain. The miners are financially rewarded for their efforts. Once stored
in a block on the blockchain, transactions normally persist (except in the case of forks). Because of the global replication of the
blockchain, transactions are censorship resistant.

When a contract is deployed, the Ethereum Virtual Machine (EVM) bytecode obtained by compiling the source of the contract
is also stored on the blockchain. The blockchain does not only store contracts and transactions but also accounts with a monetary
balance in Ether, which is the native currency of Ethereum. At the time of writing, the value of an Ether is about 330 USS.
There are two types of accounts: an externally owned account, defined by creation of a public private key pair and a contract
account, defined by the deployment of a contract. Each transaction has a unique hash and each contract account or externally
owned account is identified by a unique address.

When the constructor and the methods of a contract are executed, a sequence of transactions is generated, starting with the
transaction that created the contract. Each transaction changes the state of the contract variables. A transaction may change the
balance of accounts, and it usually emits events to pass information to the controlling DApp. A transaction does not have a
return value. Every successful transaction consumes a certain amount of gas proportional to the amount of work performed by
the contract. Gas costs Ether and the total gas consumption of a transaction is therefore an interesting output of a contract. A
transaction may fail and it therefore has a status. For example, if the amount of gas provided is insufficient, the transaction will
fail. This mechanism is used, amongst others, to prevent infinite loops. Transactions are cryptographically signed to ensure that
only users in possession of the appropriate private key can make transactions.

Ethereum has two types of transactions: internal and external. The external transactions are triggered by externally owned
accounts. Internal transactions are triggered by contract accounts.

Transactions can fail programmatically, via calls to either require() or assert (). require() is used to check external
consistency (e.g. to make sure that inputs satisfy specific requirements). assert () is used to check internal consistency (e.g. to
ensure that the balance of an account does not underflow).

A contract does not only contain methods that change the state but also pure functions that only read the state of the contract
from the blockchain. Pure functions are called to return information about the state of the contract to the DApp. Calls to pure
functions always succeed and do not consume gas.

By the outputs of a contract we mean the state and gas consumption of transactions, and the emitted events of transactions. To
trace the execution of a contract, it would be useful to visualise all of the outputs on a time line. For example if most transactions
succeed but an occasional transaction fails, this should stand out in a visualisation. There are many outputs that can in principle
be tracked and visualised but the user would soon be overwhelmed. The challenge is to focus on the most useful outputs, and to
do so automatically.

Developers of smart contracts for Ethereum often use the Truffle framework to test contracts. The tests are written in JavaScript
and the truffle framework ensures that the tests can communicate with the contact when it is deployed on one of the test networks
or the main Ethereum network. The Truffle framework requires a directory with number of files as shown below. The directory
contracts contains the Solidity code of the contract to be tested (here Vitaluck.sol) as well as a migration contract that
is used by the Truffle framework in the deployment phase. The test directory contains the test script for the contract (here
vitaluck. js). Section[3.2)gives an example of a test script. We refer the reader to the documentation of the Truffle framework
for further details.

Vitaluck/
| -- contracts/



| |-- Migrations.sol
|  +-- Vitaluck.sol
|-- migrations/
| +-- 1_initial_migration.js
+-- test/
|-- vitaluck.js
+-- truffle-config.js

2.2 | A model of replay accuracy

We present a model of the differences between the historic execution of a smart contract as recorded on the blockchain and the
isolated replay on a minimal testing environment. We discuss the issues that will arise, and propose an experiment to measure
their effect on replay accuracy.

To assess the extent to which a contract has been replayed accurately we need a definition of replay accuracy. A strict definition
might require that all outputs of each transaction are the same in the replay as in the historic transaction. This would not be a
particularly useful definition as there are too many environmental parameters over which we have no control. For example the
amount of gas used by a transaction is not necessarily the same on all EVM implementations. Therefore, we propose a definition
of replay accuracy that takes the most important outputs into account: the transaction status, and the event parameters.

Status accuracy measures the extent to which the historic status of each transaction can be reached when replaying the contract
with historic inputs in a minimal testing environment.

status accuracy If the status of the first + < T transactions of the replay run is the same as the status of the first T

transactions of the historic run, we have /T replay accuracy.

If the status of two transactions disagrees, the state variables of the historic and the replay run may also disagree. Therefore, we
stop counting after the first status disagreement.

Event accuracy measures to what extent the transaction events of the replay transaction agree with the transaction events of
the historic transactions. For each event emitted by a contract, each parameter of the historic transaction must be the same as
the corresponding parameter of the replay. If a replayed transaction fails where the historic transaction succeeds, there will not
be any output for the replay, and the comparison yield false. The definition of event accuracy is:

event accuracy If the event parameters of the first # < T transactions of the replay run are the same as the event parameters
of the first T transactions of the historic run, we have ¢/T event accuracy.

Status and event accuracy are numbers between 0 and 1. We will sometimes refer to just replay accuracy when it does not
matter which of the two is meant.

In the following sections we will discuss how the environment in which a contract is executed can affect replay accuracy.
Contracts can interact with the environment in two ways. A contract may (a) use special variables to access the environmental
parameters, or (b) it may call, or it may be called, by another contract.

2.3 | Special contracts

Contracts are in principle deterministic. I.e. running the same sequence of transactions twice with the same inputs should lead to
the same sequence of outputs. However, if a contract uses special variables, replaying a sequence of transactions usually leads
to a different sequence of outputs. The special variables are block, which gives access to various properties of the current block,
now, the time stamp in seconds of the current block, and blockhash, the hash of any of the last 256 blocks. A contract that uses a
special variable will be called a special contract. A contract that does not use a special variable will be called a regular contract.

Since special contracts do not necessarily generate the same sequence of outputs when a particular sequence of transaction is
replayed, it makes sense to track not just the outputs of one sequence of replayed transactions but also the outputs of a number of
replay sequences. To visualise the output of these multiple replays, we can conveniently create a table for every individual output,
with rows enumerating the transactions and columns enumerating the individual replay runs. The behaviour of the individual



outputs can then be visualised with a heat map. For example the amount of the gas used by each transaction is a useful individual
output to track, as illustrated in Figure[2] We will explain the figure in more detail later.

Special contracts are designed to behave differently each time they are replayed, and we should expect the replay accuracy to
be reduced. Therefore we hypothesise that: Special contracts have lower replay accuracy than regular contracts.

