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Abstract—Byzantine Fault Tolerant (BFT) consensus
exhibits higher throughput in comparison to Proof of Work
(PoW) in blockchains, but BFT-based protocols suffer
from scalability problems with respect to the number of
replicas in the network. The main reason for this limitation
is the quadratic message complexity of BFT protocols.
Previously, proposed solutions improve BFT performance
for normal operation, but will fall back to quadratic
message complexity once the protocol observes a certain
number of failures. This makes the protocol performance
unpredictable as it is not guaranteed that the network
will face a a certain number of failures. As a result, such
protocols are only scalable when conditions are favorable
(i.e., the number of failures are less than a given threshold).
To address this issue we propose Proteus, a new BFT-based
consensus protocol which elects a subset of nodes c as a
root committee. Proteus guarantees stable performance,
regardless of the number of failures in the network and it
improves on the quadratic message complexity of typical
BFT-based protocols to O(cn), where c << n, for large n.

Thus, message complexity remains small and less than
quadratic when c is asymptotically smaller than n, and
this helps the protocol to provide stable performance even
during the view change process (change of root committee).
Our view change process is different than typical BFT
protocols as it replaces the whole root committee compared
to replacing a single primary in other protocols. We
deployed and tested our protocol on 200 Amazon EC2
instances, with two different baseline BFT protocols (PBFT
and Bchain) for comparison. In these tests, our protocol
outperformed the baselines by more than 2× in terms of
throughput as well as latency.

I. Introduction
A Blockchain is a distributed ledger in which blocks

of transactions are stored in sequential order. Participants
in blockchain networks use consensus through a peer-
to-peer network to agree on each block of transactions.
Each block contains an ordered set of transactions and a
link (hash) to the previous block in the chain. Traversal
of the hashes to previous blocks allows us to move
through the history of transactions. Immutability for

blocks “buried” in the blockchain is probabilistically
guaranteed, since modifying a block invalidates the
hashes of all newer blocks in the chain. Recently there
has been a lot of work to address the scalability (number
of replicas in the network), throughput (in terms number
of transactions per second) and latency (time to insert
the block of a transaction in the blockchain) issues of
blockchains [1], [2], [3], [4], [5]. But increasing the
number of replicas (participants) in the network can have
negative effects on latency and throughput due to the
increase in the number of messages being exchanged
and processed within the network.

Protocols based on Proof of Work (PoW) are suffering
from high latency and low throughput, but have high
scalability. The main bottleneck of performance for PoW
protocols lies in solving the cryptographic puzzle before
proposing a block for inclusion in the chain. Bitcoin is an
example of a PoW based protocol that has been shown
to accommodate thousands of replicas, but its throughput
is 6-10 transactions per second and it takes an average
of 10 minutes to generate a new block [6], [7]. Bitcoin’s
PoW is very CPU-intensive and is responsible for the
high consumption of electricity in Bitcoin (comparable
to the entire electricity consumption of Ireland) [8], [9],
[10]. Ethereum is another well known blockchain ledger
that uses PoW [11]. While Ethereum’s approach to PoW
is somewhat different than Bitcoin’s, primarily in an
attempt to stop ASIC-enhanced mining, it suffers from
some of the same drawbacks as Bitcoin. In general,
PoW-based protocols do not appear to be suitable for
applications that require low latency and high transaction
throughput. Furthermore, according to Luu et al. [12]
95% of Bitcoin and 80% of Ethereum networks’ mining
power resides within less than ten and six mining pools
respectively, making the networks susceptible to possible
51% attacks. This is because these pools operate in a
centralized fashion, with pool owners directly controlling
the work of individual miners. In PoW protocols there is
also the risk of multiple forks that can result in double-
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spends. Thus, even after a transaction is committed,
clients have to wait a specific number of blocks to make
sure the transaction is “finalized” in the longest fork. For
Bitcoin, this usually amounts to six blocks (requiring 60
minutes) [6] and for Ethereum, this threshold is generally
37 blocks (due to a much faster block commit rate) [13].

