
A Blockchain-based Framework for Detecting

Malicious Mobile Applications in App Stores

Sajad Homayoun
Department of Computer

Engineering and Information

Technology

Shiraz University of Technology

Shiraz, Iran

s.homayoun@sutech.ac.ir

Ali Dehghantanha
School of Computer Science

University of Guelph

Ontario, Canada

adehghan@uoguelph.ca

Reza M. Parizi
Department of Software

Engineering and Game

Development

 Kennesaw State University

Marietta, GA 30060, USA

rparizi1@kennesaw.edu

Kim-Kwang Raymond Choo
Department of Information

Systems and Cyber Security

and Department of Electrical

and Computer Engineering

The University of Texas at San

Antonio

San Antonio, TX 78249, USA

Abstract— The dramatic growth in smartphone malware

shows that malicious program developers are shifting from

traditional PC systems to smartphone devices. Therefore,

security researchers are also moving towards proposing novel

antimalware methods to provide adequate protection. This paper

proposes a Blockchain-Based Malware Detection Framework

(B2MDF) for detecting malicious mobile applications in mobile

applications marketplaces (app stores). The framework consists

of two internal and external private blockchains forming a dual

private blockchain as well as a consortium blockchain for the

final decision. The internal private blockchain stores feature

blocks extracted by both static and dynamic feature extractors,

while the external blockchain stores detection results as blocks

for current versions of applications. B2MDF also shares feature

blocks with third parties, and this helps antimalware vendors to

provide more accurate solutions.

Keywords— Antimalware, Blockchain, Private Blockchain,

Smartphone Malware, Mobile App Store.

I. INTRODUCTION

The estimated five billion mobile subscribers worldwide in
2017 proves the impact of mobile on people lives.
Furthermore, the unique mobile subscribers are predicted to
reach 71% of the world's population in 2025 [1]. According to
McAfee Mobile Threat Report [2], 2017 was the year of
explosion in mobile malware. Moreover, it is anticipated that
2019 will be even riskier for smartphone users, and the
increasing rate of smartphone users convinced malware
developers to move towards creating mobile malware. In 2017
Kaspersky detected 5,730,916 malicious installation packages,
94,368 mobile banking Trojans, and 544,107 mobile
ransomware Trojans. Google as a prominent Android App
store developed Google Bouncer for scanning both new
applications and those already in the market [3]. However,
attackers could still bypass Google Bouncer to send malware
into Google's App store (Google Play) [4]. Moreover, the
increasing rate of malicious apps proves inefficiency of
malware detection system used by Mobile Application
Marketplace [5].

In order to deliver adequate computer systems protection,
antimalware solutions should be capable of detecting a very
wide range of existing malicious programs [6] as well as
detecting new modifications of known malware samples or
new zero-day malicious programs from a recent new malware
generation [7].

Recently and after the success story of blockchain on
financial applications, it is rapidly entering into various

applications such as healthcare, Internet of Things (IoT), Smart
Contracts and Governmental applications [8], [9] A blockchain
is a shared network of databases (distributed ledger) spread
across multiple entities that facilitate the process of recording
transactions and tracking assets [10]. There are three types of
blockchain:

 Public blockchain: anyone in the world can read and send
transactions, and expect to see their valid transactions into
the blockchain, and anyone can participate in the consensus
process.

 Private blockchain: write permissions are kept to one
organization while read permissions may be public or
restricted to certain participants.

 Consortium blockchain: a blockchain where the consensus
process is controlled by a pre-selected set of nodes, for
example, 2/3 of all participants must sign a block to be
appended to the blockchain.
This paper proposes a framework for detecting malicious

applications in online mobile app stores. We integrate feature
extraction into a private blockchain to extract features for
feeding to detection engines which determine if an application
is malicious based on available feature blocks. The consortium
blockchain provide mechanism of final decision by considering
results of all detection engines.

The remainder of this paper is organized as follows.
Section II reviews some related research. Section III describes
our proposed framework for detecting malware samples in app
stores. Finally, section IV discusses about the achievements of
this paper and concludes the paper.

II. RELATED WORK

Most mobile malware detection systems are focused on
local file analysis [11]. Malware analysis involves two key
techniques: static analysis and dynamic analysis [12]. Static
analysis examines malware without actually executing it to
find malicious characteristics or suspicious codes [13], while
dynamic analysis (also known as behavior analysis) executes
malware in a controlled and monitored environment to observe
its behavior [14]. Malware detection through detecting of
anomalies in battery consumption and power usage pattern
[15], operating system libraries [16] are some of dynamic
malware detection approaches. A recent research by Gu et al.
[17] attempted to implement Consortium Blockchain for
Malware Detection and Evidence Extraction (CB-MDEE) as a
decentralized malware detection system based on blockchain
technology. CB-MDEE framework consists of consortium
blockchain and public blockchain, and includes four layers,

Markazi.co
Typewritten text
To appear in the proceedings of the 32nd IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2019)

namely the network layer, the storage layer, the support layer,
and the application layer. However, CB-MDEE may not be
applicable in reality as it forces users’ to install a customized
application for data collection.

