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Abstract. The increasing number of cryptocurrencies, as well as the ris-
ing number of actors within each single cryptocurrency, inevitably leads
to tensions between the respective communities. As with open source
projects, (protocol) forks are often the result of broad disagreement. Usu-
ally, after a permanent fork both communities “mine” their own business
and the conflict is resolved. But what if this is not the case? In this paper,
we outline the possibility of malicious forking and consensus techniques
that aim at destroying the other branch of a protocol fork. Thereby, we
illustrate how merged mining can be used as an attack method against a
permissionless PoW cryptocurrency, which itself involuntarily serves as
the parent chain for an attacking merge mined branch of a hard fork.

1 Introduction
Merged mining is already known for posing a potential issue to the child cryp-
tocurrencies, as for example demonstrated in the case of CoiledCoin1, however
so far no concrete example that merged mining can also pose a risk to the par-
ent chain has been given. Since, (parent) cryptocurrencies can not easily prevent
being merge mined2, an attack strategy using this approach would be applica-
ble against a variety of permissionless PoW cryptocurrencies. In this paper, we
describe a scenario where merged mining is used as a form of attack against a
parent chain in the context of a hostile protocol fork.

1.1 System Model and Attack Goals
For our attack scenario, we assume a permissionless PoW based cryptocurrency
B, whose miners cannot agree whether or not to change the consensus rules.
Some of the miners want to adapt the consensus rules in a way such that newly
mined blocks may not be valid under the old rules, i.e., perform a hard fork.
Thereby, we differentiate between the following actors:

– Backward compatible miners (B): The fraction of miners (with hash rate
β) in a currently active cryptocurrency B which does not want to change
the consensus rules of B.

1 cf. https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006
2 The inclusion of a hash value within a block to provably attributed it to the creator

of the proof-of-work (PoW) is enough to support merged mining [7]



– Change enforcing miners (C): The fraction of miners (with hash rate α)
in a currently active cryptocurrency B which wants to change the consensus
rules, i.e., perform a hard fork. Moreover, they want to make sure, that only
their branch of the fork survives.

– Neutral miners (N ): The set of miners (with hash rate ω) that has no
hard opinion on whether or not to change the consensus rules. They want
to maximize their profits and act rationally to achieve this goal, with the
limitation that they want to avoid changes as far as possible. If there is
no immanent need which justifies the implementation costs for adapting to
changes, they will not react3.

For our example, we assume that C wants to increase the block size, while B does
not want to implement any rule change. The goal of the attackers in C is twofold:
1) Enforce a change of the consensus rules in the respective cryptocurrency. 2)
Destroy the other branch of a fork which uses the same PoW and does not follow
the new consensus rules.

1.2 Background
For this paper, we are only interested in forking scenarios that are not bilateral.
In a bilateral fork, conflicting changes are intentionally introduced to ensure
that two separate cryptocurrencies emerge [16]. An example for such a scenario
would be the changed chain ID between Ethereum and Ethereum Classic. It
is commonly believed that in a non-bilateral forking event, the only reliable
possibility to enforce a change requires that the majority of the mining power
supports the change. Thereby, two main cases can be distinguished according
to [16]:

If the introduced change reduces the number of blocks that are considered
valid under the new consensus rules, all new blocks are still considered valid
under the old rules, but some old blocks are no longer considered valid under
the new rules. An example for such a scenario would be a block size decrease. In
this case the first goal (enforce) of our attack is easy to achieve if α > β+ω holds,
since any fork introduced by α will eventually become the longest chain and be
adopted by β and ω because of the heaviest chain rule. If B decides to continue
a minority branch, they have to declare themselves as a new currency B′ and
change their consensus rules to permanently fork off the main chain in B such
that larger blocks are again possible. Therefore, the goal to enforce is clearly
reached in such a case. However, the destroy goal cannot be reached directly if
B forks to a new cryptocurrency B′.

If the introduced change expands the set of blocks that are considered valid
under the new consensus rules, then some blocks following the new rules will
not be considered valid under the old rules. Therefore, any mined block that is
only valid under the new rules will cause a fork. An example for such a scenario
would be a block size increase4. In this case a permanent hard fork will only

3 This should capture the observation that not all miners immediately perform merged
mining if it is possible, even though it would be rational to do so [7].

4 Our example, in which C wants to increase the block size and B does not want to
implement any rule change, would resemble such an expanding protocol change.



c1 c2 c3 c4

block in chain B
empty block in chain B
block not in main chain B 

block in chain C
merge mined with empty
blocks in chain B

B

B

C

b5

difficutly < dB

... b0

b1 b2 b3

b'4

b4

Fig. 1. Example of blocks mined in the two chains B and C after the forking event.

occur if the chain containing blocks following the new rules grows faster, i.e.,
α > β+ω holds. The result would be that the forking event creates two different
currencies: Cryptocurrency C, which includes big blocks, and cryptocurrency B,
which forked from the main chain after the first big block. Therefore, again the
destroy goal cannot be reached directly. To reach the goal destroy, some miners
in C could be required to switch to the new currency B and disrupt its regular
operation, e.g., by mining empty blocks. This of course has the drawback that the
respective attacking miners that switched from C to B do not gain any profits
in C, and their rewards in B will be worthless if they succeed in destroying the
B fork.

