
Characterizing Code Clones in the Ethereum
Smart Contract Ecosystem

Ningyu He1, Lei Wu2, Haoyu Wang1, Yao Guo3, and Xuxian Jiang2

1 Beijing University of Posts and Telecommunications
2 PeckShield, Inc.

3 Peking University

Abstract. In this paper, we present the first large-scale and system-
atic study to characterize the code reuse practice in the Ethereum smart
contract ecosystem. We first performed a detailed similarity comparison
study on a dataset of 10 million contracts we had harvested, and then we
further conducted a qualitative analysis to characterize the diversity of
the ecosystem, understand the correlation between code reuse and vul-
nerabilities, and detect the plagiarist DApps. Our analysis revealed that
over 96% of the contracts had duplicates, while a large number of them
were similar, which suggests that the ecosystem is highly homogeneous.
Our results also suggested that roughly 9.7% of the similar contract pairs
have exactly the same vulnerabilities, which we assume were introduced
by code clones. In addition, we identified 41 DApps clusters, involving 73
plagiarized DApps which had caused huge financial loss to the original
creators, accounting for 1/3 of the original market volume.

Keywords: Code Clone · Smart Contract · Ethereum · Vulnerability.

1 INTRODUCTION

With the widespread application of blockchain techniques, cryptocurrency has
experienced an explosive growth during the last decade. As one of the most
revolutionary and representative platforms after Bitcoin [1], Ethereum [20] has
attracted a large number of participants, including developers and users, and
becomes one of the most active communities in the cryptocurrency world.

Smart contract, the most important innovation of Ethereum, provides the
ability to “digitally facilitate, verify, and enforce the negotiation or performance
of a contract” [46], while the correctness of its execution is ensured by the con-
sensus protocol of Ethereum. Such a courageous attempt has been approved by
the market, i.e., Ethereum’s market cap was around $14.5B on February 26th,
2019 [2], the largest volume besides Bitcoin. As of this writing, roughly 10 million
smart contracts have been deployed on the Ethereum Mainnet.

Smart contracts are typically written in higher level languages, e.g., Solid-
ity [39] (a language similar to JavaScript and C++), then compiled to EVM
bytecode. As one of the most important rules on Ethereum, “Code is Law”
means all executions and transactions are final and immutable.

As a result, one main characteristic of smart contracts is that a considerable
number of them published source code to gain the users’ trust and prove the

ar
X

iv
:1

90
5.

00
27

2v
1

 [
cs

.C
R

]
 1

 M
ay

 2
01

9

2 N. He et al.

(a) Original Fomo3D

(b) Modified Fomo3D

Fig. 1. The original Fomo3D and a plagiarized contract from it.

security of their code, especially for the popular ones [23]. This feature is more
noticeable for Decentralized Applications (DApps for short, which consist of one
or more contracts). In general, its code base should be available for scrutiny
and it should be governed by autonomy, different from the traditional closed-
source applications that require the end users to trust the developers in terms
of decentralization as they cannot directly access data via any central source.

However, the open-source nature of smart contracts has provided convenience
for plagiarists to create contract clones, i.e., copying code from other available
contracts. The impacts of contract clones are mainly of twofolds. On one hand,
the plagiarists could insert arbitrary/malicious code into the normal contracts. A
typical example is the so-called honeypot smart contracts [27–29], which are
scam contracts that try to fool users with stealthy tricks. On the other hand, as
many smart contracts are suffering from serious vulnerabilities, the copy-paste
vulnerabilities would be inherited by the plagiarized contracts.

Here, we use Fomo3D [36] as a motivating example, which is a popular and
phenomenal Ponzi-like game. At its peak in 2018, Fomo3D had over 10, 000 daily
active users with a volume of over 40, 000 ETHs [35]. As a result, numerous
Fomo3D-like games sprang up with plagiarism behaviors by simply reusing the
source code of the original one. Unfortunately, some hackers had figured out the
design flaw of the airdrop mechanism in the original Fomo3D [26]. Consequently,
almost all the awkward imitators were exposed to those attackers. LastWinner,
one of the most successful followers of Fomo3D, was attacked and lost more than
5, 000 ETHs within 4 days [32]. Figure 1 shows a plagiarized contract example
originated from Fomo3D [35]. Interestingly, the vulnerable part was kept wholly
intact by the plagiarist, but all the dependent contracts, and some arguments
like round timer and round increment, were modified to make it appear as a
brand new game as shown in Figure 1.

In this paper, we present a large-scale systematically study to characterize
the code clone behaviors of Ethereum smart contracts in a comprehensive man-
ner. To this end, we have collected by far the largest Ethereum smart contract
dataset with nearly 10 million smart contracts, being deployed from July 2015
to December 2018. To address the scalability issues introduced by the large scale
dataset, we first seek to identify the duplicate contracts by removing function
unrelated code (e.g., creation code and Swarm code), and tokenizing the code

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 3

to keep opcodes only. After the pre-processing step to remove duplicate con-
tracts, the dataset has been shrunk to less than 1% of the original size. For the
remaining 78, 611 distinct contracts, we take advantage of a customized fuzzy
hashing approach to generate the fingerprints and then conduct a pair-wise sim-
ilarity comparison. Specifically, we adopt a pruning strategy to discard “very
different” contracts by comparing the meta features (e.g., length of opcode), to
accelerate the comparison procedure. Based on a similarity threshold of 70, we
are able to identify 472, 663 similar smart contract pairs (with 47, 242 contracts
involved) for user-created contracts, which suggested that over 63.29% of the
distinct user-created contracts have at least one similar contract in our dataset.

The preliminary exploration has identified a huge number of duplicates and
many similar contracts as well. Then, we further seek to understand the reasons
leading to contract clones and characterize their security impacts.

(1) The reasons leading to contract clones. We further group the smart
contracts into clusters. Over 60% of the distinct contracts were grouped into
roughly 10K clusters, while the cluster distribution follows a typical Pareto effect.
Top 20% of the clusters occupied over 60% of the distinct contracts. With regard
to the whole dataset including all the duplicates, the top 1% of the clusters
account for 95% of the contracts. ERC20 token contracts, ICO and AirDrop,
and Game contracts are the most popular clusters. A large number of similar
contracts were created based on the same template (e.g., ERC20 template). We
have manually summarized a list of 53 different common templates used in the
Ethereum smart contract ecosystem. This result reveals the homogeneity
nature of the smart contract ecosystem.