A mobile application may be scanned in two stages. After
uploading an app by developers to the app store, the security
module of app store performs the first initial scan to confirm
the normal behavior of the application [18]. Apps which pass
the initial security check will be available for download in app
stores [19]. Third party anti-malware applications perform their
own scans after installation completion. Since more of these
anti-malware vendors often follow almost the same approach
with the first initial scan performed by app stores they may not
be as useful as they claim. Therefore, improving the accuracy
of detection mechanisms used by app store for the initial first
scan may decrease the rate of malware victims.

III. BLOCKCHAIN FOR MALWARE DETECTION

Fig. 1 illustrates the proposed framework for detecting
malicious mobile applications in Mobile Applications
Marketplaces. The structure consists of two internal and
external private blockchains forming a dual private blockchain.
The Internal Private Blockchain (IPB) includes all Feature
Extractor (FE) components to develop and extend the
Dedicated Internal Private Blockchain (DIPB) of each
available mobile application.

A. Internal Private Blockchain (IPB)

Each application is tracking with a Dedicated Internal
Private Blockchain (DIPB) that follows useful information
(features) showing the app's behavioral history and static
information is dependent on FE components as members of
DIPBs. In other words, an FE extracts valuable information
during app's lifespan, and extend the related DPB by adding
new blocks. Note that we consider one DIPB for each app to
avoid creating a tangled blockchain due to the tremendous
number of applications in the marketplace (app store). Having
dedicated Private Blockchains (PB) also brings us simplicity in
processing and computation of the blockchains. As shown in
Fig. 1 each FE component has full access to the DIPBs
through a bi-directional connection, while other nodes of the
IPB have read-only access determined by one-directional
arrows in the figure.

1) Static Features Extractors
These features are extracted from Android’s application

files. Each application in Android is in .apk format and is a
type of archive file, specifically in zip format packages based
on the JAR file format. The MIME type associated with APK
files is application/vnd.android.package-archive. The .apk file
comprises both code and resources of file just similar .jar files.
Android packages contain all the necessary files for a single
Android program and encapsulate valuable information that
can help in understanding an application’s behavior.

Fig. 2 depicts major partitions of an APK file while Table
1 describes each entry of an android APK file.

The AndroidManifest.xml file available in APK file
provides the application’s package name, version components
and other metadata (see Table II).

Fig. 1. The architecture of our proposed blockchain-based
mobile malware detection framework (B2MDF).

Fig. 2. An APK file structure

TABLE I. ANDROID APK FILE STRUCTURE DESCRIPTION

Entry Notes

AndroidMa

nifest.xml

the manifest file in binary XML format.

classes.dex application code compiled in the dex format.

resources.ar

sc

file containing precompiled application resources, in

binary XML

res/ folder containing resources not compiled into

resources.arsc

assets/ optional folder containing applications assets, which

can be retrieved by AssetManager.

lib/ optional folder containing compiled code - i.e. native

code libraries.

META-
INF/

folder containing the MANIFEST.MF file, which
stores meta data about the contents of the JAR. which

sometimes will be store in a folder named original.

The signature of the APK is also stored in this folder.

TABLE II. SOME DETAILS OF ANDROIDMANIFEST.XML

Attributes Notes

Manifest tag contains android installation mode, package name,

build versions

Activity Declares an activity that implements part of the

application visual user interface.

uses-feature Declares a single hardware or software feature that

is used by the application.

uses-
permissions

requests a permission that must be granted in order
for it to operate, full list of permission API can be

found in [20].

Permissions custom permission and protection level

Application The declaration of the application. Will contains all

the activity

intent-filter Specifies the types of intents that an activity,
service, or broadcast receiver can respond to.

provider Declares a content provider component. A content

provider is a subclass of ContentProvider that
supplies structured access to data managed by the

application.

receiver Broadcast receivers enable applications to receive
intents that are broadcast by the system or by other

applications, even when other components of the

application are not running.

service Declare a service as one of the application

components.

Therefore, according to Table I and Table II, the following
components may provide the static analysis of APK files:

 Opcode sequence FE component: Used to extract
sequence of opcode from APK file to provide
opcode analysis for Detection Engines (DE) of
Consortium Blockchains.