2.4 | Dependent contracts

Smart contracts often call methods of other smart contracts. For example Etheroll (See https://etherscan.
10/address/0xddf0d0b9914d530e0b743808249d9at901f1bd0O1#code) is a client that calls methods of a server
OraclizeAddressResolver (See https://etherscan.io/address/Ox1d3b2638a7cc9f2cb3d298a3da7a90b67e5506ed#code).
This dependency is transparent because the name of the callee is explicitly mentioned in the source of the caller. A fragment of
the code of Etheroll is shown below, as an illustration of how a typical client obtains access to a server. The modifier coupon
contains a call to the method getAddress () of the address resolver contract OAR. The result is the current address of the Ora-
clize contract, which is stored in the variable oraclize, ready for further use. The bottom of the code fragment below shows
that the type of the hard coded address of the Oraclize proxy is cast into the contract interface type OraclizeAddrResolverlI.
The result of the type cast is assigned to the variable OAR.

contract Etheroll {

}
contract OraclizeAddrResolverI { // Contract interface
function getAddress() returns (address _addr);
}
contract usingOraclize {
OraclizeAddrResolverI 0AR;
Oraclizel oraclize;
modifier coupon(string code){
oraclize = OraclizeI(OAR.getAddress()); // Type cast to contract

0OAR = // Type cast to proxy contract interface
OraclizeAddrResolverI (0x1d3B2638a7cC9f2CB3D298A3DA7a90B67ES506ed) ;

The hard coded address 0x1d3B. .. is the permanent address of the proxy of the Oraclize contract. The code of the proxy
contract OraclizeAddrResolver is shown in full below. The constructor stores the address of the account that deployed the
proxy in the variable owner. Only the owner can change this by calling the method changeOwner. The owner of the proxy
can also change the address of the server by calling setAddress(). A client of the proxy, such as Etheroll, can only call
getAddress () to obtain the current address of the server.

contract OraclizeAddrResolver {
address public addr;
address owner;
function OraclizeAddrResolver(){
owner = msg.sender; // Set initial owner
}
function changeOwner (address newowner){
if (msg.sender != owner) throw;
owner = newowner; // Change owner


https://etherscan.io/address/0xddf0d0b9914d530e0b743808249d9af901f1bd01#code
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function setAddr(address newaddr){
if (msg.sender != owner) throw;
addr = newaddr; // Change server

}

function getAddress() returns (address oaddr){
return addr; // Return the current server

The proxy acts as gateway to the server contract. Putting a proxy between the client and the server makes it possible to update
the server without having to update the clients. This is useful, as contracts cannot be changed; they can only be redeployed.
However, having proxies is also opaque, as the client may rely on specific server functionality that can change without the client’s
knowledge. If we take the servers point of view, then on the one hand it is useful that any client can make use of the server.
On the other hand the server has no way of knowing a-priori which clients will be calling its functions. Unfortunately, current
blockchain explorers do not show a-posteriori who called a particular server. This is a significant transparency issue.

Replaying a smart contract without its dependencies usually fails. Therefore, we hypothesise that: A contract that casts an
address type to a contract type will have lower replay accuracy than a contract without such a type cast.

2.4.1 | Calls from other contracts

Detecting calls from other contracts on the blockchain is a problem because with the current Ethereum APIs there is no efficient
way of locating all caller contracts that call a method of a specific callee. Basically one would have to search over a billion
transactions on the Ethereum blockchain to expose all calls. Google Big query offers a public data base of all Ethereum trans-
actions (See https://console.cloud.google.com/bigquery ?p=bigquery-public-data&d=ethereum_blockchain) that makes such a
search possible. Since the service is paid, we do not consider it here as a source of data for our replay tooling. Current blockchain
explorers do not show callers from other contracts, but they do show all callees. It should therefore not be difficult to show also
the callers.

Replaying a smart contract without calls from other contracts may fail. Therefore, we hypothesise that: A contract that is
called by other contracts will have lower replay accuracy than a contract without such calls.

2.4.2 | Ad-hoc address encoding

Smart contracts operate on the addresses of externally owned accounts and contract accounts. Since we do not possess the private
key associated with the externally owned accounts, we have to replace historic addresses that occur in contracts and transactions
by addresses for which we do have the private key in our minimal test environment. The basic set of addresses used by a contract
consists of the contract address, and the addresses passed via the from and to parameters of the transactions. Transactions may
also carry additional parameters of type address, and there may also be hard-coded addresses in the source of the contract. Most
contracts identify hard-coded addresses in the source by giving them the address type, but sometimes they are merely typed
as integers. Since all valid addresses are exactly 20 bytes, we assume, heuristically, that we are dealing with an address if we
encounter a 40 hex digit integer.

Unfortunately, addresses may also be encoded in an ad-hoc manner. For example the contract Ledger (See https://etherscan.io/
address/Oxe6a51bd48f93abcd6c1d532112094044971d8d4e#code) contains the multiMint method shown below. The elements
of the array bits contain an encoding of address and amount pairs. The encoding is the concatenation of a 96-bit value with a
160-bit address. Since we use the standard tools to compile contracts and to replay transactions, we can simply extract all decoded
addresses from the debug output from ganache, the EVM client (See https://github.com/trufflesuite/ganache)). A blockchain
explorer could in principle use the same strategy to extract decoded addresses.

function multiMint( uint[] bits ) {
for( uint i=0; i<bits.length; i++ ) {
address a = address( bits[i]>>96 );
uint amount = bits[i]&((1<<96) - 1);
mint( a, amount );


https://console.cloud.google.com/bigquery?p=bigquery-public-data&d=ethereum_blockchain
https://etherscan.io/address/0xe6a51bd48f93abcd6c1d532112094044971d8d4e#code
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https://github.com/trufflesuite/ganache

Assuming that a minority of the historic addresses are encoded in an ad-hoc fashion, we think that there will be a relatively
small residue of such addresses in the replay scripts. Since these may cause transactions to fail, we hypothesise that: A residue
of ad-hoc encoded historic addresses has a negligible effect on replay accuracy.

2.5 | Research questions

The above considerations lead to the following research questions:

Q1: To what extent does Etherscan provide the information necessary to replay contracts with Truffle?

02: To what extent does the presence of (a) special variables, (b) address-to-contract type casts, (c) internal transactions, and
(d) residual historic addresses influence replay accuracy?

03: How to track and visualise the most interesting outputs (e.g. status, event parameters) of the contracts?

