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Abstract. Bitcoin is by far the most popular crypto-currency solution
enabling peer-to-peer payments. Despite some studies highlighting the
network does not provide full anonymity, it is still being heavily used for
a wide variety of dubious financial activities such as money laundering,
ponzi schemes, and ransom-ware payments. In this paper, we explore
the landscape of potential money laundering activities occurring across
the Bitcoin network. Using data collected over three years, we create
transaction graphs and provide an in-depth analysis on various graph
characteristics to differentiate money laundering transactions from regu-
lar transactions. We found that the main difference between laundering
and regular transactions lies in their output values and neighbourhood
information. Then, we propose and evaluate a set of classifiers based
on four types of graph features: immediate neighbours, curated features,
deepwalk embeddings, and node2vec embeddings to classify money laun-
dering and regular transactions. Results show that the node2vec-based
classifier outperforms other classifiers in binary classification reaching an
average accuracy of 92.29% and an F1-measure of 0.93 and high robust-
ness over a 2.5-year time span. Finally, we demonstrate how effective
our classifiers are in discovering unknown laundering services. The clas-
sifier performance dropped compared to binary classification, however,
the prediction can be improved with simple ensemble techniques for some
services.

Keywords: Bitcoin, Transaction Graph, Money Laundering

1 Introduction

The first successful peer-to-peer (P2P) financial system, Bitcoin [30], has evolved
over the years into a complex financial ecosystem with a large number of users,

ar
X

iv
:1

91
2.

12
06

0v
1 

 [
cs

.S
I]

  2
7 

D
ec

 2
01

9



different transaction types, and various support services. As of now, Bitcoin has
the highest market share of 50% among crypto-currencies [6] and performs over
300k transactions per day [7].

Driven by the pseudonymity provided by the network, many cyber-criminals
and hackers have started using Bitcoin for illegal activities. For example, Silk
Road [12], an online market place for illegal goods and services, accepted bit-
coins as their payment method to hide the identities of the sellers and buyers.
More recently, ransom-ware attacks WannaCry and Petaya [14] also accepted
Bitcoin payments from victimized computer owners to unlock their machines.
Other activities that involve the misuse of Bitcoin include money laundering via
mixing to hide the origin of illegally obtained money [29,16], and ponzi scheme,
a pyramid scheme that pays old users with investments from new users [17].

In this paper, we investigate money laundering activities, one of the main mis-
uses of Bitcoin [29]. While there are public websites such as Blockchain Info [7],
BitcoinWhosWho [5], WalletExplorer.com [13] that collect de-anonymized Bit-
coin services and tag those involved in money laundering, new money laundering
services emerge frequently due to the unregulated and P2P nature of Bitcoin.
Although several efforts have been made to understand and detect laundering
activities [17,16,39], existing studies have not looked at the graph properties of
laundering and regular transactions in detail, they also have not fully explored
the potential of automatically created node embeddings using techniques such
as deepwalk [32] and node2vec [24]. In this paper, we first explore money laun-
dering transactions on the Bitcoin network from a graph theoretic perspective
and compare their characteristics to regular transactions. We find that although
some manually extracted statistical and network features follow different distri-
butions for laundering and regular transactions, they are not sufficiently effective
in detecting laundering transactions. We show that random-walk based graph
representation learning algorithms–deepwalk [32] and node2vec [24] significantly
outperform manually created features for this task. This paper makes the fol-
lowing contributions:

– With Bitcoin data collected over three years, we characterize graph prop-
erties of money laundering transactions and highlight their differences in
comparison to regular transactions.

– We show that laundering transactions are distinguishable from regular trans-
actions in several statistical and network features including in-degree/out-
degree ratio, sum/mean/standard deviation of output values, and number of
weakly connected components–the size of the subgraph a transaction belongs
to. Nonetheless, these metrics are not effective for the binary classification
of money laundering and regular transactions.

– We show a node2vec-based classifier achieves the highest performance in
classifying laundering and regular transactions. We also show the robustness
of the classifier by applying it to randomly selected weeks across a large
timescale of two and a half years and show that results remain consistent.

