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Abstract

A popular technique for tolerating Byzantine faults in open distributed systems is to group machines
into sets called quorums, each of which has an honest majority. These quorums are then used as basic
building blocks to design systems that are robust to adversarial faults.

Despite over a decade of active research, all current algorithms require quorum sizes of Ω(log n),
where n is the number of machines in the network. This size is important since communication cost scales
polynomially in the size of the quorum. Given the stubbornness of this Ω(log n) barrier, a natural question
is whether better bounds are possible.

In this paper, we demonstrate that it is possible to reduce quorums sizes to O(log log n), despite an
adversary that controls a constant fraction of the computational resources in the network. In particular, we
show that even with such small quorums, we can ensure that all but an o(1)-fraction of the machines can
communicate with all but an o(1)-fraction of the machines in the network.

1 Introduction
Byzantine fault tolerance addresses the challenge of performing useful work when machines (nodes) in a
system are malicious. Information routed through or stored at a faulty node can be discarded or corrupted,
and tasks executed on such nodes may fail, or output an erroneous value. A popular technique for overcoming
these challenges is to group nodes into sets called quorums,1 where each has a non-faulty majority. We can
then ensure the following.

• Computation is performed by all members of a quorum via protocols for Byzantine agreement (BA) or
more general secure multiparty computation to guarantee that tasks execute correctly. In this way, each
quorum simulates a reliable processor upon which jobs can be run.

• Fault-tolerant routing is also ensured. For quorums Q1 and Q2 along a route, each member of Q1 can
transmit messages to all members of Q2. This all-to-all exchange, followed by majority filtering by
each node in Q2, guarantees correctness of communication between quorums.2

1Such sets have appeared under different names in the literature, such as “swarms” [17] or “clusters” [20].
2Quorums also improve robustness in other ways. Members may agree to ignore another quorum if it misbehaves too often, hence

reducing spamming. Data may also be redundantly stored at multiple quorum members.
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The use of quorums provides a scalable approach to designing a robust distributed system, since they avoid
the need to have all n nodes perform BA in concert, or communicate via a system-wide pairwise exchange of
messages.

Quorums have been an active topic of research for more than a decade, with many intriguing theoretical
results [7–9, 11, 17, 20, 21, 23, 27, 34, 36, 43, 49]. Yet, despite this progress, an enduring requirement is that
each quorum contains Ω(log n) nodes.

Why does this logarithmic term matter? At first glance, it is an unlikely bottleneck. However, since
quorums are building blocks for the system, their size |Q| greatly impacts important costs:

(i) Cost of Quorum Computation. Members of a quorum must often perform computation in concert.
Consequently, resource costs are a function of |Q|. For example, employing BA [24–26] or secure
MPC [12] protocols will require poly(|Q|) messages.

(ii) Cost of Robust Routing. Routing via all-to-all exchange between two quorums incurs Ω(|Q|2) message
complexity. Given a route of length D, communication between any two quorums requires O(D|Q|2)
messages.3

(iii) Cost of State Maintenance. Each node w must maintain state on all of its neighbors; this includes
both the members of all quorums to which w belongs and the members of neighboring quorums. This
requires storing link information, as well as periodically testing links for liveness. 4

In each case above, reducing |Q| would directly reduce cost. Unfortunately, for existing results, |Q| =
Ω(log n) is key to ensuring (via a concentration result and union bound) that all quorums have a non-faulty
majority with high probability (w.h.p.).5 Without this property, all previous quorum constructions succumb
to adversarial attack. Therefore, new ideas are required to decrease |Q|.

1.1 ε-Robustness

Consider a system of n nodes where a β-fraction suffer Byzantine faults. The following defines our notion of
ε-robustness: For a small ε > 0, at least (1 − ε)n quorums have an honest majority and can robustly route
messages to each other.

Note that prior results fall under this definition when ε = 1/poly(n). For generality, the parameters β and
ε are left unfixed, however, in order to employ BA protocols, typically β ≤ 1/4, and a small ε is desirable.
We consider the following questions:
Why is this a useful concept? Consider decentralized storage and retrieval of data. This definition guarantees
all but an ε-fraction of data is reachable and maintained reliably. Example applications include distributed
databases, name services, and content-sharing networks. Alternatively, consider n jobs in an open computing
platform that are run on individual machines. This definition guarantees that all but an ε-fraction of those jobs
can be correctly computed.6

Why isn’t satisfying this definition trivial? Given Θ(n) non-faulty nodes, this definition captures the natural
goal of simulating (1− ε)n reliable processors and being able to route information between those processors.
If we ignore the use of quorums or, equivalently, consider quorums each consisting of a single node, then

3We note that improvements are possible, but they come with certain caveats. Results in [17, 43] lower the cost to O(D|Q|) in
expectation but requires a non-trivial (expander-like) construction, and [49] further reduces this to O(D) in expectation but with a
poly(|Q|) message cost each time routing tables are updated – this is expensive even with moderate churn.

4Constructions [17, 36] require that each node belongs to η > 1 quorums for a state overhead of Ω(|Q|η). Also, if each quorum
shares links with ∆ other quorums (they are neighbors), then O(|Q|∆) such links must be maintained; typically, ∆ = O(logn).

5With probability at least 1− 1/nc for a tunable constant c ≥ 1.
6While this may not be sufficient for general computation, it is valuable for tasks where an o(1) error rate or bias can be tolerated;

for example, if we wish to obtain statistics on a group of machines for network metrics, or generate a large set of random numbers.
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we trivially have (1− β)n reliable processors. However, routing between them is challenging. For example,
establishing links between each pair of nodes will give robust routing, but this is hardly scalable.
Why don’t previous solutions solve this problem? All prior results using quorums focus on the case where
ε = 1/poly(n). In this case, routing is possible – albeit, costly – because w.h.p. all quorums have a majority
of honest nodes and are, therefore, reliable.

To reduce cost, we consider ε = 1/poly(log n) and refer to this as almost-everywhere routing. This
allows us to reduce the size of the quorum exponentially which yields cost savings. However, we lose the
w.h.p. guarantee that all quorums have a majority of non-faulty nodes — indeed, w.h.p. there will be quorums
that do not have such a majority— and this disqualifies prior solutions.

1.2 Related Work

Robustness via Quorums. The use of quorums for building robust distributed systems has received signifi-
cant attention. Early results addressed robustness for ε = 1/poly(n) with poly(log n) cost assuming constraints
on the amount of dynamism in the system [5, 16, 17, 21, 35].

Full dynamism was achieved by Awerbuch and Scheideler in a series of breakthrough results [7–9]. In
particular, the authors propose a cuckoo rule that w.h.p. preserves a good majority in each quorum over nΘ(1)

join/leave operations when the total system size remains Θ(n). More recently, Guerraoui et al. [20] showed
similar guarantees for systems that can vary polynomially in size.

An experimental evaluation of the cuckoo rule, along with proposed improvements, is given in [45]. The
trade-off between quorum size and the level of robustness is examined, and findings suggest the approach
can be practical to a point. For example, when n = 8, 192 and β ≈ 0.002, under the original cuckoo rule,
|Q| = 64 suffices to preserve a good majority in each quorum for 100, 000 join/departure events; β ≈ 0.07 is
possible with suggested improvements in [45].

Several results have focused on reducing communication complexity, when the goodness of quorums
is guaranteed (via an algorithm like the cuckoo rule) [43, 49]. However, here too, quorum size impacts
performance and |Q| = 30 incurs significant latency in practice [49]. Quorums have also been used in
conjunction with quarantining Byzantine nodes [27, 41]; however, maintaining these quorums under churn
remains an open problem.
Robustness without Quorums. Other decentralized robust constructions exist that do not explicitly use
quorums [13, 16, 42]. However, the associated techniques retain some form of Ω(log n) redundancy with
regards to data placement or route selection and, therefore, incur poly(log n) cost.

Approaches described in [11, 23, 34] mitigate Byzantine faults by routing along multiple diverse routes.
However, it is unclear that these systems can provide theoretical guarantees on robustness.