 Permission FE component: Used to detect
permissions requested at runtime as declared in the
Manifest file.

 API calls FE component: Used to detect use of API’s
e.g. Telephony Manager APIs for accessing IMSI,
IMEI, sending/receiving SMS, listing/installing other
packages etc.

 Commands FE component: Used to detect references
to system commands e.g. ‘chmod’, ‘mount’
‘/system/bin/su’ ‘chown, etc.

2) Dynamic Features Extractors
Dynamic analysis based techniques attempt to detect

malware applications by monitoring the runtime behavior of an
app to extract useful behavioral features.

a) System Call FE

System calls traces often used by debuggers to control
processes can be a valuable material for dynamic analysis.
System calls such as file access, network connection, inter-
process communication, or privilege escalation are the most
common calling traces used by dynamic analyzers. “open, read,
write, fork, fstat, mprotect, read, fork, write, close” is an
example of a system call trace with 10 sequential activities.

b) Memory and CPU FE

All the features related to memory and CPU that can be
accessed in Android. 53 features can be extracted for each
running android application. Five CPU related features and 48
memory related features are listed in [21]. Total CPU usage,
user CPU usage, and Kernel CPU usage are examples of CPU
related features, while total heap size, total heap free and total
heap allocated are sample features for memory.

Recall that all or a few of the mentioned Static and
Dynamic FEs may contribute to DIPBs of each application as a
member of the IPB. As demonstrated in Fig. 1, there are other
nodes in IPB with read-only access such as third parties anti-
malware applications and DE agents contributing to the DEPBs
that need the information (features) provided by FECs of IPB.
Accessing the information blocks facilitates third parties to
contribute in scanning applications while it also provides
competition between anti-malware vendors to develop more
accurate detection methods.

B. External Private Blockchain (EPB)

Instead of DIPB in IPB, there is a Dedicated External
Private Blockchain (DECB) for each application containing
scanning information of different versions of applications
namely malice scores assigned by each DE to each version of
an application. Finally, the data stored in DECB of each
application shows the history and summaries of DE’s scanning
results by each DE. The Detection Engines (DEs) benefits
separate detection mechanisms utilizing special methods and

algorithms for distinguishing malware samples from benign
samples. Two basic DEs can be defined as the following:

1) Artificial Intelligent-based DEs
Recent developments in intelligent detection mechanisms

based on machine learning and artificial intelligence provide
the opportunity of detecting new unseen malicious applications
[22]. There are several powerful algorithms and methods for
separating malware samples from normal apps that can be used
as DEs of the EPB. Each DE may perform their desired
preprocessing stage on stored data in DIPBs of IPB to provide
inputs for the machine learning task.

2) Signature-based DEs
Signature-based detection mechanisms proved that they

provide robust methods for detecting malware samples based
on one or more tokens or signatures. In a pretty simple form, a
signature base mechanism may check hash codes of APK files
to determine whether a testing sample is malicious.

C. Consortium Blockchain (CB) and Determinant Agent

Each DE is also an active participant of the Consortium
Blockchain (CB). DEs may classify an app as malicious or
benign according to shreds of evidence available in EPB's
DEPBs. DEs append their decision and considered pieces of
evidence to DEPBs of apps. A decision can be achieving
classification results (or malicious score) for an app. The CB
assists Determinant Agent for the final decision showing
whether an app is malicious. When a DE wants to announce an
application as malicious or benign, it attempts to append a new
block to the app's CB. Recall that according to previously
agreed consensus policy of the CB, a block (decision
information) must be accepted (signed) by a wide number of
participants e.g. 2/3 of all participants must validate the
decision. The CB in Fig. 1 shows that there may be other
nodes with read-only access. In fact, third-party applications
may want to check and use the blockchain of DE decisions for
their anti-malware solutions. Finally, The Determinant Agent
considers the dedicated CB of an application to determine if an
application is malicious, and may also give detailed
information about the type of the malware such as malware
family, payload type, etc.

IV. CONCLUSION

This paper proposed B2MDF as a malware detection
framework based on a tailored-made blockchain architecture to
detect malicious mobile applications in app stores before
downloading by final users. Combining static analysis and
dynamic analysis as an integrated solution for malware
detection, in most cases, decreases the false positive rate of
detection systems. The framework uses general detection
engines, and it means B2MDF does not limit the
implementation to any specific machine learning algorithms.
B2MDF also provides useful features for third parties to
develop their antimalware solutions as app stores may be more
accurate in extracting features from a new uploaded sample.

REFERENCES

[1] C. Olsen, “The Mobile Economy 2018,” 2018.