– Finally, we demonstrate the performance of our classifiers in detecting un-
known money laundering transactions. The classifier performance decreases
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compared to the binary classification, but can be improved with simple en-
semble techniques.

The remainder of the paper is organized as follows. Section 2 discusses re-
lated work that motivated our research. Section 3 presents details of our data
collection, ground truth labelling and how we created the Bitcoin transaction
graphs. Section 4 characterizes the properties of money laundering transactions
in comparison to regular transactions. Section 5 presents the classifier design
and classification results, followed by Section 6 which presents the new money
laundering service discovery results. Section 7 concludes the paper.

2 Related Work

Bitcoin Network Characterization Ron and Shamir [37] found a significant
variance in the distribution of various Bitcoin addresses, accumulated balance
and number of transactions per user providing empirical evidence that a lim-
ited number of Bitcoin entities control the majority of addresses, transactions
and bitcoins. Lischke et al. [27] conducted a study on the Bitcoin transaction
graph during its first four years. Authors observed the distribution of several
graph metrics such as in-degree, out-degree and clustering coefficient of the en-
tire transaction graph. They also analyzed the economic and network aspects
of multiple major Bitcoin businesses and markets including SatoshiDice and
Mt.Gox. Similar studies include [31,38]. In this paper, we analyse the graph
characteristics of potential laundering and regular transactions separately with
the objective of coming up with a transaction classifier.

Address De-anonymization Multiple studies explored the possibility of de-
anonymizing Bitcoin addresses [36,28,20]. Reid et al. [36] found external informa-
tion, such as user registration details and voluntary disclosure of public-keys, can
be used to link Bitcoin addresses to real-life users. Meiklejohn et al. [28] proposed
two address clustering heuristics to aggregate Bitcoin transactions: i) addresses
associated with the input UTXOs of a transaction belonging to the same user
and ii) the change address that is created when the sum of input UTXOs exceeds
the amount to pay also belongs to the sender. Using these heuristics, a number of
services and their Bitcoin addresses have been identified in the literature [16,17]
and online forums [4,13,5,7]. We establish our ground truth labelling based on
these identified services and their addresses.

Service Analysis and Anomaly Detection Driven by its pseudonymity,
there also exists a number of dubious and potentially illegal services in the
Bitcoin network. Moser et al. [29] found services such as Bitcoin Fog, that hide
transaction origins by withholding multiple small inputs and bundling them into
a smaller number of larger outputs. Ferrin et al. [21] later discovered a common
pattern of transaction mixing which is to form a “mixing cloud” that contains
multiple interconnected “joint transactions”, which result from layering multiple
transactions into a single larger transaction.
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More recently, machine learning methods are being applied to detect poten-
tially illegal Bitcoin activities. Early studies often relied on the metadata and
the temporal features of addresses or transactions. Pham et al. [33] performed
k-means clustering on both the transaction graph and user graph and applied
outlier detection to find suspicious transactions and users, however they were
only able to detect one out of 30 known cases of theft. Bartoletti et al. [17]
applied several supervised learning techniques to detect Bitcoin addresses asso-
ciated with ponzi schemes using temporal features such as total address lifetime
and active days. Weber et al. [39] recently presented a study on detecting Bit-
coin laundering transactions using network features and node embeddings. The
authors created 49 independent graphs over a total period of 2 weeks, using the
first 34 graphs for training and the rest for testing and achieved an F1-measure of
over 0.7 with Graph Convolutional Networks (GCN) and EvolveGCN. They also
published a dataset containing the extracted network features, an anatomized
edge list and labels [8]. However, no information was provided on the ground
truth labelling process as well as the exact features the authors used, making it
hard to apply the solution in other datasets. While our work is complementary
to this study, we analyse data in a much larger time span of over three years,
evaluate quantitatively different types of metadata and graph features, and ad-
dress more realistic and challenging scenarios of operating on larger graphs and
discovering new money laundering instances.

3 Data

We next describe how the transaction graphs are built, our data collection pro-
cess, and the methodology of establishing the ground truth.

