
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220797099

An	Efficient	Micropayment	System	Based	on
Probabilistic	Polling.

Conference	Paper	·	February	1997

DOI:	10.1007/3-540-63594-7_77	·	Source:	DBLP

CITATIONS

47

READS

38

2	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

SPHINX	Password	Manager	View	project

Stanislaw	Jarecki

University	of	California,	Irvine

89	PUBLICATIONS			4,276	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Stanislaw	Jarecki	on	17	July	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/220797099_An_Efficient_Micropayment_System_Based_on_Probabilistic_Polling?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220797099_An_Efficient_Micropayment_System_Based_on_Probabilistic_Polling?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SPHINX-Password-Manager?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stanislaw_Jarecki?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stanislaw_Jarecki?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Irvine?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stanislaw_Jarecki?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stanislaw_Jarecki?enrichId=rgreq-35322ee566a6e452f8ae7ac88391a7a1-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5NzA5OTtBUzoxMTk5NTk4NjY4NDMxMzhAMTQwNTYxMjA2OTQ2MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An efficient micropayment system based on probabilistic polling

Stanisław Jarecki� Andrew Odlyzkoy
February 10, 1997

Abstract

Existing software proposals for electronic payments can be divided into “on-line” schemes that require
participation of a trusted party (the bank) in every transaction and are secure against overspending, and the
“off-line” schemes that do not require a third party and guarantee only that overspending is detected when
vendors submit their transaction records to the bank (usually at the end of the day).

We propose a new hybrid scheme that combines the advantages of both of the above traditional design
strategies. It allows for control of overspending at a cost of only a modest increase in communication
compared to the off-line schemes. Our protocol is based on probabilistic polling. During each transaction,
with some small probability, the vendor forwards information about this transaction to the bank. This enables
the bank to maintain an accurate approximation of a customer’s spending. The frequency of polling messages
is related to the monetary value of transactions and the amount of overspending the bank is willing to risk.

The probabilistic polling model creates a natural spectrum bridging the existing on-line and off-line
electronic commerce models. For transactions of high monetary value, the cost of polling approaches that of
the on-line schemes, but for micropayments, the cost of polling is a small increase over the traffic incurred
by the off-line schemes.

1 Introduction

Inexpensive goods, such as newspapers or candy bars, are almost always paid for in cash, since the costs of
other systems, such as checks or credit cards, are too high for such small transactions. Electronic commerce is
expected to lead to a dramatic growth in even smaller transactions, some for less than a penny, such as purchases
of individual news stories. Most of the electronic payment systems that have been proposed are not adequate
for handling micropayments because of computational or communications burdens. Therefore special electronic
micropayment systems have been developed recently ([GMA+95, RS96, AMS96, Ped96, BGH+95, NM95,
HSW96, JY96]). They do not provide all the desirable features of the conventional electronic payment schemes,
but are more efficient, and should be adequate for the small sums involved in micropayments.

Secure digital signatures do exist, so it is possible to verify who created a document. However, the basic
problem with all electronic payment systems is that "bits are bits," and are easy to copy. Thus the main problem
for issuers of digital money is to prevent double spending of legitimate digital currency. Some systems, such
as CAFE or Mondex, rely on tamper-resistant devices, which prevent double spending by keeping users from
duplicating those devices or modifying the software in them. The disadvantage of these systems is that they
require special hardware, and that if their chips are reverse engineered, the issuers could face a disastrous loss.�MIT Laboratory for Computer Science, 545 Tech Square, Cambridge, MA 02139, USA. Work mostly
done during an internship at AT&T Labs - Research. Email: stasio@theory.lcs.mit.eduyAT&T Labs - Research. Email: amo@research.att.com

0

Previous Micropayment Schemes
Software-only electronic payment systems (which are the only ones we will discuss from now on) can be secure
if they are fully on-line, so that the issuer participates in each transaction (as in iKP [BGH+95] or NetCheque
[NM95]). However, that is precisely what is not acceptable in micropayments, since the computational and
communication requirements this imposes are excessive when a purchase costs a fraction of a penny. Therefore,
many micropayment schemes have been proposed (Millicent [GMA+95], PayWord [RS96], NetCard [AMS96],
Pedersen’s proposal [Ped96], and PayTree [JY96]) which are off-line. In all these systems, to make purchases
from vendors, a customer must receive a digital certificate from a bank or some other financial intermediary. The
deficiency in these systems is that they either expose the issuer of the certificate to large losses or else they limit
the user’s flexibility. Issuer losses arise when the user spends up to her total limit at each of, say, 10,000 vendors.
(This is a disadvantage of PayWord, NetCard, PayTree, and Pedersen’s scheme.) Such losses can be prevented if
the customer needs to obtain a separate certificate for each vendor she intends to deal with (as in Millicent), but
these certificates must then sum up to no more than the customer’s bank account balance. Similarly, Micro-iKP
([HSW96]), a protocol that is an adaptation of iKP to micropayments, prevents overspending by freezing in
the customer’s account the maximal amount that the customer can spend with a given vendor. Both of these
solutions might be unacceptably restrictive when a customer might want to deal with any of thousands of online
vendors and not know beforehand how much she might spend with each.

Basic Mechanism of Our Scheme
We propose a new scheme, in which a single certificate allows a customer to deal with all vendors in the
system, and possible overspending is radically reduced by the mechanism of probabilistic polling of customers’
purchases. The first transaction between a customer and a vendor is always registered with the bank, but for
each consecutive transaction, the vendor uses a random number to decide whether to report that transaction to
the bank or not. The probability of reporting each transaction is proportional to the amount involved in that
transaction. The proportion constant depends on the customer’s credit (or deposit) in the bank, and the bank’s
trade-off between communication costs of the system and the (always small) amount of overspending it can
tolerate. This constant is adjusted to produce (with high probability) an accurate estimate of the customer’s total
spending. When that estimate reaches a certain limit, the bank sends messages to all the vendors dealing with
that customer to stop any further sales to her.