The pitchfork attack method proposed in this paper aims to achieve both
attack goals simultaneously, even in cases where α < β + ω holds.

2 Pitchfork Attack Description

The basic idea of a pitchfork attack is to use merged mining as a form of attack
against the other branch of a fork, in a permissionless PoW Cryptocurreny, that
is the result of a disputed consensus rule change. The pitchfork should reduce
the utility of the attacked branch to such an extent, that the miners abandon
the attacked branch and switch to the branch of the fork which performs merged
mining and follows the new consensus rules. We call the cryptocurrency up to the
point of the fork ancestor cryptocurrencyB̄. After the forking event, the backward
compatible cryptocurrency, which still follows the same rules, is denoted as B,
whereas the change enforcing cryptocurrency branch that uses merged mining
and the new consensus rules is denoted as C.

To execute the attack, the new merge mined branch C accepts valid empty
blocks of B as a PoW for C. In the nomenclature of merged mining the chain B,
which should be attacked, is called the parent chain and chain C is called the
child chain. For a valid parent block b of B, the following additional requirements
need to be satisfied: i) The block b has to be empty. Therefore, the contained
Merkle tree root in the header of the respective block must only include the
hash of the (mandatory) coinbase transaction. Given the corresponding coinbase
transaction, it can then be verified that b is indeed empty. ii) The coinbase
transaction of b must include the hash of a valid block c for C. The header of
block c contains a Merkle tree root with the actual transactions performed in C.

Figure 1 shows the two cryptocurrencies after the fork. The last block in the
ancestor cryptocurrency B̄ before the forking event is b0. The first empty block
that is merge mined is b1 in this example. This block (b1) is valid under the old
rules and fulfills the difficulty target in B. Moreover, the block b1 was mined by



a miner in C, which happens with probability α, and contains the hash of block
c1 in its coinbase. Therefore b1 serves as a valid PoW for C as well. Block b2 was
not mined by a miner in C, which happens with probability 1−α, and therefore
it is not empty and does not contain a hash for a valid block for C in its coinbase.
This shows that the two chains are not necessarily synchronized regarding their
number of blocks. The block interval in C depends on the difficulty target of C.
Since we assume that the attacker does not control the majority of the hash rate
(α < β + ω), the difficulty d in C should be lower than in B at the beginning of
the attack, i.e., dC < dB holds. If the difficulty has been adjusted in C, then the
overall number of blocks should be approximately the same for both chains. In
such a case, there might be empty blocks such as b′4, which do fulfill the difficulty
target for C, but not for B. Still, if dC < dB holds, then over time a fraction of
all blocks in B, corresponding to α, will be mined by a miner in C. If we assume
that α ≈ 0.34 then approximately every third block in B should be empty.

Side note regarding difficulty: Theoretically it would be possible that chain C
requires the same, or an even a higher difficulty than chain B. If dC ≥ dB , then
chain C would contain less blocks than chain B, this of course would have a
negative effect on the latency in chain C, i.e., the time it takes till a transaction is
confirmed. However any merge mined blocks that meet the difficulty requirement
dC will be considered valid in B. For example, when dC = dB , the number of
blocks in C relative to B would only correspond to the fraction of the hash rate
(α) that performs merged mining. Nevertheless, since chain C increased the block
size, the throughput could theoretically remain the same or even be higher than
in chain B (depending on the actual implementation). Some examples regarding
an increased block size are discussed in [3,6]. Alternatively, Bitcoin-NG [4] could
also be applicable. The latter approach would have the added benefit that the
negative impact on latency and confirmation times is mitigated. To illustrate
our attack, it is not of particular relevance which adaptation is used to increase
the throughput in C.

2.1 Effects of the Attack
In the simplest case, if no counter measures are taken by the chain under attack, a
pitchfork reduces the utility of the target chain B by the number of empty blocks,
corresponding to the hash rate of the attackers (α). Considering the limited
block size in B and past events in Bitcoin5, where the number of unconfirmed
transactions in the mempool peaked at around 175, 000 in December 2017, a hash
rate of α ≈ 0.34 would likely have a non negligible impact on the duration of such
periods, and hence transaction fees and confirmation times. This could sway both
users and miners inN to switch to the attacking chain C, which further reinforces
the attack. Two other advantages of the attack are, that it is pseudonymous and
that the risk in terms of currency units in B is parameterizable.

