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Abstract
The feasibility of bribing attacks on cryptocurrencies was
first highlighted in 2016, with various new techniques and
approaches having since been proposed. Recent reports of real
world 51% attacks on smaller cryptocurrencies with rented
hashrate underline the realistic threat bribing attacks present,
in particular to permissionless cryptocurrencies.

In this paper, bribing attacks and similar techniques, which
we refer to as incentive manipulation attacks (IMA), are sys-
tematically analyzed and categorized. We show that the prob-
lem space is not fully explored and present several new and
improved attacks. Thereby, we identify no- and near-fork at-
tacks as a powerful, yet largely overlooked, category. To be
successful, such attacks require forks of short length that are
independent from a security parameter k defined by the victim,
or even no forks at all. The consequences, such as transaction
exclusion and ordering manipulation, raise serious security
concerns for smart contract platforms.

Further, we propose the first trustless out-of-band bribing
attack capable of facilitating double-spend collusion across
different blockchains that reimburses collaborators in case of
failure. Our attack is hereby rendered between 85% and 95%
cheaper than comparable bribing techniques (e.g., the whale
attack). To demonstrate the technical feasibility we published
all artefacts of this paper reaching from calculations to a fully
functional implementation of our most powerful out-of-band
attack consisting of an Ethereum smart contract and a python
client1.

1 Introduction

”The system is secure as long as honest nodes collectively con-
trol more CPU power than any cooperating group of attacker
nodes.” Satoshi Nakamoto [27].

Despite an ever growing body of research in the field
of cryptocurrencies, it is still unclear if Bitcoin, and thus

1https://github.com/kernoelpanic/pay2win_artefacts

Nakamoto consensus, is actually incentive compatible un-
der practical conditions, i.e., that the intended properties of
the system emerge from the appropriate utility model for min-
ers [7]. Bribing attacks, in particular, target incentive com-
patibility and assume that at least some miners act rationally,
i.e., they accept bribes to maximize their profit. If the attacker,
together with all bribable miners, can gain a sizable portion
of the computational power, even for a short period of time,
attacks are likely to succeed.

Most bribing attacks proposed so far focus on optimizing
a player’s (miner’s) utility by accepting in-band bribes, i.e.,
payments in the respective cryptocurrency. Thus, a common
argument against the practicality of such attacks is that min-
ers won’t participate in these attacks as they would put the
economic value of their respective cryptocurrency at risk,
harming their own income stream. Another common counter
argument against classical bribing attacks is that they are con-
sidered quite expensive for an adversary (e.g., costs of several
hundred bitcoins for one successful attack [22]), or require
substantial amounts of attacker hashrate.

Related to classical bribing attacks, which focus on trans-
action revision, there also exist attacks aimed at transaction
exclusion and/or ordering. Until recently, the latter was a
largely overlooked category [19] that, especially in the con-
text of bribing, has not been explicitly considered yet. Only a
specific form of a transaction ordering attack was described
i.e., front running. In its simplest form clients raise the trans-
action fee in the hope to front-run a competing transaction,
which can also be viewed as an unsophisticated bribing attack.
Recent research highlights and analyzes front running in the
context of the Ethereum platform [10, 12].

Another form of bribing is the Goldfinger attack, where the
goal of an attacker is to destroy a competing cryptocurrency to
gain some undefined external utility [20]. The attack is named
after the James Bond movie villain Goldfinger who seeks
to destroy the gold reserves stored in Fort Knox to increase
the value of his own holdings. The first practical example of
such an attack was suggested in [7] and implemented in [24].
Goldfinger attacks inherently require some external utility
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e.g., that the payments have to be performed out-of-band
since, if successful, the value of the targeted cryptocurrency
is intended to drop. In comparison, classical bribing attacks
directly aim at gaining in-band profit.

The attacks presented in this paper bridge this gap, as
they can either be executed driven by in-band profit, or as
Goldfinger-style attacks. Thereby, the use of bribes may break
the mechanism design and cause rational players to deviate
from the prescribed protocol. To systematically expose the
body of research on bribing-, front-running- Goldfinger- and
other related attacks, we jointly consider them under the gen-
eral term incentive manipulation attacks (IMA), as they all
intend to tamper with the incentives of rational actors in the
system.

