
On the Price of Equivocation in Byzantine Agreement

Alexander Jaffe
University of Washington

ajaffe@cs.washington.edu

Thomas Moscibroda
Microsoft Research Asia

moscitho@microsoft.com

Siddhartha Sen
Princeton University

sssix@cs.princeton.edu

ABSTRACT
In the Byzantine agreement problem, a set of n processors, any
f of whom may be arbitrarily faulty, must reach agreement on a
value proposed by one of the correct processors. It is a celebrated
result that unless n > 3 f , Byzantine agreement is impossible in a
variety of computation and communication models. This is due to
the fact that faulty processors can equivocate, that is, say differ-
ent things to different processors. If this ability is mitigated, for
example by assuming a global broadcast channel, then n > 2 f is
sufficient. With very few exceptions, the literature on Byzantine
agreement has been confined to the n > 2 f and n > 3 f paradigms.

We bridge the gap between these two paradigms by assuming
partial broadcast channels among sets of three processors, observ-
ing that equivocation is fundamentally an act involving three par-
ties: a faulty processor that lies (inconsistently) to two correct pro-
cessors. We characterize the conditions under which Byzantine
agreement is possible for all n = 2 f + h, h an integer in [1.. f ], by
giving asymptotically tight bounds on the number of necessary and
sufficient partial broadcast channels. We prove these bounds by
a reduction to a problem in extremal combinatorics, which itself
is a natural generalization of a well-studied hypergraph coloring
problem. Algorithmically, we show that deciding whether a given
set of broadcast channels enables Byzantine agreement is co-NP-
complete. Although partial broadcast channels have been studied
in prior work, the bounds obtained on the number of required chan-
nels were sub-optimal by up to a factor of Θ(n2). Moreover, this
work has been confined to the synchronous model. In contrast, we
apply our results to several distinct models and provide stronger
motivation for using partial broadcast channels in practice, draw-
ing from recent work in the systems community.
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1. INTRODUCTION
One of the most celebrated results in distributed computing the-

ory is the bound on the redundancy required to solve the Byzantine
Agreement problem. In this problem, a set of n processors, each
with an initial value and any f of whom may be arbitrarily faulty,
must reach agreement on a value proposed by one of the correct
processors.1 Lamport, Shostak, and Pease showed in 1982 that in
the standard communication model of a complete synchronous net-
work of pairwise authenticated channels, Byzantine agreement is
possible if and only if n > 3 f [31], implying a significant amount
of redundancy. Moreover, the n > 3 f bound is remarkably ro-
bust to changes in the underlying communication and computation
model [9, 18, 28].

A closer inspection of these results reveals that the fundamental
reason for requiring n > 3 f processors is that faulty processors can
equivocate, i.e., say different things to different processors. For in-
stance, in a synchronous system with 3 processors, a single faulty
processor can consistently send different messages to the two cor-
rect processors and make them agree to different values [31]. In
asynchronous systems, the adversary’s ability to delay messages (in
addition to its ability to equivocate) can confound the correct pro-
cessors even if cryptography is used [18]. Thus, several researchers
have considered using stronger communication primitives such as
broadcast channels. Broadcast channels mitigate equivocation by
ensuring that a message appears identically at all recipients on the
channel. In the synchronous model, Rabin and Ben-Or [37] intro-
duced a global broadcast channel and achieved Byzantine agree-
ment (in fact, any multiparty protocol) if and only if n > 2 f . Fitzi
and Maurer [20] added Θ(n3) partial broadcast channels among
every set of three processors to achieve Byzantine agreement if
and only if n > 2 f . Ravikant et al. [38] reduced the number of 3-
processor channels required for n = 2 f +h, where h is an integer in
[1.. f ], assuming sufficient connectivity in the underlying network.
However, they get asymptotically tight results only for the same
case h = 1 as Fitzi and Maurer do. Finally, Considine et al. [14]
generalized partial broadcast to sets of b > 3 processors, achieving
reliable broadcast (but not consensus) when n > f (b+1)/(b−1).

The above overview of previous work illustrates that the gap be-
tween n > 3 f and n > 2 f represents a fundamental price of equivo-
cation. In this paper, we give a complete and tight characterization
of this price, by studying the relationship between the fraction of
processor 3-tuples that are prevented from equivocating, modeled
as 3-processor partial broadcast channels, and the fault resilience
required to solve Byzantine agreement. Specifically, we study the
use, application, and algorithmic implications of 3-processor broad-
cast channels to Byzantine agreement. We view these channels as

1 This variant of the problem is called consensus. The variant
where only a single processor has an initial value is called reliable
broadcast. Consensus implies reliable broadcast, but the reverse is
only true if faulty processors are in the minority, i.e. n > 2 f .



3-hyperedges in the processor graph. Whereas prior work has al-
most exclusively focused on resilience n > 2 f , we show that the
range n≥ 2 f +h, where h ∈ [1.. f ] allows for significantly more ef-
ficient constructions by requiring asymptotically fewer than

(n
3
)
=

Θ(n3) 3-hyperedges, assuming standard requirements on the con-
nectivity of the underlying graph [34, 38]. We derive asymptot-
ically tight bounds for all h ∈ [1.. f ]. Interestingly, this problem
turns out to be a natural generalization of a well-studied hyper-
graph coloring problem. Although prior work has been limited to
the synchronous model, we show how to apply our results to vari-
ous other models as well.

The motivation for studying 3-hyperedges is two-fold. First, a 3-
hyperedge (x,y,z) represents the fundamental unit of equivocation:
a faulty processor x says different things to correct processors y and
z. Second, while it is possible (and likely more efficient) to create
a single or larger broadcast channel with x and the processors it
has 3-hyperedges with, the expressiveness of 3-hyperedges may be
useful in practice. For example, if hyperedges (x,y,z) and (x,y,w)
exist but not (x,z,w), then a protocol may require x to use partial
broadcast when sending a message to y and z or to y and w, but not
when sending a message to z and w.