(2) Vulnerability Provenance. Copy-paste vulnerabilities were prevalent in
most popular software systems. Here, we study the relationship between contract
clones and the presence of vulnerabilities, from two aspects. First, we scanned
all the unique contracts using a state-of-the-art vulnerability scanner [37]. Over
20, 346 district smart contracts (27.26%) contain at least one vulnerability. Con-
sidering the large number of duplicates, we were able to identify ten
folds of vulnerable contracts (205, 010). Then, for the distinct contracts, as
a number of them have similar code, we further compare whether they were ex-
posed to similar vulnerabilities. Overall, our results suggest that roughly
9.7% of the similar contract pairs have exactly the same vulnerabili-
ties, which we assume were introduced by code clones.

(3) Plagiarized DApps. As a DApp is more complicated than smart contract,
i.e., one DApp could include one or more contracts, thus we further study the
similarity between DApps, seeking to identify the plagiarized ones. Using a bi-
partite graph matching approach, we identified 41 DApp clusters, involving 73
plagiarized DApps. The plagiarized ones have caused huge financial loss
to the original creators, accounting for 1/3 of the original volume.

To the best of our knowledge, this is the first systematic study of code clones
in the Ethereum smart contract ecosystem at scale. Our results revealed the
highly homogeneous nature of the ecosystem, i.e., code clones are prevalent,
while it greatly helps spread vulnerabilities and ease the job of plagiarists. Our

4 N. He et al.

HelloWorld.sol

solc

compiled bytecode

creation code

runtime code

Swarm code

Fig. 2. An example of Helloworld.sol and its corresponding bytecode.

results motivated the need for research efforts to identify security issues intro-
duced by copy-paste behaviors. Our efforts can positively contribute to the smart
contract ecosystem, and promote the best operational practices for developers.

2 BACKGROUND

2.1 Ethereum
External Owned Account vs. Contract Account. The basic unit of Ethereum
is an account and there are two types of accounts [22]: External Owned Account
(EOA) and Contract Account. An EOA is controlled by private keys that are
externally owned by a user. More importantly, there is no code associated with
it. One can send messages from an EOA by creating and signing a transaction.
On the contrary, a contract account is controlled by its associated contract code,
which might be activated on receiving a message.
User-created Contract vs. Contract-created Contract. An Ethereum
smart contract can be created either by a user, or by another existing contract.
In this paper, we follow the terminology “user-created contract” and “contract-
created contract” adopted by [59] to distinguish these two types of creations.
Decentralized applications (DApps). Ethereum aims to create an alterna-
tive protocol to build DApps [34], which are stored on and executed by the
Ethereum system. Specifically, a DApp is a contract or a collection of contracts
that have an interface on the Internet, typically a website or a browser game,
which could be interacted by players or users directly. A number of websites were
emerged to host the list of DApps [15–17].

2.2 Ethereum Virtual Machine (EVM)
EVM is the runtime environment for smart contracts in Ethereum. Specifically,
a sandboxed virtual stack machine is embedded within each full Ethereum node,
responsible for executing contract bytecode with a 256-bit register stack [21].
EVM is not as complex as traditional operating systems. Its operators and
operands are all pushed onto the stack indistinguishably, except for data that
require persistent storage space on Ethereum. Therefore, all the immediate num-
bers and data to be used by the operation code will be pushed onto the stack.

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 5

Generally, developers implement their smart contracts with the Solidity lan-
guage, then build the source code using the Solidity compiler, a.k.a. solc, to
generate the EVM bytecode. A typical EVM bytecode is composed of three
parts: creation code, runtime code and swarm code, as shown in Figure 2.

Creation code is only executed by EVM once during the transaction of the
contract deployment. It determines the initial states of the smart contract being
deployed and returns a copy of the runtime code. A typical creation code ends
with the following operation sequence: PUSH 0x00, RETURN, STOP, 0x6000f300
in bytecode, as shown in Figure 2.

Runtime code is the most crucial part, including function selector, function
wrapper, function body and exception handling. Based on the corresponding
operations, EVM will execute runtime code accordingly. Besides, in order to
label jumping destinations of the function selector, solc sorts functions by their
signatures, i.e., the leading 4 bytes of the SHA-3 hashes of function declarations
with a well-defined format [38]. Accordingly, adding new functions or deleting
existing ones will not affect the relative order of the remaining functions.

Swarm code is not served for execution purpose. Solc uses the metadata of a
contract, including compiler version, source code and the located block number,
to calculate the so-called Swarm hash, which can be used to query on Swarm, a
decentralized storage system, to prove the consistency between the contract you
see and the contract being deployed, namely what you see is what you get. As
a result, re-deploying a smart contract would result in a different swarm code,
even with the same creation code and runtime code. Swarm code always begins
with 0xa165, i.e., LOG1 PUSH 6. The following six bytes are 0x627a7a723058,
whose leading four bytes can be decoded as “bzzr”, the Swarm’s URL scheme.
Furthermore, Swarm code always ends with 0x0029, which means the hash part
length between 0xa165 and 0x0029 is 41 bytes long. In short, we are able to
identify the swarm code quickly and precisely based on those hard-coded bytes.

3 Methodology

Overall Process. We summarize our approach in Figure 3. The pipeline starts
with the dataset with nearly 10 million smart contracts we have collected. We
first seek to remove duplicate smart contracts to reduce the computational work-
load in two steps: 1) removing the useless creation and Swarm code parts; 2)
removing all assigned values in assignment statements and function calls for
desensitization. To this end, the smart contracts were scanned for tokenization
by generating token hashes, which allow us to capture subtle differences of the
clones. After that, for the remaining contracts with distinct token hashes, we take
advantage of a customized fuzzy hashing approach to generate the fingerprints.
Lastly, we enforce a pair-wise comparison strategy with pruning to achieve scal-
ability. The output of the whole analysis pipeline is a set of contract clone pairs
with the corresponding similarity scores.

Note that the output result will be further correlated with our in-depth
analysis in Section 5, including contract clustering, vulnerability provenance and
DApps plagiarism detection.

6 N. He et al.

Fig. 3. An overview of our approach on smart contract similarity comparison.

3.1 Pre-processing
The purpose of pre-processing is of two folds: first identifying the duplicate
contracts, and then tokenizing contracts for further comparison.

As we mentioned, creation code and Swarm code have nothing to do with
similarity calculation. Fortunately, they can be easily identified and removed
from the bytecode. Afterwards, we use a hash set to guarantee the uniqueness of
the remaining contracts in terms of runtime code. Secondly, to enable fast and
accurate fingerprint generation, we further remove all the immediate numbers
after opcode PUSH since EVM is a stack-based virtual machine. Again, we use a
hash table to guarantee the uniqueness of the remaining contracts. In this way,
we obtain a minimized database with little feature lost for similarity detection.