3.1 Bitcoin Transaction Graph

A Bitcoin transaction, identified by a unique id, comprises a list of input and
output unspent transaction outputs, or UTXOs. UTXOs are indivisible chunks of
bitcoins attached to specific owners. A Bitcoin transaction consumes UTXOs by
unlocking them with the sender’s signature, and creates new UTXOs designated
to recipients. This is how bitcoins are transferred among users, i.e., by creating
chains of transactions as shown in Figure 1. Each node represents a transaction
and a directed edge between two nodes exists if an output UTXO of a transaction
becomes an input UTXO of a succeeding transaction. For example, an edge is
created from transaction Tx3 to transaction Tx4 as UTXO8 serves as an output
for Tx3 and an input for Tx4. We utilize these transaction chains to create
transaction graphs. We did not explore user (address) graphs in this paper, as
new addresses can be easily created and manipulated.

3.2 Data Collection and Labelling

Data Collection We ran a Bitcoin Core client under the version bitcoin-
0.15.0 [3] to collect block data, and parsed the block data with a simple parser [2]
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Fig. 1: A simple Bitcoin transaction chain.

to obtain transaction information. For each transaction, we extracted its times-
tamp, previous transactions (cf. Part 3.1), number and value of input and output
UTXOs. Our dataset was collected between 07/2014 and 05/2017.

Ground Truth Labelling We identify several laundering and regular services
and their addresses. We consider all transactions associated with these addresses
as our labelled ground truth.

Money laundering Laundering services disguise the origin of bitcoins by mix-
ing different users’ transactions, and many of them are potentially malicious [29]
Our selection of money laundering services is based on existing literature [29,16],
news articles and address tags from trusted online resources, e.g., WalletEx-
plorer.com [13], a website that tracks Bitcoin wallets and aggregates relevant
addresses. In total we found 4 major laundering services with more than 22,000
transactions each. Our selection include AlphaBay [10], BTC-e [1], Bitmixer [9]
and HelixMixer [16]. Figure 2 shows the accumulated number of daily trans-
actions during the active periods of the four laundering services, as well as a
combined sum across all these services. For example, BTC-e was active between
08/14-05/17, and generated nearly six million transactions in total.
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Fig. 2: Service active period and accumulated number of transactions.
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Regular The exchange sector has the highest number of operating entities, as
most new users begin trading on Bitcoin via exchanges [23]. This is followed by
wallet services with 5.8 − 11.5 million active users [35]. Payment services such
as CoinPayment and Bitpay are also often linked to banking institutions and
existing payment networks. As the lines between different sectors have become
increasingly blurred [35], when labelling regular services, we randomly selected
9 active, large-scale exchange, payment and wallet services from the top wallet
list on WalletExplorer.com [13], with reference to existing studies [34].

We label all transactions related to regular services as regular and those
associated with laundering services as laundering, similar to the ground truth
labelling in [17]. To ensure the correctness of labelling, we have eliminated all
transactions with conflicting labels [20]. Table 1 summarizes our data collection
with the total number of laundering and regular transactions, active periods of
laundering services, as well as the percentage of labelled laundering and regular
transactions among all existing transactions.

Table 1: Data collection.
Service Number of Tx.s Active period Percentage

AlphaBay 1,168,382 08/15-04/17 0.97%
Bitmixer 22,122 09/14-06/17 0.01%
BTC-e 5,665,400 08/14-06/17 2.93%
HelixMixer 605,991 12/15-08/16 0.56%

Laundering 7,461,895 - 4.29%
Regular 37,907,769 - 22.98%

4 Graph Characterization

We next provide a characterization of Bitcoin transaction graphs, with a focus
on the difference between laundering and regular transactions.

4.1 Graph Evolution

We first show the growth of Bitcoin network using directed daily transaction
graphs created between 07/2014-05/2017. We calculated the number of nodes,
number of edges, and graph density for each graph. Figure 3 shows the evolu-
tion of these 3 metrics over the approximate 3-year time span. Both number
of nodes and number of edges continued to increase, and started to saturate
in early 2017. The decrease in graph density suggests transactions have fewer
inputs and outputs on average in more recent years. This could be due to the
growing number of wallet or payment services that run specific algorithms to
construct transactions. The periodic fluctuations can be ascribed to the diffi-
culty adjustment embedded in the Bitcoin Proof-of-Work (PoW) protocol [15].
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As the total hashrate changes, to maintain the constant 10 minute block time,
Bitcoin adjusts PoW difficulty every 2016 blocks, which approximately was 2
weeks in 2016 [11].
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Fig. 3: Evolution of daily transaction graphs.