On the other hand, Byzantine Fault Tolerant (BFT)
protocols [14] are able to achieve block consensus in
the presence of Bytanzine (malicious) replicas with
the exchange of a few rounds of messages. Byzantine
replicas may fail in arbitrary ways by sending malicious
messages, crashing, or coordinating malicious attacks, in
order to prevent the network from reaching consensus.
BFT protocols have been shown to process thousands
of requests per second[15], [3], and are known to have
higher throughput than PoW-based protocols. BFT-based
protocols typically use a single replica as a primary to
serialize requests/blocks during each epoch of creating
blocks. Once consensus is achieved on the request pro-
posed by the primary, the block will be added to the
chain at the end of the epoch. If more than one third
of replicas observe malicious behavior by the primary
replica, a view change will be triggered. In the view
change process the failed/malicious primary will be
replaced with a new primary. Another attraction of BFT
protocols is their their finality property. Finality means
that once a block is committed it will never be revoked.
That means BFT protocols do not develop forks during
the consensus process, thus once a transaction and its
block are committed, the application layer can use the
result without waiting for further confirmation.

The scalability of BFT-based protocols is a major
concern. One of the main factors negatively affecting the
scalability and performance of BFT-based protocols is
that they require n×n broadcast for n replicas (quadratic
message complexity) [16], [7], [17]. This high commu-
nication overhead is to guarantee that consensus will
always be reached even after under Byzantine failures.
Typically the protocols guarantee that agreement will
be reached if the total number of Byzantine nodes is
less than a third of the total number of nodes. However,
the BFT protocols usually do not distinguish the cases
where there are failures or not, resulting in high message
overhead in any case.

In practice, the reliability or fault tolerance of a
protocol depends on the actual number of faults (f) it
can tolerate while providing desired throughput. Since
the number of faults tolerated by BFT is bounded by
f < n/3 [18], the other way to increase f is to increase
n, in other words, to design a scalable protocol.

A. Related Work

Jalalzai et al. [1] have recently presented the Musch
BFT protocol that addresses BFT scalability where the
message complexity has been reduced to O(f ′n + n),
where f ′ is the actual number of Byzantine nodes (f ′ <
n
/
3). The message complexity for small f ′ is linear in

n, making their protocol scalable. SBFT [4] is another
protocol that uses sets of collectors called c and e, which
are randomly selected and collect signatures for the
prepare and commit phases of consensus for the block
proposed by the primary. These collectors help to avoid
all-to-all broadcast. During optimistic execution, SBFT
achieves O(cn) message complexity. But it switches
to plain PBFT if optimistic execution fails (i.e., if the
collectors fail). This causes severe degradation in SBFT
performance and results in O(n2) message complexity.
On the other hand, our protocol never switches to PBFT.

FastBFT [2] also tries to address the scalability and
performance issues. In FastBFT the replicas are arranged
in a tree structure where the primary node acts as the
root of the tree. The message complexity in FastBFT
in optimistic execution is O(n log n), but can switch to
O(n2) in case of failures. Additionally, during optimistic
execution signature aggregation is done over the tree and
each tree node is responsible for collecting signatures
from its children. The improvement in message com-
plexity and reduction in signature size occurs with cost
of latency, as the critical path length grows to O(logn).

In chain-based BFT protocols [3], [19], the nodes
in the network are arranged serially in a chain order.
Message complexity during normal execution is O(n)
but can grow to O(n2) in the worst case (a view change
of primary). These protocols have shown high throughput
but the latency is proportional to the length of the critical
path, which reaches O(n).

All of the aforementioned solutions switch to O(n2)
message complexity once a certain number of failures
are detected in the network (this threshold varies among
protocols). Thus, reaching the failure threshold causes
the protocol to switch to broadcast mode (fallback
mode), resulting in unusable performance for large-scale
systems. As a result, these protocols only provide desired
performance when failure thresholds have not been met.

Hot-stuff [20] is another BFT-based protocol that
improves the view change message complexity of PBFT
by a factor of O(n) (dropping view change message
complexity from O(n3) to O(n2). But during normal
execution its message complexity matches that of PBFT
(O(n2)). It also relaxes the BFT finality condition to
merge the prepare phase of the next proposal with the
current commit phase. Tendermint [21] combines BFT
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and Proof-of-Stack (Pos) into a single protocol. An
important aspect of Tenderment is the use of rotating
leader election, where after each block, a new leader
is selected deterministically. More stake for a validator
is translated into more voting power and proportionally
more times to be selected as a leader. But it suffers
liveness issue due to conflicting proposals. [22].

B. Contributions

Our proposed protocol’s performance is not bounded
by any threshold on the number of failures. In other
words, protocol performance is not affected by the
number of failures detected in the network and remains
constant (guarantees stable performance) during normal
execution. This is a very important and strong charac-
teristic that enables the protocol to provide consistent
performance guarantees. Additionally, our protocol pro-
vides constant latency in terms of critical path length,
which is the number of one-way messages from block
proposal to completion of consensus.