2.6 | A case study in transparency: Vitaluck

To illustrate the utility of replaying a contract with historic inputs we will elaborate on a case study presented in a recent publica-
tion®, Vitaluck (See https://etherscan.io/address/Oxef7c7254c290df3d167182356255cdfd8d3b400b#code) is a lottery contract
with only 27 transactions. This makes it sufficiently small to be used as a case study.

The problem that we will focus on is not new, but we believe that our way of analysing the problem is more intuitive that
the usual source code inspection. While there are several proposals for a good source of randomness in smart contracts®, most
developers use special variables like now as a source of randomness. To some extent miners can manipulate special variables,
which makes this problematic. Vitaluck also uses now and we will replay all the transactions of the contract with a timestamp
that is perfectly controlled to illustrate the problem of using now.

The smart contract code of Vitaluck in essence uses the time stamp of the current block (viz. (now=2)%1000) as a random
number. On the public blockchain this should not be much of a problem as blocks are created about every 14 seconds. However,
if now increases by 1 each time a transaction occurs, as it does on our minimal testing environment, the random number used by
Vitaluck will only increase by two.

The heat maps of Figure |1] illustrate the problem. In each of the two panels, there are 5 columns, labelled O to 4. These
correspond to 5 replay runs of the sequence of 27 transactions of the contract. Each row corresponds to a transaction. Rows 0
and 1 represent the contract deployment. Rows 2 to 26 correspond to one execution of the Play method. The left panel tracks
number, which is one of the parameters of the NewPlay event, that is emitted by the P1ay transaction. The last column of the left
most panel (in green) shows that in run 4, the value of number is always above 900. The source code states, that the player then
has a 99.9% of winning again. This is also illustrated by the value of won for replay run 4 in the last column of (also in green)
of the right most panel. This shows that each transaction has produced a winner. The tables for number, and won show that a
heat map is sufficient to show the problematic behaviour of what was intended to be a fair lottery. The heat maps are produced
automatically and they can only be produced because we can replay the historic transactions with different block times.

Vitaluck also leaks information through its gas usage. Figure 2] shows the amount of gas used for each of the 27 transactions
of the five replay runs. The colours in the heat map illustrate the correlation with the rightmost panel in Figure [T] Inspecting
the code confirms that if there is a winner, the contract executes more code and therefore consumes more gas. The gas usage is
recorded in the blockchain; hence there should not be any expectations of confidentiality. In the case of Vitaluck the fact that
there has been a winner is completely transparent.

A lottery contract would not be successful if the users did not on occasion win. We can automatically track the balance of
relevant accounts to investigate this. For example, Figure[3|tracks the balance of different users executing the P1ay method of the
contract. The horizontal axis gives the transaction number and the vertical axis the balance (in excess of the minimum balance
of all accounts) of the relevant player. The colours in the graph correspond to replay runs. Each of the 5 different graphs gives
the output of one of the 5 replay runs. The general trend of the balance of a player is to go down, unless he/she wins, when it
goes up significantly. During transactions 1-10 and 13-14 only player 2 is active. Player 6 is only active during transactions 17-
24. Other players are active during other transactions but these have been removed from the graph to avoid clutter. The graph
shows that Player 6 has won once in two replay runs (2 and 3), at transaction 17, where his balance increased considerably,
and continues after his win. Player 2 has abandoned the game at transaction 13. All graphs shown in the case study are easily
produced from the output of the replay runs. We believe that the case study illustrates that being able to replay transactions
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0 1 2 3 4 01 2 3 4 0 1 2 3 4
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2 583 699 2 2

3 585 701 3 3 162430 162430 172659

4 587 701 4 4 162430 162430 172659

5 587 703 5 5 162430 162430 162430 172659

6 589 705 6 6 162430 162430 162430 162430 172659

7 589 705 7 7 172659

8 591 707 8 8 162430 162430 162430 162430 172659

9 591 709 9 9 177430 177430 187659

10 593 709 10 10 162430 162430 172659

11 593 711 11 11 162430 162430 172659

12 595 711 12 12 162430 172659

13 595 713 13 13 162430 162430 172659

14 597 713 14 14 162430 162430 172659

15 597 715 15 15 177430 187659

16 599 715 16 16 177430 187659

17 601 717 17 17 162430 162430 162430 172659

18 601 719 18 18 162430 162430 172659

19 603 719 19 19 162430 172659

20 603 721 20 20 162430 162430 162430 172659

21 605 721 21 21 172659

22 605 723 22 22 162430 162430 162430 172659

23 607 725 23 23 177430 177430 177430 142012 187659

24 607 725 24 24 177430 187659

25 609 727 25 25 177430 177430 177430 177430 187659

26 611 727 26 26/ 142012 177430 142012 142012 187659
FIGURE 1 Tracking the outputs of the Vitaluck con- FIGURE 2 Tracking the gas used by the Vitaluck con-
tract showing how low entropy randomness leads to unfair tract showing how information clearly visible on the
behaviour. blockchain correlates perfectly with the functionality.
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FIGURE 3 Tracking the balance of the accounts of Player 2 (during transactions 1-13) and Player 6 (during transactions 15-
25) calling the Play method, showing that playing more often reduces the balance by a small amount that that it increases the
balance by winnings.

with historic inputs, while at the same time varying the block time provides insights in the functioning of a smart contract. This
increases transparency.

3 | METHOD

We propose the following method to answer the research questions.



e Build a tool ContractVis that (a) downloads a verified smart contract and its historic transactions from Etherscan, (b)
generates a truffle test script that replays the transactions, and (c) generates output during the replay that can be
analysed and visualised.

e Draw a random sample of N verified smart contracts. Since every failing replay has to be inspected manually to classify
the reasons for failure, it is not feasible to process more than a sample.

e For each of the randomly sampled smart contracts, replay the first 7" transactions of the contract, and perform each replay
run R times. We limit the number of transactions for two reasons. Firstly, the longer the replay run, the more likely it is
that a replay will fail. Therefore, making all replay runs the same length allows for a fair comparison between contracts.
Secondly, the load on Etherscan of downloading large numbers of transactions is significant.

e Analyse the outputs of each of the R replay runs, and compute the status and event replay accuracy.
e Analyse the differences and similarities of the selection of contracts, specifically looking for reasons why transactions fail.

In Section ] we will discuss what values we have chosen for N, R, and T.