4.2 Feature Characterization

We then look at transaction values, calculated as the sum of all output UXTOs.
Figure 4 shows the daily average value of laundering and regular transactions.
On average, laundering transactions carry 38.8 bitcoins per day, while regular
transactions only have 29.1 bitcoins per day. Laundering transactions also carry
higher values than regular ones 77.3% of the time.
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Fig. 4: Average daily transaction value by service type.

For each directed daily transaction graph, we calculate basic features such
as number of input UTXOs (or in-degree), number of output UTXOs (or out-
degree), sum/mean/standard deviation (std) of outputs, and network features
such as centrality measures, PageRank, and clustering co-efficient [19]. We ex-
tracted a total of 14 features for each transaction. We performed a feature impor-
tance analysis using an Adaptive Boost (Adaboost) [22] classifier with a Decision
Tree based estimator of maximum depth 5. We selected 5 most discriminating
features based on the importance score, among which the in-degree/out-degree
ratio provides information on edges; the sum/mean/std of outputs relate to
UTXO values; and the weakly connected components relate to a transaction’s
neighbourhood.
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Figure 5 shows the distribution of these 5 features of laundering and regu-
lar transactions separately. Compared to regular transactions, a larger portion
of laundering transactions have high in-degree/out-degree ratio. The resulting
distribution confirms laundering services operate by bundling small transactions
from various users and forming new ones, which is also discussed in Section 2. The
CDF curves for sum, mean and std of output UTXOs of laundering transactions
are slightly steeper than those of regular transactions. This indicates laundering
transactions create similar number and value of output UTXOs, which also con-
firms the findings in [29]. Laundering transactions also have a slightly smaller
number of weakly connected components than regular transactions. This is re-
sulted from the scales of different services. As services tend to send and receive
transactions using addresses associated to them, directly connected transactions
are more likely to belong to a same service. We leverage this observation later
to design the baseline classifier in Section 5.
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Fig. 5: Feature distribution for money laundering and regular transactions.

To further understand the service-wise differences, we provide a more detailed
comparison in Figure 6. Although there are some differences among laundering
transactions related to different services, these transactions are individually dis-
tinguishable from regular ones in the selected features. Among the 4 laundering
services studied, BTC-e shows the most similar feature distributions as regular
transactions. Bitmixer, on the other hand, behaves similarly to HelixMixer.
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Fig. 6: Service-wise feature distribution.
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5 Detecting Money Laundering Activities

We next build multiple classifiers to detect laundering transactions using the
partially labelled dataset described in Section 3. We train our classifiers with
four different features–nodes’ immediate neighbours, curated features, deepwalk
embeddings and node2vec embeddings. We used accuracy–the total percentage
of regular and laundering transactions that are correctly identified, and F1-
measure–the harmonic mean of precision and recall–as evaluation metrics.

5.1 Transaction Classifiers

The design details of our four classifiers are discussed below.

Immediate Neighbour-Based Classifier Since transactions from a same
service tend to be more connected (cf. Section 4.2), as a first step, we classify
unlabelled transactions based on their nearest neighbours. This classifier works
under the following criteria: 1) a node with more immediate regular neighbours
than laundering neighbours is classified regular, 2) a node with more or equal
number of immediate laundering than regular neighbours is classified laundering,
and 3) a node with no regular or laundering neighbours is classified regular–this
criterion is required due to the unlabelled nodes in the graph.

Curated Features We trained an Adaboost classifier with a Decision Tree
base-estimator using the 14 statistical and network features discussed in Sec-
tion 4. Hyper-parameter tuning results when varying the maximum depth and
number of estimators are presented in Appendix A.