Central authorities (CAs) — sometimes referred to as a Configuration Service or Neighborhood Authority
— have been used in prior results [11, 39, 40, 47] to achieve robustness. While our results can be used in
conjunction with a CA, it is not always plausible to assume such an authority is available and immune to
attack. For this reason, our work does not depend on a CA.
Computational Puzzles. Proof-of-work (PoW) via computational puzzles has been used to mitigate the Sybil
attack [14] whereby an adversary overwhelms a system with a large number of identifiers (IDs). We note
that such PoW schemes have been proposed in decentralized settings such as DHTs (for example, see [29]).
However, such PoW schemes only limit the number of Sybil IDs — typically commensurate with the amount
of computational power available to the adversary — and the problem of tolerating these adversarial IDs must
still be addressed by other means (for example, see [44, 50]).

A prominent example of how PoW can provide security is Bitcoin. However, note that the analysis of
Bitcoin and related systems commonly assumes the existence of a communication protocol that allows a
node to disseminate a value to all other nodes within a known bounded constant amount of time despite an
adversary [19,30,32]. In contrast, our results do not assume the existence of such a protocol. Our work does,
however, use computational puzzles to obtain a significant reduction in communication complexity and state
maintenance.
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1.3 Our Model and Preliminaries
A node is good if it obeys protocol, otherwise, the node is Byzantine or bad. For ease of exposition, we
analyze a system where n nodes are always present even under churn; that is, when a node leaves, another is
assumed to join. Our results hold when the system size is Θ(n) – that is, the size changes by a constant factor
– but we omit these details in this extended abstract.
The Adversary. At most βn nodes are bad and used by an adversary to attack the system where β < 1/4
is a positive constant. Critically, this implies robustness to Θ(n) Byzantine nodes which is asymptotically
optimal.7 Note that this is a powerful attack model since a single adversary allows the bad nodes to perfectly
collude and coordinate their malicious actions. The adversary also knows the full network topology and the
contents of all messages sent between nodes; however, the adversary does not have access to any random bits
generated by a good node.
Quorums. A quorum is a set of nodes; for our results, we assume each quorum has size Θ(log log n). Each
node w has its own quorum Qw and w is referred to as the leader. A quorum Q is good if (i) d1 ln lnn ≤
|Q| ≤ d2 ln lnn for sufficiently large positive constants d1 < d2, and (ii) the number of bad nodes in Q is at
most (1 + δ)β|Q| for some tunably small constant δ > 0 depending only on n. Note that quorums are not
necessarily disjoint; in addition to being the leader of Qw, node w may belong to other quorums. Quorum
construction is described in Section 3.1.
Input Graph. We assume an input graph, G on N nodes.8 Given that each node has an ID u.a.r. in [0, 1)
and there is no adversary, G satisfies the following properties with probability at least 1−N−c for a tunable
constant c ≥ 1:

• P1 – Search Functionality. There exists a search algorithm that, for any key value x, returns the node
responsible for the corresponding resource (i.e., data item, computational job, shared network printer,
etc.). A search requires traversing D = O(logN) nodes.

• P2 – Load Balancing. A randomly chosen node is responsible for at most a (1 + δ)/n-fraction of the
key values (and the corresponding resources) for an arbitrarily small δ > 0 depending on sufficiently
large n.

• P3 – Linking Rules. Each node w links to nodes in a neighbor set Lw and the rules for forming Lw are
known globally. Any node may determine the elements in Lw by performing searches.9 There are also
O(poly(logN)) nodes whose IDs dictate that w is a neighbor (see the Appendix C). Again, any node
may verify this by performing searches. The number of links on which a node is incident is the degree
of w, and every node has the same degree asymptotically.

• P4 – Congestion Bound. The congestion is C ≤ polylog(N)/N where congestion is the maximum
probability (over all nodes) that a node is traversed in a search initiated at a randomly chosen node for
a randomly chosen point in [0, 1).

Note thatG is not robust to bad nodes, but it does provide the underlying topology for our robust construction.
For any G satisfying the above properties, our results apply.

We emphasize that many constructions for G exist such as Chord [46], the distance-halving construction
in [36], Viceroy [31], Chord++ [4], D2B [18], FISSIONE [28], and Tapestry [51]. Other non-DHT construc-
tions with congestion bounds are also likely suitable input graphs, such as skip graphs [2,3] and hyperrings [6],

7For ease of exposition in our proofs, we let β be small (this is standard in the literature) since we are not trying to optimize this
quantity. However, larger values of β are likely possible.

8We note that the number of nodes N in G may differ from the number of IDs n used in our robust construction.
9For example, in Chord [46], the neighbors of w are (1) the successor and predecessor of w, and (2) the successors of the points

w+ ∆(i) where ∆(i) is an exponentially increasing distance in the ID space for integers i = 1, ...,O(lg(N)). Any node may verify
that u ∈ Lw via a search on w + ∆(i) and checking that the result is u.
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where a membership vector or padding sequence is equivalent to an ID, respectively. In these latter construc-
tions, nodes typically correspond to data items instead of machines; however, one can map data items to a
network of nodes that preserves this topology [1].

Node Identifiers and Proof-of-Work. Each node owns an ID which, for simplicity, is a value in [0, 1)
(adequate precision is obtained using O(log n)). Important properties that our system guarantees are:

• IDs expire after a period of time that can be set by the system designers.

• A claim to own an ID can be verified by any good node.

• The adversary is limited to roughly βn IDs u.a.r. from [0, 1).

These properties are established via a PoW scheme whereby a node must solve a computational puzzle in
order to obtain an ID. Given space constraints and that the bulk of our results are proved without the need to
reference these details, we delay their discussion until Section 4.

Throughout this paper, we make the random oracle assumption [10]: there exist hash functions, h, such
that h(x) is uniformly distributed over h’s range, when any x in the domain of h is input to h for the first time.
We assume that both the input and output domains are the real numbers between 0 and 1. In practice, h may
be a cryptographic hash function, such as SHA-2 [37], with inputs and outputs of sufficiently large bit lengths

We make use of the following well-known concentration results.

Theorem 1. (Chernoff Bounds [33]) Let X1, . . . ,XN be independent indicator random variables such that
Pr(Xi) = p and let X =

∑N
i=1Xi. For any δ, where 0 < δ < 1, the following holds:

Pr(X > (1 + δ)E[X]) ≤ e−δ2 E[X]/3 and Pr(X < (1− δ)E[X]) ≤ e−δ2 E[X]/2

Theorem 2. (Method of Bounded Differences [15]) Let f be a function of the variables X1, ...,XN such that
for any b, b′ it holds that | f(X1, ...,Xi = b)− f(X1, ...,Xi = b′) | ≤ ci for i = 1, ...,N . Then, the following
holds:

Pr(f > E[f ] + t) ≤ e−t2/(2
∑

i c
2
i ) and Pr(f < E[f ]− t) ≤ e−t2/(2

∑
i c

2
i )

1.4 Overview and Our Main Result
As discussed above, reducing quorum size is desirable but gives rise to the possibility of bad quorums. In
Section 2, we demonstrate how to achieve 1/poly(log n)-robustness with quorums of size Θ(log log n) when
there is no churn. This argument leverages the bound on congestion given by the input graph, along with
carefully tallying of the fraction of ID space which cannot be searched.

This result is applied in Section 3 where we show that 1/poly(log log n)-robustness can be maintained
despite churn. A key component of our construction is the use of two graphs (composed of quorums) that,
when used in tandem, limit the number of bad quorums that can be formed.

Finally, in Section 4, we describe how PoW is used to provide the guarantees on node IDs discussed in
Subsection 1.3. The main challenge is defending against an adversary that wishes to store a large number of
IDs for use in a massive future attack (i.e., a pre-computation attack).

Our main result is the following:

Theorem 3. Assume an input graph G that satisfies P1 - P4. If the adversary has at most βn computational
power, then our construction using |Q| = O(log log n) provides the following guarantees w.h.p. over a
polynomial number of join and departure events:

• all but a 1/poly(log n)-fraction of quorums are good.