[2] G. Davis and S. Raj, “McAfee Mobile Threat Report Q1 2018,” 2018.

[3] R. Unuchek, “Mobile malware evolution 2017,” 2018. [Online].

Available: https://securelist.com/mobile-malware-review-2017/84139/.

[Accessed: 20-Jan-2019].

[4] N. J. Percoco and S. Schulte, “Adventures in BouncerLand,” Proc.
Black Hat USA, 2012.

[5] M. Damshenas, A. Dehghantanha, K.-K. R. Choo, and R. Mahmud,

“M0Droid: An Android Behavioral-Based Malware Detection Model,”
J. Inf. Priv. Secur., vol. 11, no. 3, pp. 141–157, Jul. 2015.

[6] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, and R.

Khayami, “Know Abnormal, Find Evil: Frequent Pattern Mining for
Ransomware Threat Hunting and Intelligence,” IEEE Trans. Emerg.

Top. Comput., p. 1.

[7] S. Homayoun et al., “DRTHIS: Deep ransomware threat hunting and
intelligence system at the fog layer,” Futur. Gener. Comput. Syst., vol.

90, pp. 94–104, 2019.

[8] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh,
“Empirical Vulnerability Analysis of Automated Smart Contracts

Security Testing on Blockchains”, in the 28th Annual International

Conference on Computer Science and Software Engineering (CASCON
'18), IBM Corp., pp. 103-113, 2018.

[9] R. M. Parizi, Amritraj, and A. Dehghantanha, “Smart Contract

Programming Languages on Blockchains: An Empirical Evaluation of
Usability and Security,” in Blockchain -- ICBC 2018, 2018, pp. 75–91.

[10] R. M. Parizi and A. Dehghantanha, “On the Understanding of

Gamification in Blockchain Systems,” in 2018 6th International
Conference on Future Internet of Things and Cloud Workshops

(FiCloudW), 2018, pp. 214–219.
[11] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine

learning aided Android malware classification,” Comput. Electr. Eng.,

Feb. 2017.
[12] H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, and K.-K.

R. Choo, “An opcode-based technique for polymorphic Internet of

Things malware detection,” Concurr. Comput. Pract. Exp., no. October
2018, p. e5173, 2019.

[13] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,”

Softw. Qual. J., vol. 26, no. 3, pp. 891–919, 2018.
[14] D. Kiwia, A. Dehghantanha, K.-K. R. Choo, and J. Slaughter, “A

Cyber Kill Chain Based Taxonomy of Banking Trojans for

Evolutionary Computational Intelligence,” J. Comput. Sci., 2018.
[15] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo, “Robust

Malware Detection for Internet Of (Battlefield) Things Devices Using

Deep Eigenspace Learning,” IEEE Trans. Sustain. Comput., vol. 3782,
no. c, pp. 1–1, 2018.

[16] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K. K. R. Choo,

“A deep Recurrent Neural Network based approach for Internet of
Things malware threat hunting,” Futur. Gener. Comput. Syst., vol. 85,

pp. 88–96, 2018.

[17] J. Gu, B. Sun, X. Du, J. Wang, Y. Zhuang, and Z. Wang, “Consortium
blockchain-based malware detection in mobile devices,” IEEE Access,

vol. 6, pp. 12118–12128, 2018.

[18] M. Petraityte, A. Dehghantanha, and G. Epiphaniou, “A Model for
Android and iOS Applications Risk Calculation: CVSS Analysis and

Enhancement Using Case-Control Studies,” in Cyber Threat

Intelligence, A. Dehghantanha, M. Conti, and T. Dargahi, Eds. Cham:
Springer International Publishing, 2018, pp. 219–237.

[19] T. Dargahi, A. Dehghantanha, and M. Conti, “Chapter 2 - Forensics

Analysis of Android Mobile VoIP Apps,” in Contemporary Digital
Forensic Investigations of Cloud and Mobile Applications, K.-K. R.

Choo and A. Dehghantanha, Eds. Syngress, 2017, pp. 7–20.

[20] “Manifest.permission.” [Online]. Available:
https://developer.android.com/reference/android/Manifest.permission.

[Accessed: 23-May-2018].

[21] J. Milosevic, M. Malek, and A. Ferrante, “A Friend or a Foe?
Detecting Malware using Memory and CPU Features,” Proc. 13th Int.

Jt. Conf. E-bus. Telecommun., vol. 4, no. Icete, pp. 73–84, 2016.

[22] Paul J. Taylor, Tooska Dargahi, Ali Dehghantanha, Reza M. Parizi,
Kim-Kwang Raymond Choo, A systematic literature review of

blockchain cyber security, Digital Communications and Networks,

2019.