These improvements are achieved by randomly select-
ing c number of replicas from a large set of replicas with
total size n, where n are regular replicas. Typically c is
small and with very large n, we will have c << n. Our
algorithm can tolerate up to f < n/3 failures. In each
epoch, the BFT consensus is first executed among the
c replicas of the root committee, instead of the overall
n replicas. The block proposed by the root committee
will then be validated by the n − f correct replicas.
Since the main BFT process will be executed within root
committee of size c, which is much smaller than n, this
gives us improved performance. The message complexity
in our protocol is O(c2 + cn) for normal as well as
view change mode, and when n is large, where c << n,
it becomes O(cn). Through experimental evaluation we
also show that our protocol outperforms both PBFT and
Bchain in terms of throughput and latency.

Our protocol can tolerate up to 2c/3 Byzantine failures
in the root committee. Therefore, the root committee is
more resilient than the typical case which tolerates less
than c/3 nodes failing. The n regular replicas keep an
eye on failures of the c root committee replicas that
generate a block. In case 2c/3 or more nodes fail, a
view change will occur and another root committee is
selected. This is another unique aspect of our protocol
in that a view change causes the root committee to
be replaced, whereas other BFT-based protocols only
replace the primary node.

Paper Outline

The paper is organized as follows. In Section II we
give our system model, in Section III we present the
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Fig. 1: Caption: Root committee size vs failure probability
with different n

Proteus protocol. Its formal analysis appears in Section
IV and the message complexity analysis in Section
V. Section VI contains the experimental analysis. We
conclude our work in Section VII.

II. System Model

We consider the Byzantine fault model for the replicas.
Under this model, servers and clients may deviate from
their normal behavior in arbitrary ways, which includes
hardware failures, software bugs, and other malicious
behavior. Our protocol can tolerate up to f Byzantine
replicas where the total number of replicas in the network
is n such that n = 3f + 1. The size of the root
committee c can be chosen based on a security guarantee
requirement (Pf ) for the committee executing the BFT
consensus. This model also assumes that replicas will not
be able to break collision resistant hashes, encryptions
and signatures. We assume that all messages sent by
the replicas are signed. To ensure liveness in the asyn-
chronous network we use a timeout to place an upper
bound on the block generation time.

III. Protocol

In Proteus, we have moved the burden of consensus
to the root committee with size c. The root committee is
running a customized BFT based algorithm (Algorithm
1). Regular replicas that are not members of the root
committee simply verify the result of consensus, i.e. the
proposed block. If 2c/3+1 root committee replicas agree
on the block proposed by the root committee, and in total
2f + 1 (root committee plus regular replicas) agree on
the proposed block, then the block is committed and will
be added to the blockchain. It should be noted that our
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protocol can tolerate up to two thirds (2c/3) Byzantine
replicas in the root committee. Upon failure of the BFT
protocol in root committee to propose a block, the whole
root committee is replaced by the view change process.
Normal execution of the protocol can be summarized as:

1) The BFT protocol in the root committee success-
fully generates a block (collects more than two
thirds prepare as well as commit messages for the
block) and proposes it to regular replicas through
broadcast.

2) Upon receipt of a block, regular replicas verify
the block against its history and check if the
block is signed by 2c/3+1 replicas from the root
committee.

3) If the block is valid, each regular replica signs
the block and sends back the signature to the root
committee.

4) Upon receipt of 2f + 1 signatures from regular
replicas as well as root committee members, each
root committee member commits the block and
broadcasts the proof of acceptance (2f + 1 sig-
natures) of the block to regular replicas.

5) Upon receipt of proof, each regular replica com-
mits the block, which is permanently added to the
local history.

A. Selecting root committee members

Members of the root committee are chosen randomly
from the total number of replicas (n). Suppose that out
of the n nodes f are adversaries (bad nodes) such that
f < n/3. The size c is a predetermined number that
specifies the average size of root committee. Let V be
the set of nodes in the network with |V | = n. We can
write V = A ∪ B, where A is the set of good nodes
and B is the set of bad nodes (adversaries), such that
|A| = n− f and |B| = f .