• all but a 1/poly(log n)-fraction of nodes can successfully search for all but a 1/poly(log n)-fraction of
the resources.

That is, our construction provides 1/poly(log log n)-robustness. This yields bounds on the cost metrics dis-
cussed in Section 1:
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• robust computation incurs O(poly(log log n)) message complexity.

• robust routing incurs O(log n poly(log log n)) message complexity.

• expected O(poly(log log n)) state maintenance.

where the cost of state maintenance follows from using a graph G as defined in [18], [31], or [36].

Note that these are substantial improvements over the costs described in Section 1, particularly with respect
to robust computation and state maintenance.

Can we do better? A natural question is whether substantially better results are possible and we offer
some intuition for why this seems unlikely. With |Q| = Θ(log log n), the probability of a bad quorum is
roughly 1/poly(log n). Given that most search algorithms require (roughly) a logarithmic number of hops,
the probability of avoiding any bad quorums along the search path is (roughly)

∑logn
1 1/poly(log n) < 1 by

a union bound.
Now consider a smaller quorum of size of, say, Θ(log log log n). The probability of a bad quorum is

(roughly) 1/poly(log log n) and over a logarithmic number of hops, a union bound fails to offer us a proba-
bility less than 1 and routing is likely to fail.

In this sense, our choice of |Q| appears to be pushing the limits of what is possible when designing robust
systems with quorums.

2 Almost-Everywhere Routing – The Static Case
We first prove results for the static case since this is a useful building block for the dynamic case.

2.1 The Quorum Graph

Given our input graph G, our approach involves the creation of a quorum graph Q which can be viewed as
replacing each vertex w in G with a quorum Qw.

Other aspects are analogous to G. The neighbor set Lw consists of quorums as elements. Edges are di-
rected from quorum Qw to quorum Qv – denoted by (Qw,Qv) – and signifies that Qv ∈ Lw. A search in
Q proceeds over these edges as it would in G, except that quorums are being traversed instead of individual
nodes. The edge directionality indicates the way in which a search traversing Qw proceeds; other communi-
cation may occur in both directions. The edge (Qw,Qv) is realized in the network by all-to-all links between
(at least) the good members in Qw and Qv.

For ease of presentation, we often speak of quorums being uniformly distributed in the ID space; by this,
we mean the leaders of the quorum are uniformly distributed. Congestion is similarly defined for a quorum
graph: the probability that a random lookup traverses a quorum (that is, traverses the leader and, by extension,
at least the good members of its quorum).

In proving Q satisfies almost-everywhere routing, we consider the following steps which capture the
impact of the adversary:

• S1. Q inherits the properties of the input graph G; each quorum Qw has |Lw| neighbors, poly(log n)
degree, and Q has congestion C = O(logc n/n) for a constant c ≥ 0.

• S2. Each quorum is red independently with probability pf ≤ 1
logk n

for a tunable constant k > 0.

• S3. The adversary adds or deletes edges between red quorums only.

Overview of Analysis. We clarify a few points before presenting our arguments in the next section. A search
in Q = (V ,E) is said to fail if it traverses any red quorum. Pessimistically, we assume the result of a failed
search is dictated by the adversary; otherwise, the search succeeds.
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(1) (2)

Figure 1: (1) Left: An input graphGwith nodesw,u, v, and y. (1) Right: A quorum graph with corresponding
quorums Qw,Qu,Qv, and Qy. Red quorums are marked with a “B”. Large dashed arrows represent quorum-
to-quorum links. (2) Links between individual nodes associated with members of quorums Qw and Qu. The
good nodes (colored blue) link to all nodes in the opposite quorum, while Byzantine nodes (colored red) may
attempt to establish links arbitrarily.

Informally, blue quorums correspond to good quorums with their neighbors correctly established, while
red quorums correspond to bad quorums or those quorums with at least one incorrect neighbor. The utility of
this coloring scheme will become clearer when we address churn in Section 3.2.

The value of pf in S2 corresponds to the probability that a quorum is bad or has at least one incorrect
neighbor (i.e., is red). To provide intuition, note that if we select Θ(log log n) nodes u.a.r., then the probability
that more than a 1/3-fraction are bad is O(1/poly(log n)) by a Chernoff bound. A similar bound can be
derived on the probability of incorrectly setting up neighbors. Keeping pf upper bounded by 1

logk n
with

churn is non-trivial, and this is argued later in Section 3.2.
Edges in Q are directed from a quorum to its neighbors and a search traverses these edges as it proceeds.

In our analysis, special attention is paid to those edges (Q,Q′) such that Q is blue and Q′ is red; we call Q′ a
border quorum. Informally, border quorums can be viewed as forming a boundary point to the “community”
of red quorums and a search that encounters a border quorum fails.

Since the adversary controls all red quorums, it is free to insert or delete edges between red quorums;
hence the motivation for S3. However, edges involving at least one blue quorum are not modified. This
corresponds to the fact that the adversary cannot modify the blue quorum’s notion of who its neighbors are
(since this is kept consistent by the good nodes who are in the majority), although the red quorum may
certainly ignore or corrupt incoming messages from that blue quorum.

2.2 Analysis

In Q, a search starting at any quorum Qi and terminating at the first faulty quorum is a route. Starting at any
quorum Qi, the union of all routes induces a search tree; there is one search tree per quorum.10

For a quorumQv, we define responsibility ofQv to be the sum over all n search trees, T , of the probability
that a search using T for a random point in [0, 1) will traverse Qv (by this, we mean at least the good quorum
members partake in the search); denote this by ρ(v). We are interested in the aggregate responsibility of all
red quorums. Note that this is equivalent to examining the aggregate responsibility of all border quorums
since a search must traverse a border quorum before traversing any other red quorum.

10We note that it is possible that tracing through routes may yield the occasional cycle depending on the distribution of nodes in
the ID space; however, this does not impact our analysis.
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Lemma 1. With high probability ρ(v) = O(logc n) for each border quorum Qv.

Proof. By S1, w.h.p. the search in a random tree for a random point will traverse Qv with probability C =
O(logc n/n).

For a fixed search tree T , we say that a search for a key value fails if the appropriate route in T traverses
a red quorum. Let X be a random variable that is the sum over all search trees, T , of the probability that a
search in T for a random key value fails. The randomness of X depends on which quorums are red.

Lemma 2. E(X) ≤ O(pfn logc n).

Proof. For some fixed quorum Qv in some fixed search tree, let Xv be a random variable that equals ρ(v)
if Qv is a border quorum, and 0 otherwise. Note that X ≤

∑
vXv. By linearity of expectation, w.h.p.

E(
∑

vXv) =
∑

v E(Xv) = O(pfn logc n) by Lemma 1.

Lemma 3. Pr(X ≥ (1 + ε)pfn logc n) ≤ e−O(ε2p2fn/ logn) where ε > 0 is an arbitrarily small constant
depending only on n.

Proof. For some fixed quorum Qv in some fixed tree, let Xv be a random variable that equals ρ(v) if Qv
is a border quorum, and 0 otherwise. We will bound

∑
vXv, which is always at least as large as X . Let

f(X1, ...,Xn) =
∑

vXv. By Lemma 1, for any fixed Xi, |f(...,Xi = x, ...) − f(...,Xi = x′, ...)| =
O(logc n). Thus, we can apply Theorem 2 with c2

i = O(log2c n) for all 1 ≤ i ≤ n. We have that:

Pr(|X − E(X)| ≥ λ) ≤ e−λ2/(dn log2c n)

for some constant d > 0. Setting λ = εpfn ≥ εn/ logk n:

Pr(|X − E(X)| ≥ λ) ≤ e−ε2n/(2 log2(c+k) n)

Plugging in E(X) = O(pfn logc n) from Lemma 2 yields the result.

Lemma 4. With probability at least 1− e−O(p2fn/ log2(c+k) n) any search from a random quorum to a random
point in [0, 1) succeeds with probability 1−O(1/ logk−c n) where k ≥ c+ 1.