1.1 Results and outline
Let H be a 3-uniform hypergraph on n vertices (representing

processors), where each 3-hyperedge represents a partial broadcast
channel. Our main result is an asymptotically tight characterization
of the necessary and sufficient number of 3-hyperedges required to
achieve Byzantine agreement despite f faulty processors, for all
n ≥ 2 f + h, h a positive integer in [1.. f ]. h is thus the param-
eter that interpolates between the well-studied cases n > 2 f and
n > 3 f . As in prior work [38], we assume the underlying graph is
at least (2 f +1)-connected. Let Tn(h) denote the minimum m such
that there exists an H with m 3-hyperedges that achieves Byzantine
agreement. We show:

• Tn(h(n)) = Θ

(
n3

h(n)2

)
For comparison, the only other existing work that gives results on

this trade-off is by Ravikant et al. [38], who obtain an upper bound
of Tn(h(n)) = O(( f −h(n)+1) f 2) = O((n−3h(n)+1)n2), which
is up to a factor of Θ(n2) off the correct bound, depending on h(n).
They also give a near-tight bound for the case n = 2 f +1, but this
result is asymptotically identical to the trivial solution of includ-
ing all 3-hyperedges. Their constructions are elementary and use
a clever and simple recursive structure, though the analysis is non-
trivial. We improve on their results by using the power of expander
graphs, building hypergraphs out of existing expander construc-
tions in order to exploit their high connectivity. Although we can
prove our bound on Tn(h(n)) using a simple probabilistic method
argument, in this work we are concerned with explicit construc-
tions. A strong motivation for this goal is given by the following
result.

Theorem 1. Given a 3-uniform hypergraph H = (V,E) with |V |=
n, it is co-NP-complete to decide, for any n = 2 f + h, h ∈ [1.. f ],
whether Byzantine agreement is possible in H despite f faulty pro-
cessors.

The proof of this theorem, a reduction from balanced bipartite
independent set, can be found in Section 6. Since it is intractable to
detect the possibility of Byzantine agreement in general, it is possi-
ble that explicit construction is the only reliable means of exploiting
the efficiency gains of sparse fault-tolerant hypergraphs.

Our final result gives an exact bound for Un(h(n)), the minimum
m such that any H with m hyperedges achieves Byzantine agree-
ment:

• Un(h(n)) =
(n

3
)
− n−h(n)

2 ·h(n)2 +1

Section 1.2 discusses the application of our results to upper and
lower bounds for Byzantine agreement in various models. Sec-
tion 2 formally defines the problem and proves an equivalence to a
more natural combinatorial problem, which we use in the remain-
der of the paper. Section 3 proves the lower bound on Tn(h(n)) us-
ing a graph projection and counting arguments. Section 4 describes
explicit constructions of H that match the upper bound on Tn(h(n));
we rely on a “lifting” procedure that converts existing constructions
of Ramanujan graphs into hypergraphs with expander-like prop-
erties. Section 5 proves the bound on Un(h(n)) using multivari-
ate minimization techniques. Section 7 concludes with some open
problems. Due to space constraints, some proofs are omitted and
deferred to the full version of this paper.

1.2 Algorithms and applications
The results of this paper naturally give rise to new upper and

lower bounds for Byzantine agreement in various models (aug-
mented with partial broadcast channels). Specifically, our results
apply to any proof that relies on the following intersection prop-
erty between quorums of processors (made precise in Section 2),
which we call f -tolerance: Consider a quorum of size n− f ; al-
though n− f is the number of correct processors, a quorum of this
size may still contain up to f faulty processors. Given two such
quorums, the correct processors of one quorum may disagree with
those of the other because faulty processors common to both may
equivocate, unless their intersection contains at least one correct
processor: 2(n− f )− n > f =⇒ n > 3 f . The key insight is that
we get the same guarantee by replacing the correct processor x with
a 3-hyperedge (x,y,z) such that y and z are correct processors in
distinct quorums. Even if x is faulty, hyperedge (x,y,z) prevents it
from equivocating to y and z and making their quorums agree on
inconsistent values.

Ravikant et al. [38] prove that Byzantine agreement is possible
in the synchronous model if and only if a set of conditions which
includes f -tolerance holds. The remaining conditions are the stan-
dard connectivity requirements of the underlying graph, which we
also assume in our setting. Thus Theorem 1 in their paper implies
lower and upper bounds for Byzantine agreement in our setting
as well. However, the hypergraphs they construct are suboptimal:
they provide a tight bound only for n= 2 f +1 [38, Sections 5.2 and
5.3] and loose upper bounds for any n = 2 f +h,h∈ [1.. f ] [38, Sec-
tion 5.1]. By replacing their construction with ours from Section 4,
we reduce the number of 3-hyperedges and the message complexity
of their protocol by up to a factor of Θ(n2).

In the asynchronous model, we can adapt the lower bound of
Bracha and Toueg [9] to show that f -tolerance is necessary for
Byzantine agreement. The proof is essentially the same as Theorem
3 in their paper, except that instead of any two (n− f )-sized quo-
rums, a pair of quorums that violates f -tolerance must be used. We
can obtain upper bounds for any n= 2 f +h by modifying the proto-
cols of Bracha and Toueg [9, Figure 2] or Bracha [8], for example.
We do this by overlaying our hypergraph construction onto the pro-
cessor graph and requiring x to use hyperedge (x,y,z), if it exists,
when sending a message to both y and z. Although this reduces the
efficiency of the protocol, the relevant correctness proofs ([9, Theo-
rem 4] and [8, Sections 3.2 and 6]) are readily adapted because they
rely on f -tolerance. Similarly, there has been tremendous recent in-
terest in the systems community on designing efficient Byzantine



agreement protocols in a partially synchronous model with cryp-
tography (e.g., [4, 12, 15, 27, 29]). This model is subject to Bracha
and Toueg’s lower bound [9], and essentially all upper bounds are
derivatives of Castro and Liskov’s protocol [11], which relies on f -
tolerance for correctness [11, Invariants A.1.4 and A.1.5]. There-
fore we can improve the resiliency of these protocols as above. This
reduces their replication costs, which is often cited as an obstacle
to practical deployment [27, 39, 43, 44].

There are several ways to implement 3-hyperedges in practice.
One way is to use multicast groups; another is to use a shared cypto-
graphic key; another is to use trusted primitives like an append-only
log [12] or trusted incrementer [32]. Depending on the implemen-
tation, it may not always be possible to force a processor x to use
a 3-hyperedge a priori, but it is always possible for y and z to gen-
erate a proof of misbehavior (POM) [2] against x a posteriori if x
violates the protocol. Several systems [2, 26, 29] use POMs in this
manner. Finally, if each 3-hyperedge is allowed to fail with some
probability [20], our hypergraph construction reduces the probabil-
ity of failure because there are fewer 3-hyperedges to union bound
over.

1.3 Other related work
If cryptography is used, consensus is possible in the synchronous

model when n > 2 f [18, 31]. Whereas consensus cannot be solved
in the asynchronous model [19], the n > 3 f bound applies in this
model when using randomized algorithms that terminate almost
surely [9] or with probability 1− ε for fixed ε > 0 [28], even if
cryptography is used [18]. The same bound also applies in partially
synchronous models [18].