Advantages of Our Scheme
Our use of probabilistic polling makes our scheme a hybrid between the conventional on-line and off-line
electronic payment schemes. In our scheme, the expected amount of polling messages triggered by a customer
who spends all her credit limit is a small constant (typically between 5 and 10). It is independent of the pattern of
the customer’s spending: whether she makes a few big transactions or many small ones, and whether she makes
them all with different vendors or with just one. This implies in particular that for large purchases (each on the
order of one fifth of the customer’s credit limit) our scheme generates approximately one message per purchase
(approaching the cost of a fully on-line electronic credit-card payment system), while for micropayments, the
amount of overhead incurred by a single transaction becomes negligible (approaching the cost of a fully off-line
system like PayWord, NetCard, etc.).

Our scheme supports a variety of policies, depending on the desired trade-off between the communication
overhead of the scheme and the amount of overspending the bank is willing to risk. The maximum overall
expected amount of overspending of a single dishonest customer is proportional to the amount of credit given
to that customer. This proportion constant must be bigger then 1, and the closer it is to 1 the bigger the

1

communication cost of the scheme. However, the expected losses caused by overspending can be eliminated
almost entirely, if in exchange for a certificate, the bank requires an extra security deposit in addition to the
value of the electronic cash a user can spend with that certificate. For example, if a customer needed, say, $70
of electronic cash, she could go to the bank, deposit $100 into an account, and be allowed to spend her cash
with any vendors, subject to the constraint that her total spending during the day should not exceed $70. (Any
unspent money would be refunded to her the next day.)

Our scheme shares several desirable features of cash. For users, there is some anonymity, in that the bank
does not need to know the customers to accept their cash and open an account. (Users can pay the bank with
anonymous electronic cash, and then the bank gains no knowledge about them, other than who they buy from.)
The vendors learn only the customers’ names as specified by the certificate from the bank, and even if a customer
chooses to present herself as a new purchaser later in the day, the vendor has no way of finding that out. In
addition, the bank does not know what the customers are buying from vendors (but does know which vendors
they deal with, and how much they spend with them). When the customer is required to make a deposit, there is
the added advantage for the bank that, just as with cash, the customer cannot refuse to pay because the vendor
sold defective goods. This minimizes customer care costs, which can easily destroy profitability of a system
that can collect only tiny amount from each of many small transactions.

Often a credit-type system can be adequate. For example, over 90% of the population of the U.S. has
phone service, which allows unlimited credit in calling within a single billing period. (However, deposits are
sometimes required of customers, and increasingly there are checks for unusual calling patterns, to detect fraud.)
On the other hand, only about half of the U.S. population is regarded as eligible for regular credit cards, and
there is careful tracking of transactions to ensure that credit limits are not exceeded. Others are required to
make deposits to obtain credit cards, and can only spend up to the amount deposited. Therefore, in the coming
world of electronic commerce, where there will be transactions across the world between strangers in a variety
of goods, it appears advantageous to provide a flexible micropayment system that does not depend on too much
trust in customers.

Organization
We describe our system in detail in section 2 and analyze its performance and give guidelines to setting its
parameters in section 3. In section 4 we present three interesting variations of the micropayment system based
on polling, and we conclude in section 5. Appendix A contains a discussion of a technical issue of controlling the
random numbers used by vendors to decide on polling customers’ spending. Appendix B contains mathematical
details and tables of data that are helpful in analyzing the performance of the system. Appendix C contains
figures with data used in the performane analysis in section 3.

2 Polling System

2.1 The Underlying Off-line Micropayment Schemes

Our probabilistic polling mechanism can be added to all the off-line, single certificate micropayment schemes,
such as PayWord, NetCard, Pedersen’s scheme, and PayTree. The first three of these schemes use chains of
hash values in a very similar way, while PayTree uses tree-structure of hashes, which has some computational
advantages.

2

NOTATION: We will use symbol fMgX to designate a public-key signature of party X on message M . By
convention, fMgX includes the message M itself. We designate the corresponding public key of party X byPKX . In general, we will use subscripts, like AX , to designate a variable of type A, but belonging, originated
or destined to party X (the specific meaning will be clear from the context).

User Initialization
All the above payment schemes share the same basic structure: All vendors and users know the public key PKB
of the bank. Each user U has a certificate CU , which contains the following data:CU = fB;U;AU ; PKU ; Exp;MaxgB
whereB is the bank issuing the certificate, AU is the user’s address, PKU is her public key,Exp is the expiration
date of this certificate, and Max is the maximum amount that U is allowed to spend with any vendor.

First Payment
In all these schemes, the first payment of user U to some vendor V is more complex than the consecutive
payments, hence we will call this first payment a “registration with a vendor”. In all the schemes, this message
conforms to the following pattern: RegUV = fCU ; V; T;P(1)gU
where T is the time of the purchase and P is a specific payment field, different for every scheme. For example,
In PayWord, NetCard and in Pedersen’s scheme, P (1) contains a unit worth (in dollars) of future payments fromU to V , and a value xn = hn(x0) which is a result of n applications of publicly known hash function h to a
random value x0 (see [RS96, AMS96, Ped96] for details). In PayTree, P (1) contains a root of a tree of hash
applications to random leaf values (see [JY96]). The future payment schemes might do it in yet another way.