3.1 | Generating replay scripts

For each transaction, starting with the create transaction, ContractVis generates a test in JavaScript that can be replayed by the
truffle test command. The automatically generated test takes the following actions:

e Deploy the contract with the historic instantiation parameters as found on the blockchain, except that historic addresses
are replaced.

e Issue all T historic transactions (modulo address translation). The status of the historic and the replayed transaction are
compared to calculate the status accuracy.

e If a historic transaction has failed, we force the replayed transaction also to fail, by passing an illegal from address to the
transaction. Otherwise the state of a replayed contract would no longer be consistent with historic state.

o Get the balance of the from and to accounts used in all T transactions on the blockchain, and generate calls to obtain the
balances via the appropriate API calls. This can be used to compare the effect of the transaction on the balances of the
accounts in the replay with the historic balances.

e Extract all historic event parameters emitted by all T transactions on the blockchain, and generate API calls to extract
the events also on the test environment. This is used to compare the event parameters of the replay run to the historic
parameters, and to calculate the event accuracy.

o After all T transactions, generate calls to each pure function of the contract with random arguments. This is intended to
simulate actions that the DApp could have performed, and thus to reduce the opacity of the contract.

ContractVis downloads the source of the contract, the application binary interface (ABI), the first T' transactions, the event
logs, and the balances of the addresses involved after each transaction from Etherscan. The tool pauses regularly for a few
seconds to comply with the rate limiting policies of Etherscan.

The central data type is the Prototype format, which is a generalisation of the decoded ABI format. The Etherscan API provides
a variety of information in different formats, all of which is converted into prototypes. The code generation converts prototypes
into JavaScript code.

The appropriate emscripten version of the solidity compiler (See https://github.com/ethereum/solc-bin/blob/gh-pages/bin/
list.json) is used to generate the abstract syntax tree from the source, which is traversed to collect the hard coded addresses from
the contracts. These historic addresses as well as the from and to addresses used by the transactions are replaced by addresses
generated by ganache. These addresses are generously stocked with Ether. The maximum number of addresses that can be used
in the source code and the transactions together has been limited to 1000 but this can be changed easily. The list of transactions
will be truncated if more addresses than the limit occur in the source code and the transactions.

Some verified contracts are created in an internal transaction. Etherscan provides the hash of this transaction, so that we
can access the internal transactions via the parity trace. For example the contract Congress (See https://etherscan.io/address/
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0x97282a7a15f9beadc854e8793aae43b089f14bde#code) is created by this transaction https://etherscan.io/vmtrace?txhash=
0x0233ee95d6b34e3d67b380d0c7d58dca5S33ceSe3a07edObb4c3ef3aab0aedbeb&type=parity.

Once all data has been collected, the relevant Truffle contract, migration, and test code is generated. The migration script
deploys the contract with its constructor arguments. The test script encodes the T transactions with their parameters in a
truffle test. The tests generate a variety of useful data in JSON format for further processing.

3.2 | Example: Vitaluck test script

The JavaScript code below shows the essence of the test script generated for the Vitaluck case study. To avoid clutter, we have
removed all boilerplate from the code. The array adList contains the addresses that are used during the replay instead of the
historic addresses. These replay addresses are generated by ganache and provided unlocked as the accounts parameter to
the migration script. For example the from address in the create transaction is adList [5], because the corresponding historic
transactions used the corresponding entry in the historic address list. So the adList array is the implementation of the address
translation from historic blockchain addresses to addresses of the minimal test environment.

To ensure that all transactions happen at the same time as the historic transactions, the test does not use instamining but mines
each block explicitly, with the time stamp of the historic transaction.

const Vitaluck = artifacts.require( "./Vitaluck.sol" ) ;
var adlList = null ; // List of addresses
var deployed = null ; // The deployed contract
contract( "Vitaluck", function( accounts ) {
it( "Comstructor( )", async function( ) { // Deploy the contract
await support.minerStop( ) ; // Stop instamining
adList = [ "0x0000000000000000000000000000000000000000",
"0x0000000000000000000000000000000000000001 ",
"address(this)"
].concat( accounts ) ) ;
const txOptions = // Create transaction
{from: adList[5], to: 0, value: "O"} ;
const txCall = {inputs: [], name: "Vitaluck", outputs: [], type: "function"} ;
const txRequest = // Deploy the contract and call the constructor
Vitaluck.new( txOptions ) ;
await new Promise( (resolve) => {txRequest.on( "transactionHash", resolve )} ) ;
await support.mineBlockWithTimestamp( 0, 1516973359 ) ;
deployed = await txRequest ;
const txReceipt = // Get the transaction details
await web3.eth.getTransactionReceipt( deployed.transactionHash ) ;
deployed.address = txReceipt.contractAddress ;
adList[2] = txReceipt.contractAddress ;
)

it( "Play( )", async function( ) { // The first test
const txOptions = {from: adList[3], to: adList[2], value: "50000000000000000"}
const txCall = // Regular transaction
{inputs: [], name: "Play", outputs: [], type: "function"} ;
const txRequest = // Call the Play method
deployed.methods[ "Play()" ]( txOptions ) ;
await new Promise( (resolve) => {txRequest.on( "transactionHash", resolve )} ) ;
await support.mineBlockWithTimestamp( 1, 1516973566 ) ;
const txResult = await txRequest ;
const fromBalance = // Get the balance
await web3.eth.getBalance( adList[3], txResult.blockNumber ) ) ;
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I DI

)

The test script contains many it blocks of which we show only the first two. The first it block ensures that the contract has
been deployed, and that the adList array is initialised.

The first it block sends value: "O0" to address to:0, which indicates a create transaction. The cost of creating the transaction
is paid for by the account with address from: adList[5]. The it block completes once the create transaction has been mined.

The second it block fires the first transaction, which calls the P1ay method of the Vitaluck contract. adList [1] is the account
that created the contract. So txOptions specifies that 50 x 10'> Wei is sent from account adList [2] to the contract address
adList [1]. Once the transaction has been mined, the balance of the two accounts involved in the transaction is retrieved with
the calls to web3.eth.getBalance(.). All values can be used for further analysis and visualisation.