Proof. Fix any ε > 0. By Lemma 3, we have Pr(X ≥ (1 + ε)pfn logc n) ≤ e−O(ε2p2fn/ log2(c+k) n). We
can consider X to be the total space over all search trees that can not be reached because of the red quorums.
Hence, if we pick a tree uniformly at random from which to start a search, and search for a random point, then
the probability of success is exactly X/n = O(1/ logk−c n) by S2.

3 Almost-Everywhere Routing - The Dynamic Case

We now consider the case where nodes can join and depart the system. Time is divided into disjoint con-
secutive windows of T time steps called epochs indexed by j ≥ 1; we discuss the setting of T further in
Subection 4.1. In any epoch j, there are:

• two old quorum graphs Qj−1
1 and Qj−1

2 , each with n nodes.

• two new quorum graphs Qj1 and Qj2, each with at most n nodes.

We emphasize that the use of two quorum graphs per epoch is critical. A naive approach is to use a single
quorum graph in the current epoch in order to build a new quorum graph in the next epoch. However, this
approach will fail because errors from bad quorums will accumulate over time and we give some intuition for
why.
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(3) (4)

Figure 2: (3) A sketch of the search tree for node w. (4) A grouping of quorums into good and bad com-
munities. The edge (Qv,Qy) bridges the community and any search that traverses this edge from the blue
community is assumed to fail. Quorum Qy is a border quorum.

Informally, in epoch i, we have a process where (1) bad quorums build new bad quorums, and (2) good
quorums build bad quorums with some failure probability pif > 0 that depends on the current number of bad
quorums. Therefore, in the next epoch i + 1, the population of bad quorums has increased and so has pi+1

f .
This increasing error probability will continue until a constant fraction of the quorums are bad (instead of the
desired 1/poly(log n) fraction).

By using two quorum graphs, we can upper bound pif for all i. In particular, we bound this error as
pf < 1/ 1

logk n
as this is necessary to invoke our result for the static case (recall S2 in Sectino 2).

The new quorum graphs are built using the old quorum graphs over the n deletions and additions that
occur in the current epoch j; we describe this in Subsection 3.1. By the end of epoch j, the old quorum
graphs Qj−1

1 and Qj−1
2 are no longer needed, and the new ones Qj1 and Qj2 are complete.

3.1 Building New Quorum Graphs

We describe how the new quorum graphs Qj1 and Qj2 are created. Then, in Section 3.2, we prove that w.h.p.
this construction preserves almost-everywhere routing.

Preliminaries. Over the T steps of epoch j − 1, nodes that wish to participate in the system join.11 These
new nodes will be able to use the system in epoch j. Nodes are assumed to know when the system came
online (i.e. step 0).12 Since T is set when the system is designed, any node that wishes to join knows when
the current epoch ends and the next one begins.

For now, we assume each good node possesses a single ID which is valid for the T steps of the current
epoch. After the epoch comes to an end, each node must obtain a new ID for use in the next epoch. The
details of how this is performed and enforced are given later in Section 4; for now, we assume these properties
for IDs exist.

11As with much of the literature, we do not address concurrency. Since a join or departure event require updating only poly(logn)
links in a quorum graphs, we assume that there is sufficient time between events to do so.

12This is a fixed parameter included as part of the application, along with T , the hash functions, and various constants.
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Each good node v maintains the same ID inQj−1
1 andQj−1

2 . Recall from Section 1.3 that IDs expire after
a tunable period of time. Prior to this expiration, Qv is said to be active and it can initiate searches. When v’s
ID expires, its quorumQv (this includes v) should remain in both old graphs for an additional T steps. During
these steps, Qv will forward communications but it cannot initiate searches; we say that Qv is passive.

A new nodew with a random ID is bootstrapped into the new quorum graph by a bootstrapping quorum
denoted byQboot. Throughout, we assume that a joining node knows a good bootstrapping quorum; we discuss
this further in the Appendix D.

Making a Quorum-Member Request. In Qj−1
1 , the ith member of Qw is the successor to h1(w, i) for

i = 1, ..., d2 ln lnn where h1 is a secure hash function (and d2 is defined with respect to quorum size in Sec-
tion 1.3). In both Qj−1

1 and Qj−1
2 , a search for each successor of h1(w, i) is performed by the bootstrapping

quorum and suc(h1(w, i)) is solicited for membership in Qw.
A similar process occurs to form the quorums forQw inQj−1

2 , except that a different secure hash function
h2 is used. Therefore, the membership of Qw is likely different in each quorum graph.

Making a Neighbor Request. If w and u are neighbors in the input graph, then Qw and Qu should be
neighbors in the quorum graph (recall that this entails all-to-all links between the members of both quorums).
By property P3 of the input graph G, each node u ∈ Lw is dictated by w’s ID. On behalf of w, Qboot performs
a search to locate each such neighbor u. In this way, Qboot allows u (and Qu) to learn about w and agree to set
up a link in the respective quorum graph.

Verifying Requests. The adversary may attempt to have many good nodes join as neighbors or members of
a bad quorum. This attack is problematic since good nodes have their resources consumed by maintaining
too many neighbors or joining too many quorums; that is, this attack increases the state cost (see Section 1).
Therefore, any such request must be verified:
Verifying a Quorum-Membership Request. When node u is asked to become a member of quorumQw, node u
first checks whether h1(w, i) for the appropriate i (that accompanies the request) has a value which is within
[u − (c′ lnn)/n,u) for a constant c′ > 0 sufficiently large (we relax notation such that u refers to the name
of the node as well as its ID value). If h1(w, i) does not fall within this distance, then u immediately rejects
the request.

Else, u verifies the request by performing a search on h1(w, i). If this returns u, then the request is
considered verified and u becomes a neighbor of w; otherwise, the request is rejected. The correctness of
the quorum construction is argued in Lemma 7 and the bound on state cost maintained by this verification
procedure is given in Lemma 10.
Verifying a Neighbor Request. A node u that is asked to become a neighbor of node w (and thus establish
links between the members of Qu and Qw) must verify the request. Recall that by property P3 of the input
graph, u can determine independently by a search whether u should indeed be a neighbor of w. If this search
returns u, then the request is verified and u becomes a neighbor of w; otherwise, the request is rejected. The
correctness of the resulting neighbor set is argued in Lemma 8 and the bound on state cost for this verification
procedure is given in Lemma 10.

Performing a Search. Throughout epoch j, each new node w performs searches only using the old quorum
graphs Qj−1

1 and Qj−1
2 . This is done by forwarding the request to Qboot and forwarding on the search from

that position. SinceQboot was active when w joined, Qboot will remain in the system – perhaps in a passive state
–to facilitate searches in the old quorum graphs for another T steps. After this point,Qj1 andQj2 are complete
and w may issue its own searches using these quorum graphs.

Why must w forward its request through Qboot? Over the duration of epoch j, the new quorum graphs are
still under construction. In an extreme case, for example, w might be the first node to join Qj1 and Qj2.

Note that, after each join event when another new node is bootstrapped into the two new quorum graphs,
Qw may need to update its neighbor links Qj1 and Qj2 and this is done via searches in the old quorum graphs
Qj−1

1 and Qj−1
2 . This is also true if a new node decides to depart a new quorum graph (even before its

completed).
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Once epoch j + 1 starts, the new quorum graphsQj1 andQj2 are to be used. At this point, Qw will initiate
any search using its own links in these graphs (rather than relying on Qboot which may no longer be present in
the system).

3.2 Analysis

In this section, we prove that old quorum graphs satisfying S1, S2 and S3 can be used to construct new
quorum graphs that preserve S1, S2, and S3. Due to space constraints, some proofs are provided in the
Appendix.

Properties P1-P4 of input graphG are critical to our arguments. However, a prerequisite to these properties
is that all IDs are selected uniformly at random (see Section 1.3) which is untrue if the adversary chooses to
add only some of its bad nodes; for example, maybe only bad nodes with IDs in [0, 1

2) are added by the
adversary. Intuitively, this should not interfere with any of the properties.