1.1 Contributions
In this paper we show that sophisticated trustless out-of-band
attacks can readily be constructed, given state-of-the-art smart
contract platforms. Such attacks pose an even greater threat
to cryptocurrencies, as the argument that miners won’t harm
their own income stream can no longer be readily applied in
this case. Moreover, we show that the cost for an attacker can
be significantly reduced by guaranteeing that participating
bribees are reimbursed, as well as aligning the interests of
multiple attacks (crowdfunding) in a trustless manner, i.e.,
through smart contract code.

Furthermore, we demonstrate that ordering attacks can also
be executed as targeted bribing attacks using smart contracts.
Such attacks do not require any attacker hashrate and can work
without inducing deep blockchain forks or near forks, and
may even be successful with no forks at all. This possibility
for rational miners to (trustlessly) auction the contents of their
block proposals (i.e., votes) to the highest bidder raises fun-
damental questions on the security and purported guarantees
of most permissionless blockchains.

We begin our analysis by outlining general assumptions of
the attack model most analyzed and newly proposed incentive
manipulation attacks have in common (Section 2). We then
present a detailed analysis of related work in this area, which
allows us to compare and categorize the varying system/attack
models of previously proposed attacks (Section 3). This is
a prerequisite to identify related attacks and compare them
against each other. Thereby, we also show that the problem
space is not yet fully explored. By classifying along two differ-
ent dimensions i.e., intended impact and required interference,
we find that incentive manipulation attacks on transaction or-
dering can be performed as a byproduct of other analysed
attacks, but no dedicated IMA has so far been proposed that
explicitly targets this area.

We propose two new incentive manipulation attacks
(Section 5 and 6) to fill some of the gaps outlined by our
analysis2. Both are trustless for the attacker and the collabo-

2Two other new in-band attacks which we also identified can be found in

rating miners, rely on out-of-band payments using a different
cryptocurrency and do not require the adversary to control
any hashrate. The first lies in the previously underrepresented
category of no-/near-fork attacks and targets transaction or-
dering and exclusion. The second attack incentivizes deep
forks and double-spend collusion.

On the technical level, We introduce three crucial enhance-
ments to incentive manipulation attacks: (i) ephemeral
mining relays, as a mechanism for executing trustless, time-
bounded, cross-chain attacks, (ii) guaranteed payment of
bribed miners even if the attack fails, which actually reduces
the costs of such attacks, and (iii) crowdfunded attacks, to
further reduce the individual cost of executing IMA.

Summarizing our contributions are as follows:

• A trustless out-of-band IMA to incentivize transaction
exclusion and/or ordering which can be executed without
deep blockchain forks

• A trustless out-of-band IMA to incentivize double-spend
collusion

• A construction for an ephemeral mining relay to facili-
tate the proposed out-of-band attacks

• Methods to guarantee payments to participating bribees
and an evaluation of the attack cost reduction

• A method to crowdfund out-of-band double-spending
attacks

2 Model

For all analyzed and presented incentive manipulation attacks
(IMA) we adopt the following general attack model. If an
analyzed attack deviates from this model, it is highlighted in
detail when the attack is described.

We consider IMA within permissionless proof-of-work
(PoW) cryptocurrencies. That is, we assume protocols ad-
hering to the design principles of Bitcoin [27], generally re-
ferred to as Nakamoto consensus or Bitcoin backbone proto-
col [16, 28, 33].

Within the attacked cryptocurrency we differentiate be-
tween miners, who participate in the consensus protocol and
attempt to solve PoW-puzzles, and clients, who do not en-
gage in such activities. As in previous work on bribing at-
tacks [6, 22, 24, 34], we assume the set of miners to be fixed,
as well as their respective computational power within the
network to remain constant. To abstract from currency details,
we use the term value as a universal denomination for the
purchasing power of a certain amount of cryptocurrency units
or any other out-of-band funds such as fiat currency. Miners
and clients may own cryptocurrency units and are able to
transfer them (i.e., their value) by creating and broadcasting

the full version of the paper.
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valid transactions within the network. Moreover, as in prior
work [22, 24, 35], we make the simplifying assumption that
exchange rates are constant over the duration of the attack.