3.3 | Example: Vitaluck getter script

Ethereum does not have programmatic reflection capabilities, and therefore the internal state of a contract is transparent only
to the contract itself. Simply replaying an existing transaction will not expose internal state beyond what the contract event
parameters and existing getters expose. However, if important getters are missing, they can only be added if the bytecode of the
contract is changed. This is not possible for an existing deployment on the public blockchain. Since our replay facility does re-
deploy a contract, it is easy to add any missing getters to the contract. The program fragment below shows sample code generated
for the Vitaluck contract that calls existing getters on the state. Vitaluck provides sufficient getters already but it would be easy
to add any missing getters.

async function getters( deployed ) {
console.log( await deployed.GetStats() );
console.log( await deployed.GetLastBetUser(...) ) ;
console.log( await deployed.GetWinningAddress() );
console.log( await deployed.ownerBetsCount(...) )
console.log( await deployed.GetUserBets(...) ) ;
console.log( await deployed.GetBet(...) ) ;

console.log( await deployed.GetCurrentNumbers() ) ;

>

If a getter has parameters, these are randomly chosen by ContractVis. To avoid clutter, in the code above we have replaced
the random parameters by three dots.

4 | RESULTS

On 1 January 2019 there were 54,179 verified contracts on Etherscan. From these we selected the contracts that were not too
old, and which had at least T = 50 transactions. This lower limit was set to avoid contracts with too few transactions to generate
replay scripts from. We excluded older contracts that had to be compiled by Solidity compilers before version 0.4.9 because
of compatibility issues with those old compilers. From the list of 11,234 remaining contracts we selected approximately 10%
using uniform sampling (N = 1120). This random sample of contracts was downloaded, processed by ContractVis, compiled,
deployed, and replayed with the Truffle tools.

4.1 | Descriptive statistics

Table [I] presents statistics that characterise our sample of verified smart contracts. The average Source Lines of Code
(SLoC) statistic of our contracts is 417.5. The shortest contract has 9 SLoC (See Pgp https://etherscan.io/address/
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TABLE 1 Descriptive statistics of the verified smart contracts sampled from Etherscan

SLOC Transactions Ether Instruction space  Coverage

N =1111 N =1120 N =1120 N =1037 N =1035

Minimum 9.0 51.0 0.0 43.0 6.1%
Maximum 5,039.0 5,553,551.0 184,419.3 14162.0 98.4%
Average 417.5 13,732.5 249.8 3474.9 51.4%
Stdev 403.0 174,321.3 5,736.0 2159.5 16.2%

TABLE 2 Compiler versions

Year compiler registration

2017 663 657
2018 457 463
Total 1120 1120

Oxa6a52efd0e0387756bc0ef10a34dd723ac408a30#code)) and the largest has 5,039 SLoC (See DemocracyKit https://etherscan.
io/address/0x705cd9a00b87bb019a87beeb9a50334219ac4444#code). Hegediis” reports an average size of 57.7 with a standard
deviation of 106.4 per contract for a collection of 40,352 source code files from Etherscan. Our SLOC statistic is for source
code files, which, according to Hegediis, contain 4.44 contracts on average. Taking this into account reduces our average to
419.5/4.44 = 94.0, which, while larger than 57.7, is still within one standard deviation from the Hegediis average.

On 1 Jan 2019, the average number of transactions executed against our sample was 13,732.5, and the average balance of the
contracts was 249.8 Ether. Both of these statistics exhibit the typical long tail distribution, with few contracts contributing most
to both parameters, and a long tail of contracts that contribute little.

The last two columns of Table [T] shows descriptives of bytecode generated for each contract. The instruction space gives
the number of EVM instructions. The coverage indicates the percentage of EVM instructions that are executed by the first 50
historic transactions. Both statistics vary in roughly he same way as the SLOC statistic.

Table[2]shows a breakdown by year of the number of contracts. The compiler column shows the number of contracts compiled
by Solidity versions from 2017 (0.4.9 to 0.4.19) and from 2018 (0.4.20 and up). The registration column shows the number of
contracts that were registered on Etherscan in a particular year. The distribution over the two years is more or less even.

4.2 | Failed versus runnable contracts

A total of 83 contracts out of N = 1120, i.e. a mere 7.4% could not be compiled and/or deployed. Most of the issues are inherent
to the limitation of a minimal testing environment. The issues are:

e 60 contracts failed during the deployment phase because of missing dependencies.
e 17 smart contracts depend on external library contracts, and therefore failed during deployment.

e For four contracts, Etherscan does not provide the correct arguments to a transaction. This is probably due to issues with
the Etherscan database.

e Two contracts generated compiler errors. One caused a heap overflow and the other a stack overflow. This is surprising,
as we have used the same compiler version and optimisation settings as during the contract verification by Etherscan.

The remaining 1120 — 83 = 1037 contracts will henceforth be called the runnable contracts. For each runnable contract, we
generated a truffle test script from the first T = 50 transactions as recorded on the Ethereum blockchain.
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TABLE 3 Cross tables of status and event accuracy against dependencies on the environment.

failed intermediate perfect total | failed intermediate perfect total
1. Contract uses special variables (N = 1120, y* = 46.2, p < 0.001)
Status no 30 150 420 600 | 5.0% 25.0% 70.0% 100.0%
accuracy  yes 53 205 262 520 | 10.2% 39.4%  50.4% 100.0%
Total 83 355 682 1120 | 7.4% 31.7% 60.9% 100.0%
2. Contract uses special variables (N = 1120, y* = 45.5, p < 0.001)
Event no 30 139 431 600 | 5.0% 232% 71.8% 100.0%
accuracy  yes 53 189 278 520 | 10.2% 36.3% 53.5% 100.0%
Total 83 328 709 1120 | 7.4% 29.3%  63.3% 100.0%
3. Contract uses type casts from address to contract (N = 1120, y? = 143.0, p < 0.001)
Status no 18 90 417 525 3.4% 17.1%  79.4% 100.0%
accuracy  yes 65 265 265 595 | 10.9% 445%  44.5% 100.0%
Total 83 355 682 1120 | 7.4% 31.7% 60.9% 100.0%
4. Contract uses type casts from address to contract (N = 1120, y? = 73.8, p < 0.001)
Event no 18 107 400 525 | 3.4% 204%  76.2% 100.0%
accuracy  yes 65 221 309 595 | 10.9% 37.1% 51.9% 100.0%
Total 83 328 709 1120 | 7.4% 29.3%  63.3% 100.0%
5. Contract is called by other contracts (N = 1120, y? = 44.1, p < 0.001)
Status no 41 174 470 685 | 6.0% 254%  68.6% 100.0%
accuracy  yes 42 181 212 435 | 9.7% 41.6% 48.7% 100.0%
Total 83 355 682 1120 | 7.4% 31.7% 60.9% 100.0%
6. Contract is called by other contracts (N = 1120, y? = 107.2, p < 0.001)
Event no 41 130 514 685 | 6.0% 19.0% 75.0% 100.0%
accuracy  yes 42 198 195 435 | 9.7% 455% 44.8% 100.0%
Total 83 328 709 1120 | 7.4% 29.3% 63.3% 100.0%
7. Contract contains ad-hoc encoded historic addresses (N = 1120, ;(2 =94, p=0.009)
Status no 67 319 623 1009 | 6.6% 31.6% 61.7% 100.0%
accuracy  yes 16 36 59 111 | 14.4% 324%  532% 100.0%
Total 83 355 682 1120 | 7.4% 31.7% 60.9% 100.0%
8. Contract contains ad-hoc encoded historic addresses (N = 1120, y> =9.2, p = 0.01)
Event no 67 295 647 1009 | 6.6% 292% 64.1% 100.0%
accuracy  yes 16 33 62 111 | 14.4% 29.7%  55.9% 100.0%
Total 83 328 709 1120 | 7.4% 29.3%  63.3% 100.0%