On receiving RegUV , V checks B’s signature on CU , extracts PKU from CU , verifies U ’s signature onRegUV , and accepts the first payment [Pay] if it is well formed.

Consecutive Payments and Reimbursement
If everything goes well with the first payment, V will accept consecutive payments P (i) of U during that day,
until the maximum value Max is reached. At the end of the day, V submits to the bank all the payments of U
and the bank reimburses V after checking that the payments are valid.

Unfortunately, if the user was dishonest and spent more than her available credit, the bank can reimburse the
vendors only partially. The overspending of user U is potentially bounded only by the number of vendors in the
system and the value Max in the certificate CU . Hence, if there are many vendors in the system, the average
loss caused by a dishonest user U per vendor can be equal almost to MaxU .

2.2 Adding a Probabilistic Polling Mechanism to PayWord

To control overspending, we add the following probabilistic mechanism to the underlying scheme described
above:

Bank and User Initialization
The bank B picks constants c and M , where c is the expected number of polling messages triggered by a user
who spends up to her credit limit, and M is the number of polling messages about a user that will cause the bank

3

to suspect that this user is overspending her credit limit. These values are determined by the desired trade-off
between the level of security and the computational complexity of the polling mechanism (We will examine this
relationship in section 3). These constants can be different for different customers, depending on how much
those customers have on deposit, or what their past record has been. The reasonable values for c are between 2
and 10, and for M between 5 and 30. For every user U , the bank stores the following information:I = fM; x; Lg
where M is the dollar amount that B allows that user to spend1, x is the counter of polling messages, initially
zero, and L is a list of vendors, initially empty, that could be involved in transactions with that user. When userU buys M amount of electronic coins, B computes f = cM and gives to U a modified certificate:CU = fB;U;AU ; PKU ; Exp; fgB
First Payment: Registration with a Vendor
The payment protocol between U and V is the same as in the underlying scheme, except that the behavior of the
vendor is modified as follows: On receiving RegUV , V checks whether uUV � fU � 1, where uUV is the worth
(in dollars) of this payment. If uUV � fU > 1, the vendor should not accept U ’s payment at all. (Alternatively,
it could treat U ’s payments as a bundle of several separate payments, each of value less then 1fU .) Otherwise, V
forwards RegUV to B. When B receives this registration, it checks the signatures on it, adds V to the list LU ,
and replies to V with an acknowledgment if xU < M , or a rejection otherwise. These replies should contain
some hashes of the message Reg that triggered them, and for increased security these replies can be signed by
the bank.

Since registration with vendor V occurs at the time of first payment, V decides then whether to report this
payment to the bank (see below). When V gets an acknowledgment from B, she can start selling her goods toU . Actually, she can start selling straight away, bearing a risk that if the bank eventually sends her a rejection,
she will not be reimbursed for the sales. Each vendor can formulate a separate policy in this regard, depending
on the amount of fraud encountered by that vendor so far, and the average delays the vendor is experiencing
while waiting for the bank’s acknowledgment.

Payments and Polling
The selling protocol is the same as in the underlying scheme, except that at every payment V receives, she sends
a message with U ’s name to B (fU is the user-specific parameter in CU) with probabilityp = u � fU (= uMU � c)
where u is the dollar value of the payment.

Below is the picture giving an example of a payment session with the polling system. The user sends his
registration (which includes a first payment P (1)) to the vendor, who relays the registration to the bank. The
user makes an additional nine payments, P (2) to P (10), but the random number generator determines that only
the sixth payment P (6) triggers a polling message from V to B about U :1For simplicity we will describe the scheme as credit-based, but we can also require a deposit M0 from each user.

4

w (6)

, w (1)

BVU

w (10)

ACK

"U"

Fruitw (2)

RegReg

The first payment P (1) which is contained in the registration message RegUV can also trigger a polling
message from V to B. Such polling message should be piggybacked with the forwarding of the RegUV fromV to B. Even then, V has a choice of waiting with the transmission of the goods to U for B’s reply.

Every time the bank receives a report from some vendor about user U , it increments the xU counter by one
unit. When xU reaches M , the bank broadcasts an alert message to all vendors on the LU list. When a vendor
receives such a message, it halts its dealings with U , and if V has sold anything to U that day (it might be that
all that V received from U was RegUV), she sends to B all the payments she received from U on that day. This
is the same type of message that she would send at the end of the day to get reimbursed for U ’s purchases.

Dealing with Overspending
The bank B, after receiving the data from all vendors in LU , checks whether all the signatures are correct and
computes zU , the total value (in dollars) of the payments of U on that day. If zU >MU , then U has overspent
his credit (or deposit) and the bank can then freeze his account, assess penalty fees, and potentially prosecute
him.

The losses caused by a dishonest user must be shared by the bank and the vendors in some way that they
negotiated beforehand. The bank can set up various policies for reimbursing vendors who sold goods to an
overspending user (see appendix A). We think that the best method is for the bank to provide a following partial
reimbursement: divide MU between the vendors in LU , by paying to each V 2 LU , xUVxU �MU , where xUV is
the number of reports that B received from V about U ’s purchases.2 This assumes that B has to monitor not
only the total number xU of reports about U , but also how many reports came from a particular vendor. This
policy requires that the bank monitor whether the random coins the vendors use for payment-polling decisions
are not skewed. We will describe how and why the bank should do that in the appendix A.