Let C denote the root-committee, such that |C| = c.
We assume that C is formed by randomly and uniformly
picking a set of c nodes out of n. Therefore, the number
of possible ways to pick any specific set of c nodes is(
n
c

)
. The probability to pick exactly a good nodes and b

bad nodes in C, such that a+ b = c, is:(
n−f
a

)(
f
b

)(
n
c

) . (1)

Thus, the probability of having more than 2 · c/3 bad
nodes (b) in root committee will be, the sum of all
probabilities from 2c/3 + 1 to c:

Pf =


∑c

b=2c/3+1
(n−f

a )(fb)
(nc)

, if f > 2 · c/3

0, otherwise.
(2)

The safety of our algorithm is independent of the
number of malicious/faulty replicas in the root commit-
tee. But for liveness we need at least one honest/correct
replica to be a member of a 2c/3 + 1 quorum that
generates the block. We will discuss this in more detail
in Section III.

For the root committee to operate, it is randomly
chosen from a set of n replicas and the size c is such
that the failure probability having less than c/3 honest
replicas is negligible as shown in Figure 1. If the root
committee fails to generate a valid block, it is replaced
by another randomly chosen committee. Replacing the
root committee with a newly chosen committee is called
a view change. In our protocol, a view change is different
from a typical BFT protocol view change, where only the
primary replica is being replaced, while in our protocol,
the entire root committee is replaced. Under normal
circumstances, this is a rare event as the probability
of having more than c/3 − 1 byzantine replicas in root
committee is low and once majority of root committee
members are honest the protocol runs for sufficient
period without changing the root committee.

B. A secret recipe for high scalability and throughput

The secret for higher scalability and throughput of
this protocol can be discovered by plotting values of
n against c for an appropriate range of values for Pf

in Equation 2. Figure 2 plots the growth of c against n
for Pf ≤ 8.9 · e−7. We can see that c follows sublinear
growth against n, such that for very large n, c becomes
negligible compared to n. Thus, as the growth of c
slows down compared to the total number of replicas
in the network, it also diminishes the effect of quadratic
communication (c2) in the root committee on protocol
scalability and throughput. We designed our protocol to
leverage this property.

C. Detailed Protocol Operation

Algorithm 1, Algorithm 2, and Algorithm 3 describe
the normal execution between root committee and regu-
lar replicas. If normal execution fails, then our protocol
switches to view change mode executing algorithms
4 and 5 to recover from failure. Note that the root
committee members also run the protocols for regular
replica nodes in the normal mode.

a) Normal mode.

A designated primary node in the root com-
mittee proposes a block by broadcasting a pre-
prepare message to other root committee mem-
bers (Algorithm 1, lines 1-4). A pre-prepare mes-
sage B = (〈“Pre-prepare”, v, s, h, d〉p,m) contains
view number(v), block sequence number(s), transaction

4



0 100 200 300 400 500

100.8

101

101.2

101.4

101.6

n

c

Fig. 2: Growth of c against n

Algorithm 1: Customized BFT algorithm for root
committee member i
// primary is a designated node in

root committee
1 if i is primary in root committee then
2 Collect transactions and form block
3 Propose block to root committee by

broadcasting a pre-prepare message with the
block

4 end
5 upon receipt of valid pre-prepare message do
6 Broadcast prepare message with the proposed

block to root committee
7 end
8 upon receipt of 2c/3+ 1 valid prepare messages do
9 Broadcast commit message to root committee

10 end
11 upon receipt of 2c/3 + 1 valid commit messages

for proposed block do
12 Return success and continue to Algorithm 2
13 end
14 if received timeoutfailure from root node j for

block number Bt then
15 if j has not previously received from i the most

recent missing blocks since Bt then
16 Update j up to latest block
17 end
18 end
19 if not returned success by block timeout then
20 Broadcast timeoutfailure complaint to root

committee
21 Return timeoutfailure and continue with

Algorithm 2
22 end

Algorithm 2: Root committee member i
1 upon successful completion of BFT protocol in

Algorithm 1 do
2 Broadcast the block to regular replicas
3 end
4 upon i returns timeoutfailure from Algorithm 1 do
5 Accept messages from root nodes to

synchronize local history
6 end
7 upon receipt of 2f + 1 valid signatures for

proposed block hash do
8 Commit block
9 Broadcast aggregated 2f + 1 valid signatures

10 end
11 upon detecting proof of maliciousness: two

different signed blocks or receipt of f + 1 timeout
complaints) do

12 Broadcast maliciousness proof
// every node uses same random

number generation seed
13 Randomly select c members of root committee

from set of n replicas
14 if replica i is not member of new root

committee then
15 Execute Algorithm 4
16 else
17 Execute Algorithm 5 (and concurrently