3.2 Generating Fingerprint
Calculating the edit distance between two given sequences is a well-known way
to measure their similarity. In this work, we use a fuzzy hashing technique [60] to
condense the original bytecode to a much shorter fingerprint and then calculate
the edit distance between two fingerprints. Unlike traditional hash functions,
fuzzy hashing first divides the bytecode sequence into smaller pieces, then uses
a piece-wise hash function to perform the calculation for each piece and finally
concatenates those generated piece-wise hashes to form a fingerprint. Suppose
someone modifies one particular function, all the related pieces would generate
different piece-wise hashes with the original ones, but the other pieces were not
affected at all. In short, fuzzy hashing has advantages of accurate representation
and less computing-time consumption.

However, there still exists challenges to determine the boundary of each piece.
Previous work chooses a boundary randomly or simply divides the sequence by
a pre-defined step (e.g., seven bytes) [40]. Nevertheless, a smart contract is not
just a piece of plain-text, and definitely has its semantic meaning. To address the
problem, we propose a customized fuzzy hashing algorithm, which is capable of

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 7

Safemath in HelloWorld.sol

UnSafemath in ModifiedHelloWorld.sol

Fingerprint of original

Fingerprint of modified

Similarity Score: 88.0

Fig. 4. An example of fingerprint generation and similarity comparison.

segmenting smart contracts precisely to generate feasible piece-wise hashes for
further analysis.
Customized Fuzzy Hashing. After investigating the bytecode and its execu-
tion procedure in EVM, we identify the runtime code that can be further divided
into several sub-sequences to perform a basic block level analysis. In Solidity, op-
codes JUMP, JUMPI, REVERT, STOP, RETURN are the indicators of the interruption
of logical relationship, and these opcodes often mean that the current block
should be terminated in building the control flow graph (CFG). Futhermore,
as we mentioned in Section 2, runtime code always keeps the order of function
selector, function wrapper, etc., and maintains the relative order between func-
tions. After dividing, the piece-wise hash function will be applied on each of the
blocks to generate a four byte hexadecimal digest and then mapped to a base-64
character after modulo 64. Finally, a fingerprint is generated by concatenating
these characters. The algorithm and details are described in Algorithm 1 (cf.
Appendices) and a concrete example is given in Figure 4.

3.3 Similarity Comparison
At this stage, we are able to perform pair-wise comparison to characterize the
similarity between contracts. Since pair-wise comparisons are computationally
expensive (billions of comparisons), we propose a pruning strategy here to tackle
the problem. Intuitively, similar contracts should share similar attributes with
minor modifications, opcode length in particular. If two contracts are “very
different” in the opcode length, we will stop comparing the fingerprints and
mark them as dissimilar. In practice, if more than 30% attributes of two smart
contracts are different, the comparison process will stop.

For each contract pair, we calculate the edit distance between the fingerprints,
and then map it to a similarity score in the range of 0 to 100, as follows:

similarityScore =

[
1− distance

max(len(fp1), len(fp2))

]
∗ 100 (1)

Figure 4 shows an example of the fingerprints we generated for HelloWorld.sol
and its modified version with a slight change, respectively. In the modified ver-
sion, we have removed the require statement of the SafeMath library, which
may lead to an overflow vulnerability. The difference between these two finger-
prints is highlighted. Obviously, only a few characters within the fingerprint have
changed, and the similarity score calculated by our approach is 88.0.

8 N. He et al.

Table 1. An overview of the dataset before and after pre-processing.

Contract type # Contracts (#
Owned Accounts)

After Swarm code
removing

After push arguments
removing

user-created 2,121,745 (94,307) 105,258 74,647
contract-created 7,729,012 (29,708) 4,539 3,964

4 QUANTITATIVE ANALYSIS

In this section, we focus exclusively on quantitative analysis, which provides
some straightforward but interesting findings we observed before we perform
more detailed analysis in Section 5.

4.1 Dataset

We have collected by far the largest smart contract dataset, covering almost
10 million smart contracts deployed on the Ehtereum mainnet from July 30th,
2015 to December 31st, 2018. As shown in Table 1, only 2.1 million contracts are
user-created, and the number of contract-created contracts is four times greater
than user-created ones. They were owned by 124, 015 accounts, including 94, 307
for the user-created contracts and 29, 708 for the contract-created contracts.

4.2 Pre-processing

The pre-processing step is helpful in removing duplicates. It turns out that
the proportion of contracts to be analyzed has been shrunk dramatically to
0.798%(78, 611/9, 850, 757) of the original dataset we collected. Especially for
the contract-created contracts, only 3, 964 distinct contracts remained.

To figure out the reason for the huge number of duplicates, we first grouped
the duplicated contracts into clusters, and then analyzed the distribution of those
clusters, as shown in Figure 5. We also list the top 10 contracts with the most
duplicates in Table 2. It shows that the top 10 clusters occupy the majority of
contracts, which represent 62.37% of all user-created contracts and 82.26% of all
contract-created contracts, respectively.

After further investigation, we found that most of the user-created contracts
belong to a type of wallet, which was named as transfer wallet in the following
context. The transfer wallet can be used in different ways, like avoiding regulation
by initiating multiple and multilevel small transfers or reducing risk by splitting
a large balance from one account to several small accounts. Some contracts are
regarded as forwarders (the contract name), which are not wallets but might
be functionally similar to those transfer wallets in some way, such as transferring
ETHs or tokens. Note that there are forwarders in contract-created contracts as
well. Besides, some of the other duplicated contracts are controlled by exchanges,
e.g., Poloniex [25], to manage issued tokens, such as Golem [44] and Storj [41].

As for the contract-created contracts, some clusters are owned by the Bittrex
exchange [24]. More interestingly, the second largest cluster is a token issued by
Gastoken [43], which allows users to make profits by tokenizing gas based on the
refund mechanism on storage in Ethereum. We also found lots of Proxy con-
tracts, which were used to redirect all incoming message calls to other deployed

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 9

Fig. 5. The distribution of contract clusters grouped by opcode hash values.

Table 2. The top 10 contracts with the most number of duplicates.