If zU �MU , then the alert about U was broadcast unnecessarily. In that case, the bank should set xU to dce
and broadcast to all V 2 LU that the alert about user U is canceled.3 After receiving such a message, vendors
start selling to U again, following the same protocol as above. Since all transactions are electronic, all that the2Optionally, the bank can require a deposit M0 before it gives a credit M to a user. Then the bank would divideM0, not M among
the vendors.3The counter is reduced to dce because if the user is going to overspend her credit afterwards, the expected amount she spends from
that point before being caught is M � �M�dcec � � (k� 1)M. Assuming the user spent almost her credit M before the first alert,
her overall spending before being caught will be M+ (k � 1) �M = k �M, which is the amount at which we want to catch all the
overspenders (variable s in appendix B). On the other hand, with this choice of reevaluating the counter xu the probability that an honest
user will cause an alert twice in a row is absolutely negligible. These computations are easier to understand after reading the analysis in
section 3 and appendix B.

5

user notices is a delay in processing her transactions, and if the user had not overspent, so that the alert message
was wrong, there is no embarrassment to the user (nor lawsuits against the vendor), as there is when detectives
arrest a customer on suspicion of shoplifting, say.

3 Performance Analysis

In evaluating the performance of the micropayment scheme based on our probabilistic polling mechanism, we
are interested in the following measures:

1. The average (expected) amount that a thief can spend without having money on deposit to pay for it. An
important factor here is the ratio between the expected amount of purchases of a single user that triggers
the bank to send alert messages, and the credit M given to that user. We will denote that ratio by k.

2. The volume of additional communication and computation.
3. The delays that are slowing down the micropayment protocol. One type of delay experienced by an honest

user will be a halt in her transactions caused by the bank which unnecessarily sends out alert messages
about that user, even though the user has not overspent her credit. We will denote the probability of such
event by d. We can tune our system so that this probability is a small number, like 0:03 or 0:001, but it
cannot be ignored.

In section 3.1 we will present the relations between values k; c;M and d, which are the parameters that define
the performance of our system. In section 3.2 we discuss the money losses caused by thieves. In section 3.3
we analyze the volume of the communication introduced by the system. In section 3.4 we examine the delays
introduced by the polling mechanism. Finally in section 3.5 we give a procedure for setting up the system
parameters so that the probabilistic polling micropayment scheme performs at an optimal cost under given
conditions.

3.1 Relations between System Parameters

Since every user who overspends even by 1 cent is detected at the end of the day, we assume that if somebody
decides to steal, they will try to steal as much as possible until the bank broadcasts the alert messages. In that
case, we can ask for the expected amount of over-the-limit purchases of a thief U at the point where xU = M .
In appendix B we show that k, the ratio between the expected amount a thief has spent which triggered an alert
(i.e. the expected amount a user must spend to generate M polling messages) and the amount of his credit M
in the bank is k = Mc , which leads to the following relation between the parameters:M = c � k: (1)

The parameters d;M and c satisfy the following inequality, also computed in appendix B:d � 0:8 cMeM�c�1p2�(M � c� 1)(M � 1)M�12 : (2)

The constant 0:8 in this equation comes from an inspection of the “goodness” of our approximation for the range
of values that would make sense in our system, i.e. 1:3 � k � 5, 0:001 � d � 0:1. The ranges of c and M
that correspond to these values of d and M are approximately 5 � c � 100, 3 �M � 50.

6

Notation
In the cost analysis below we will consider the following quantities given by external circumstances:� U - the number of customers using the system� V - the number of available vendors� N - the average number of purchases per user per day� W - the average number of vendors a single user makes purchases from in a day� t�U - the number of thieves (i.e. overspending users) encountered by the system in one day. We will

assume that the number of thieves is a small proportion (t � 10�2) of all customers.

We should also recollect the variables that we, the system designers, have a control over:� M - the credit given to a customer� M0 - (optional) the deposit required of a customer� c - the expected number of polling messages originated by a user who spends all her credit M� xU - bank’s counter of the polls about user U� M - the threshold s.t. if xU = M , the bank sends alert messages about user U� k - a number s.t. kM is the expected value of purchases that will originate M polling messages, i.e. the
expected amount of purchases which will trigger the bank to send alert messages about the user.� d - probability that an honest user who spends up to M of electronic cash, will still cause M polls, and
hence trigger the bank to send alert messages.

3.2 Average Expected Loss caused by Thieves

In all off-line and single-certificate cash schemes, every thief can spend up to his maximum credit with each
vendor. Hence the total losses of these schemes caused by a single thief are bounded only by V �M, whereM
is the average credit (or deposit) of a thief.

Thanks to the polling mechanism, potential losses can be greatly reduced. The expected amount a single
thief can overspend can be expressed as (k� 1) �M+E, where E is the value of goods a thief U can purchase
during the time between the moment when some vendor originated the polling message which caused bank’s
monitoring variable xU to reach the threshold value M , and the time the alert message reached all vendors thatU tried to buy something from. (They all must be on the LU list of the bank.) If we require a deposit M0 from
each user, the expected loss caused by a single thief becomes

financial loss per one thief = kM�M0 +E (3)

We can minimize this number if we set M0M = k+ EM , but that could make M0M too big, especially for small M.

However, if we simply set M0M = k, then the average loss due to a single thief would be E.

Hence the total loss caused by a thief in our scheme could be equal to the amount one can buy during a
delay between two messages flowing across the network (the last poll that triggered the alert going from some

7

vendor to the bank and the alert message going the other way), while in the off-line, single-certificate schemes
(like PayWord), this cost is equal to the amount one can buy during a whole day. Obviously, this is a dramatic
reduction.