Pseudonymous: Since the pitchfork attack is executed by miners through pro-
ducing new blocks that are, in addition, merge mined with the attacking chain,
it is in theory possible to hide the identities of the attackers because no unspent

5 https://blockchain.info/charts/mempool-count?timespan=1year



transaction outputs need to be involved in the attack that could have a traceable
history. However, additional care needs to be taken by these miners to ensure
that their identity is not inadvertently revealed through their behavior [7].

Parameterizable: The attack is not an all-in-move and its costs, in terms of cur-
rency units in B, can be parameterized. The goal of the attack is to destroy
the original chain B, but if this fails the attackers may not lose much. Due to
merged mining the main costs of a failed attack result from the forgone profits
from transaction fees that are not collected in chain B. Additional costs created
by merged mining, i.e., running and additional full node for chain B, can be
negligible compared to the overall costs related to mining [12]. Moreover, even
a failed attack on B can still be profitable for the attacking miners, since the
attackers in C are early adopters of C. If the value of the newly created cryp-
tocurrency C increases enough, the additional income may not only compensate
the reduced income from mining empty blocks in B, but could even create a
surplus for the miners in C. In addition, the attack can be made compatible with
other available cryptocurrencies that can be merge mined with B. Therefore,
additional revenue channels from existing merge mined cryptocurrencies are not
affected by the pitchfork and can even help to subsidize the attack.

As a further parameterization for the attack, it is also possible to execute
it in stages. To test whether there is enough support for chain C, it is possible
to first start with relatively low risk to the attackers by not requiring them to
mine empty blocks and instead only demand the creation of smaller blocks which
can still include high fee transactions. From there, the attackers can reduce the
number of permissible transactions step by step. At a final stage, all coins earned
through mining empty blocks in B can also be used to fund additional attacks,
such as triggering additional spam transactions in B as soon as the 100 blocks
cooldown period has passed. For instance, splitting the coinbase rewards into
many individual outputs of a high enough value with different lock times and
rendering the output scripts as anyone can spend can lead to a large influx of
additional transactions, as users (and miners) compete to scoop up these free
currency units. This is easy to verify as an additional rule in C, however more
complex attack scenarios such as those outlined in [1,10,14] may also be included
as additional consensus rules.

3 Countermeasures
In this section we outline some countermeasures that can be taken by B.

Fork away empty blocks in B: The miners in B can decide to fork off empty
blocks and just build on top of blocks containing transactions. This requires the
coordinated action of all miners in B. If β > α + ω this approach will work in
general. A possible counter reaction by the attackers in C would be to introduce
dummy transactions to themselves in their blocks in B. Therefore, it has to
be ensured that those transactions are indeed dummies. For example: All used
output addresses of every transaction belong to the same entity, but this must not
be correlated given just the block bn in B. One way to achieve this, is to require
that all output addresses in a block have been derived from the miner’s public



key of the respective block, like in an Hierarchically Deterministic (HD) Wallet6

construction. The master public key property of such a construction allows that
future ECDSA public keys can be derived from current ones. This is done by
adding a multiplication of the base point with a scalar value to the current public
key. The corresponding secret key is derived in the same manner, but can only
be computed by its owner. If it is not possible to perform a transaction to an
address for which the miner does not have the corresponding private key, the
utility of every transaction in the block is very limited. To check this condition
on an arbitrary block bn, the public key of the miner as well as the scalar value
for the multiplication is required. These values can be added to the coinbase
transaction of the corresponding block cn in C.

If such dummy transactions are used, the miners of B would be required
to monitor the chain C to deduce which block in B has been merge mined
with C and includes only dummy transactions. If B finds such a block they
then can still cause a fork in B to ignore it. Besides being more complex, this
also poses a potential risk for all transactions in B. Since the block bn could
be released before cn, there is no way to tell whether or not bn was indeed
merged mined and hence includes a hash to cn before cn has been published in
C. With this knowledge, miners in C can intentionally create forks in B when
releasing cn. By slightly relaxing the rules for dummy transaction and allowing,
for example, one transaction output address that is not required to be derivable
by the HD construction, double spends can be executed more easily in B. In this
particular case miners of merged mined blocks can include a regular transaction
that they want to double spend in their block, being assured that this block will
get excluded in retrospect by all miners β in B if cn is released. Therefore, more
fine grained exclusion rules on transaction level would be necessary.

These examples illustrate, that it is non-trivial to change the consensus rules
in B such that the effects of a pitchfork attack are mitigated. Every change of the
defender leads to an arms race with the attacker. Moreover, excluding all merge
mined blocks in B requires active monitoring of C to detect them. Therefore,
at least the miners in B have to change their individual consensus rules – which
they wanted to avoid in the first place.