User-created contracts Contract-created contracts
Duplicates Use # Duplicates Use

390,020 Transfer wallet 1,619,511 Bittrex wallet
306,600 Transfer wallet 1,284,440 Gastoken
125,929 Transfer wallet 776,441 Bittrex wallet
123,787 Transfer wallet 544,834 Proxy
89,134 Transfer wallet 540,094 Proxy
85,782 Transfer wallet 511,894 Forwarder
68,297 Token manager of Poloniex 420,822 ENS
59,543 Token-only forwarder 277,380 CryptoMidwives
37,628 Transfer wallet 196,260 CryptoMidwives
36,625 Token manager of Poloniex 185,889 Forwarder

contracts. In addition, many contracts belong to ENS [19] (Ethereum Name Ser-
vice), a naming system based on the Ethereum Blockchain. Finally, there are two
interesting groups related to CryptoMidwives [4], which are a kind of contracts
aiming to get profit from ‘CryptoServices’ (i.e., CryptoKitties-like games).

4.3 Similarity Comparison

For all the original 10 million smart contracts, it would be unfeasible for us to
perform pair-wise comparison. Taking advantage of our pruning strategies, we
are able to narrow down the contract pairs by almost four orders of magnitude,
which greatly reduces the burden on similarity comparison.
The distribution of similarity score. With our pruning strategies, over 308
million user-created contract pairs and 1.2 million contract-created pairs were
compared, and Figure 6 shows the distribution of similarity scores. Roughly
90% of the contract pairs have similarity scores less than 40, while only a small
percentage of contract pairs have similarity scores higher than 70, among them
are 0.153% of user-created contracts and 0.879% of contract-created contracts.
In addition, 300 contract pairs have exactly the same similarity scores.

We further performed a comprehensive investigation of the contract pairs at
different similarity ranges. We randomly sampled 100 pairs at different ranges
and manually examined their source code and bytecode. We concluded that 70 is

10 N. He et al.

(a) Distribution of user-created

contracts similarity score

(b) Distribution of contract-created

contracts similarity score

Fig. 6. The distribution of similarity scores for smart contract pairs.

the best threshold, i.e., a contract pair with a similarity score higher than 70 will
be regarded as the similar pair, which is in line with other fuzzy hashing based
code clone detection studies [74]. In the end, 472, 663 user-created contracts
pairs (with 47,242 contracts involved) and 11, 161 contract-created contracts
pairs (with 2,409 contracts involved) were considered as similar pairs.

5 Qualitative Analysis

Our previous observations suggest that over 96.07% of user-created contracts
and 99.97% of contract-created contracts have duplicates, and a large number
of contract pairs were similar. In this section, we delve deeper into qualitative
evaluation. We first seek to cluster the distinct contracts into groups based on
their similarity scores, for which we try to understand the reasons leading to
contract clones and study the diversity of the ecosystem (e.g., what are these
contracts?). Then we propose to explore the correlation between code clone and
vulnerabilities, i.e., whether code clones lead to the spread of vulnerabilities. At
last, we try to identify the DApp Clones in the wild and measure their impact.

5.1 Clustering Smart Contracts

The Clustering Approach. Here, we use a simple but effective approach to
cluster these contracts based on their similarity scores. Specifically, we cluster
any contract pair whose similarity score is 70 or higher. Therefore, we are able
to build a weighted undirected graph by treating each contract as a node.
There will be an edge between two nodes if their similarity score (i.e., weight)
is larger than or equal to 70. Then, we traverse the graph and consider each
connected component as a cluster. To sum up, only unique contracts are used
to construct the graph, and only contracts with edges whose weights are higher
than 70 can be regarded as a connected component to form a cluster.
Clustering Result. We apply the clustering approach on user-created con-
tracts and contract-created contracts, respectively. The results are presented in
Figure 7. Each of them follows a long-tail distribution. For user-created con-
tracts, over 63.29% of them were clustered into 9,971 clusters, while 27,405 of

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 11

(a) Clustering result for user-created contracts (b) Clustering result for contract-created contracts

Fig. 7. The distribution of clusters.

(a) CDF for user-created contracts (a) CDF for contract-created contracts

Fig. 8. CDF of smart contracts according to cluster sizes.

them were isolated nodes in the graph. For contract-created contracts, 60.77%
of them were clustered into 2,409 clusters.

We further investigate whether these clusters follow the Pareto principle

(i.e., the 80/20 rule). The results suggest that the distribution of clusters follows
a typical Pareto Effect after cluster size based normalization, as shown in
Figure 8. For the distinct contracts, the top 20% of the clusters account for 60%
of the contracts. With regard to the whole contracts including all the duplicates,
the top 1% of the clusters account for over 95% of the contracts (95.24% and
95.30% for the user-created and contract-created contracts, respectively).

What are these smart contract clusters? Table 3 lists the top 15 clusters
for user-created contracts and contract-created contracts. We manually went
through these clusters and labelled them according to their functionalities. Each
type of contracts has its own characteristic functions, e.g., refund and deposit,
airdrop and distribution, transfer and so on. Our exploration suggests that the
largest clusters mainly fall into the following categories:

(1) ERC-20 Clusters. ERC-20 related contracts take the majority of popular
clusters. We successfully identified a number of ERC-20 clusters, which might
derive from different solc versions, as new versions of solc may bring in new
opcodes; or more importantly, from different ERC-20 templates, as a result of

12 N. He et al.

Table 3. Top 15 clusters for both user-created and contract-created contracts.

User-created contracts Contract-created contracts
Size (with Duplicates) Use Size (with Duplicates) Use

3,338 (15,713) ERC-20 token 382 (1,799) ERC-20 token
2,293 (19,263) ERC-20 token 295 (1,983) ERC-20 token
1,596 (11,737) ERC-20 token 76 (1,210) ERC-20 token
1,155 (6,174) ERC-20 token 43 (209) ICO
1,022 (6,466) ERC-20 token 28 (223) ICO
724 (4,494) ERC-20 token 20 (571) Airdrop
662 (2,418) ERC-20 token 18 (39) ERC-20 token
343 (1,054) Other contract 16 (30) ITO
278 (972) ERC-20 Token 15 (922) Airdrop
253 (509) Fomo3D-like game 13 (20) Exchange wallet
228 (661) ERC-20 Token 12 (412) User wallet
186 (342) Other contract 11 (67) ICO
168 (343) Other contract 11 (229) Airdrop
151 (281) ERC-20 token 11 (345) Airdrop
143 (521) ERC-20 token 11 (2,581) Airdrop

different implementations of revisions of ERC-20 standard (e.g., the well-known
OpenZeppelin [42] libraries).