Consider the delay between the moment when some vendor sends the poll that triggers the bank to broadcast
the alert messages, and the moment when this alert reaches all the vendors that might be dealing with the
overspending user. This delay will be on the order of the delay experienced by a vendor in waiting for a single
acknowledgment, unless the number of vendors on the LU list is exceptionally high. However, because users
cannot register with vendors without making purchases, the thief can try to make the LU list long only if he
finds many vendors who are selling very cheap products and makes single purchases from them. It is not clear
whether the thief can buy any time for himself in this way.

3.3 Volume of Communication Added by Polling

The volume of the additional communication caused by our polling system in a day can be counted as follows:

polling messages + registrations forwarded by vendors+ acknowledgments from banks to vendors + messages in alerts caused by thieves+messages in alerts caused by honest users + polling messages caused by thieves == cU + (1� cN)UW + UW + 2tUW + 3dUW + tUM:
Hence, the volume of the additional traffic per one user is:

volume of traffic per user = (c+ tM) +W � �2 + 3d+ 2t � cN� : (4)

We refer the reader to appendix B for better understanding of the mathematics of this system. We note that from
the number of registrations forwarded by the vendors (which is equal to UW), we excluded the cN fraction of
registration messages that carry a polling message piggybacked on them, since such messages are counted in
the cU expression for the number of polling messages. In the above equation, we assume that every user spends
every day all the coins she purchased (hence c is the expected number of polling messages caused by a single
user). Also, we ignore the negligible possibility that an honest user can cause alerts twice on the same day. In
the computations below we will fix t to be :01, but we note that the value of t in the range between 0 and 0:1
has a minimal influence on the results.

We will examine the cost function above for different values ofW andN and for k = 1:5 and k = 3. It turns
out that if we take M for which the cost function is minimized, values of d can be larger then the 0:01 that we
assume in the computations in appendix B. Therefore, we will always compute two values of this cost function:
one forMmin which gives minimal cost, and the other for the smallest M for which d is smaller then 0:01. The
latter is a minimal communication cost subject to the constraint that d � 0:01. These values are included for
reference in figure 2. Also for reference, we show in table 3 the values of Mmin and d corresponding to the
minimal costs shown in figure 2, and in figure 4 we give values of Md=0:01, i.e. the smallest M s.t. d � 0:01,
for different k’s.

Figure 1 shows the relative increase in the communication costs of adding the polling mechanism to PayWord.
The communication cost of PayWord itself is 2N messages per user per day (we count the messages carrying

8

the purchased goods from the vendor to the user). For comparison, the communication cost (per user) of a fully
on-line scheme like iKP is 4N , because if the bank participates in every transaction, there is 100% increase in
traffic. In figure 1 we give a range from-to of the increase in communication costs, where from corresponds to
the minimal cost for M = Mmin, and to corresponds to the cost for M = Md=0:01. Table 1 simply shows the
proportion between the added cost of the polling mechanism4 and the communication cost of PayWord itself,
i.e. 2 �N .

k=1.5 W = 1 W = 5 W = 25N = 10 35� 57% 82� 85% NAN = 70 6� 21% 14� 25% 46� 49%N = 500 1� 3% 2� 4% 7� 8% k=3 W = 1 W = 5 W = 25N = 10 17� 22% 57% NAN = 70 2� 3% 9% 38%N = 500 0:5% 1% 5%
Figure 1: Increase of the communication costs due to the polling mechanism for k = 1:5 and k = 3

We observe the worst performance occurs for low N and high W . Since we assumed that the user always
spends all the coins she purchased, a small number of transactions means that the amount of each transaction is
high relatively to the amount of user’s deposit (credit) in the bank. For k = 1:5, value of N = 10 is so small
that Mmin = 40 lies beyond the range of possible threshold values M , because M � kN = 15.5 This bound
follows from the fact that M = ck, uf � 1 and M = cf = uN . If N = Mk , the amount of each payment
is maximal allowed by the corresponding value f , and hence, each payment will invoke a polling message
automatically. This explains why for a small number (or high money value) of payments, the polling system is
least efficient. Similarly, a large value of W causes large user-vendor registration overhead, and hence leads to
worse performance. If W = N , i.e. a user makes only one purchase from each vendor, then the increase of
communication costs caused by the polling mechanism will be 100%, i.e., just like iKP.

It is hard to predict the values of N and W a real-life micropayment scheme might encounter, especially
since we probably do not foresee all future uses of micropayments. However, the polling mechanism always
gives less overhead than a fully on-line scheme, and for many patterns of usage, this overhead can be as small
as 5%.

3.4 Delays Added by Polling

Since polling increases communications traffic, it will also lengthen the delay experienced by every single
message. The increase of this average delay depends largely on whether the vendors are running close to their
maximal throughput capability. To preserve the same performance, one would have to set up higher message-
processing requirements for the vendor machines. The change would have to be roughly proportional to the
traffic volume increases (as shown in table 1).

Other important delays come in if a vendor has a policy to wait with sales for an acknowledgment from a
bank. This delay depends on the number of users U , number W of average user-vendor registrations per user,4The volume of communication added by the polling mechanism is shown in table 2. The entries (the from-to range) were computed
using equation 4. Value from corresponds to the choice of Mmin (and the corresponding d’s and c’s as shown in table 3) while to is
computed for Md=0:01 (shown in table 4). Tables 2, 3 and 4 are in the appendix C.5Consequently, in figure 1, for N = 10 and k = 1:5, value to is computed not for Md=0:01 = 40 but for M = 15.