Use mining power to launch a counter-attack on C: Miners in B can use their
mining power to stall the attacking chain C. However, this has several limita-
tions: Since every block in C requires an empty parent block in B as part of its
PoW, miners cannot create empty merge mined blocks in C while at the same
time creating full blocks in B. To stall chain C, at least a fraction of β, e.g.,
βa ≤ β has to mine empty blocks in B to create empty merge mined blocks for
C. Thereby, the counter-attackers would actually help the pitchfork attack. For
our analysis, we assume that the difficulty target in C is indeed lower than in
B, i.e., dC < dB holds. To clearly overtake the pitchfork chain C, the counter-
attacking miners need to have more than 50% of the hash rate in C. If not, the
lost throughput, caused by empty blocks in C, might be compensated by the in-
creased block size. This introduces the first constraint for the counter-attackers

6 cf. BIP32 https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki



that the hash rate βa they dedicate to the counter-attack must follow βa ≥ α.
However, the counter-attackers must also take care not to push the total hash
rate dedicated towards attacking B to over 50% in B, otherwise more destructive
attack rules than mining empty blocks, such as requiring non-empty blocks to be
ignored, may be rendered effective. If the defenders are able to reliably identify
all attackers’ blocks they can try to fork them away in B. However the disad-
vantages of any (additional) attack rules, such as anyone-can-spend transactions
or fork-away-non-empty blocks, still apply and can cause damage to B through
their own blocks mined by βa. The second constraint hence requires that for a
counter attack, the bound α + βa < 0.5 for the share of blocks in the heaviest
chain of B holds.

Depending on the exact implementation of merged mining in C, the counter-
attackers have some options to avoid that their empty blocks in B, which they
are required to provide as PoW, further reduce the utility of B. For example,
in a näıve approach they could only submit PoW solutions to C that fulfill the
difficulty target for C but not for B. This has the marked disadvantage that any
blocks meeting the difficulty target of B also cannot be submitted as solutions
in C, effectively reducing the counter-attackers’ hash rate βa in C by a factor
dependent on the particular difference in difficulty between C and B. A better
counter-attack can be achieved if the defenders intentionally construct blocks for
the parent chain B that are unlikely to end up in the main chain, yet are still
accepted as a valid proof-of-work in C. For instance, stale branches in B could be
created and extended, however this is only effective if the freshness requirements
for parent blocks in C are not too tight. In both cases, since βa is no longer
contributing toward the effective hash rate of B, its remaining honest miners
ω + β − βa must still retain a hash rate that exceeds that of the adversary to
ensure that honest blocks constitute a majority of the heaviest chain. Therefore,
the original attacker gains an advantage from merged mining since he can use his
full hash rate in both chains at the same time. Moreover, the counter-attacking
fraction of the miners would forgo their rewards in B for the duration of the
counter-attack.

Figure 2 shows the hash rates achievable by the defender/counter-attacker
on the respective chains B and C for different values for the hash rate α of
the pitchfork attacker. In this figure the simplified assumption is made that the
total hash rate of neutral miners ω is zero and hence the total hash rate of the
defender/counter-attacker (β = 1 − α) can be split between the two chains B
and C arbitrarily. In this case, an attacker with α > 1

3 total hash rate cannot
be countered on both chains simultaneously without losing the majority β < 0.5
on one of the chains.

4 Related work
In [7] it is argued that merged mining could also be used as an attack vector
against the parent chain, however no concrete examples are given. Different fork-
ing techniques in the context of cryptocurrencies are described in [16]. The focus
is placed on a non-malicious forking technique called velvet fork, initially pro-
posed in [8]. Different methods that can be used in hostile blockchain takeovers



Fig. 2. Calculation for the hash rates of the defender/counter-attacker in the respective
chains B and C for different values of pitchfork attacker hash rate α

are described in [2], placing the focus on attacks where the attacker has an ex-
trinsic motivation to disrupt the consensus process, i.e., Goldfinger attacks [9].
The example given in the paper at hand is a concrete instance of such a situa-
tion. Therefore, most of the described methods can be used in conjunction with
our proposed attack. The same holds true for the large body of work on brib-
ing [1,11] and incentive attacks that distract the hash rate of participants [14,15].
Furthermore, selfish mining and its variants [5, 13] may be used in combination
with pitchfork attacks.

5 Discussion and future work
In this paper, we outline that merged mining can be used as an attack method
against a PoW cryptocurrency in the context of a hostile protocol fork. The
general idea of such an offensive consensus attack is, that the participants of the
offensive system are required to provably attack a different system as part of the
consensus rules. We show that such attacks are theoretically possible and can
lead to an arms race in which defenders are forced to adapt their consensus rules.
Still, the consequences as well as the economic and game theoretic incentives of
such attacks have yet to be analyzed in greater detail to better understand if
they are practicable, and if so, how to protect against them.
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