4.3 | Replay agreement

To assess the extent to which replay runs agree with historic runs we operationalise the model of 2.2]by defining four independent
variables and two dependent variables. The independent variables are:

e Whether a contract uses special variables (no, yes);
o Whether a contract uses type casts from address to contract (no, yes);

e Whether a contract is called by other contracts (no, yes);
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e Whether a contract contains ad-hoc encoded historic addresses (no, yes).

The dependent variables are:

o Whether the transaction status of replaying is (a) failed because the contract could not be deployed, (b) intermediate
because at least one replayed transaction terminated with a different status than the historic transaction (c) perfect because
all transactions agree with the historic transaction on the termination status.

e Whether the event output is (a) failed because the contract could not be deployed, (b) intermediate because at least one
replayed transaction failed to emit an event or disagreed with the historic event on a parameter (c) perfect because all
transactions agree with the historic events on all parameters.

To assess the effect of the independent variables on the dependent variables we calculate 4 X 2 = 8 cross tables. Cross table
1 of Table [3| shows that 600 (53.6%) of the runnable contracts are regular (i.e. Uses special variables=no). For the majority
(420) of those regular contracts, the replay runs are perfectly status accurate. For the 520 (46.4%) special contracts, the number
of perfectly status accurate contracts (262) is much closer to the number of intermediate status contracts (205). The difference
between special and regular contracts is statistically significant (p < 0.001). The same conclusion holds for event accuracy in
cross table 2 of the table.

Cross table 3 shows that of the 525 (46.9%) contracts without type casts from address to contract, the majority (417) can be
replayed with perfect status accuracy. Of the 595 (53.1%) contracts that do contain type casts, coincidetally the same number
can be replayed with perfect status accuracy (265) as with imperfect status accuracy (265). This difference between contracts
with and without type casts is also statistically significant. The analysis of the contracts with respect to the event accuracy, in
cross table 4, gives similar, significant results.

Cross table 5 shows that of the 685 (61.1%) contracts without callers 470 can be replayed perfectly. If there are callers, the
difference between perfect and intermediate accuracy disappears. The same observations apply to the event accuracy statistics
(See cross table 6). The results are significant,

Finally, cross tables 7 and 8 show that 111 (9.9%) contracts contains a residue of ad-hoc encoded historic addresses. Since
this is a relatively small fraction of the contracts, the p-values tend to be higher, but the difference is still significant.

We conclude that the presence of special variables and dependencies has a large and significant effect on replay accuracy. The
presence of ad-hoc encodings of historic addresses has a smaller, but still a statistically significant effect on the replay accuracy.
Given that in each of the 8 cross tables the difference between intermediate and perfect is larger in the "no" rows than in the
"yes" rows is evidence that all the dependent variables affect the status accuracy in a statistically significant manner.

TABLE 4 A breakdown of the historic-replay transaction pairs comparing to what extent replayed transaction terminated in the
same status as the historic transactions.

Status of the replayed trasaction, (N = 1120, x* =46,033, p < 0.001)

failed outofgas success Total failed outofgas success Total

status of failed 2193 49 51 2293  95.6% 2.1% 22% 100.0%
the original ~ out of gas 4 3735 0 3739 0.1% 99.9% 0.0% 100.0%
transaction  success 9068 1024 34806 44898 20.2% 23%  77.5% 100.0%
Total 11265 4808 34857 50930 22.1% 94%  68.4% 100.0%

The 1120 contracts generated 55,930 historic transactions, which is on average 49.9 transactions per contract. This is slightly
less than 50, since the number of transaction on some contracts was limited do to excessive use of historic addresses (See

Section 3.1)).

Table 4{shows a cross table of the historic-replay transaction pairs. The transactions of most pairs terminate in the same state
(indicated in bold face), in total 40,734 (72.8%) of perfect agreement. Most of the 9,068 transactions that succeeded in the
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historic run but failed in the replay did so because of missing dependencies. A few transactions (51) succeed where the historic
transaction failed, usually due to the generous Ether balance in the replay.

For 0.8% of the transactions, the reason for failure is specified by the code. This is usually a mismatch between the
environment-related parameters and the expectations of the contracts. Unfortunately, not many contracts follow this best practice
of specifying a reason for failure.
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FIGURE 4 Senstivity analysis of the replay accuracy as a function of the number of transactions in the replay scripts.

4.4 | Sensitivity Analysis to the value of T

We have investigated to what extent replay accuracy is sensitive to the choice of T, which determines how many transactions
are replayed. The lower the value of T, the better the change of achieving perfect accuracy, but at the same time the less useful
the test script is. Figure[d] shows that there is less than 15 per cent points difference in accuracy for both the status and the event
accuracy between low and high values of T'. This indicates that the accuracy results are only marginally sensitive to the value
of T. Values of T below 10 should probably be avoided, as the test scripts would become rather short.

S | RECOMMENDATIONS

We provide five recommendations for blockchain explorers that would increase the transparency of smart contracts on Ethereum.
We believe that all recommendations can be implemented using the data that blockchain explorers already collect, and some
program analysis techniques.