Algorithm 4 as a regular replica)
18 end
19 end

list(m) and its hash(h) and previous blockhash(d). A
replica i in the root committee begins a customized
BFT algorithm after receipt of a pre-prepare mes-
sage. Then, replica i broadcasts a prepare message
〈“Prepare”, v, s, h, i〉i if it finds the pre-prepare mes-
sage to be valid. The validity check of the pre-prepare
message includes checking the validity of s, v, d, h
and transactions inside m (Algorithm 1, lines 5-7).Upon
receipt of more than 2c/3 prepare messages from other
root committee members, the replica i broadcasts a com-
mit message 〈“Commit”, v, s, h, i〉i to the root commit-
tee (Algorithm 1, lines 8-10).If replica i receives more
than 2c/3 commit messages from other root committee
members, then it will return success to Algorithm 2
(Algorithm 1, lines 11-13).

Since our protocol can tolerate up to 2c/3 Byzantine
nodes in the root committee, then the 2c/3 + 1 nodes
involved above have to include at least one correct
replica in root committee during the consensus process
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Algorithm 3: Regular member replica k
1 upon receipt of valid block from root committee

(until timeout) do
2 Sign block hash and broadcast it to root

committee
3 end
4 if timeout for current block then
5 Broadcast timeout complaint to root committee
6 end
7 upon receipt of a message from root committee

member with 2f + 1 signatures for block do
8 Commit block
9 end
// Initiate view change actions

10 upon receipt of a message with f + 1 timeout
complaints or receipt of invalid message (block or
signatures) do
// Transition to new view, based

on common random number
generation seed

11 Randomly select c members of root committee
from set of n replicas

12 if replica k is not member of root committee
then

13 Execute Algorithm 4
14 else
15 Execute Algorithm 5
16 end
17 end

to generate a block. While other correct replicas (at most
c/3− 1) may not be participating in the consensus pro-
cess as malicious primary may not send them messages.
These c/3 − 1 correct replicas will need to sync with
other root replicas. Therefore, replica i might receive
a timeoutfailure for block number Bt. If replica i has
not received a timeoutfailure message from the same
replica for the same block or any block with larger
sequence number then the replica will forward prepare
and commit messages for missing block (Algorithm 1,
lines 14-17). If replica i gets timeout and did not receive
valid messages during the consensus process, it will
return a tiemoutfailure error to Algorithm 2.

If root committee members successfully generated a
proposal block(containing pre-prepare message, a com-
mit message and 2c/3+1 signatures for commit as proof)
then they will broadcast it to the regular committee
members (Algorithm 2, lines 1-3). Upon receipt of a
block from the root committee, regular replicas check if
it is signed by at least 2c/3+1 root committee members

Algorithm 4: ViewChange for regular replica i
1 Broadcast local history Vi to new root committees
2 upon Receipt of a Q message from a new

committee member j do
3 if 2f + 1 replicas are updated to the same

history in Q then
4 Broadcast READY message Ri to new root

committee
5 upon Receipt of P from a new root

committee member j do
6 if P has at least 2f + 1 distinct READY

messages then
7 Synchronize local history Vi

according to Q
8 return to Algorithm 3
9 end

10 end
11 end
12 end

Algorithm 5: ViewChange for new root committee
member j

1 Broadcast local history Vj to new committee
2 upon Receipt of Vi from replica i do
3 Q← Q ∪ Vi
4 if Q contains at least 2f + 1 same histories)

then
5 Broadcast Q to all replicas
6 end
7 end
8 upon Receipt of Ri do
9 P ← P ∪Ri

10 if P has accumulated at least 2f + 1 distinct
READY messages then

11 Broadcast P to all replicas
12 end
13 end
14 Return to Algorithm 2

and if verified, a regular replica j sends back a signed
Approval message 〈“Approval”, v, s, h, j〉j to the root
committee (Algorithm 3, lines 1-3). Each member of the
root committee aggregates 2f + 1 signatures σ(h) (in-
cluding commit signatures from root committee as well
as Approval message signatures from regular replicas)
and then commits the block and broadcasts Confirm mes-
sage 〈“Confirm”, v, s, h, i, σ(h)〉i to regular replicas
(Algorithm 2, lines 7-10). Upon receipt of 2f + 1 valid
signatures, regular committee members also commit the
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block (Algorithm 3, lines 7-9). But there is a possibility
that the root committee might behave in malicious way.
Furthermore, the primary replica in a root committee
might be malicious, thus, even if the number of honest
replicas are in the majority, the primary can still cause
the root committee to fail. In case a block can’t be
committed, our protocol switches to view change mode
to select an entirely new root committee.

b) BFT failure cases.