Partial broadcast was first considered by Franklin, Wright, and
Yung [22, 23] in the context of secure point-to-point communi-
cation over an incomplete network. Stronger primitives based on
trusted subsystems and cryptography have also been used, such as
weak sequenced broadcast [1] to solve weak Byzantine agreement
in the asynchronous model, and append-only log [12] and trusted
incrementer [32] to solve Byzantine agreement in a partially syn-
chronous model. These primitives achieve resilience n > 2 f .

We mention two other lines of work that are related to ours.
The first considers hybrid fault models that combine Byzantine
and crash failures (e.g., [25, 30]), in which optimal bounds on re-
silience [25, 30] depend on the number of faults of each type. The
second considers a non-threshold adversary characterized by an ad-
versary structure (e.g., [5, 21]), or a monotone set of subsets of
processors any one of which may be faulty. It is known [21] that
Byzantine agreement is possible if and only if no three sets cover
all processors.

2. PROBLEM DEFINITION AND AN
EQUIVALENCE

We model a system of n processors as a 3-uniform, n-vertex hy-
pergraph H = (V,E) where each edge (x,y,z) ∈ E represents a par-
tial broadcast channel. For a fixed integer f , we analyze the condi-
tions under which Byzantine agreement is possible in H, when up
to f processors are faulty. As in prior work [38], we assume the
underlying graph is at least (2 f + 1)-connected (e.g., via a com-
plete set of 2-hyperedges (edges) connecting the processors). As
explained in Section 1.2, this problem is equivalent to ensuring
that in the intersection of any two size-(n− f ) quorums S and T ,
there exists a node z that cannot equivocate between correct nodes
x ∈ S,y ∈ T . We assume w.l.o.g. that S∩ T contains only faulty
nodes, because a correct node in S∩T would prevent equivocation.

A BC

S TZS TZ

Figure 1: The relationship between sets S,T,Z of f -tolerance
and sets A,B,C of h-disjointness. Shaded regions contain faulty
nodes. The diagram above shows C ⊂ Z, but in general C ⊆ Z.

This reduces the possibility of Byzantine agreement to the follow-
ing property of H.

Definition 1. A 3-uniform hypergraph H = (V,E) with |V | = n
vertices is f -tolerant if ∀ S,T,Z ⊂V and S 6= T satisfying the con-
ditions below, ∃ x∈ S\Z,y∈ T \Z,z∈ S∩T for which (x,y,z)∈ E:

• |Z| ≤ f ,

• |S|, |T | ≥ n− f ,

• S∩T ⊆ Z ⊂ S∪T .

The property as defined is somewhat unwieldy, because the sets
S, T , and Z can overlap in a variety of ways. To simplify our prob-
lem statement, we introduce a new property on disjoint sets and
show its equivalence. Consider the sets A = S \Z, B = T \Z, and
C = S∩ T ; A, B, and C are disjoint because S∩ T ⊆ Z. A and B
contain the correct nodes in quorums S and T , respectively, and C
contains the faulty nodes in their intersection. (There may be other
faulty nodes in the two quorums, limiting the size of A and B, but
only in sum.) We will shortly redefine f -tolerance in terms of the
following notion.

Definition 2. A 3-uniform hypergraph H = (V,E) with |V | = n
vertices is h-disjoint if for all disjoint A,B,C ⊂ V satisfying the
conditions below, ∃ x ∈ A,y ∈ B,z ∈C for which (x,y,z) ∈ E:

• |A|, |B|, |C| ≥ h,

• |A|+ |B|+ |C| ≥ n+3h
2 .

Figure 1 illustrates the equivalence of f -tolerance and h-disjoint-
ness. Note that although A, B, and C are symmetric in the above
definition, we will often distinguish them as in Figure 1 for ease of
exposition. The following theorem makes this equivalence precise,
with proof deferred to the full version:

Theorem 2. Let H be a 3-uniform hypergraph on n vertices, and
integer f ≥ n

3 . Then H is f -tolerant if and only if H is (n− 2 f )-
disjoint.

h-disjointness is equivalent to the notion of (3, f )-hyper-(3 f −
n+ 1)-connectedness in [38]. However, we find our definition to
be simpler and more clearly related to the hypergraph coloring lit-
erature, discussed below. The remainder of this paper characterizes
the hypergraphs that are h-disjoint by deriving tight bounds on the
necessary and sufficient number of edges, Tn(h) and Un(h) respec-
tively. As we observed in Section 1.2, these results imply new up-
per and lower bounds for Byzantine agreement in different models.
We start with Tn(h):

Definition 3. For positive integers n and h, Tn(h) is the minimum
m such that there exists an h-disjoint 3-uniform hypergraph with m
edges.



2.1 Related Combinatorial Problems
h-disjointness can be seen as a generalization of a rich body of

work on mixed hypergraph coloring and the upper chromatic num-
ber (see Voloshin’s book [42]). We present a single definition that
essentially captures all of these concepts. A k-heterochromatic col-
oring of a hypergraph H = (V,E) is a surjection χ : V → [k] such
that the restriction of χ to some e ∈ E is injective. In other words,
some edge has no repeated color. When H is k-uniform, this is
equivalent to some edge being k-chromatic, as in h-disjointness.

A primary line of research in this area sought to analyze f (n,k),
the minimum number of edges among k-heterochromatically col-
orable, k-uniform, n-vertex hypergraphs [6, 7, 10, 17, 41], which
was recently resolved up to lower order terms by Bujtás and
Tuza [10]. The specific (earlier) result that is relevant to this pa-
per is f (n,3) = n(n−2)

3 . h-disjointness has immediate connections
to f (n,3), but introduces the additional concepts of balance and
partiality in colorings, controlled by h. When h = 1, h-disjointness
is equivalent to the condition that there is a trichromatic edge for
all small partial colorings A,B,C, with |A|, |B|, |C| non-empty, but
total size only |A|+ |B|+ |C|= (n+3)/2. This condition is strictly
stronger than requiring all complete colorings to have a trichro-
matic edge, because every complete coloring contains a small par-
tial coloring. In contrast, when h = f = n/3, h-disjointness is
equivalent to the condition that there is a trichromatic edge for
all balanced complete colorings, with |A| = |B| = |C| = n/3. This
is strictly weaker than restricting all complete colorings to have a
trichromatic edge. For 1 < h < n/3 the condition will be that all
somewhat small, somewhat balanced colorings have a trichromatic
edge.

Thus we may already state that Tn(1) ≥ f (n,3) = n(n−2)
3 and

Tn(n/3) ≤ f (n,3) = n(n−2)
3 . As we will see, we can in fact do

much better and show a smooth transition Tn(h) = Θ

(
n3

h(n)2

)
. In

particular, this gives Tn(1) = Θ(n3), and Tn(n/3) = Θ(n), both a
factor of n from f (n,3).