5.1 | Indicate environmental dependencies

About half the contracts of our sample depend on environmental parameters, such as the time stamp of the current block. A
blockchain explorer should be able to list such a dependency. For example knowing that a certain method can only be called
during a certain time period increases transparency. This basic information can be used in automatic contract classification,
which would increase the transparency of contracts further. An example is automatic token classification'?,

5.2 | Decode ad-hoc encodings of addresses

Smart contracts are free to encode addresses in an ad-hoc manner. Such encodings make it more difficult for a blockchain
explorer to track the addresses involved, thus reducing transparency. In Section [2.4.2] we discussed the multiMint method,
which ingests about 25 ad-hoc encoded addresses per transaction. This means that just a few transactions can hide large numbers
of addresses from the blockchain explorer. Our replay tooling determines automatically whether ad-hoc encodings are used. In
total we found 11,485 addresses in the first 50 transactions sent to the 110 contracts with residual historic addresses, hence the
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problem is not restricted to just a few contracts or a few transactions. We believe that being able to decode ad-hoc encodings
involving addresses would be a useful addition to existing blockchain explorers that can have a significant impact. It should be
possible to implement this with the appropriate program analysis techniques.

5.3 | Provide detailed reasons for transaction failure

Out of 50930 historic transactions, 2,193 failed (5.4%). If the reason for failure is clear, and readily communicated
to the user, this contributes to transparency. Consider as an example the game Wallie (See https://etherscan.io/address/
0xe5af8907776fd5f1bb069369fd398ad3310275 1e#code)). Most methods of the contract check whether the game has started, and
issue an appropriate message when this is not the case. The modifier shown below implements this. The require predicate has
a second parameter, which tells the initiator of the transaction that the game has not been started when is_started = false.

// Check the start of the project
modifier isStarted() {
require( is_started == true, "Project not started" );

-

The first historic transaction of the Wallie contract was a test to make sure that the message is issued. (See https://etherscan.io/
tx/0x1616021¢c30a50c2d066b481b6a89190dce072ace799a6bd 1b0e5at7d8e65d02d). Indeed the transaction has failed, but the
message “Project not started” is not shown by Etherscan. The message is also not shown by the geth, parity and remix debug
traces, nor by any other blockchain explorer. For all 2,193 historic transactions in our sample that failed, not a single meaningful
message could be found. The developer has to be content with only three different messages: Reverted, which usually means that
a require somewhere failed; Bad instruction, which usually means that an assertion failed, and Bad jump destination, which can
mean a number of things but the most likely meaning is that an array index was out of bounds. This is not helpful and detrimental
to the transparency of the contracts. We believe that blockchain explorers should be able to report the reason for transaction
failure when such reasons are programmed in the smart contract. The required data is available in the execution traces of the
bytecodes. We would also encourage developers to make the reason for failure explicit in their code.

5.4 | Expose all callers of a smart contract

On 1 Jan 2019, one of our sample contracts, EarthcryptToken (See |https://etherscan.io/address/
0xe416b41a26661b00e2f41545eb7cet7995090aaf#code) had received calls from 28,202 different addresses, of which 92% via
internal transactions and only 8% via external transactions. The state of the contract therefore depends to a large extent on the
changes made by the internal transactions that are not shown by blockchain explorers. About half the contracts of our random
sample (659) receive calls via internal transactions. Current blockchain explorers only show these calls for the caller, and not
for the callee. Given than there are about twice as many internal as external calls, and that many contracts make and receive
internal calls, blockchain explorers should be able to trace callers and callees.

5.5 | Publish test boxes

The Truffle framework makes it possible to package contracts, migration scripts, configurations, tests and more in a Truffle box.
(See https://truffleframework.com/boxes)). The data is screened before a box is listed on the website, to ensure compatibility with
the Truffle framework. Developers can choose from about 50 boxes as a starting point for a new development. We believe this
to be a useful feature and we should like to propose that blockchain explorer publishes a test box, which contains the source of
a smart contract, suitable migration and configuration scripts, and the test script that ContractVis has generated for the first T’
historic transactions. The test script should be useful to the developer as a starting point for a regression test for the contract.
The test script should also be useful to the user who is interested in experimenting with the contract, in the same way as we have
experimented with Vitaluck.
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6 | DISCUSSION

We will now answer the research questions that we posed earlier as follows.

Q1: In principle, a blockchain provides the perfect opportunity to study history by recreating it in considerable detail. This
provides maximum transparency about the contracts that created the historic transactions. However, recreating history requires
that the appropriate tools provide full details and that historic versions of the tools are available. Unfortunately, this is not always
the case. Etherscan normally provides all the information necessary to replay the contracts. However, there are a number of
minor issues, for example missing constructor arguments. We also found that older versions of the Solidity compiler do not
work anymore, and that older versions of the ganache client are not available. We have reported these issues to the developers.
In Section[5] we provide five concrete suggestions for improvement of blockchain explorers such as Etherscan. Each suggestion
improves a particular aspect of the transparency of smart contracts.

Q2: We have been able to redeploy over 90% of a sample of verified smart contracts on a minimal testing environment and we
have been able to replay about 75% of the first 50 historic transactions of these contracts. The termination status of the replayed
transaction perfectly agrees with the termination status of the historic transaction. Where there is disagreement this is due to
missing dependencies during the replay. We were expecting dependencies to have a bigger effect. It may be that our choice of
replaying only the first T = 50 transactions plays a role. For example, it could be the case that during the early stages of its life,
a smart contract is setting up its administration and opens for business later. However, we have investigated to what extent our
results are sensitive to the particular value of T and found that above a certain value, the results are more or less stable.

Q3: Our visualisations can automatically track the output of smart contract transactions in an intuitive manner. We have
illustrated this in a case study of a lottery contract, confirming that using the time stamp of the current block as a source of
randomness has issues. We have shown that visualisations with heat maps provide insight in the workings of a sample smart
contract. The tooling automatically generates the heat maps. However, the user of the heat maps has to think of appropriate
question to ask. For example: what would happen if the block times were a consecutive sequence? Would my lottery still be fair?
Rerunning the transaction shows how the behaviour of the various runs differs, and helps to answer such what-if questions.

7 | RELATED WORK

Closest to our work is that of Cook et al'l, who have developed DappGuard, a proof of concept tool that collects data from
transactions of selected contracts, such as statistics on the gas usage per transaction and the value carried by transactions.
Outliers, skewed distributions, and other irregularities are indicators of certain classes of attacks 12 This is similar to what we
have shown for example in Figure

Anderson et al.13 analysed the bytecode of all 17,424 smart contracts available on the Ethereum block on 18 April 2016. Dur-
ing the early days of Ethereum 2,937 (i.e. 16.8%) of the contracts were also similar to each other. We have used the same distance
metric on our sample of smart contracts, but on the source rather than the binary. Comparing the source has the advantage that
it is easier to explain the differences than on the binary. Hegediis" has applied a number of well-known software metrics to the
source code of 40,352 smart contracts. It seems that smart contracts score lower on key metrics that typical Object Oriented code.
This might be an indication that the level of maturity of smart contract developers is lower than that of general OO developers.