9

the communication capabilities of the bank, and the time it takes for the bank to process a single registration
message. The arrival of vendor registration messages can be modeled as a Poisson process, and hence an
average delay can be computed easily. We notice that the bank can decrease the registration-acknowledgment
delay experienced by the vendors, by splitting its job into many separate servers. Instead of a single machineB, the bank can have several servers B1; : : : ; Bn, each responsible for only 1n fraction of the users. If the
delays were caused not by the volume of traffic but by the distance between vendors and a single central polling
station Bi, these separate machines (they don’t need to cooperate except in user registration) can be furthermore
implemented by a distributed system of servers.

A delay experienced by an honest customer due to the probability d that she will cause a false alert and will
be blocked from making purchases can be best taken care of by setting d as small as possible (without increasingM , and hence, the overall traffic volume too much). We should note, though, that the probability that an honest
user will experience such a halt is smaller then d (as given by definitions and approximations in section 3.1).
The highest possibility of unnecessary alert comes only if some user spends almost all the coins she purchased.
This might not happen that often in the first place. We can furthermore imagine that the user’s software will
warn her when she has spent, say 85% of her deposit (credit), and would almost automatically contact the bank
to purchase additional coins. Such a mechanism will decrease d even further (about twice on the average).

3.5 Guidelines for Setting up a Probabilistic Polling System

The simple guidelines for tuning the performance of this system can be stated as follows:� k controls the financial losses incurred from thieves: we have to keep it small.� The maximum expected number of polling messages from a single user is c. To reduce the processing time
of the bank and the vendors and to decrease the volume of traffic introduced by the polling mechanism
(and consequently the delays), we have to keep c small.� d is the probability of the costly “alerts” caused by perfectly honest users. To decrease delays, processing
time and overall traffic volume, we need to keep d very small.

However, as noted in section 3.1, these parameters are interdependent. So how shall one go about setting
them up? We propose the following design loop (see the notation paragraph in section 3.1 for reference on
variables):

1. Decide on the values of M;M0 and k for which it makes financial sense to run the system, taking the
first estimation of value E (additional losses due to communication delays, see equation (3)) as, say, M.

2. Estimate expected values of W , N and t.
3. Using equations (1) and (2), express M and d as functions of k and c. Substitute them into equation (4)

for the amount of message traffic per user, and find c which minimizes that expression. This also sets the
value of M .

4. Run experiments by modeling the purchasing decisions of the customers with Poisson processes, observe
the average communication delays and estimate the value of E.

5. Estimate the losses again from equation (3). If something can be improved, adjust your M,M0 and k
parameters accordingly and repeat from point 2.

When the system is up and running, the bank should monitor the values of U;W; t; N;E and d. To keep the
optimal performance, the bank should adjust parameters M0M ;Mmin;Mmax; k and c (and hence M) according
to this real data, instead of relying on modeling and on estimates.

10

4 Variations and Extensions

We present three variations of the probabilistic polling micropayment scheme we described in the sections above.
First we show that our system can work without public key encryption. Second, we show a deterministic version
of our scheme. Finally, we discuss a modification in which the vendors do not forward the customer registration
information to the bank.

4.1 Using a Symmetric Key System

If every user-to-vendor registration is forwarded to the bank, and the vendor has a policy of waiting for the
bank’s acknowledgment with sales to the user, then the signature of the user on the RegUV message can be
computed with a symmetric key (say, a DES or RC5 key) that is shared by the bank and the user. The vendor
could not not check the authenticity of such a registration message, but would forward it to the bank. The bank
would check the signature on Reg, and reply with acknowledgment or denial to the vendor, also signed with a
symmetric encryption scheme using a shared vendor-bank key.

This change would necessitate increased trust in the bank, as the bank could now defraud the users. The
users would then be at risk for the amounts M0 they deposit in the bank. This change would also make it much
riskier for vendors to proceed with the sales to customers without waiting for the bank’s acknowledgment, as
they would be unable even to check user’s credentials and identity without waiting for the bank’s response.
However, if the vendors were to adopt the policy of always waiting for the bank’s acknowledgment anyway,
using symmetric encryption for authentication would dramatically decrease the processing time of all parties.

4.2 A Deterministic Scheme

Instead of deciding whether to report a payment by casting a random coin, the polling decisions of a vendor can
be made deterministically in the following way. The i-th payment of user U to vendor V triggers V to send the
polling message to the bank if and only ifi = bkjc for some integer j
Furthermore, the polling message would contain the exact dollar amount the user has spent since the last poll.
If each payment represents u amount of money, then at i-th payment, if i = bkjc for some integer j, the vendor
would notify the bank that the user spent (i � iprevious) � u, where iprevious is the payment number that
originated the previous polling message (of course, for i = 1, iprevious = 0). Similarly, the bank’s counter xU
represents not the number of the polling messages received, but the sum of money reported by vendors about
the user U .

For example, if k = 2, the vendor will report the first, second, fourth, eight, and so on, payments of each
user. When the bank receives these reports, it updates the estimates of the user’s spending to u, 2u, 4u, 8u and
so on. Clearly, at every point, the bank’s counter xU will be at least 1k of the amount the user spent with all
the vendors. The bank sends out an alert if xU reaches k �M. If the bank requires M0 of deposit and givesM credit to the user, the expected loss caused by a single thief is exactly the same as for the original proposal,
i.e. kM�M0 + E. However, the amount of traffic is different. In this deterministic system, the number of
polls about a user depends on the number of payments she makes to the same vendor. In our main proposal,

11

the number of polls originated by an honest user who spends all her money is always a constant (denoted byc). This means that if the user makes small purchases with many vendors, the deterministic system is likely to
produce higher traffic. On other hand, if the user makes purchases of value u with only one vendor, then in the
deterministic algorithm, the vendor will produce logkMu polls. This number will be smaller then c if uM > 1kc .
For values of M and k which we give as reasonable choices in table 3, kc is between 3 and 25, except forW = 25 and k = 1:5, when kc = 200 or 300.