3. LOWER BOUNDS
In this section, we will give asymptotically tight bounds on

Tn(h(n)) for all non-decreasing functions h(n). We will need the
following notion of a hypergraph-projection.

Definition 4. Let H = (V,E) be a 3-uniform hypergraph, and W ⊆
V a subset of its vertices. We define the projection of H by W as the
graph HW = (VW ,EW ). The vertex set VW is defined as V \W. The
edge set EW has an edge (u,v) if and only if E has an edge (u,v,w),
for some w ∈W.

This definition allows us to apply graph-theoretic theorems to
hypergraphs, with potentially little loss. We extend the technique
of [40], [7], [16], used to prove the aformentioned lower bound
on k-heterochromatically colorable hypergraphs. They consider a
hypergraph H for which every k-coloring contains a k-chromatic
hyperedge, and proceed to lower bound the size of its edge set in
two steps. First, they lower bound the number of edges in the pro-
jection of H by each (k−2)-vertex subset. Then, they upper bound
the number of possible edge-projections of each hyperedge, giving
a lower bound on the number of original hyperedges.

Our analysis is similar, with an added layer of complexity in
lower bounding the number of edges in each projection. Because
h(n)-disjointness implies that hyperedges cross somewhat balanced
partitions of subsets of the vertices, we cannot assume that the pro-
jections are connected graphs. For large h(n), we can only assume

very weak conditions on the projections’ connectivity. For small
h(n), we can assume conditions even stronger than connectedness.
To address this, we prove a pair of results on the number of edges
in a simple graph having appropriate connectivity conditions.

3.1 Linear h(n)
We first consider the regime in which h(n) is linear in n. In

fact, the bound we derive below holds for all legitimate h(n), but
it is asymptotically optimal only for linear h(n). In the subsequent
subsection, we will give a bound that holds for a smaller range of
h(n), but is asymptotically optimal for sublinear h(n).

Theorem 3. For any positive h(n) that is bounded above every-
where by n

3 ,

Tn(h(n))≥
3
4

n(1−o(1)).

PROOF. Let H = (V,E) be a 3-uniform hypergraph on n ver-
tices. Consider a coloring A,B,C of V , for which |C| ≤ n/3. To sat-
isfy h(n)-disjointness, H must contain a hyperedge that is trichro-
matic in A,B,C. In particular, for any bisection (S, S̄) of V \C, there
is an edge in HC crossing (S, S̄). We will use the following lemma,
with proof deferred to the full version.

Lemma 4. For graph G = (V,E), |V | = n, if all bisections are
crossed by at least one edge, then |E| ≥ n/2.

To apply Lemma 4, observe that since |VC| ≥ 2n/3, we have
|EC| ≥ n/3. Now we sum over all |C|= n/3.

∑
C⊂V
|C|=n/3

|EC| ≥
(

n
n/3

)
n/3. (1)

In order to turn this into a bound on |E|, we need to upper bound
the extent to which hyperedges in E are overcounted in (1). A
hyperedge in E induces a (single) edge in EC only if one of its
vertices is in C, and two of them are not. For a given hyperedge in
E, there are three possible vertices that could be in C. Conditioned
on that vertex being in C, and the two other vertices being outside C,
there are at most

( n−3
n/3−1

)
ways to choose the remaining vertices of

C. Hence each edge in E contributes 1 to |EC| for at most 3 ·
( n−3

n/3−1
)

distinct C.
Dividing out the maximum contribution of each edge gives our

desired lowered bound:

|E| ≥

( n
n/3
)
n/3

3 ·
( n−3

n/3−1
)

=
n!(n)(n/3−1)!(2n/3−2)!

9(n−3)!(n/3)!(2n/3)!

=
(n−1)(n−2)

4n/3−2

=
3
4

n(1−o(1)).

3.2 Sublinear h(n)

Theorem 5. For any function h(n) that is bounded above every-
where by n

6 ,

Tn(h(n))≥Ωn

(
n3

h(n)2

)
.



PROOF. First we will need a (weakened) generalization of
Lemma 4.

Definition 5. Let G = (V,E) be a graph on n vertices. For integers
a,b, we say that G is (a,b)-crossing if for all disjoint X ,Y ⊆V such
that |X | = a and |Y | = b, there is an edge from X to Y . (That is,
∃x ∈ X ,y ∈ Y : (x,y) ∈ E.)

Lemma 6. For positive i ≤ n/2, every (i,n/2)-crossing graph on
n vertices has at least n2

2(n−i)

( n
2i −1

)
edges.

PROOF. Note that the bound is vacuous for i = n/2, so assume
i ≤ n/2− 1. First observe that every subset of size i must have at
least n/2− i+1 edges leaving it. This can be seen by contradiction:
assume that some set X of size i has at most n/2− i edges leaving
it, and hence at most n/2− i vertices in its neighborhood. Then
take as Y the set of vertices in V \X with no edge to X . This set
is of size at least n−|X |− (n/2− i) = n/2. Since there is no edge
from X to Y , the graph cannot be (i,n/2)-crossing.

We now show that the lemma in fact holds for any graph having
the above boundary property. There are

(n
i
)

vertex sets of size i.
We count at least n/2− i+1 edges out of each set. Each edge can
only be counted for the sets that it leaves; there are 2

(n−2
i−1
)

of these,
because we must choose one of the two vertices, not choose the
other one, and choose i−1 other vertices. Hence, the total number
of edges is at least(n

i
)

2
(n−2

i−1
) (n/2− i+1) =

n!(i−1)!(n− i−1)!
2i!(n− i)!(n−2)!

(n/2− i+1)

=
n(n−1)
2i(n− i)

(n/2− i+1)

=
n

2(n− i)

(
(n−1)

( n
2i
−1
)
+

n−1
i

)
>

n
2(n− i)

(
(n−1)

( n
2i
−1
)
+

n
2i
−1
)

=
n2

2(n− i)

( n
2i
−1
)
.

Now consider an h(n)-disjoint hypergraph H = (V,E) on n ver-
tices. For convenience, let h = h(n). Since H is h-disjoint, there
must exist a hyperedge for every A,B,C satisfying the conditions
of Definition 2. In particular, consider a C ⊆V of size |C|= h. As
in Section 3.1, we will show that the graph projection of H by C
has many edges.

For C ⊆ V having size |C| = h, let GC = (VC,EC) be the pro-
jection of H by C. We bound the size of each |EC|. H is h-
disjoint, so for any disjoint A,B ⊆ V \C such that |A|, |B| ≥ h and
|A|+ |B| ≥ n+3h

2 − h = n+h
2 , there exists an edge (x,y,z) ∈ E with

x ∈ A,y ∈ B,z ∈ C. In other words, graph GC has the following
property: for D⊆VC with |D| ≥ n+h

2 , for all A⊆D,B = D\A with
|A|, |B| ≥ h, there is an edge in EC from A to B.