By manually analyzing the top 100 clusters, we have compiled a list of 53
different templates that were widely used in smart contracts. Note that the
similar contracts created by these templates were not necessarily plagiarized.
(2) Game Contracts. Many popular clusters are game contracts. The largest
game cluster is Fomo3D-like contracts. Due to the popularity of Fomo3D, nu-
merous developers just copied and pasted the original open-source contracts to
create similar games. Besides Fomo3D, other popular games such as PoWH3D [12]
and CryptoKitties [3], have contract clones as well.
(3) ICO and AirDrop Contracts. ICO [30] stands for Initial Coin Offer-
ing, the cryptocurrency equivalent of IPO (Initial Public Offering). It is a way
for crypto startups to raise money by selling tokens. ICO has experienced an
explosive growth since 2017 (and the bubble burst at the end of the third quar-
ter 2018), which can be used to illustrate the phenomenon that a vast number
of such contracts were deployed during this period. In terms of AirDrop con-
tracts [18], attackers have to create massive such contracts to win the race of
exploitation, which is a competition to defeat the flawed random function.
(4) Other Contracts. We also observed that there do exist some short con-
tracts with extremely simple operations, e.g., a pair of getter and setter, fetching
data from storage, etc.. Such contracts were grouped into clusters as well.

Observation-1: Although millions of contracts were deployed on Ethereum, most
of them were duplicates and share same/similar code and functionalities, which

suggested the homogeneous nature of the ecosystem.

5.2 Vulnerability Provenance
We then seek to explore the correlation between code clones and security vul-
nerabilities in two ways. First, we want to measure the vulnerability introduced

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 13

by duplicate contracts, i.e., the original contracts are suffering from vulnerabil-
ities, and other duplicate contracts (with same hash values) would inherit the
vulnerabilities. Then, for the distinct contracts that were very similar, we seek to
measure whether they have the same vulnerabilities introduced by code clones.

Vulnerability Detection. To identify security vulnerabilities, we take advan-
tage of a state-of-the-art tool [37] developed by PackShield. It is a bytecode level
static analysis framework composed of multiple program analysis techniques, in-
cluding control flow analysis, data flow analysis and symbolic execution. We
focus on 7 types of vulnerabilities that might cause damages with real impact,
including (1) reentrancy, (2) overflow, (3) cross-function race condition, (4) mis-
matched constructor, (5) ownership takeover, (6) manipulable suicide address
and (7) ERC-20 related vulnerabilities. As it is not the emphasis of this paper,
we will use the results directly without giving technical details of the tool.

Vulnerable Duplicate Smart Contracts. We have scanned all the distinct
contracts, inlcuding 74, 647 user-created and 3, 964 contract-created contracts.
It is interesting to see that, although only 25K distinct user-created contracts
were vulnerable, considering all the duplicate contracts, we have identified over
1.2 million vulnerable contracts. As for the contract-created contracts, the result
is more striking. Only 51 unique contract-created contracts were vulnerable, but
we have identified over 2.2 million vulnerable contracts when we consider all the
duplicates. This result suggests that a large number of duplicate contracts would
suffer from the vulnerability issues inheriting from the original contracts.

Copy-paste Vulnerabilities. Then, we try to measure the copy-paste vulner-
abilities from those similar contract pairs (with different hash values). For the
472K similar contract pairs we identified (with similarity scores over 70), we
measure the similarity in vulnerabilities between them, i.e., whether they share
the same types of vulnerabilities and the same number of vulnerabilities. For
contracts that share both the same types and same number of vulnerabilities, we
will mark them as having exactly the same vulnerability behaviors. Note that,
we further differentiate the authors of the contracts to determine whether the
contract pairs are code clones between different authors or the re-deployment
from the same author. As shown in Table 4, we have classified the results into
two general categories.

Same Vulnerability Behaviors. Over 53% of similar contract pairs have
the same vulnerability behaviors. Over 46K contract pairs share the same vulner-
abilities, and over 90% of them were created by different authors. This indicates
that when someone copied the code, he/she did not know that the original con-
tracts were vulnerable, and thus inherited the same vulnerabilities.

Different Vulnerability Behaviors. Over 46% of the similar contract pairs
have different vulnerability behaviors. It is interesting to see that, for over 149K
contract pairs where only one contract is vulnerable, roughly 96% of them were
created by different authors. It indicates that when the authors copy and paste
the code, they may have identified the vulnerabilities of the original contracts and
thus patched them. Another scenario to explain this is that their modification of
the original contracts may introduce new security vulnerabilities. Besides, over

14 N. He et al.

Table 4. Distribution of vulnerability similarity across similar contract pairs.

Same vulnerability
behaviors

Different vulnerability behaviors

Neither are
vulnerable

Both are
vulnerable

One is
vulnearble

Both are
vulnerable

and
overlapped

Both are
vulnerable

but not
overlapped

Same author 26,570 3,813 6,368 1,678 247
Different author 180,101 42,368 143,146 58,338 10,034

Total 206,671 46,181 149,514 60,016 10,281

12% of the similar contract pairs were found sharing vulnerabilities, which could
also be introduced by code reuse.
Case Study. Here, we use the Fomo3D-like game contracts as a case study. As
we revealed in Section 5.1, Fomo3D-like games were popular. We have identified
253 distinct contracts belonging to this cluster. As the original Fomo3d game
suffers from the “Airdrop Vulnerability”, over 80% (213 out of 253) of its contract
clones also share the same vulnerability.

Observation-2: Copy-paste vulnerabilities were prevalent in the smart contract
ecosystem, duplicate contracts and similar contract would inherit security issues

from the original vulnerable ones.

5.3 Clone Detection of DApps

DApps are increasingly popular in the Ethereum ecosystem. As Ethereum DApps
are usually open-source, the plagiaristic behaviors could also be widespread. Dif-
ferent from the normal smart contracts, a DApp may consist of one or more smart
contracts. To measure the extent of similarity between DApps, we proposed an
advanced similarity detection method.
Definition. Here, we use the term DApp Clones to describe the scenario where
two DApps deployed by different authors share the similar core functionalities.
We use the accounts to differentiate the authorship. As a large number of smart
contracts were created on top of templates, thus we will first eliminate the impact
introduced by the templates based on the list we labelled in Section 5.1.
Approach. For a given DApp pair, we first construct a weighted bipartite graph
for them, and conduct bipartite graph matching on the graph. A bipartite graph
is a graph whose vertices (contracts) can be divided into two disjoint sets U and
V, such that every edge connects a vertex in U to one in V, i.e., U and V are
independent sets. Here, we will calculate the similarity score between contracts
and take the score as the weight of the corresponding edge. Specifically, we
take advantage of the KuhnMunkres algorithm [31] to identify the maximum
matching - a set of the most edges with the following two properties: 1) no
two edges share an endpoint; 2) the weight of edges must be guaranteed to be
the highest. Therefore, we are able to calculate the similarity score between
DApps with more than one contract. As the calculation is not commutative,
i.e., Sim(DApp1, DApp2) 6= Sim(DApp2, DApp1), we keep the higher one as
the final score.