In another variant of this system, all losses can be prevented. If kM =M0, and each time a polling message
is sent to the bank, the vendor stops further sales to the user until the bank acknowledges the message, there is
no way for the user to overspend her deposit. However, in this version, communications traffic is doubled, since
the bank has to respond to each polling message.

4.3 No Registration of Vendors

In the system we presented, the vendor has to register with the bank the first payment of every user that contacts
him. This allows the bank to maintain a list LU of all vendors a user U can be dealing with. If the polling
messages about user U reach the threshold M , it’s enough for the bank to send the “alert” messages to all
vendors on list LU . Alternatively, we can require that the bank would broadcast the alert messages to all the
vendors in the system. The vendors would then be required to keep hotlists of suspected users, and instead of
registering the first payment of a new user with the bank, verify whether this user is not on their hotlist. This
change will greatly increase the time it takes for the bank to broadcasts all the alerts. Consequently, there will
be also a much larger delay before an interested vendor receives an alert and stops dealing with a suspected user.
On the other hand, the vendors will no longer be required to forward the registrations from the users, and the
bank will not have to process them and respond with acknowledgment or denial messages.

The increase of traffic in this scenario can be expressed numerically, similarly to equation (4), as:

volume of traffic per user = (c+ tM) + V � (2t+ 3d)
These costs do not scale well, assuming that our micropayment system is adopted globally by hundreds of
thousands of vendors. Still, for some realistic values of t; d; c;M;N;W , the amount of traffic due to this
alternative proposal will be the same as in the original proposal for large values of V .6 Furthermore, the
increased communication requirements imposed on the bank can be satisfied by distributing the job of the
central bank (see section 3.4).

Because the alerts will be broadcast to all vendors, there will be a longer average delay between the transaction
that triggered the alert, and the moment when most vendors receive the alert message. This would result in
bigger loss caused by thieves, in addition to the increased communication requirements for the banks. Hence,
this alternative scenario would increase the cost of the system, in exchange for cutting down the processing time
and communication delays experienced by the users and vendors in their transactions.6If t = d = 0:01; c = 2:3;M = 7;N = 100;W = 25, then for V = 1000 the traffic volume is the same as in the main proposal.

12

5 Conclusion

We presented a new micropayment system, which prevents overspending by probabilistic polling of customer’s
spending. This technique enables a micropayment system which has small communication overhead and delays,
maintains high cryptographic security, and reduces the costs of the system by minimizing the amount of possible
overspending.

References

[AMS96] R. Anderson, C. Manifavas, and C. Sutherland. Netcard - a practical electronic cash system. In Fourth Cambridge Workshop
on Security Protocols. Springer Verlag, Lecture Notes in Computer Science, April 1996. http:// www.cl.cam.ac.uk/ users/
rja14/.

[BGH+95] M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G. Tsudik, and M. Waidner. iKP- a fam-
ily of secure electronic payment protocols. In First USENIX Workshop on Electronic Commerce, New York, 1995.
http://www.zurich.ibm.com/Technology/Security/extern/ecommerce/.

[GMA+95] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro. The millicent protocol for inexpensive electronic
commerce. In Proc. 4th International World Wide Web Conference, 1995. http://www.research.digital.com/SRC/millicent.

[HSW96] R. Hauser, M. Steiner, and M. Waidner. Micro-payments based on ikp. In 14th Worldwide Congress on Computer and Com-
munications Security Protection, June 1996. http://www.zurich.ibm.com/Technology/Security/publications/1996/HSW96-
new.ps.gz.

[JY96] C. Jutla and M. Yung. Paytree: "amortized signature" for flexible micropayments. In Second USENIX Workshop on
Electronic Commerce, November 1996.

[NM95] Clifford Neuman and Gennady Medvinsky. Requirements for network payment: The netcheque perspective. In Proc. of
IEEE COMPCON, March 1995. ftp://prospero.isi.edu/pub/papers/security/netcheque-requirements-compcon95.ps.Z.

[Ped96] T. Pedersen. Electronic payments of small amounts. In Fourth Cambridge Workshop on Security Protocols. Springer Verlag,
Lecture Notes in Computer Science, April 1996. Tech report: DAIMI PB-495, Computer Science Department, Aarhus
University, August 1995.

[RS96] R. Rivest and A. Shamir. Payword and micromint: Two simple micropayment schemes. In Fourth Cambridge Workshop
on Security Protocols. Springer Verlag, Lecture Notes in Computer Science, April 1996. http:// theory.lcs.mit.edu/ ˜ rivest/
publications.html.

13

A Reimbursing Vendors for Overspending Customers

The bank could set up a simple policy towards the unlucky vendors who were selling their goods to an
overspending user: It could not reimburse them at all, or reimburse them fully. The first strategy would lead
to higher then necessary average loss per vendor per thief. The second strategy seems to fail if dishonest
vendors cooperate with dishonest customers and request excessive reimbursement. What we want to prevent
is the possibility that a group of dishonest vendors refrains from sending polls about a dishonest user, the user
“spends” her maximal amountMwith each of those vendors, and then the vendors request reimbursement from
the bank. What we need then is a mechanism in which the interests of a dishonest user and the interests of the
vendor would not coincide.