In the following, we may consider G′ to be a modified input graph which uses the same construction as
G, but is subject to an adversary that only includes a subset of its nodes (from a larger set of nodes with u.a.r.
IDs).

Lemma 5. Consider a graph G′ where the nodes are formed from two sets:

• N1 consists of at least (1− β)n nodes with IDs selected u.a.r. from [0, 1).

• N2 is an arbitrary subset of at most βn nodes with IDs selected u.a.r. from [0, 1).

W.h.p., under the same construction as the input graph G, graph G′ has properties P1 - P4.

Throughout, the above result is assumed — that properties P1-P4 continue to hold if the adversary includes
only a subset of its IDs — even if we do not always make it explicit (for example, P1 is used throughout, P2
is used in Lemma 6, P4 in Lemma 9, and P3 in Lemma 10).

As described above, a node u performs searches on random key values (via hashing under the random
oracle assumption) in order to locate members for a new quorum Q. But if that key value maps to a bad node,
then this results in a bad member being added to the quorum. We can bound the probability of this event:

Lemma 6. W.h.p. a random key value in an old quorum graph maps to a bad node with probability at most
(1 + δ′)β for an arbitrarily small constant δ′ > 0 depending only on sufficiently large n.

In the following, let qf = O(1/ logk−c n) be the probability that a search for a random key in an old quorum
graphQj−1

i fails; this is dictated by Lemma 4. Recall that a quorumQ is good if d1 ln lnn ≤ |Q| ≤ d2 ln lnn
members, for constants d1 < d2, and at most |Q|/3 members are bad.

Lemma 7. A new quorum is bad with probability at most q2
fd2 ln lnn + 1/ logd

′
n for a tunable constant

d′ > 0 depending on d2.

Proof. For a new node w, there are two ways in which building Qw may fail. First, a search for a quorum
member may fail (i.e., encounters a bad quorum). Given a point h1(w, i), the probability that both searches in
Q1 andQ2 fail is at most q2

f . By a union bound, the probability of such a dual failure occurring over d2 ln lnn

searchers is at most q2
f d2 ln lnn.

Second, the search succeeds but returns suc(h(w, i)) where suc(h(w, i)) is a bad node (even though its
quorum has a good majority). Since h(w, i) is a random point (under the random oracle assumption), this
event occurs with probability at most (1 + δ)β by Lemma 6 for an arbitrarily small constant ε > 0 given
sufficiently large n.

Over d2 ln lnn searches, the expected number of such events is at most (1+δ)βd2 ln lnn. The probability
of exceeding this expectation by more than a small constant factor is 1/ logd

′
n by a Chernoff bound where

the constant d′ > 0 is tunable depending only on sufficiently large d2.
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A quorum Qw should link to all quorums with leaders in the neighbor set Lw as dictated by the input
graph G. If Qw (1) links to any quorum whose leader is not in Lw, or (2) fails to link to any quorum whose
leader is in Lw, then Qw is said to be confused. We now bound the probability of a confused quorum being
created.

Lemma 8. Each quorum in a new quorum graph is confused independently with probability at most q2
f .

Proof. Since the bootstrapping quorum is good, the only ways in which a quorum is confused is if the two
searches for a neighbor point in the old quorum graph Q′i both fail. Applying Lemma 4, this occurs with
probability at most q2

f .

We are now ready to prove that w.h.p. each new quorum graph is almost-everywhere routable.

Lemma 9. Assume that the adversary adds at most (1 + ε)βn nodes with u.a.r. IDs to a new quorum graph
for an arbitrarily small constant ε > 0 depending only on sufficiently large n. Then, w.h.p., each new quorum
graph is almost-everywhere routable.

Proof. To prove this result, we demonstrate equivalence between the construction of a new quorum graph and
steps S1, S2, and S3 in Section 2. Recall the terminology in Section 2 and designate all bad quorums and
confused quorums as red, and all other quorums as blue.
Equivalence to S1. By assumption, the adversary has at most (1 + ε)βn u.a.r IDs. The good nodes also have
u.a.r. IDs. Using all of these IDs would give congestion C corresponding to the input graph G and thus step
S1 would be satisfied. However, the adversary may choose to employ only a subset of its IDs – how does this
affect the congestion? By Lemma 5, the resulting congestion is O(C) and we have equivalence with S1 up to
a constant factor (which does not affect the argument in Lemma 4).13

Equivalence to S2. Satisfying S2 requires enforcing that for each construction of a new quorum graph, the
probability of a red quorum is at most pf ≤ 1/ logk n for a tunable constant k > 0. By Lemmas 7 and 8, each
quorum is red independently with probability at most:

≤ q2
f + q2

fd2 log log n+
(

1/ logd
′
n
)

≤ O

(
log logn

log2(k−c) n
+

1

logd
′
n

)
≤ pf

The last line follows by setting d2 to be sufficiently large such that d′ exceeds 2(k− c); note d2 is fixed at the
beginning and never needs to be changed throughout the lifetime of the network. Then, setting k > 2c to be
a sufficiently large constant yields the necessary inequality with pf .

Equivalence to S3. The incorrect link structure of confused quorums corresponds to step S3.

Finally, Lemma 4 applies to the new quorum graph and competes the proof.

We now prove bounds on the number links a good node needs to maintain due to (1) membership in quo-
rums, and (2) being a neighbor of a quorum. This is done by analyzing the verification process described in
Section 3.1.

Lemma 10. In expectation, each good node w in a quorum graph is a member of O(log log n) quorums and
maintains state on O(|Lw|) quorums that are either neighbors or have w as a neighbor.

13Note that the degraded congestion is not cumulative over the sequence of new quorum graphs. Rather, each new quorum graph
with starts with congestion C which can be worsened to O(C) in each instance.
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Figure 3: Evaluation of almost-everywhere routing in the Distance-Halving Construction [36] and Linearized
De Bruijn network [38].

We can now prove Theorem 3:

Proof. By Lemma 7, all but a 1/poly(log n)-fraction of quorums are good. It follows that for each good
quorum, executing a BA or secure multiparty computation schemes that incur poly(|Q|) message complexity
(discussed in Section 1) have poly(log log n) message complexity.

By Lemma 9, all but a 1/polylog n-fraction of nodes can successfully search for all but a 1/polylog n-
fraction of the resources.

Given that robust routing proceeds all-to-all between quorums and that searches have maximum length
D = O(log n) (recall P1 in Section 1.3), the message complexity is O(log n (log log n)2).

To bound the state cost, we invoke Lemma 10. Each good node w belongs to O(log log n) quorums in
expectation which implies O((log logn)2) expected state cost. Additionally, in terms of neighbors, w has
links (to or from) O(poly(log n)) quorums. The constructions for G defined in [36], [18], or [31] provide the
properties P1-P4, but provide a better bound ofO(1) expected degree. Using any such construction allows for
a state cost of O(log log n) in expectation. Therefore, the total state cost is O((log log n)2) +O(log log n) =
O((log log n)2).

3.3 Experiments on Almost-Everywhere Routing

To investigate the effectiveness of our almost-everywhere routing guarantee, we simulated two DHT construc-
tions: The Distance-Halving (DH) construction [36] and the Linearized De-Bruijn (LDB) network [38]. The
DH construction is interesting because it offersO(1) expected degree, O(log n) search latency, and has w.h.p.
expected congestion O(log2 n/n) (see [4]). The LDB network does not (to our knowledge) have a congestion
bound, but it does offer O(1) degree (not just in expectation) in addition to a O(log n) search latency. This
bound on degree is useful since it means that all quorums then possess poly(log log n) state overall in the
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quorum graph, whereas with the DH construction, a small number of quorums will have Θ(log n) degree and
thus have poly(log n) state.

The quorums in our simulations are programmed to be bad with probability 1/(c lnn)k, where c =
13/100 and k = 28. This yields a probability ≈ 0.33 for n = 3, 000 and a probability ≈ 0.0003 for
n = 30, 000. These parameters c and k were chosen to clearly illustrate the effect of n on our almost-
everywhere routing guarantee.