ContractFuzzer? is a fuzzing tool for smart contracts that uses abstract interpretation techniques to build the test oracles that
generate the random inputs for the replay. Contractfuzzer has been tested on 9,960 verified smart contracts from Etherscan, of
which about 1/3 could not be replayed because the authors had not considered replacing historic addresses.

Much related work deploys sophisticated techniques for model checking, static analysis, and abstract interpretation that we
declared out of scope for our minimal testing environment. However, many of these techniques could be deployed to improve
our minimal testing environment. Therefore we present an alphabetic selection of the most relevant tools.

Erasys'# is a reverse engineering tool built to give users of smart contracts insight in contracts for which no source code is
available. Compared to other bytecode, such as the Java Virtual Machine bytecode, the EVM bytecode is low level and therefore
harder to reverse engineer. Erasys is able to uncover the functions in about 50% of the contracts.

MadMax™2 is a tool that uses static analysis techniques to discover when smart contracts may run out of gas. Running out
of gas is a clear indication that something is wrong with a transaction, hence an important topic of investigation. MadMax has
been evaluated on the bytecode of over 1M smart contracts.
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Maian® is a symbolic analysis tool designed to find trace vulnerabilities in smart contracts. The tool performs symbolic

analysis of multiple execution traces of a contract to find safety and liveness issues. Maian has been tested on the bytecode of
970,898 smart contracts.

Osiris'is a tool that uses symbolic execution and taint analysis to discover integer overflow and underflows in smart contracts.
This is another common cause for security problems. Osiris has been tested on 22,493 smart contracts from the Ethereum
blockchain.

SASC! is a tool that looks for logical flaws in smart contracts. These are hard coded into a proof of concept tool. This
approach does not require the programmer to specify patterns or policies, and is therefore easier to use but at the same time less
powerful. SASC has been tested on 4,744 verified smart contracts from Etherscan.

Securify® is a code analysis tool that looks for specific code patterns known to be associated with security incidents. The
patterns are coded by hand, using a powerful logic-based language. Securify has been evaluated using a sample of 24,594 smart
contracts obtained from the Ethereum blockchain. The results indicate that typical issues, such as the DAO problem'? are indeed
recognised by the tool.

SmartAnvil?? is a toolkit designed to facilitate static analysis and bytecode reverse engineering of smart contract code. The
main motivation for this tool is also to provide more insight in the functionality of smart contracts for which the source is
unavailable.

teEther?! is a symbolic security checker that generates attacks on smart contracts with specific types of vulnerabilities. The
tool has been tested on the bytecode of 38,757 unique smart contracts.

Zeus?? is a symbolic security checker. Where Securify requires developers to specify patterns that represent an issue, Zeus
requires developers to specify policies that represent the avoidance of an issue. Zeus has been evaluated on the Securify dataset.

8 | LIMITATIONS

ContractVis is specific to Ethereum. There are hundreds of other flavours of smart contract systems. Some of these may be
sufficiently similar to Ethereum such that the principles of our approach would also be applicable.

Contracts that have not been deployed yet do not have a public record of historic transactions that can be decompiled into a
test. Developers of new contracts can use ContractVis with data from a test net.

The Truffle framework makes it possible to specify which version of the Solidity compiler to use, but it is not possible to
specify the appropriate version of the Ethereum Virtual Machine. Since the specification of the EVM changes from time to time,
particularly when hard forks are made, this is a limitation of our approach.

Our conclusions are valid for a random sample of about 10% of a set of over 50,000 smart contracts. We have run the same
experiments on several other, smaller random samples, all leading to similar results. Therefore we are confident that our results
are representative for the collection of verified smart contracts on Etherscan. Our results are probably not representative for the
about 10M smart contracts also deployed on the Ethereum blockchain, for which the source code is not available on Etherscan.
The developers of verified smart contracts made a special effort to upload their work onto Etherscan. It is therefore likely that
these contracts were also developed with more care than other, unlisted, contracts.

9 | CONCLUSIONS AND FUTURE WORK

We have provided a minimal testing environment for automated replay, visualisation, and analysis of the history of verified smart
contracts. We have been able to replay a random sample of 1120 verified smart contracts in isolation on this minimal replay
environment. About 75% of the transactions could be replayed accurately. The remaining 25% could not be replayed because
of missing dependencies. Many smart contracts call methods of other contracts. Since either the caller or the callee is absent
in our minimal testing environment, the replayed transaction will fail. The relevance of this result is not in the fact that smart
contracts have dependencies per se, but in the scale of the result: We had expected the effect of dependencies to be larger than
25% failures. A manual inspection of a sample of tests revealed that our tests provide limited code coverage. This might explain
the relatively low effect of dependencies on replay accuracy.

In a case study of a lottery contract, we have shown how a well-known issue, i.e. the lack of high-entropy source of randomness,
can be visualised automatically and intuitively with heat maps. The heat maps also illustrate how the contract leaks crucial
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information via the blockchain. The ability to replay the contract multiple times, while varying the environmental parameters is
key to achieving intuitive visualisations. A source code audit would have come to the same conclusion about poor design of the
lottery contract, but we believe that our heat maps are more intuitive.

In general, verified smart contracts are less transparent than we would have expected. About half the contracts in the sample
use special variables, and have therefore a potentially large range of different behaviours. About half the contracts in the sample
are clients that use other contracts as servers, and a minority are server contracts. To assess the transparency of the client, users
have to be able to inspect the server and vice versa. Current blockchain explorers provide insufficient support for such inspections.
About 10% of the sample contains ad-hoc encodings of addresses, which current blockchain explorers do not decode, thus
reducing transparency.

Most transactions that fail programmatically on a require(.) or assert(.), do so without stating a rea-
son. Developers could improve this significantly with little effort, by indicating the reason for failure, for example
require(.,"method cannot be called at this time") rather than require(.).

Etherscan and other blockchain explorers provide a useful and free service to the community. However, there is room for
improvement. We have made five recommendations in Section [5]that we hope will be implemented.

Future work includes studying ways to lift some of the limitations of ContractVis. Firstly, it would be interesting to investigate
how large the dependencies of a contract are and how these could be incorporated in a testing environment. Secondly, it may
be possible to use a decompiler such as Erasys'# to obtain source code that is acceptable to truffle test. Then ContractVis
could also be used for contracts without source code.
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