The reimbursement procedure we propose at the end of section 2.2 meets this requirement: The vendors get
reimbursed proportionally to the number of polls they produced. The vendors might try to improve their chances
of reimbursement by “overpolling” the overspenders (i.e. producing too many polling messages). However,
since the interest of the overspenders and the vendors collide, they will not cooperate, and hence a vendor would
have to guess whom to overpoll, or to overpoll everybody. This would increase the communication cost of the
system, and maybe derail the probabilistic monitoring mechanism altogether.

However, the bank can easily control whether the vendors produce too many polls on the average, and ban
such vendors from the system. The bank could periodically check whether xUV (number of polls produced by
vendor V about customer U) falls within some error bracket of Exp[xUV] = (uUV � fU) �mUV (mUV is the
number of same-cost transactions between U and V , and uUV � fU is a constant that V should use to compute
the probability of polling U ’s payments). The bank could normalize the difference eUV = Exp[xUV]� xUV by
dividing it by uUV . Then if in the long run the sum of normalized eUV grows more then a random walk, this is
an indication for the bank that the vendor is trying to slant the eventual reimbursement procedures by producing
more polling messages than specified in the protocol.

Notice that the same mechanism can be used to verify that the vendors are not “underpolling” the purchases
of users, trying to save on communication in this way.

As an additional control on the vendors, one could require that they obtain from the bank (during the
registration transaction for each user) the seed for the random generator that determines when to report a
transaction. A dishonest vendor could still cooperate with a thief by testing each seed to see which ones require
few polling messages. However, such behavior would usually be easy to detect, since each seed requires a
purchase and a new registration.

B Computations for Performance Analysis

In this section we analyze the relations between parameters in the probabilistic polling system. The reader
should refer to the notation in section 3.1 for reference about the meanings of the variables.

Let’s assume for a moment that all purchases of some user have the same unit worth u. Let m = Mu , i.e. the
maximal number of purchases at the unit cost u that the honest user can make. The probability of forwarding a
single purchase that the vendors should use is then p = f � u = cMu = c uM = cm . Let g(z) be the probability

14

that xU becomes M at the z-th purchase of user U :g(z) = z � 1M � 1 ! pM(1� p)z�M
Notice that

Pz�M g(z) = 1. Now we can express the probability that xU �M for the honest user, i.e. for the
user who spent up to m of u-valued coins: d = mXz=M g(z) (5)

Approximating k
The expected number of purchases at which the dishonest user is caught is:su = 11� d �Xz>m(z � g(z))
(The dollar amount of spending will be s = u � su). We multiply the expectation by the 11�d factor because we
take the expectation over only the users who make more than m transactions. Since we want only small d’s, i.e.
at most 1%, this factor is between 1 and 1:01. Since,

Pz�M(z � g(z)) = Mp , we approximate:su = 11� d Mp � mXz=M z � g(z)! ' Mp
We assume that the important parameter one will want to minimize is the proportion between the expected
amount of money a thief can spend, and the amount of the thief’s credit M in the bank:k = sM
which we can approximate now as: k = u � suu �m ' Mpm = Mc
Approximating d
We derive our approximation from the summation formula (5). First notice that for 0 � i � m�M : m� i� 1M � 1 ! � �m�Mm� 1 �i m� 1M � 1 !
which leads to the following bound on d (we substitute i = m� z in the definition of d):d = m�MXi=0 m� i� 1M � 1 ! pM(1� p)m�i�M � pM(1� p)m�M m� 1M � 1 ! m� 1p+M � pm� 1
Taking p = cm , and using the inequality nk ! � 1p2�k �nek �k (6)

15

which holds for all k and n, we derive:dap � cMeM�c�1p2�(M � c� 1)(M � 1)M�12
Comparing the direct summation and the approximation formula above, we observe that for the variable ranges
that we are interested in, i.e. k 2 f1:3; : : : ; 5g; c 2 f5; : : : ; 100g, the actual d was always no more then0:8 � dap, as expressed in the resulting equation (2) in section 3.1.

Although we derived equation (2) by fixing the unit u (and consequently the amount m and the probability
of forwarding p) of a single transaction, the values k and d, depend only on the choice of c and M , by equation
(1) and (2). This is not entirely true, in the sense that the approximation (6) which led to equation (2) works best
for n!1, i.e. in our case for large m, and hence for small u. However, this inequality is sharper for smallern, which means that the bigger the u, the smaller the proportion ddap . In other words, if the user’s transactions

are large fractions of M (say, uM � 14c , and, hence, m � 4c), the probability d that an honest dealer will be
halted by a false alert is much smaller then dmax from equation (2).

16

C Tables

We supply the tables with the data used in the analysis of increase in communication volume (section 3.3).

k=1.5 W = 1 W = 5 W = 25N = 10 7� 11:5 17 NAN = 70 8� 29 20� 35 64� 68N = 500 8� 29 20� 37 68� 77 k=3 W = 1 W = 5 W = 25N = 10 3:5� 4:25 11:5 NAN = 70 3:5� 4:5 12:5 53N = 500 4:5 12:5 53
Figure 2: Communication Costs of Polling (number of messages per user)

k=1.5 W = 1 W = 5 W = 25Mmin d Mmin d Mmin dN = 10 6 .21 12 .11 NAN = 70 6 .21 9 .15 21 .05N = 500 6 .21 9 .15 18 .06

k=3 W = 1 W = 5 W = 25Mmin d Mmin d Mmin dN = 10 3 .08 6 .016 NAN = 70 3 .08 5 .027 8 .006N = 500 3 .08 5 .027 8 .006

Figure 3: Values of Mmin and their corresponding d’s

k 1.5 2 3 5Md=0:01 40 15 7 4

Figure 4: Minimal values of M for which d � 0:01, for different k’s

17

View publication statsView publication stats

https://www.researchgate.net/publication/220797099