When h = 1, the above says that each subset of VC of size n+1
2 is

connected. In generality, we would like to lower bound the number
of edges in |EC|, which we can do with Lemma 6. First let n′= |VC|,
so n′ = n−h. Observe that GC is (h,n′/2)-crossing, by choosing A
as any set of size h, B as any disjoint set of size n′

2 , and D = A∪B,
so that |D| = |A|+ |B| = h+ n′

2 = h+ n−h
2 = n+h

2 . Hence |EC| ≥
n′2

2(n′−h)

(
n′
2h −1

)
.

Now we must bound the extent to which each hyperedge is over-
counted. A hyperedge can only be counted towards a given EC if

exactly one of its vertices is contained in C. There are then
(n−3

h−1
)

ways to choose the rest of the vertices. So each hyperedge con-
tributes to |EC| for at most 3

(n−3
h−1
)

values of C.
There are exactly

(n
h
)

sets C. Hence the total number of edges in
H must be at least

|E| ≥
(n

h
)

3
(n−3

h−1
) ( n′2

2(n′−h)

)(
n′

2h
−1
)
.

We have assumed that h≤ n/6, so 3
2 ≤

n
4h and hence

n′

2h
−1 =

n−h
2h
−1 =

n
2h
− 3

2
≥ n

4h
.

Similarly,

n′2

2(n′−h)
=

(n−h)2

2(n−2h)
≥ (n− (n/6))2

2(n−2)
=

25n2

72(n−2)
.

Then

|E| ≥
(n

h
)

3
(n−3

h−1
) ( 25n3

288h(n−2)

)

=
n!(h−1)!(n−2−h)!

3h!(n−3)!(n−h)!

(
25n3

288h(n−2)

)
≥ 25n4

864h2(n−2)
= Ω

(
n3

h2

)
.

4. UPPER BOUNDS
In this section, we give an asymptotically tight upper bound on

Tn(h(n)) for almost all n, and all 1 ≤ h(n) ≤ n/3. We do this
by constructing near-Ramanujan expander graphs and converting
them to “lifted” hypergraphs with expander-like properties. Our
construction hence depends on the existence of sufficiently good
expanders. These are probabilistically guaranteed to exist for all
n; recall, however, that we are primarily interested in explicit con-
structions. Our result is fully constructive, with the exception that
it relies on expander graphs that can be explicitly constructed for
an infinite but incomplete set of values of n. As such, our result
is only fully constructive for these n, which we do not consider a
substantial weakness. To ‘fill in the missing values’ would require
advances in explicit expander construction, which would immedi-
ately imply corresponding extensions of our algorithm.

Much of the difficulty of our analysis comes in explicitly bound-
ing the degree. This is necessary to achieve an eigenvalue gap that
can guarantee edges are well-distributed enough to induce a hyper-
edge across all “reasonable” colorings.

In what follows, an algebraic (n,d,λ )-expander will refer to an
n-vertex, d-regular graph whose adjacency matrix has max(|λ2|,
|λn|) = λ , where λ1 ≥ . . .≥ λn are the matrix eigenvalues.

Definition 6. For graph G = (V,E), we define a lifted 3-uniform
hypergraph L(G) = (V,E ′) as follows. The edge set E ′ contains
(x,y,z) if and only if at least two of the edges (x,y), (y,z), and (x,z)
are present in G.

In other words, for a given vertex x in G, we make hyperedges
out of x and every pair of its neighbors. We claim that for an
(n,d,λ )-expander G with the right parameters, hypergraph H =
L(G) is h(n)-disjoint and has a number of edges given by:



Theorem 7. Tn(h(n))≤ O
(

n3

h(n)2

)
.

PROOF. We construct a lifted 3-uniform hypergraph H = L(G),
where G is an (n,d,λ )-expander. Our goal is to determine the min-
imum λ such that H is h(n)-disjoint, as a function of d. Then using
an expander G for which an upper bound on λ is known, we can
derive a sufficient lower bound on d and hence the number of hy-
peredges in H.

To demonstrate h(n)-disjointness, we consider each partial 3-
coloring A,B,C satisfying the conditions of Definition 2, and show
that H contains a trichromatic edge for each such coloring. By
the construction of H, it suffices to show that some set of vertices
in C has edges in G to both A and B. Our main tool will be the
Expander Mixing Lemma, which states that if G = (V,E) is an

(n,d,λ )-expander, then for any S,T ⊆ V ,
∣∣∣|E(S,T )|− d|S|·|T |

n

∣∣∣ ≤
λ
√
|S| · |T |. Additionally, we will need the following variant of the

expander mixing lemma. We have not found this precise lemma in
the literature, so we give a proof of it below.

Lemma 8 (Expander Vertex-Boundary Lemma). Let G= (V,E) be
an (n,d,λ )-expander. Then for any sets S,T ⊆V ,

|S∩N(T )| ≥ |S|− 2λn
d

√
|S|
|T |

,

where N(T ) is the set of vertices having a neighbor in T .

PROOF. The intuition is that if S is large, then the subset of S
with edges to T cannot be small, because by the expander mixing
lemma, a small set would have a small number of edges to T , but
S must have a large number of edges to T . Let ST = S∩N(T ) and
s = |S|, t = |T |,sT = |ST |. Then by definition E(S,T ) = E(ST ,T ).
By the expander mixing lemma, we have:

|E(S,T )| ≥ d
n

st−λ
√

st and |E(ST ,T )| ≤
d
n

sT t +λ
√

sT t.

Combining the inequalities and solving for sT gives:

sT ≥ s−λ
n

d
√

t
(
√

s+
√

sT )

≥ s− 2λn
d

√
s/t,

where the last inequality follows because sT ≤ s.

Using these tools, we prove the following main lemma:

Lemma 9. Let A,B,C⊆V be colors of sizes a≤ b≤ c, respectively,
of the vertices of H = L(G). Define F (a,b,c) =√

cb
a

(√
a+b−

√
b
)

. If

λ <
d
n
F (a,b,c),

then H contains a trichromatic edge.

Before proving the lemma, we show how it implies the theorem.
By picking a G with λ < d

n F (a,b,c), we ensure that H contains
a trichromatic edge for all colorings A,B,C. But the conditions of
h-disjointness do not require all colorings to have this property, and
in particular we can show:

Claim 10. For a≤ b≤ c satisfying the conditions of Definition 2,
F (a,b,c)≥ k

√
h(n−h)) for a fixed constant k > 0.