Based on our assumption, there are at least c/3 honest
replicas in root committee. This results in the following
failure cases being relevant:

1) Number of malicious replicas in the root committee
is more than c/3: If the number of malicious
replicas is at least c/3+1, and they chose to behave
maliciously, no block will be generated, as it will
not be possible to collect 2c/3 + 1 signatures for
the block. Thus, regular replicas will timeout and
will start the view change process.

2) Primary in root committee is malicious: If the pri-
mary replica is malicious then the root committee
might not be able to generate a block successfully,
as the primary might simply not initiate the block
proposal. In such a case, a timeout will trigger a
view change.

3) Primary in the root committee as well as at most
an additional (2c/3)− 1 root committee members
are malicious: In this case, the malicious replicas
in the root committee can collude with the mali-
cious primary to force honest replicas in the root
committee to accept different block proposals. But
as honest replicas in the root committee broadcast
block proposals (along with root members’ commit
messages for the block), the other replica will
detect this discrepancy and this will trigger a view
change.

More details of these cases and others are addressed
in Section IV.

c) View change.

Unlike ordinary BFT protocols, a view change in our
protocol is achieved by replacing the root committee
members with c new members. A view change occurs if
the root committee fails to generate a new valid block.
If no new block is generated, then after a timeout a
new committee immediately takes over and continues
the consensus process. During each epoch, a regular
replica waits to receive a proposed block from the
root committee. If a regular replica i does not receive
the block after a timeout then it considers that the
root committee has failed and reports this to the root

committee. If f + 1 nodes report a timeout, then this
triggers the view change process in root committee and
the root committee members forward f + 1 timeout
reports to regular replicas triggering view change in
regular replicas. In the view change(triggered in Al-
gorithm 2, lines 11-19 and Algorithm 3, lines 10-17),
each node selects another set of c replicas for the
new root committee (using a pre-specified random seed,
which guarantees that every replica selects the same
root committee). Each replica broadcasts its local history
Vi = 〈“V iewChange”, v + 1, s′, H, i, (σ(H))〉i to the
new root committee members. Local history includes
the latest block sequence number(s′), its hash(H), in-
cremented view number(v + 1), and signature evidence
of at least 2f+1 (σ(H)) replicas that have approved the
block.

The new root committee members wait to receive
2f +1 local histories Vi from all replicas and aggregate
them into Q. Once it receives Vi from replica i, its
local history Hi (latest committed block) is extracted
from Vi. Out of 2f + 1, it is guaranteed, that at least
f + 1 are honest replicas. Thus, the most recent history
in these f + 1 replicas will match and this will be the
starting point for the next block to be generated. Among
other information, Vi also contains the latest block se-
quence number (height of the block) and the replica id
that proposed the block. Root committee members will
broadcast Q to all replicas(Algorithm 5). Upon receipt
of Q replica i makes sure that its history matches with
history of Q(agreed by at least f + 1 replicas). If its
history matches, replica i sends back Ready message
(Ri) to new root committee. Root committee member
j will aggregate 2f + 1 P messages and broadcast it
to all replicas. Upon receipt of P that includes 2f + 1
ready messages, replica i is now ready to take part in
new view. If replica i’s history does not match that of
Q it will synchronize its history(Algorithm 4).

Since it is not guaranteed that at least 2c/3+1 replicas
in the root committee will be honest, it is difficult to
transfer the transactions that have been previously agreed
in the previous view by 2c/3 + 1 root members during
the preparation phase. To guarantee all transactions are
executed properly, clients can resend their transactions to
the new primary of the new root committee, after they
realize that they have not received any response for their
transaction.

IV. Proof of Correctness

We prove that the algorithm either produces a block
in an epoch or view change occurs.

Lemma 1. If a block is signed by 2c/3+1 root committee
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nodes then it is guaranteed that all correct replicas will
receive it.

Proof. Since the root committee consists of c/3 correct
nodes, then one of the 2c/3 + 1 nodes that signed the
block has to be a correct node. That correct node will
broadcast the block to all replicas.

Lemma 2. If at least 2f + 1 correct replicas agree on
the same block then it gets committed to local histories
of all correct nodes, otherwise a view change will occur.