Deepwalk Graph representation learning via random walks has become a com-
mon technique to analyse graph structures in recent years [26]. These algorithms
can automatically create feature vectors for graph nodes in an unsupervised man-
ner, and achieve better scalability and performance than manually extracted
features in various scenarios. A widely used algorithm–deepwalk [32]–leverages
random walks of specified number of walks per node and walk length to uniformly
sample a node’s neighbourhood.

Node2vec A more recent technique, node2vec [24], uses 2 more parameters–
the return parameter p and the in-out parameter q–to more precisely guide the
walks. When p is high (> max(q, 1)), the same nodes will not be revisited in the
next 2 steps [24], and when p is low (< max(q, 1)), the walks will remain close
to the starting node. When q and p both equal to 1, node2vec creates random
walks in a uniform manner, similar to deepwalk.

Deepwalk and node2vec are strictly transductive [25], and can only predict
unlabelled nodes on the same graph, hence we created transaction graphs that
cover the entire duration of training and testing, and only considered nodes on
the giant component [18]. We also used undirected graphs to better explore the
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graph structure. For both binary classification and new instance prediction in
Section 6, we started random-walks from all labelled nodes in the training set
and all labelled and unlabelled nodes in the testing set to ensure no pre-assumed
knowledge on the testing nodes. We used 100 (number of walks per node), 100
(walk length), 25 (embedding dimension) for both deepwalk and node2vec, and
2 (p), and 0.5 (q) for node2vec. We fed the embedding vectors into an Adaboost
classifier with a Decision Tree base classifier (maximum depth = 5, number of
estimators = 40) for binary classification. Details on the selection of random-
walk parameters and walk starting nodes are provided in Appendix A.

5.2 Classifier Performance Comparison

We set the experiment duration to 1 week with the first 5 days for training and
last 2 days for testing. To compare the performance of the above 4 classifiers, we
selected 5 consecutive weeks in late 2014, and present the results averaged over
these weeks below. In addition, we also applied two simple ensemble techniques
to the prediction results using curated features and node2vec embeddings. In
“OR” ensemble, we label a transaction as laundering if either classifier labels it as
laundering. While in “AND” ensemble, we only label a transaction as laundering
if both classifiers do so.

Table 2 shows the node2vec-based classifier with proper parameter settings
outperforms the other three classifiers achieving an average accuracy of 92.05%
and an average F1-measure of 0.94. Information from a transaction’s immedi-
ate neighbours is not sufficient in detecting laundering transactions. Although
some differences can be observed in the feature distribution (cf. Section 4),
manually extracted statistical and network features cannot effectively differ-
entiate laundering and regular transactions. Calculating network features on
these large transaction graphs can also be very time-consuming. Both deepwalk
and node2vec performed well in binary classification, while node2vec produced
slightly better results than deepwalk. “OR” ensemble improved the node2vec
classifier performance as it helps to capture more laundering nodes. “AND”
ensemble on the other hand drastically diminished the performance of both clas-
sifiers, as more laundering transactions are wrongly detected as regular.

Table 2: Classifier Performance.
Classifier Accuracy (%) F1-measure

Neighbourhood 28.46 0.09
Manually extracted features 65.34 0.45
Deepwalk 91.72 0.94
Node2vec 92.05 0.94

“OR” ensemble 92.74 0.95
“AND” ensemble 21.47 0.02
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5.3 Over-time Classification Results With Node2vec

We then applied the node2vec-based classifier with proper parameters on one
random week per month between 08/2014-01/2017. Figure 7 illustrates the clas-
sifier performance over the entire experimentation period. To ensure training
reliability, we have removed scenarios with less than 150 laundering samples in
training. The classifier performance was robust and achieved an average accuracy
of 92.29% and F1-measure of 0.93 across the selected weeks.
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Fig. 7: Node2vec classifier performance over time.

6 Predicting New Money Laundering Instances

We next apply a curated feature-based classifier and a node2vec-based classifier
with corresponding parameters to detect previously unseen laundering trans-
actions. We selected AlphaBay, Bitmixer and HelixMixer for comparison. For
every 2 or 3 months during a service’s active period, we randomly selected one
week to leave the target service out and train the model using the remaining
services. Then, we evaluated the model’s ability to discover the left-out service.
Figure 8 compares the classifier performance and prediction ensemble for the 3
selected services, averaged over their respective experiment periods.