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 15

Gambling

Token

Games

High-Risk

Finance

Others

Uncategorized

Fig. 9. Clustering results of 127 DApp clone pairs (114 unique DApps).

Result. We have made our best efforts to collect 2, 533 DApps from several well-
known DApp browsers, including DAppTotal [17], DAppRadar [15] and DAp-
pReview [16]. Note that we also crawled related metadata, e.g., category, volume,
and the deployed time. Based on the definition of DApp clones and using the
above approach, we have successfully identified 127 DApp clone pairs with 114
distinct DApps in total. We further grouped them into 41 clusters by leveraging
the approach mentioned in Section 5.1. The results are shown in Figure 9.
Impact. To measure the impact of DApp Clones, we decided to take the his-
torical volume as the indicator to identify the potential financial losses. Even
worse, the high volume often means an active market which might attract more
capital inflows [45], thus it would cause more damage to the original authors.

In particular, we first analyzed all these 41 clusters and treated the earli-
est deployed DApp as the original one. Thus, we have 41 original DApps, and
73 plagiarized DApp clones in our dataset. Then we calculated the differences
between the original volume and the plagiarized volumes.

The overall volume of the 41 original DApps is 304, 797.344 ETH, while the
volume of the 73 DApp clones reaches 89, 565.321 ETH, around 30% of the
original market. The figures are diverse across the clusters by examining those
clusters individually. For 18 out of the 41 clusters, the volumes of the clones
are higher than those of the corresponding original DApps, with some clones
attracting two to three times more volumes than the original. In Table 5 (cf.
Appendices), we summarized the statistics for the top 10 clusters in Figure 9.

Observation-3: DApp clones caused great financial losses to the original DApps,
which exposed a contradiction between copyright protection and the open-source

nature of the Ethereum ecosystem.

6 RELATED WORK

Characterizing the Ethereum Ecosystem Several work have already been
published to measure the Ethereum ecosystem [51, 66, 67]. For example, Chen
et al. characterized money transfer, contract creation and contract invocation
of Ethereum based on graph analysis [51]. These studies may have a correlation
with part of our work, however, our work is the first systematic attempt to study

16 N. He et al.

contract clone phenomenon and its impact. Besides, some researchers focused
on financial activities on Ethereum, including the Ponzi scheme [52] and ICO
behavior [56], which might be a complement to our work.

Program Analysis of the Smart contracts Based on program analysis tech-
niques (e.g., symbolic execution and formal verification), several frameworks
have been proposed to detect security vulnerabilities in contracts [33,57,65,70].
To the best of our knowledge, none of them performed a comprehensive study
on the vulnerability provenance. In addition to vulnerability detection, some re-
search studies were focused on topics including reverse engineering [75], detecting
gas-costly patterns [50], automatically creating exploits [61], etc.

Code Clone Detection Code clone detection techniques have been studied
extensively for dozens of years, including text-based techniques [62, 68], token-
based techniques [47,48,58,63], counting-based techniques [72,73], and syntactic
approaches [49, 53, 69], etc. These techniques were also widely explored in re-
lated domains, such as mobile app repackaging detection [54, 55, 71, 74]. In this
work, we take advantage of a customized fuzzy hashing technique [60], which is
both light-weight and effective. Note that we did not rely on heavy-weight meth-
ods such as comparing the control-flow graph (CFG) and program dependency
graph (PDG), mainly due to two reasons. First, our approach should be scalable.
Second, the simplicity of smart contracts and EVM bytecode, i.e., the relatively
simple logic and function invocations, makes it unnecessary to adopt those heavy
approaches. A limited number of studies have explored to study code clones in
the smart contracts. For example, Kiffer et al. identified substantial code reuse
in Ethereum [59]. Furthermore, Liu et al. proposed ECLONE [64], which is able
to detect semantic clones for smart contracts. However, none of them have mea-
sured the ecosystem in large-scale, and characterized their security impacts.

7 Concluding Remarks and Future Work

In this work, we present the first systematic attempt to characterize the code
clone phenomenon in the Ethereum smart contract ecosystem. Based on the
10 million contracts dataset we harvested, we have revealed the homogeneity
nature of the ecosystem. We also discovered and measured the security impacts
of contract clones, for example, helping spread the security vulnerabilities and
causing financial losses to the original DApps authors, etc.

There are a number of future lines of work we will explore. First of all, we
empirically use 70 as the threshold to calculate the similarity scores, which can
be improved by adopting adaptive approaches. Secondly, we may have coverage
issues on manually labelling the contract templates, which can be alleviated by
exploring some machine learning techniques. Lastly, part of our findings, such as
those economic intensive phenomena in the Ethereum ecosystem, deserve more
focused studies. Nonetheless, we believe our efforts and observations could pos-
itively contribute to the community and promote the best operational practices
for smart contract developers.

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 17

References

1. Bitcoin official website, https://bitcoin.org/en/
2. Coinmarketcap, a browser for cryptocurrency market cap rankings, charts, and

more, https://coinmarketcap.com/currencies/ethereum/
3. Cryptokitties official website, https://www.cryptokitties.co/
4. Cryptomidwives introduction, https://medium.com/block-science/

exploring-cryptokitties-part-2-the-cryptomidwives-a0df37eb35a6

5. Dapp, crypto countries, https://cryptocountries.io/
6. Dapp, crypto gaming coin, https://cyptogamingcoin.surge.sh/
7. Dapp, crypto miner token, https://minertoken.cloud/
8. Dapp, crypto tubers, https://cryptotubers.co/
9. Dapp, pepe farm, http://www.pepefarm.club

10. Dapp, po50, http://po50.surge.sh/exchange/
11. Dapp, pohd, https://pohd.io/
12. Dapp, powh 3d, https://powh.io/
13. Dapp, powtf, https://powtf.com/
14. Dapp, proof of craig grant coin, http://www.pocg.site
15. Dappradar, a dapp browser, https://dappradar.com/
16. Dappreview, a dapp browser, https://dapp.review/
17. Dapptotal, a dapp browser, https://dapptotal.com/
18. Definition of airdrop mechanism, https://en.wikipedia.org/wiki/Airdrop_