We measure the fraction of quorums in the system that are routable by a search operation from a single
source quorum; that is, no bad quorum is encountered on the search path from source to destination. For each
construction, we tested 15 DHTs per n value and a sample size of 15 source quorums per DHT was used.

The experimental results are plotted in Figure 3, along with error analysis using a 95% confidence interval.
The simulation was implemented with the Java programming language, and the plots were generated using
MATLAB. The experiment was executed on an Acer Aspire F5-573G laptop with a Windows 10 Operating
System, Intel Core i5 CPU, 64-bit Operating System, 8GB RAM, with a 2.30GHz processor.

For the DH construction, the fraction of routable quorums at n = 3, 000 quorums was 0.0144 while the
fraction of routable quorums at n = 30, 000 quorums was 0.9964. Therefore, as n increases, the almost-
everywhere routing property improves dramatically. Similarly, for the LDB network, the fraction of routable
quorums at n = 3000 quorums was 0.0516 while the fraction of routable quorums at n = 30, 000 quorums
was 0.9646.

4 Computational Puzzles
Up to this point, we have assumed that the adversary can inject into each new quorum graph at most (1+ε)βn
bad nodes with u.a.r. IDs, and that these IDs can be verified and forced to expire after a period of time
(Section 1.3). Given space constraints, we limit our discussion to the main ideas of how to use computation
puzzles to guarantee these properties.

4.1 Generating an ID
All nodes are assumed to know two secure hash functions, f and g, with range and domain [0, 1) and that
both hash functions satisfy the random oracle assumption.

In the current epoch i, node w is assumed to possess a “globally-known” random string ri−1 of ` lnn bits.
By “globally-known”, we mean known to all good nodes except the 1/poly(log n)-fraction from our earlier
analysis. We motivate ri−1 and describe how it is generated in Subsection 4.2.

Starting at step T/2 in the current epoch, each good node begins generating a new ID for use in the next
epoch (see Subsection 4.2) as described below.

Generating an ID. To generate an ID, a good node w selects a value σw of ` lnn random bits (matching the
length of ri−1). Then, w XORs these two strings to get σw ⊕ ri−1, and checks if g(σw ⊕ ri−1) ≤ τ . We
assume the value τ is set small enough such that w.h.p. a node requires (1 ± ε)T/2 time steps to find a σw
that satisfies this inequality, where ε > 0 is a tunable (small) positive constant and T > 0 is a parameter set
when the system is initialized.

We remark that the use of two secure hash functions is not immediately apparent. We justify this design
choice below in Lemma 11 when we prove a bound on the adversary’s ability to generate IDs.

Observe that T is roughly the maximum session time for any node since its ID is valid for this number
of steps; after this, a node must obtain a new ID (although the node, along with its quorum, may remain in
a passive state for an additional T steps using this ID). However, T can be set to a large value so that this
forced churn is spread out over long periods of time to avoid negatively impacting performance. Given that
the designers can estimate the rate of churn for their application and set a (loose) upper bound on n, then they
can set T accordingly.

Finally, we note that the adversary may attempt to generate IDs throughout the entire epoch rather than
stopping after T/2 steps. At worst, the adversary may then actually be in possession of roughly 2βn IDs.
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Figure 4: Depiction of the timeline for epochs j and j + 1. The first T/2 steps are dedicated to generating a
random string which is used for input into the ID generation step; these details are described later in Section 4.
Given this random string, the generation of an ID takes place over the second T/2 steps of each epoch. Each
ID is valid over the T time steps of the succeeding epoch.

We can address this problem by revising the value of β such that β < 1/8 which then allows us to recapture
the bound that less than n/4 IDs in the system are bad (recall from Section 1.3 that we are not optimizing
β, and we only care about tolerating an adversary with Θ(n) computational power) and so we omit further
discussion of this issue.

Why Use Two Hash Functions? Consider using a single secure hash function f to assign IDs; that is, if
f(x) < τ , then x is a valid ID. In this case, the adversary has a strategy where it may restrict itself to small
inputs x in order to confine its solutions to yielding small IDs. In other words, the IDs obtained by the
adversary will not be u.a.r. from [0, 1). This motivates the use of composing two secure hash functions, f and
g, as described above. We prove the following:

Lemma 11. W.h.p., the adversary can generate at most (1 + ε)βn IDs per epoch and these IDs are uniform
at random in [0, 1).

Proof. Since the adversary has βn computational power to expend over this epoch, w.h.p. it can generate at
most (1 + ε)βn solutions σv such that g(σw ⊕ ri−1) ≤ τ within an epoch where the constant ε > 0 is can be
made arbitrarily small depending only on sufficiently large n. By the random oracle assumption, applying f
to these solutions yields at most (1 + ε)βn IDs.

ID Verification. Upon receiving a message from some node w, a good node u verifies w’s ID. This could be
done naively by having w send σw to u who checks that g(σw⊕ri−1) ≤ τ and that f(g(σw⊕ri−1)) evaluates
correctly to the claimed ID (note that u already has ri since it is globally-known). Unfortunately, this allows
u to steal σw if u is bad.

To avoid this issue, we assume a zero-knowledge scheme for revealing the pre-image of the hashing; such
a scheme is provided for the SHA family [22]. This allows w to prove the validity of σw without revealing it.

If w’s ID cannot be verified, then u simply ignores w going forward. Note that w’s current ID will not be
valid in the next epoch since it is signed by the older string ri−1 (rather than the next globally-known random
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string ri); that is, w’s ID will have expired. Nodes with IDs that are not verified are effectively removed from
the system; that is, they may consort with bad nodes, but they have no interactions with good nodes.

4.2 Generating Global Random Strings
Imagine if no random string was used in the creation of IDs described above in Subsection 4.1. The adversary
would know the format of the ID-generation puzzles, and so could spend time computing a large number
of IDs, and then use these IDs all at once to overwhelm the system at some future point. This is a pre-
computation attack.

Signing IDs with a random string prevents such an attack as it is impossible for the adversary to know
far in advance how to generate identifiers. We provide a scheme where random strings are generated and
propagated throughout the network in order to be used in ID generation and, consequently, safeguard against
a pre-computation attack.

Due to space constraints, this content is provided in Appendix B. Our main result is:

Lemma 12. W.h.p., the protocol for propagating strings (i) guarantees that, for each good node w, its string
used for generating an ID is known is to each good node, (ii) the number of strings stored by each node is
O(lnn), and (iii) has message complexity Õ(n lnT ).

We note that, averaged out over the epoch, this message complexity is low.

5 Conclusion and Future Work
We have argued that quorums of size O(log log n) can be used to tolerate a powerful adversary that controls
a constant fraction of the computing resources in the network. Intuition is also provided as to why this seems
to be (roughly) the smallest quorum size that leads to a useful robustness result.

A portion of our result relies on PoW techniques to limit the number of IDs the adversary controls. While
it is interesting that these techniques can be leveraged to greatly reduce quorum size – yielding the consequent
savings in message complexity and state maintenance – an open question is whether the computational costs
for the PoW component can be reduced. Might there be a way to avoid the constant solving of puzzles? Is
there an approach that would only utilize puzzle solving when the system is determined to be under attack?
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Appendix

A Proofs for Section 3.2

Lemma 5. Consider a graph G′ where the nodes are formed from two sets:

• N1 consists of at least (1− β)n nodes with IDs selected u.a.r. from [0, 1).

• N2 is an arbitrary subset of at most βn nodes with IDs selected u.a.r. from [0, 1).

W.h.p., under the same construction as the input graph G, graph G′ has properties P1 - P4.
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Proof. View the ID space as a unit ring, and place on it the nodes from N1 and N2. Let the total number of
nodes be m where m ≥ (1− β)n.