Compared to the classification results in Section 5, the classifier perfor-
mance decreases when predicting instances from new services. Nonetheless, the
node2vec classifier was able to achieve 95.2% accuracy in detecting HelixMixer
with a F1-measure of 0.3. As observed in Figure 6, there are differences in sev-
eral features among these services. When applying node2vec, the random walks
cannot effectively explore the neighbourhoods of transactions belonging to a dif-
ferent service. The class imbalance also becomes more significant when splitting
training and testing sets by service, resulting in more malicious nodes being clas-
sified as regular. “OR” ensemble improves the F1-measure, as it tends to capture
more malicious transactions. “AND” ensemble on the other hand improves the
accuracy as more regular transactions are correctly identified.

In the case of Bitmixer, there are on average 66 laundering transactions and
24,428 regular transactions in the test set of each week. This significant class
imbalance causes an extremely low F1-measure, which is not improved even with
the proposed ensemble techniques. As for AlphaBay and HelixMixer, which have
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discriminating features compared to regular transactions, the F1-measure using
the curated feature-based classifier increases as more laundering transactions
can be easily distinguished from regular ones. Both services also have sufficient
samples, with an average money laundering to regular ratio being 10,485/18,727
and 2,287/24,842 respectively. When applying node2vec, their transactions are
more often covered by random walks and are hence more correctly identified.

Since the prediction results are also affected by the number of testing samples,
it can be inferred that laundering services need to grow to a certain extent for our
classifiers to be effective. Services with a small number of transactions are hard
to predict, and hence they can operate unnoticed and last longer than services
who create a higher transaction volume.
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Fig. 8: Comparison of classifier performance for different services.

7 Concluding Remarks

We characterized Bitcoin transaction graphs and studied patterns of money laun-
dering and regular transactions on data collected over three years. Our study
found that money laundering transactions tend to have a higher in-degree/out-
degree ratio, more uniform sum, mean and std of outputs, and a slightly smaller
number of weakly connected components compared to regular transactions. We
also show that BTC-e behaves similarly to regular services, while Bitmixer and
HelixMixer have the most similar behaviors among the 4 selected laundering ser-
vices. The preliminary classification and prediction results using an Adaboost
classifier proved we can differentiate money laundering from regular transactions,
and predict new instances using node2vec embeddings. Results also showed the
classifier performance can be improved with ensemble techniques. Future work
will mainly focus on the two aspects below.

Ground Truth Labelling We operated on a fraction (≈ 27%) of Bitcoin trans-
actions belonging to a limited number of identified services. A larger fraction
of transactions remain unlabelled. Finding sufficient volumes of reliably labelled
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data for potentially illegal activities such as money laundering is always chal-
lenging. As we used data labelled by volunteers, there exist conflicting labels for
certain transactions. In this paper, we limit ourselves to the most reliable tags
based on information from existing literature and trusted websites. In the future,
semi-supervised approaches such as label propagation [41] and label spreading [40]
can be leveraged to further improve the performance.

Transductive Graph Embeddings As mentioned in Section 5, node2vec is strictly
transductive and can only be used to predict unknown nodes on the same graph.
One requirement for analysing temporal graphs is the possibility of making
predictions to previously unseen nodes. Recent developments based on graph
convolutions such as GraphSage [25] which allow embeddings learned from one
graph to be used in prediction on a completely different graph can be explored.
Nonetheless, their success on very large and dynamic graphs remains to be seen.
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A Parameter Tuning

A.1 Curated Features

We varied the maximum depth of the base estimator from 5 to 50 and number
of estimators from 10 to 80 as illustrated in Figure 9. The classifier performance
remains low and does not vary significantly with maximum depth and number
of estimators. This confirms manually-extracted statistical and network features
are not effective in distinguishing laundering and regular transactions.
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Fig. 9: Adaboost classifier parameter tuning.