Proof. From Lemma 1, if a block is signed by at least
2c/3 + 1 committee members then it is broadcast to all
replicas.

In order for a block to be committed it must be signed
by at least 2f + 1 regular replicas (Algorithm 2, lines
7-10). Otherwise, if this does not happen then there are
two possible scenarios:
• Two different blocks have been proposed by the root

committee C. This can happen if 2c/3 Byzantine
nodes from C and one additional correct committee
node u ∈ C decide one block, while again 2c/3
Byzantine and one correct node v ∈ C, v 6= u,
decide on another block. The blocks may be sent to
different replica sets, or replicas may pick one of
the two to sign. In either case, some correct node
of the root committee receives two different signed
block hashes from the replicas (2, line 11).

• f + 1 replicas have not received any valid block,
and therefore f+1 timeout complaint messages are
reported to the root committee (2, line 11).

Both of these cases will create a proof of maliciousness
which will trigger a view change (Algorithm 2, lines
12-18 and Algorithm 3 line 10.).

Therefore, if view change does not occur then a block
was signed by 2f + 1 regular replicas. This causes the
block to be committed by the correct replicas in root
committee (2, lines 7-9) and also by the correct regular
replicas (Algorithm 3 line 7-9).

Lemma 3. After a view change completes, all histories
of correct nodes are consistent.

Proof. During a view change each replica sends its local
history Vi to the new root committee (First line in
Algorithms 4 and 5). Each member of the root committee
j collects at least 2f + 1 local histories and aggregates
them into a single message Q which it broadcasts to
all replicas (Algorithm 5, lines 2-7). Each replica i
receives the Q messages from all members of the new
root committee, and verifies that at least 2f +1 replicas
have agreed on the same history and most recent block,
and then i broadcasts the READY message to the new

root committee (Algorithm 4, lines 3-4). Each node j of
the new root committee accumulates in P the READY
messages that it receives, and when it receives at least
2f+1 messages then it broadcasts P (Algorithm 5, lines
8-12). When the regular replica i receives message P
with at least 2f + 1 READY messages, then it updates
its local history (Algorithm 4, lines 5-10).

Suppose that two different histories H1 ∈ Vj1 and
H2 ∈ Vj2 appear in Qj1 and Qj2 , respectively, where
j1, j2 ∈ C. Since each of Qj1 and Qj2 are constructed
from 2f + 1 replicas’ common histories, then it has to
be that f + 1 are common nodes for H1 and H2. Since
there are at most f Byzantine nodes, there is a common
correct node that has proposed two different histories H1

and H2, which is impossible. Thus, each correct node
will update its local history to the agreed history of at
least 2f + 1 replicas.

From Lemmas 2 and 3 we obtain the following
theorem.

Theorem 4. Under normal operation and after a view
change, all correct nodes maintain a consistent history
which includes the latest committed block.

V. Message Complexity Analysis
The root committee nodes execute a BFT protocol

among them with quadratic message complexity with
respect to the committee c, where both the prepare and
commit phases cause O(c2) messages. The communica-
tion between the root committee C and regular replicas
requires O(cn) messages: the c root committee nodes
send the block to n regular replicas (cn messages),
and then the root committee nodes receive back regular
replicas signatures (cn messages) and upon aggregation
of signatures root committee members broadcast at least
2f+1 aggregated signatures to regular replicas (cn mes-
sages). Thus, total message complexity during normal
operation will be O(c2 + cn) and for large n, we have
n >> c, we will get:

Message complexity (n >> c): O(cn)

View change is either caused by timeout or by receiving
proof of maliciousness against the root committee. Based
on Algorithm 4 and Algorithm 5 there are multiple
rounds of communication between root committee of
size c and the regular replicas of the size n−c effectively
making view change message complexity as O(cn).

VI. Experiments and Evaluations
We have implemented the Proteus protocol in about

2.5k lines of Golang code. We also implemented PBFT
to be used as a baseline. We selected PBFT because

8



40 70 100 130 200
0

5

10

15

20

(a)

Network size

L
at

en
cy

in
se

cs
Block size 5k

Bchain− 3
PBFT
Proteus

40 70 100 130 200
0

10

20

30

(b)

Network size

Block size 10k

Bchain− 3
PBFT
Proteus

40 70 100 130 200
0

10

20

30

40

(c)

Network size

Block size 15k

Bchain− 3
PBFT
Proteus

Fig. 3: Protocol latencies with block sizes 5000, 10000 and 15000

40 70 100 130 200
0

2

4

·103

(a)