We split participating miners into three groups and their
roles remain static for the attack duration. Categories fol-
low the BAR (Byzantine, Altruistic, Rational) [4, 21] rational
behavior model.

• Byzantine miners or attacker(s) (Blofeld): The at-
tacker B wants to execute an incentive attack on a target
cryptocurrency. B is in control of bribing funds fB > 0
that can be in-band or out-of-band, depending on the
attack scenario. He has some or no hashrate α≥ 0 in the
target cryptocurrency. The attacker may deviate arbitrar-
ily from the protocol rules.

• Altruistic or honest miner(s) (Alice): Honest miners A
always follow the protocol rules, hence they will not
accept bribes to mine on a different chain-state or de-
viate from the rules even if it would offer larger profit.
Miners A control some or no hashrate β≥ 0 in the target
cryptocurrency.

• Rational or bribable miner(s) (Rachel): Miners R con-
trolling hashrate ω > 0 in the target cryptocurrency aim-
ing to maximize their short term profits. We consider
such miners “bribable", i.e., they follow strategies that
deviate from the protocol rules as long as they are ex-
pected to yield higher profits than being honest. For our
analyses we assume rational miners do not concurrently
engage in other rational strategies such as selfish min-
ing [14].

Additionally, we assume the victim (Vincent) of the brib-
ing attacks to be a client without any hashrate. While other
bribing attacks implicitly model the victim as honest, i.e., as
strictly following the protocol, we want to emphasise that this
is not necessarily the case, especially if economically rational
counter attacks by the victim should be considered. Even in a
setting where the victim has no hashrate, he can use his funds
( fV ) for counter attacks. Therefore we distinguish between
rational and honest/altruistic victims to allow for a more fine
grained discussion of the presented attacks. If Vincent is to
be modeled with possession of some hashrate, it can be con-
sidered either to be part of β (if altruistic) or ω (if rational). It
holds that α+β+ω = 1.

Whenever we refer to an attack as trustless, we imply that
no trusted third party is needed between briber and bribee to
ensure correct payments are performed for the desired actions.
Thus the goal is to design IMA in a way that the attacker(s) as
well as the collaborating miners have no incentive to betray
each other if they are economically rational.

2.1 Communication and Timing
Participants communicate through message passing over a
peer-to-peer gossip network, which we assume implements a
reliable broadcast functionality. As previous bribing attacks,
we further assume that all miners in the target cryptocurrency
have perfect knowledge about the attack once it has started.
Analogous to [16], we model the adversary Blofeld as “rush-
ing”, meaning that he gets to see all other players messages
before he decides his strategy, e.g., executes his attack.

If more than one cryptocurrency is involved in the consid-
ered scenario, for example when out-of-band payments should
be performed in another cryptocurrency, an additional funding
cryptocurrency is assumed. While the attack is performed on
a target cryptocurrency, the funding cryptocurrency is used
to orchestrate and fund it. In such a case, we also assume that
the difficulty and thus the mean block interval of the funding
chain is fixed for the duration of the attack. Further, no addi-
tional attacks are concurrently being launched against either
cryptocurrencies.

2.2 Incentive Manipulation: Impact and Inter-
ference

IMA represent a generalized form of bribing attacks [6], com-
prising adversarial strategies aimed at manipulating the in-
centives of rational participants. Hereby, we first introduce a
general classification along two different dimensions, namely
by the intended impact an attack has on transactions and
their ordering and the required interference, i.e., the depth of
blockchain reorganizations caused by forks for the attack to
be successful. Combined with other important characteristics,
we systematically analyze and categorize the body of research
on incentive manipulation attacks.