A.2 Node2vec/Deepwalk

Hyper-parameter Tuning Results in Table 3 show that a higher number of walks
per node and longer walk path produce better performance. Also, for node2vec it
is better to set q to a relatively low value and p higher than max(q, 1) to ensure
outwards exploration from transaction nodes, as it is important to understand
how UTXOs are propagated via transactions for different services.

Effect of Random-Walk Starting Nodes Further, to understand the effect of
random-walk starting nodes, we compared the classifier performance when vary-
ing the volume of labelled and unlabelled test nodes to start random-walks from
and present the results in Figure 10. The random-walks are started from all
labelled training nodes, x% (x ∈ {100, 80}) of all labelled testing nodes, y%
(y ∈ {100, 80, 50, 20, 0}) of all unlabelled testing nodes. Results show that to
achieve high classifier performance, random-walks should be started from as
many labelled testing nodes as possible. The volume of unlabelled random-walk
starting nodes does not significantly affect the classifier performance.
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Table 3: Node2vec/Deepwalk hyper-parameter tuning.
# of walks per node Walk length p q Accuracy (%) F1-measure

50 50 1 1 90.20 0.93
50 50 2 0.5 90.48 0.93
50 50 4 0.5 89.72 0.92
50 50 0.5 2 88.35 0.91
50 50 0.5 4 86.85 0.90

100 100 1 1 89.84 0.92
100 100 2 0.5 91.01 0.93
100 100 4 0.5 89.62 0.92
* The graph has 634,739 nodes and 1,147,979 edges.
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Fig. 10: Effect of random-walk starting nodes on classifier performance.
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31. Parino, F., Beiró, M.G., Gauvin, L.: Analysis of the bitcoin blockchain: socio-

economic factors behind the adoption. EPJ Data Science 7(1), 38 (2018)

16

https://www.theverge.com/2019/2/17/18226718/alphabay-takedown-drug-marketplace-federal-arrest
https://www.theverge.com/2019/2/17/18226718/alphabay-takedown-drug-marketplace-federal-arrest
https://en.bitcoin.it/wiki/Proof_of_work
https://en.wikipedia.org/wiki/Silk_Road_(marketplace)
https://en.wikipedia.org/wiki/Silk_Road_(marketplace)
https://www.walletexplorer.com
https://www.theguardian.com/technology/2017/dec/30/wannacry-petya-notpetya-ransomware
https://www.theguardian.com/technology/2017/dec/30/wannacry-petya-notpetya-ransomware


32. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710. ACM (2014)

33. Pham, T., Lee, S.: Anomaly detection in the bitcoin system-a network perspective.
arXiv preprint arXiv:1611.03942 (2016)

34. Ranshous, S., Joslyn, C.A., Kreyling, S., Nowak, K., Samatova, N.F., West, C.L.,
Winters, S.: Exchange pattern mining in the bitcoin transaction directed hyper-
graph. In: International Conference on Financial Cryptography and Data Security.
pp. 248–263. Springer (2017)

35. Rauchs, M., Hileman, G., et al.: Global cryptocurrency benchmarking study. Tech.
rep., Cambridge Centre for Alternative Finance, Cambridge Judge Business School
(2017)

36. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Privacy,
Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference
on Social Computing (SocialCom), 2011 IEEE Third International Conference on.
pp. 1318–1326. IEEE (2011)

37. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In:
International Conference on Financial Cryptography and Data Security. pp. 6–24.
Springer (2013)

38. Somin, S., Gordon, G., Altshuler, Y.: Social signals in the ethereum trading net-
work. arXiv preprint arXiv:1805.12097 (2018)

39. Weber, M., Domeniconi, G., Chen, J., Weidele, D.K.I., Bellei, C., Robinson, T.,
Leiserson, C.E.: Anti-money laundering in bitcoin: Experimenting with graph con-
volutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

40. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local
and global consistency. In: Advances in neural information processing systems. pp.
321–328 (2004)

41. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation. Tech. rep., CMU-CALD-02-107, Carnegie Mellon University (2002)

17


	Characterizing and Detecting Money Laundering Activities on the Bitcoin Network