(cryptocurrency)

19. Ethereum name service, https://ens.domains/
20. Ethereum official website, https://www.ethereum.org/
21. Ethereum virtual machine, http://ethdocs.org/en/latest/introduction/

what-is-ethereum.html#ethereum-virtual-machine

22. Ethereum white paper, https://github.com/ethereum/wiki/wiki/White-Paper
23. Etherscan, a ethereum smart contract browser, https://etherscan.io/
24. Exchange, bittrex, https://international.bittrex.com/
25. Exchange, poloniex, https://poloniex.com/
26. Fomo3d attacked event, https://blog.peckshield.com/2018/07/24/fomo3d/
27. Honeypot smart contract, https://medium.com/coinmonks/

dissecting-an-ethereum-honey-pot-7102d7def5e0

28. Honeypot smart contract, https://medium.com/coinmonks/

an-analysis-of-a-couple-ethereum-honeypot-contracts-5c07c95b0a8d

29. Honeypot smart contract, https://medium.com/coinmonks/

the-phenomena-of-smart-contract-honeypots-755c1f943f7b

30. Initial coin offering, https://en.wikipedia.org/wiki/Initial_coin_offering
31. Kuhn–munkres algorithm, https://en.wikipedia.org/wiki/Hungarian_

algorithm

32. Last winner attacked event, https://medium.com/@anchain.ai/

largest-smart-contract-attacks-in-blockchain-history-exposed-part-1-93b975a374d0

33. Mythril, smart contract analyzer, https://github.com/ConsenSys/

mythril-classic

34. Official explanation of dapp, https://github.com/ethereum/wiki/wiki/

White-Paper#ethereum

35. Official fomo3d contractw, https://etherscan.io/address/

0xa62142888aba8370742be823c1782d17a0389da1

36. Official fomo3d website, https://exitscam.me/

https://bitcoin.org/en/
https://coinmarketcap.com/currencies/ethereum/
https://www.cryptokitties.co/
https://medium.com/block-science/exploring-cryptokitties-part-2-the-cryptomidwives-a0df37eb35a6
https://medium.com/block-science/exploring-cryptokitties-part-2-the-cryptomidwives-a0df37eb35a6
https://cryptocountries.io/
https://cyptogamingcoin.surge.sh/
https://minertoken.cloud/
https://cryptotubers.co/
http://www.pepefarm.club
http://po50.surge.sh/exchange/
https://pohd.io/
https://powh.io/
https://powtf.com/
http://www.pocg.site
https://dappradar.com/
https://dapp.review/
https://dapptotal.com/
https://en.wikipedia.org/wiki/Airdrop_(cryptocurrency)
https://en.wikipedia.org/wiki/Airdrop_(cryptocurrency)
https://ens.domains/
https://www.ethereum.org/
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#ethereum-virtual-machine
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#ethereum-virtual-machine
https://github.com/ethereum/wiki/wiki/White-Paper
https://etherscan.io/
https://international.bittrex.com/
https://poloniex.com/
https://blog.peckshield.com/2018/07/24/fomo3d/
https://medium.com/coinmonks/dissecting-an-ethereum-honey-pot-7102d7def5e0
https://medium.com/coinmonks/dissecting-an-ethereum-honey-pot-7102d7def5e0
https://medium.com/coinmonks/an-analysis-of-a-couple-ethereum-honeypot-contracts-5c07c95b0a8d
https://medium.com/coinmonks/an-analysis-of-a-couple-ethereum-honeypot-contracts-5c07c95b0a8d
https://medium.com/coinmonks/the-phenomena-of-smart-contract-honeypots-755c1f943f7b
https://medium.com/coinmonks/the-phenomena-of-smart-contract-honeypots-755c1f943f7b
https://en.wikipedia.org/wiki/Initial_coin_offering
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://medium.com/@anchain.ai/largest-smart-contract-attacks-in-blockchain-history-exposed-part-1-93b975a374d0
https://medium.com/@anchain.ai/largest-smart-contract-attacks-in-blockchain-history-exposed-part-1-93b975a374d0
https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum
https://etherscan.io/address/0xa62142888aba8370742be823c1782d17a0389da1
https://etherscan.io/address/0xa62142888aba8370742be823c1782d17a0389da1
https://exitscam.me/

18 N. He et al.

37. Peckshield, inc. scanner, https://peckshield.com/securityrating/scan.html
38. Smart contract function signature, https://solidity.readthedocs.io/en/v0.5.

3/abi-spec.html#function-selector

39. Solidity, https://en.wikipedia.org/wiki/Solidity
40. Spamsum algorithm, https://www.samba.org/ftp/unpacked/junkcode/

spamsum/README

41. Storj token, https://storj.io/
42. Template library, openzeppelin, https://github.com/OpenZeppelin/

openzeppelin-solidity

43. Token, gastoken, https://gastoken.io/
44. Token, golem, https://golem.network/
45. Trading volume, https://m.rediff.com/money/special/

trading-volume-what-it-reveals-about-the-market/20090703.htm

46. Wikipedia of ethereum, https://en.wikipedia.org/wiki/Ethereum
47. Baker, B.S.: On finding duplication and near-duplication in large software systems.

In: Proceedings of 2nd Working Conference on Reverse Engineering. pp. 86–95.
IEEE (1995)

48. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of computer and system sciences 52(1), 28–42 (1996)

49. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection us-
ing abstract syntax trees. In: Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272). pp. 368–377. IEEE (1998)

50. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour
your money. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER). pp. 442–446. IEEE (2017)

51. Chen, T., Zhu, Y., Li, Z., Chen, J., Li, X., Luo, X., Lin, X., Zhange, X.: Under-
standing ethereum via graph analysis. In: IEEE INFOCOM 2018-IEEE Conference
on Computer Communications. pp. 1484–1492. IEEE (2018)

52. Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., Zhou, Y.: Detecting ponzi
schemes on ethereum: Towards healthier blockchain technology. In: Proceedings
of the 2018 World Wide Web Conference on World Wide Web. pp. 1409–1418.
International World Wide Web Conferences Steering Committee (2018)

53. Corazza, A., Di Martino, S., Maggio, V., Scanniello, G.: A tree kernel based ap-
proach for clone detection. In: 2010 IEEE International Conference on Software
Maintenance. pp. 1–5. IEEE (2010)

54. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: Detecting cloned appli-
cations on android markets. In: European Symposium on Research in Computer
Security (ESORICS). pp. 37–54. Springer (2012)

55. Crussell, J., Gibler, C., Chen, H.: Scalable semantics-based detection of similar
android applications. In: European Symposium on Research in Computer Security
(ESORICS). vol. 13 (2013)

56. Fenu, G., Marchesi, L., Marchesi, M., Tonelli, R.: The ico phenomenon and its
relationships with ethereum smart contract environment. In: 2018 International
Workshop on Blockchain Oriented Software Engineering (IWBOSE). pp. 26–32.
IEEE (2018)

57. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: Zeus: Analyzing safety of smart
contracts. In: 25th Annual Network and Distributed System Security Symposium,
NDSS. pp. 18–21 (2018)

58. Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software
Engineering 28(7), 654–670 (2002)

https://peckshield.com/securityrating/scan.html
https://solidity.readthedocs.io/en/v0.5.3/abi-spec.html#function-selector
https://solidity.readthedocs.io/en/v0.5.3/abi-spec.html#function-selector
https://en.wikipedia.org/wiki/Solidity
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://storj.io/
https://github.com/OpenZeppelin/openzeppelin-solidity
https://github.com/OpenZeppelin/openzeppelin-solidity
https://gastoken.io/
https://golem.network/
https://m.rediff.com/money/special/trading-volume-what-it-reveals-about-the-market/20090703.htm
https://m.rediff.com/money/special/trading-volume-what-it-reveals-about-the-market/20090703.htm
https://en.wikipedia.org/wiki/Ethereum

Characterizing Code Clones in the Ethereum Smart Contract Ecosystem 19

59. Kiffer, L., Levin, D., Mislove, A.: Analyzing ethereum’s contract topology. In: Pro-
ceedings of the Internet Measurement Conference 2018. pp. 494–499. ACM (2018)

60. Kornblum, J.: Identifying almost identical files using context triggered piecewise
hashing. Digital investigation 3, 91–97 (2006)

61. Krupp, J., Rossow, C.: teether: Gnawing at ethereum to automatically exploit
smart contracts. In: 27th USENIX Security Symposium (USENIX Security 18).
pp. 1317–1333 (2018)

62. Lee, S., Jeong, I.: Sdd: high performance code clone detection system for large
scale source code. In: Companion to the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications. pp. 140–
141. ACM (2005)

63. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on software Engineering
32(3), 176–192 (2006)

64. Liu, H., Yang, Z., Liu, C., Jiang, Y., Zhao, W., Sun, J.: Eclone: Detect semantic
clones in ethereum via symbolic transaction sketch. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. pp. 900–903. ACM (2018)

65. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security. pp. 254–269. ACM (2016)

66. Norvill, R., Pontiveros, B.B.F., State, R., Awan, I., Cullen, A.: Automated label-
ing of unknown contracts in ethereum. In: 2017 26th International Conference on
Computer Communication and Networks (ICCCN). pp. 1–6. IEEE (2017)

67. Payette, J., Schwager, S., Murphy, J.: Characterizing the ethereum address space
(2017)

68. Roy, C.K., Cordy, J.R.: Nicad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization. In: 2008 16th iEEE interna-
tional conference on program comprehension. pp. 172–181. IEEE (2008)

69. Selim, G.M., Foo, K.C., Zou, Y.: Enhancing source-based clone detection using
intermediate representation. In: 2010 17th Working Conference on Reverse Engi-
neering. pp. 227–236. IEEE (2010)

70. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: Practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. pp. 67–82.
ACM (2018)

71. Wang, H., Guo, Y., Ma, Z., Chen, X.: Wukong: A scalable and accurate two-phase
approach to android app clone detection. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis. pp. 71–82. ACM (2015)

72. Yuan, Y., Guo, Y.: Cmcd: Count matrix based code clone detection. In: 2011 18th
Asia-Pacific Software Engineering Conference. pp. 250–257. IEEE (2011)

73. Yuan, Y., Guo, Y.: Boreas: an accurate and scalable token-based approach to code
clone detection. In: Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering. pp. 286–289. ACM (2012)

74. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone applica-
tions in third-party android marketplaces. In: Proceedings of the second ACM con-
ference on Data and Application Security and Privacy. pp. 317–326. ACM (2012)

75. Zhou, Y., Kumar, D., Bakshi, S., Mason, J., Miller, A., Bailey, M.: Erays: reverse
engineering ethereum’s opaque smart contracts. In: 27th USENIX Security Sym-
posium (USENIX Security 18). pp. 1371–1385 (2018)

20 N. He et al.

Appendices

7.1 Fingerprint Generation Algorithm

The detailed fingerprint generation algorithm is shown in Algorithm 1.

Algorithm 1 Generating the fingerprint for smart contract.

Input: bytecode of arbitrary contract
Output: Fingerprint fp
Description: pc - character representing current piece, ph - the piece hash, tv - trigger
value, b64map - mapping integer to base64 character

1: procedure GenerateFp(bytecode)
2: InitTriggerValue(tv)
3: InitBase64Map(b64map)
4: InitPieceCharacter(pc)
5: InitPieceHash(ph)
6: pieces← CutOff(bytecode, tv)
7: for all piece from pieces do
8: UpdatePieceHash(ph, piece)
9: MapToPieceCharacter(pc, ph, b64map)

10: fp← Concatenate(fp, pc)
11: InitPieceHash(ph)

12: return fp

7.2 Top Dapp Clone Clusters and Their Volumes

Table 5 lists the statistics of the top 10 Dapp clone clusters.

Table 5. Top 10 Dapp Clone clusters and their volumes (ETH).

Original DApp # Clones Original volume Plagiarized volume Ratio

CryptoCountries [5] 4 67,885.244 2.355 <0.01%
PoWTF [13] 4 331.074 1,012.649 305.87%

Po50 [10] 4 76.801 213.058 277.42%
Pepe Farm [9] 4 25.428 33.577 132.05%

Crypto Miner [7] 4 17,312.026 155.437 0.90%
PoWH 3D [12] 4 187950.872 1778.146 9.38%

CryptoTubers [8] 3 95.378 470.967 493.79%
PoHD [11] 3 242.607 5867.961 2418.71%

Proof Of Craig Grant Coin [14] 3 642.056 94.315 14.69%
Crypto Gaming Coin [6] 3 4.711 555.142 11783.95%

	Characterizing Code Clones in the Ethereum Smart Contract Ecosystem