Moving clockwise from any node, consider a contiguous interval of length (λ lnm)/m where λ > 0 is
any constant. Since IDs in N2 are selected from a larger set of IDs u.a.r in [0, 1), intuitively the adversary’s
choice of N2 cannot significantly change the density/sparseness of nodes on the ring. By Chernoff bounds,
regardless of how N2 is selected, and for any λ > 0, the following holds:

• with probability at least 1− (m)−λ/12, every interval contains at least (λ/2) lnm nodes, and

• with probability at least 1−m−λ/12, every interval contains at most (3λ/2) lnm nodes.

A placement of m nodes on the ring that satisfies these two properties is a λ-well-spread placement. Observe
that no matter how the adversary chooses N2, w.h.p. the adversary’s influence on the distribution of IDs is
characterized by some λ-well-spread placement. In other words, we can ignore the adversary since the issue
now reduces to: what is the probability of a λ-well-spread placement that degrades a property in G′?

We argue by contradiction as follows. Recall the guarantee that the input graph G has some property P
with probability at least 1−1/mc for a tunable constant c > 0 (Section 2). Now assume there exists a set S of
λ-well-spread placements that violates this property P for G′, and that these occur with aggregate probability
1/md > 1/mc for some positive constant d. But this yields a contradiction since, with probability at least
1/md > 1/mc, placing m nodes u.a.r. on the ring would yield a placement from S for the input graph G and,
therefore, violate the guarantee of property P for G.

Lemma 6. W.h.p. a random key value in an old quorum graph maps to a bad node with probability at most
(1 + δ′)β for an arbitrarily small constant δ′ > 0 depending only on sufficiently large n.

Proof. By property P2 of the input graph G, w.h.p. a randomly chosen node in G is responsible for at most a
(1 + δ)/n-fraction of the key values for an arbitrarily small δ > 0 depending on sufficiently large n (and, by
Lemma 5, this holds even if the adversary does not add all of its bad IDs). Since the IDs of the adversary are
u.a.r., the βn bad nodes are responsible for at most a (1 + δ)β-fraction of the key values.

Lemma 10. In expectation, each good node w in a quorum graph is a member of O(log log n) quorums and
maintains state on O(|Lw|) quorums that are either neighbors or have w as a neighbor.

Proof. We perform our analysis with respect to a good node w. First, we analyze the state cost incurred by w
due to quorum-membership requests. Second, we analyze the state cost incurred by w due to (i) neighbors w
links to, and (ii) those neighbor requests w receives.

State Cost of Quorum-Membership Requests. In the absence of adversarial interference, the number of
quorum-member requests that w receives is O(log log n) given that such requests are distributed among all
nodes u.a.r. and each quorum requires O(log log n) members.

Now, we consider the impact of the adversary on this state cost. Consider node w receives a request to
join some quorum Qv. As described in Section 3.1, node w first checks that h1(w, i) for the appropriate i
lies in [u − (c′ lnn)/n,u), where we relax notation and use u to also denote the ID of node u. We reiterate
a well-known argument: since IDs are u.a.r., the probability that two nodes are separated by more than a
c(′lnn)/n distance is at most (1 − (c′ lnn)/n)n ≤ 1/nc

′
. Therefore, if h1(w, i) lies outside of this interval,

then w.h.p. u is not the successor of h1(w, i) and cannot be a valid neighbor. In this case, the request is safely
rejected.

If h1(w, i) does lie within the interval, then u performs a search on h1(w, i). If this returns u, then u
accepts the request. Given the guarantee on almost-everywhere routing in old quorum graphs, with probability
at least 1 − O(1/ logk−c n), this acceptance is correct (recall Lemma 4). In other words, the probability of
accepting an erroneous neighbor request is at most 1/poly(log n) where we can tune this polynomial.

How many neighbor requests with a valid h1(w, i) does w receive? Given that h1(w, i) is u.a.r. (given the
random oracle assumption) it is valid with probability (c′ lnn)/n. By Property 3, i = O(poly(log n)) and so
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over at most n nodes, there are O(log2 n) valid requests received by w; this is tight by a standard Chernoff
bound.

It follows that w accepts at most O(log2 n)/poly(log n) = o(log log n) erroneous requests in expectation
so long as our constant k is sufficiently large.

State Cost of w’s Neighbors. This is straightforward: recall by property P3 of the input graph G, that w links
to O(|Lw|) other nodes. Therefore, in each quorum graph, w links to O(|Lw|) = O(poly(log n)) quorums as
neighbors.

State Cost of Neighbor Requests. Via Lemma 5, properties P1 and P3 guarantees that w can determine
independently whether it should indeed be a neighbor of some node u, and there are at most poly(log n) such
nodes u. Using the old quorum graphs, wherein almost-everywhere routing is guaranteed w.h.p., w initiates
a search to check that it should indeed be a neighbor. With a tunable probability at least 1 − O(1/ logk−c n)
node w can detect if the request is erroneous. Therefore, in expectation, the number of erroneous acceptances
is at most o(|Lw|) so long as our constant k is sufficiently large (recall Lemma 4).

B Generating Global Random Strings

Generating Global Random Strings. During epoch i, each node w forms a solution set of the d0 lnn
smallest random stringsRw

i for some constant d0 ≥ 1. Over epoch i, all good nodes generate random strings
and the smallest are collected independently by each node w to create Rwi . To generate a string in epoch
i, a node w uses a string ri−1 — the globally-known string from the previous epoch — and an individually
generated random string, sw, to compute the output tw = h(sw ⊕ ri−1).

Bins and Counters. To facilitate our discussion of how to propagate strings and ease our subsequent analysis,
we describe a system of bins and counters maintained by each good node w. The binsBj correspond to inter-
vals in the ID space where Bj = [1/2j , 1/2j−1) for j = 1, 2, ..., b ln(nT ) where b ≥ 1 is a sufficiently large
constant. Since T is known and there are standard techniques for obtaining a constant-factor approximation
to lnn, calculating ln(nT ) = ln(n) + ln(T ) to within a constant factor is possible.14

Each bin Bj has an associated counter Cj . Consider that w receives a string su with corresponding
output tu that falls within the interval defined by Bj ; we say that Bj contains su. If tu is smaller than the
other values w has seen so far contained in Bj , and Cj ≤ c0 lnn for some sufficiently large constant c0 ≥ 1,
then w increments Cj and forwards su onto its neighbors. After Cj = c0 lnn, no value landing within Bj is
ever forwarded.

The intuition is that, if c lnn strings are found with “record-breaking” outputs in Bj , then w.h.p. smaller
strings exist with outputs belonging to Bj+1. In other words, those strings corresponding to Bj will not be
candidates a globally-known string and so they can be ignored.

Protocol for Propagating Strings. The propagation of strings is broken into phases which make up the first
half of an epoch. We describe the protocol for good nodes (although bad nodes can deviate arbitrarily).

Phase 1 executes over steps 1 to T/2 − 2d′ lnn for a constant d′ > 1 of the current epoch i. Over this
time, each node w generates random strings with associated outputs. After Phase 1 ends, nodes no longer
generate new random strings.

Phase 2 begins at step T/2 − 2d′ lnn + 1 and runs for d′ lnn steps. Each node w (using its quorum
Qw) selects the string smin

w with the smallest output tmin
w that was generated in Phase 1, and then sends smin

w its
neighbors. Node w updates the corresponding bin and counter, as described earlier.

Each neighbor u verifies smin
w . Using tmin

w , node u decides whether to forward smin
w to its own neighbors

(except for w) and, if so, updates the corresponding bin and counter; otherwise, u ignores this value. At the
14A standard technique for estimating lnn to within a constant factor is as follows. For nodes with u.a.r. IDs, the distance d(u, v)

between any two nodes u and v satisfies 1
c′′n2 ≤ d(u, v) ≤ c′ lnn

n
w.h.p. that can be tuned depending only on sufficiently large

positive constants c′, c′′ Therefore, with high probability, ln( 1
d(u,v)

) = Θ(lnn) and this holds even when an adversary decides to
omit its nodes in the ID space (see Chapter 4 in [48]).

21



end of Phase 2, each node w selects the string with the smallest output it has seen so far; this is denoted by
si∗w .