Network size

T
hr

ou
gh

pu
t

in
tx

/s
ec

s

Block size 5k

Bchain-3
PBFT

Proteus

40 70 100 130 200
0

2

4

·103

(b)

Network size

Block size 10k

Bchain-3
PBFT

Proteus

40 70 100 130 200
0

2

4

·103

(c)

Network size

Block size 15k

Bchain-3
PBFT

Proteus

Fig. 4: Protocol throughput with Block size 5000, 10000 and 15000

while other protocols have improved on PBFT perfor-
mance, they usually switch to n × n broadcast (legacy
PBFT) as a fallback measure if a certain threshold
number of failures have occurred. Additionally we also
implemented Bchain-3 which belongs to the family of
chain-based BFT protocols, where instead of a broadcast
the protocols propagate messages along a predetermined
chain order. Bchain-3 has the potential to decrease
the number of messages that are sent in the network,
however, latency may increase due to a possibly long
chain of message relays. Both BFT and Bchain-3 are
also implemented in Golang for the experiments. We
think comparing our protocol with different flavors of
BFT-based protocols (broadcast and chain based BFT)
provide good insight into the performance of Proteus.

We conducted our experiments in the Amazon Web
Services (AWS) cloud. For each replica in the network
we used instances of type t2.large in AWS. Each t2.large

instance has 2 virtual CPU cores with 8GB of memory.
The experiments were performed with network sizes
of 40, 70, 100 and 130 and 200 replicas. We used
Equation 2 to get suitable value for the root committee
size c, for the different numbers of replicas. Given n
and maximum failure probability of Pf ≤ 8.9 · 10−7,
we selected the various root committee sizes to be 18
(40), 27 (70), 30 (100), 33 (130), and 36(200). We
also used different block sizes with 5k, 10k and 15k
transactions. The transactions in the block are simple
blockchain transactions that are randomly generated and
transfer funds from one account to another account.

The other messages to obtain consensus are smaller
size since they contain only hashes of the block, sig-
natures and other information that do not take as much
space. Replicas perform regular operations on the blocks
they receive and they also maintain a complete history
of blocks (complete blockchain). Namely, operations
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performed by each replica include checking its history,
hashes, and signatures to verify the validation of trans-
actions in the block.

A. Analysis of experimental results

We measure latency in an epoch as the time between
the primary root committee proposing a block until the
time that the block is inserted in all the local histories.
We average the latency over several epochs. Figure 3
provides a comparison of latency measurements among
Bchain-3, PBFT, and Proteus. The difference in latency
is small for smaller network sizes, but it increases as the
network size grows. Additionally, we observe that the
latency is affected by the block size, so that if the block
size increases then the latency increases as well. For
example in Figure 3 (a), the latency difference among
protocols is smaller, but as the block size increases
(Figure 3 (b) and (c)) we can see that the latency of
PBFT increases much faster (due to its high message
complexity) followed by Bchain-3 (due to longer length
of the critical chain path). In all cases Proteus provides
better latency than PBFT and Bchain-3, which demon-
strates the scalability of our protocol.

We also measure the throughput, which is the number
of committed transactions per second that are appended
to the blockchain (Figure 4). Similarly to latency, by
observing Figure 4 we can see that Proteus outperforms
PBFT and Bchain-3 for all the test cases. The perfor-
mance superiority of Proteus is more visible (two times
better than other two protocols), when network size in-
creases. For network size 200 and blocksize 15k through-
put for Bchain, PBFT and Proteus are 560tx/sec,422
tx/sec, and 1119 tx/sec. For size 10k throughput for
Bchain, PBFT and Proteus is 513 tx/sec,394 tx/sec, and
1123 tx/sec respectively. For blocksize 5k, throughput
for Bchain, PBFT and Proteus is 402 tx/sec, 418 tx/sec
and 1086 respectively. This also demonstrates the scala-
bility potential of our protocol.

VII. Conclusion and Future Work
In this paper we presented Proteus, a BFT-based

consensus protocol for blockchains that provides better
latency and throughput than the state of the art BFT pro-
tocols (Bchain and PBFT). Proteus, provides consistent
performance regardless of number of failures encoun-
tered in the network whereas other BFT improvements
suffer from fall back performance degradation as the
number of failures in the network reach the threshold.
Our future work will mainly focus on how to further
improve scalability(through sharding) and security of
BFT-based protocols while having minimum effects on
throughput and latency.
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