PROOF. We wish to show that:√
cb
a

(√
a+b−

√
b
)
≥ k
√

n(n−h)

for some constant k > 0. To do this, we will show that
√

c ≥
k1
√

n−h and
√

b
a

(√
a+b−

√
b
)
≥ k2
√

h for constants k1,k2 > 0,

from which the theorem follows (with k = k1k2) because the LHS
and RHS are non-negative in both inequalities. The conditions
a ≤ b ≤ c and a+ b+ c = n+3h

2 imply that c ≥ 1
3

(
n+3h

2

)
. Since

both sides are positive, we have:

√
c≥

√
1
6
(n+3h)>

√
1
6
(n−h) = k1

√
n−h

for k1 =
√

1
6 .

To lower bound the
√

b
a

(√
a+b−

√
b
)

expression, we relax

the c≥ b and a+b+c = n+3h
2 constraints, and leave only the con-

straints b ≥ a and a ≥ h. Now, since a,b > 0, we have for fixed a:

d
db

(√
b
a

(√
a+b−

√
b
))

=
d

db

(√
b2

a
+b− b√

a

)

=
2b
a +1

2
√

b2

a +b
− 1√

a

=
2+ a

b
2
√

a
√

1+ a
b
− 1√

a

=
2+ a

b −2
√

1+ a
b

2
√

a
√

1+ a
b

=

(
1−
√

1+ a
b
)2

2
√

a
√

1+ a
b

which is always positive, indicating that the function is monoton-
ically increasing in b. Thus in order to minimize the function for
fixed a, we choose b as small as possible, namely b = a. This gives:√

b
a

(√
a+b−

√
b
)
≥
(√

2−1
)√

a≥ k2
√

h(n)

for k2 =
√

2−1. Thus the claim holds for k = k1k2 =
√

2−1√
6

.

Thus it suffices to construct a G with λ < dk
n

√
h(n−h). A Ra-

manujan graph has λ ≤ 2
√

d−1 < 2
√

d and hence can be used if
2
√

d < dk
n

√
h(n−h). Rearranging gives d > 4n2

k2h(n−h) , which is

satisfied if d > 6n
k2h , since h≤ n/3. That is, if G is Ramanujan with

d = Θ
( n

h
)
, then H = L(G) is h-disjoint. Since H has a hyperedge

for every pair of edges from a given vertex in G, H has maximum
degree O

(
n2

h2

)
and thus at most O

(
n3

h2

)
hyperedges.

To prove the bound, it suffices to assert the existence of Ramanu-
jan graphs for every n and d. In fact, a much stronger theorem
holds: for every ε > 0 and even d ≥ 4, a random d-regular graph
on n vertices satisfies λ ≤ 2

√
d−1+ ε with high probability [24].

Both ε and the requirement that d be even have an insubstantial
effect on the final number of edges.

We now give a proof of the main lemma. The idea is to first apply
the expander vertex-boundary lemma to A and C, then the expander



mixing lemma to B and the subset of C with neighbors in A. In so
doing, we certify that A contains a vertex with edges to both B and
C, in G. By the definition of a lifted hypergraph, this ensures that
H contains a hyperedge crossing all three colors. Since we show
this for arbitrary A,B,C satisfying the size bounds of Definition 2,
this verifies the h-disjointness of H.

PROOF OF LEMMA 9. Let CA =C∩N(A) and a = |A|,b = |B|,
c = |C|,cA = |CA|. By Lemma 8,

cA ≥ c− 2λn
d

√
c
a
. (2)

To prove the existence of a trichromatic edge in H, it suffices to
show that |EG(CA,B)|> 0. By the expander mixing lemma,

|EG(CA,B)| ≥
dbcA

n
−λ

√
bcA.

Hence there exists an edge from CA to B when dbcA
n > λ

√
bcA,

which is equivalent to cA > λ 2n2

bd2 , because all variables are non-

negative. Substituting cA with (2) and solving gives n2

bd2 λ 2 +
2n
d
√ c

a λ − c < 0. By the quadratic equation, this is equivalent to(
λ −
√

cbd
n

(√
1
b
+

1
a
−
√

1
a

))
·(

λ +

√
cbd
n

(√
1
b
+

1
a
+

√
1
a

))
< 0.

Because λ is positive, the LHS is negative when the first term is
negative. Thus we need:

λ <

√
cbd
n

(√
1
b
+

1
a
−
√

1
a

)

=

√
cbd
n

√
a+b−

√
b√

ab

=
d
n

√
cb
a

(√
a+b−

√
b
)
.

This concludes the proof of the lemma, and hence of Theorem
7.

We also give a (slightly less general) explicit construction of such
hypergraphs.

Theorem 11. There is an algorithm that, for an infinite number
of integers n, and any h(n) bounded above by n/3, efficiently con-

structs an h(n)-disjoint hypergraph with O
(

n3

h(n)2

)
hyperedges.

In other words, by applying an explicit Ramanujan construction,
we constructively achieve the result of Theorem 7, for an infinite
number of values of n.

PROOF. Extending the classic works of Lubotzky-Phillips-
Sarnak [33], Margulis [35], and Morgenstern [36] on explicit con-
structions of Ramanujan graphs, Cioabǎ and Murty [13] give a con-
struction that comes very close to the Ramanujan bound for nearly
any graph size and degree.

Theorem 12 (Cioabǎ and Murty [13]). Let d ∈ Z+ be such that
d− 1 is composite. For any positive ε , there exists an infinite se-
quence of graphs {Gi}∞

i=0 such that Gi is an (ni,d,(2+ε)
√

d−1)-
expander, and ni > ni−1 ∀ i > 0.

Recall that Lemma 9 and Claim 10 together imply it suffices to
construct an (n,d,λ )-expander G, where λ < dk

n

√
h(n)(n−h(n))

for a fixed k.
Pick d =

2(2+ε)2n
k2h(n) . Then [13] gives an algorithm to construct

(n,d,λ )-expanders with λ =
(2+ε)2

k

√
2n

h(n) . Then observe:

dk
n

√
h(n)(n−h(n)) =

2(2+ ε)2nk
k2h(n)n

√
h(n)(n−h(n))

≥ 2(2+ ε)2

k

√
n(2/3)

h(n)

>
(2+ ε)2

k

√
2n

h(n)
= λ ,

proving the theorem.

5. A SUFFICIENCY CONDITION FOR
h-DISJOINTNESS

In this section we consider a complementary question to that of
the previous sections. Namely: how many hyperedges are neces-
sary to ensure that every 3-uniform hypergraph of that size is h(n)-
disjoint? Equivalently, what is the densest 3-uniform hypergraph
that is not h(n)-disjoint? This question is relevant in practice, as
it may be impossible in some systems to implement the set of 3-
hyperedges exactly. The theorem below gives guarantees on relia-
bility in such an oblivious setting.