Phase 3 starts at step T/2 − d′ lnn + 1 and runs for the final d′ lnn steps. Over these steps, nodes no
longer generate new strings, although they will still propagate them according to the above rules.

At the end of the phase, each node w creates its solution set Rwi in the following way. Node w finds
the largest j for which Bj contains at least one element. Then, w takes the union of subsequent bins for
decreasing j until there are d0 lnn elements; the collection of these elements form Rwi .

This concludes the propagation protocol. We note that immediately (starting at step T/2 + 1) node w will
start generating a new ID signed with the string si∗w chosen in Phase 2.

Discussion. The adversary may prevent good nodes from agreeing on the same solution set. As mentioned
in Subsection 4.1, a 1/poly(log n)-fraction may be unable to partake in the propagation process even with
our robust routing, and their loss is already incorporated into our analysis in Subsection 3.2. Therefore, we
address the giant component of (1 − 1/poly(log n))n good nodes that can reach each other (and this set of
nodes is implied by the terminology “good nodes”).

The critical source of disagreement between good nodes is that the adversary may delay releasing a string
s′ (or multiple strings) with a small output. For example, if this occurs right before the end of Phase 2, then
only a subset of good nodes receive s′ and their respective solution sets differ from the other good nodes. In
this way, two good nodes u and w can choose different strings si∗u and si∗w .

We sketch how this disagreement is handled, but first we address the simpler case where there is no
adversarial interference.
With No Adversary: Note that the propagation of a string in the giant component requires at most d′ lnn steps.
Therefore, since all nodes send their string at the beginning of Phase 1, then by the end of Phase 2, all nodes
accept the same set of strings and agree on the minimum string.

Furthermore, in Phase 3, nothing will occur (since no strings are released late) and so any nodes w and u
are guaranteed w.h.p. to have Rwi = Rui . What are the outputs corresponding to these solution sets? There
are Θ(n) nodes computing for Θ(T ) steps, so the smallest output in a set Rwi is Θ( 1

nT ) and w.h.p. no larger
than O( lnn

nT ).

With an Adversary: The adversary can propagate a string s′ with a small output late in Phase 2.15 If w
receives s′ while u does not, then Rwi 6= Rui . We argue that (1) the size of each solution set remains bounded
by Θ(lnn), and (2) that the string si∗w used by each good node w belongs to every other good nodes’ solution
set; these two properties enable efficient and correct verification (described below).

How many solutions s′ could w receive and add toRwi ? As noted above, this solution set will hold outputs
of value O( lnn

nT ). Since the adversary has bounded computational power of βn, w.h.p. there cannot be more
than d′′ lnn solutions with output value Θ( 1

nT ) for some constant d′′ > 0. This is true even if the adversary
computes over the entire epoch. We set the constant c0 used in the bin counters such that c0 ≥ d′′ in order to
make sure that no smallest values are omitted.

Now assume that w selects si∗w , but that si∗w is not present in good node u’s solution set Rui ; we will derive
a contradiction. If si∗w originated from a good node, then u received si∗w by the end of Phase 3 since 2d′ lnn
steps is more then sufficient for the propagation of a string in the giant component. Else, si∗w originated from
the adversary. Since si∗w was held by w by the end of Phase 2, the addition d′ lnn steps in Phase 3 would have
allowed si∗w to reach u and be added to Rui . In either case, this yields the contradiction.

Finally, what is the message complexity of the propagation protocol? Recall that for each bin, the associated
counter restricts to O(lnn) the number of times a node forwards a string to its neighbors. Given that there
are O(ln(nT )) bins, the total number of times a node can forward a string is O(ln(n) ln(nT )). The number
of messages sent between any pair of neighboring quorums is O(|Q|2) = O((log log n)2) and the degree in

15The adversary may also delay a string from a good node outside the giant component, which amounts to the same problem since
the adversary controls when this string is released into the giant component.
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the quorum graph is O(poly(log n)). Therefore, the total message complexity over O(n) nodes is Õ(n lnT )
where Õ accounts for poly(log n) terms.

The above discussion supports the following:

Lemma 12. With high probability, the protocol for propagating strings (i) guarantees that, for each good
node w in the component, si∗w is contained within the solution set of every good node in the component, (ii)
|Rwi | = O(lnn), and (iii) has message complexity Õ(n lnT ).

Verifying IDs. For simplicity, our discussion of ID verification in Subsection 4.1 assumed that a single ri−1

was agreed upon. However, not much changes when using solution sets.
To generate an ID for use in epoch i+ 1, node w uses si∗w to sign its ID. By the above discussion, we are

guaranteed w.h.p. that si∗w belongs to the solution set of each good node. Therefore, a good node u that wishes
to verify w’s new ID checks whether this ID was signed by any of the strings in Rui ; this requires checking
only O(lnn) elements by the above discussion.

C Membership in Lu
In our discussion of the properties of the input graph in Section 1.3, we made the following statement in P3:
“... there are O(poly(logN)) nodes u whose IDs dictate w ∈ Lu”. We discuss this here further using Chord
as an example; however, the same property holds for the other input graphs we specify in Section 1.3.

We consider the version of Chord where IDs are in [0, 1). Node u has neighbors (in its “Finger Table”)
that are found by taking points 2−i and linking to the successor of each such point, for i = 1, ...,O(lg(N)).
Therefore, if u is claiming w as a neighbor, then w can examine the index i and immediately determine if
u + 2−i is “close enough” to w. For example, if u + 2−i = 0.5, but w = 0.9, then clearly the successor
u+ 2−i will not be w and the request is erroneous.

How close is “close enough” such that w must perform a search? Since IDs are u.a.r. in [0, 1), it is easy
to see that w.h.p. the largest interval between any two nodes is Θ(logN/N). Therefore, if u+ 2−i is outside
of the subinterval [w −Θ(logN/N),w), then w can ignore the request. Otherwise, it must perform a search
to see if the successor of u+ 2−i is indeed w.

How many nodes have a neighbor link that falls into this interval [w − Θ(logN/N),w) and cannot be
rejected out of hand? Again, a standard argument can be made that O(logN) nodes fall within any interval
of this size, and this is tight w.h.p. by a Chernoff bound; a request from each such node must be checked via
a search. Since the degree of each node has degree poly(logN), this means that only O(poly(logN)) nodes
can make neighbor requests as claimed.

D Bootstrapping Quorums

A standard assumption in the literature is that a node knows how to contact another node already in the system
in order to be bootstrapped. In the absence of an adversary, this seems plausible and the assumption holds
true in practice.

The bootstrapping issue is less clear in a Byzantine setting and we consider it an open challenge, although
not within the scope of our work here. We can imagine that a node might know (i.e. have IP addresses and
port numbers) for an entire quorum which can then act as Qboot. However, it is unclear how this information
would be provided.

If the information is advertised on a server, then this becomes a point of attack. Alternatively, if this
information is hard-coded into the application that is downloaded onto the node, then we must rely on someone
to do the hard-coding. Or perhaps another distributed system is in place to facilitate bootstrapping akin to Vuze
for BitTorrent, but then that system must also be Byzantine fault tolerant.
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Note that these issues arise whether all quorums are good, or “almost all” quorums are good. We conjec-
ture that a solution is possible via PoW — having a quorum be able to offer a bootstrapping service only if it
solves a puzzle — but we leave this issue to future work.

24


	1 Introduction
	1.1 -Robustness
	1.2 Related Work
	1.3 Our Model and Preliminaries
	1.4 Overview and Our Main Result

	2 Almost-Everywhere Routing – The Static Case
	2.1 The Quorum Graph
	2.2 Analysis

	3 Almost-Everywhere Routing - The Dynamic Case
	3.1 Building New Quorum Graphs
	3.2 Analysis
	3.3 Experiments on Almost-Everywhere Routing

	4 Computational Puzzles
	4.1 Generating an ID
	4.2 Generating Global Random Strings

	5 Conclusion and Future Work
	A Proofs for Section ??
	B Generating Global Random Strings
	C Membership in Lu
	D Bootstrapping Quorums