Definition 7. For integer h ≤ n/3, the sufficiency number Un(h)
is the minimum integer such that, for a 3-uniform hypergraph H =
(V,E) on n vertices, |E| ≥Un(h) implies that H is h-disjoint.

Theorem 13. For h≤ n/3,

Un(h) =
(

n
3

)
− n−h

2
·h2 +1.

In other words, n−h
2 · h

2 is the minimum number of edges one
can remove from the complete 3-uniform n-vertex hypergraph, in
order to ensure it is not h-disjoint.

PROOF. Let H = (V,E) be an n-vertex 3-uniform hypergraph
that is not h-disjoint. By definition, there must be some partial
coloring A,B,C of the vertices with a = |A|,b = |B|,c = |C|, such
that there is no edge crossing A,B,C, and moreover a,b,c ≥ h and
a + b + c ≥ n+3h

2 . For any 3-coloring, the complete 3-uniform
hypergraph contains exactly abc crossing hyperedges. Hence for
some a,b,c having the properties above, abc is the smallest num-
ber of edges that can be removed from the complete graph to make
it not h-disjoint.

Claim 14. For integers a,b,c≥ h such that a+b+ c≥ n+3h
2 , abc

is minimized by taking a = h,b = h,c = n−h
2 .

PROOF. We will assume for the proof that n≡ h (mod 2). The
second case is proved similarly.

First note that since a+b+c≥ n+3h
2 , abc is minimized by taking

a + b + c = n+3h
2 . Decreasing the sum can always decrease the

product. Hence, we may assume w.l.o.g. that c = n+3h
2 −a−b, and

minimize g(a,b) = ab
(

n+3h
2 −a−b

)
. This gives the following

optimization problem, for arbitrary n and h:



minimize g(a,b)

subject to a≥ h, b≥ h, a+b≤ n+h
2

The constraints are linear and hence define halfspaces in the
(a,b)-plane. These halfspaces define P, a polytope (triangle) in
which the solution must lie. In particular, the optimal solution must
either be a global minimum of g(a,b) (and hence a root of the gra-
dient); a minimum along one of the faces of the polytope; or a
vertex of the polytope. We check each case in turn.

Proposition 15. The following three facts about the constrained
optima of g(a,b) hold.

• The gradient of g has a single root inside P, and it is a global
maximum.

• The minimum value of g along the faces of P is (n+h)2

16 h.

• The minimum value of g at a vertex of P is h2(n−h)
2 .

The proof of the proposition appears in the appendix. We now
observe how it implies the theorem.

Comparison. There are only two possible minima in the polytope:
h(n+h)2

16 and h2(n−h)
2 . Observe that

(n+h)2

16
=

n2 +h2 +2nh
16

=
(n2 +9h2−6nh)−8h2 +8nh

16

=
(n−3h)2

16
+

h(n−h)
2

≥ h(n−h)
2

.

Therefore h(n+h)2

16 ≥ h2(n−h)
2 , so h2(n−h)

2 is the minimum of the con-
strained g(a,b). Recall that this was obtained by setting two faces
to tight. In other words, set any two of a,b,c to h, and the other to
n−h

2 .

By the claim, removing h2(n−h)
2 edges from the complete

3-uniform hypergraph ensures that a given valid coloring has no
trichromatic edge. As a result, the hypergraph cannot be h-disjoint.
Conversely, removing fewer edges cannot remove all the edges
crossing any valid coloring. Hence Un(h) =

(n
3
)
− n−h

2 ·h
2 +1.

This completes the proof of Theorem 13.

6. HARDNESS OF DECIDING h-DISJOINT-
NESS

In this section, we take a first step towards addressing algorith-
mic questions related to h-disjointness. In particular, given a 3-
uniform hypergraph H, we would like to determine the minimum
value hopt(n) such that H is hopt(n)-disjoint, or barring this, an
approximate value h that is as close to hopt(n) as possible. This
question has practical value because it allows us to evaluate an ex-
isting hypergraph, or perhaps one constructed via the methods de-
scribed in Section 4, for h-disjointness. Here we show that deciding
whether H is h-disjoint is co-NP-complete.

Theorem 1 (restated). Given a 3-uniform hypergraph H = (V,E)
with |V | = n, it is co-NP-complete to decide, for integers h ≤ n/3,
whether H is h-disjoint.

PROOF. The complement problem to h-disjointness is that of
finding a disjoint A,B,C ⊆ V satisfying the conditions of Defini-
tion 2 such that ∀x ∈ A,y ∈ B,z ∈ C, it holds that (x,y,z) /∈ E. A
certificate for this problem is the sets A,B,C, and it can be verified
in O(|A||B||C|) time by checking that all hyperedges (x,y,z) are
not in E. Since complement h-disjointness is in NP, it follows that
h-disjointness is in co-NP.

We show that complement h-disjointness is NP-hard by a reduc-
tion from balanced bipartite independent set (BBIS), which is NP-
complete [3]. Given a balanced bipartite graph G(X ∪Y ;E) with
|X | = |Y | = n/2 and a positive integer t, the decision BBIS prob-
lem is to find sets A ⊆ X , B ⊆ Y with |A| = |B| = t with no edges
between A and B. Given an instance of the BBIS problem, we con-
struct an instance of complement h-disjointness as follows. Create
an empty 3-uniform hypergraph H with n′ = n+(n− t) vertices,
where the first n vertices represent the vertices of G. On the n− t
vertices, create a complete 3-uniform hypergraph Z. Add a hyper-
edge (u,v,w) for each pair of vertices u,v ∈ Z and every w ∈ G.
Add a hyperedge (u,v,w) for each pair of vertices u,v ∈ X and ev-
ery w ∈ Z; do the same for every pair of vertices u,v ∈ Y . Finally,
add a hyperedge (u,v,w) for each edge (u,v) ∈ G and every w ∈ Z.
The input to the complement h-disjointness problem is the hyper-
graph H and the positive integer h = t.

Given a solution (A,B) with |A|= |B|= t to BBIS, we claim that
A,B,Z is a solution to complement h-disjointness. Since t ≤ |X |=
|Y |= n/2, it follows that |Z|= n−t ≥ t, so all |A|, |B|, |Z| ≥ t. Also,
|A|+ |B|+ |Z| = t + t +(n− t) = n+(n−t)+3t

2 = n′+3t
2 . Now, for a

hyperedge to cross the sets A,B,Z, there must be some u ∈ A,v ∈
B,w ∈ Z such that (u,v,w) ∈ H. By our construction, all but one
type of hyperedge in H involve vertices in at most two of the sets
A⊆ X , B⊆Y , and Z. The exception are hyperedges (u,v,w) where
(u,v) ∈ G and w ∈ Z. But since there are no edges crossing A,B,
there is no hyperedge that crosses A,B,Z. Thus A,B,Z is a solution
to complement h-disjointness.

In the reverse direction, suppose we have a solution A,B,C to
complement h-disjointness. Since |A|+ |B|+ |C| ≥ n′+3t

2 = n+ t,
some vertices in Z must appear in the sets A,B,C. We claim that
these vertices must appear in exactly one set. This is because if Z
appears in all three sets, then there would exist a hyperedge cross-
ing all three sets, since Z is a complete 3-uniform hypergraph. Sim-
ilarly, Z cannot appear in exactly two sets, because then there would
exist a hyperedge connecting two vertices of Z (one in each set) and
a vertex in the third set (a vertex in G), also by our construction.
Thus Z participates in exactly one set; assume w.l.o.g. that this set
is C. We now claim that the vertices in X appear in at most two
sets, and if they appear in two sets, one of those sets must be C.
If X appears in both A and B, then there would exist a hyperedge
connecting two vertices of X (one in each set) to a vertex of C, be-
cause C contains at least some vertices of Z by our argument above.
Therefore, X appears in either A or B, but not both. The same argu-
ment shows that this is also true of Y . Combining these arguments
with the fact that A,B,C are non-empty, it follows that the vertices
of X and Y are split across A,B (though they may appear together
in C). Since Z appears in C, A and B consist entirely of vertices in
G. Finally, the same argument used in the forward direction above
shows that there cannot exist an edge (u,v) ∈ G between A and B,
since then there would exist a hyperedge (u,v,w) to a vertex w ∈ Z
in C. Thus, since |A|, |B| ≥ t, we can remove excess vertices so that
|A|= |B|= t and the resulting sets are a solution to BBIS.



7. CONCLUSIONS & OPEN PROBLEMS
This paper studies the price of equivocation in distributed sys-

tems. Our tight bounds on the number of 3-processor partial broad-
cast channels required for Byzantine agreement describe the amount
of equivocation a system can tolerate for a given level of redun-
dancy. Our results thus capture the equivocation vs. redundancy
trade-off, an important metric in the cost-benefit analysis of a fault-
tolerant system.

Several interesting theoretical questions remain. For example,
given the hardness of deciding a system’s resilience (h-disjointness)
based on its partial broadcast channels, we are interested in approx-
imation algorithms for this value. We would also like to understand
the combinatorial properties of h-disjointness in greater depth. Can
it be shown that h-disjoint hypergraphs must fundamentally be built
on an underlying expander? How do our definitions and results
scale to k-uniform hypergraphs, for k > 3?

On the practical side, it would be very interesting to find a re-
alistic network that achieves h-disjointness naturally based on its
broadcast (e.g., network hub) and point-to-point (e.g., network
switch) connections, instead of constructing partial broadcast chan-
nels explicitly.
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APPENDIX
Proof for Sufficiency Condition

PROOF OF PROPOSITION 15. We explore the three claims be-
low.

Global minimum. The gradient of g has only a single root in the
polytope.

Og(a,b) =
[

b(n+3h)
2

−2ab−b2,
a(n+3h)

2
−2ab−a2

]
.

We may assume that a 6= 0,b 6= 0, since otherwise [a,b] is not in the
polytope. Hence b(n+3h)

2 −2ab−b2 = 0 is equivalent to a= n+3h
4 −

b
2 . Symmetrically, b = n+3h

4 − a
2 . So a = n+3h

4 −
(

n+3h
8 − a

4

)
,

i.e. 3
4 a = n+3h

8 , i.e. a = n+3h
6 . Symmetrically, b = n+3h

6 . There-
fore the only root of the gradient that may be in the polytope is[

n+3h
6 , n+3h

6

]
.

We now show that
[

n+3h
6 , n+3h

6

]
must be a maximum by exam-

ining the second derivatives of g(a,b). The second derivatives are

• gaa(a,b) =−2b =− n+3h
3

• gbb(a,b) =−2a =− n+3h
3

• gab(a,b) = n+3h
2 −2a−2b =− n+3h

6 .

The second derivative test says that if gaa(a,b) is negative, and
gaa(a,b) · gbb(a,b)− gab(a,b)2 is positive, then [a,b] is a local

maximum. Indeed,− n+3h
3 is negative, and

(
− n+3h

3

)2
−
(
− n+3h

6

)2

is positive. Therefore the only root that may be within the polytope
is a global maximum, so it cannot possibly be the minimum point
of the polytope.

Faces. We consider the points along the faces of each constraint. In
other words, we set the constraints to tight, then globally optimize
the resulting function.

First make a ≥ h tight. a = h means the new objective function
is hb

(
n+3h

2 −h−b
)
= hb

(
n+h

2 −b
)

. We differentiate to find the
optimum value of b for this function.

d
db

hb
(

n+h
2
−b
)
=

h(n+h)
2

−2hb,

which is 0 only at b = n+h
4 . Thus g

(
h, n+h

4

)
= h

(
n+h

4

)
·(

n+h
2 −

n+h
4

)
=

h(n+h)2

16 is a potential global minimum for g.
By symmetry, setting b ≥ h tight gives the same potential mini-

mum.
Finally, set a+ b ≤ n+h

2 tight. Then the new objective function

is
(

n+h
2 −b

)
b
(

n+3h
2 −

(
n+h

2 −b
)
−b
)
=
(

n+h
2 −b

)
bh. We dif-

ferentiate to find the optimum value of b of this new function.

d
db

(
n+h

2
−b
)

bh =
h(n+h)

2
−2bh,

which is 0 only when b = n+h
4 . Plugging this and a = n+h

4 (by

symmetry) into g gives g(a,b) = ( n+h
4 )2( n+3h

2 − n+h
2 ) =

(n+h)2

16 h,
the same value found for the other two constraints.

Vertices. We now consider the value of g at the three intersections
of the three halfspaces. (Note that the faces only intersect in at most
one point because they are unique and on two variables.)

Setting a = h and a+ b = n+h
2 gives b = n−h

2 , hence g(a,b) =

h · n−h
2

(
n+3h

2 −h− n−h
2

)
= h · n−h

2 ·h.

By symmetry, setting b = h and a+b = n+h
2 also gives g(a,b) =

h2(n−h)
2 .

Finally, setting a= h and b= h gives g(a,b)= h2
(

n+3h
2 −2h

)
=

h2(n−h)
2 , again.