2.2.1 Intended Impact on Transactions

A core goal for permissionless PoW cryptocurrencies is to
achieve an (eventually) consistent and totally ordered log of
transactions that define the global state of the shared ledger.
We differentiate between three states a transaction can be in
from the perspective of a participant (miner or client):

• proposed/ published/ unconfirmed, the transaction has
been broadcasted in the respective P2P network;

• confirmed, the transaction has been confirmed by at least
one block, i.e., has been included in a block;

• agreed, the transaction has been confirmed by at least k
blocks, where k is defined by the recipient of the trans-
action. We denote kparticipant to refer to the confirmation
policy of a participant if it is not clear from the context
e.g., kV denotes the confirmation policy of the victim.

We separate between the following three main categories of
IMA aimed at manipulating transactions and their ordering:

3



• transaction revision, change a previously proposed,
possibly confirmed or agreed transaction;

• transaction ordering, change either the proposed, con-
firmed or already agreed upon order of transactions;

• transaction exclusion/censorship, exclude a specific
transaction, or set of transactions, from the log of trans-
actions for a bounded amount of time i.e., the transaction
remains unconfirmed.

Some IMA may allow multiple types of transaction manip-
ulation at the same time (see Table 1). Depending on the state
of the targeted transaction(s) (proposed, confirmed, agreed)
the attack might vary in cost and in the required level of inter-
ference with consensus.

2.2.2 Required Interference with Consensus

While the previous classification of transaction manipulation
attacks describes the intended impact, here we consider the
required interference with consensus by which they can be
achieved. Specifically, we introduce three different fork re-
quirements:

• Deep-fork required, where a fork with depth of at
least ` exceeding a security parameter kV is necessary
(i.e., ` > kV ). The victim defines kV [15,32] and it refers
to its required number of confirmation blocks for accept-
ing transactions.

• Near-fork required, where the required fork depth is
not dependent on kV , but forks might be required. In
other words, the attacker defines the gap kgap he wants
to overcome, which can be smaller than kV .

• No-fork required, where no blockchain reorganization
is necessary at all (i.e., `= 0).

No-fork attacks distinguish themselves from the other two
categories by aiming to manipulate miner’s block proposals
rather than (preliminary) consensus decisions, i.e., already
mined blocks. Deep- and near-fork attacks seek to undo state-
updates to the ledger that are already confirmed by subsequent
proof-of-work.

Some attacks, such as front-running or transaction revision
where the victim accepts kV =0 (zero confirmation), may be
executable as no-fork attacks. Others, such as performing a
double spend where the victim has carefully chosen kV [32],
may require deep-forks because they need to substantially
affect consensus and violate the security assumption that a
common prefix of the blockchain remains stable, except with
negligible probability [15] (see Section 6). Transaction cen-
sorship may require near-forks to exclude the latest blocks
which include the respective transaction (see Section 5).

3 Related Work

Equipped with our attack model and the classification by
intended impact and required interference, we consider related
work on the topic of incentive manipulation attacks within this
section. Table 1 presents an overview of our categorization
of previous proposals, as well as our new pay-to-win attacks.
Each row represents a different attack (in chronological order)
and columns outline respective properties.
Tx revision / Tx ordering / Tx exclusion are outlined in
subsection 2.2.1. In the first bribing attack proposed by Bon-
neau [6] the use of lock time transactions is suggested, which
are only valid on the attacker’s chain but there they can be
claimed by anyone (anyone-can-spend outputs). Miners are
hence expected to be incentivized to mine blocks on the at-
tacker’s chain to collect these bribes. A variation of this at-
tack using high fee transactions (whale transactions) to pro-
vide incentives for miners to join the attack was described
by Liao and Katz [22]. In [24] they proposed a smart con-
tract (HistoryRevisionCon) which pays additional in-band
rewards to miners of the attacker’s desired Ethereum chain
branch, iff the effects of the double-spending transaction have
occurred on this branch. The mentioned attacks ( [6, 22, 24])
are designed to replace or revise a specific transaction, i.e.,
perform a single double-spend. As a consequence, they do
not consider defining the order or exclusion of arbitrary trans-
actions. Except for the double-spending transaction itself, the
block content of subsequent blocks can freely be defined by
the bribed miners. Therefore, it would be possible for such
miners to also perform a double-spend of one of their transac-
tions for free by piggybacking on the attack financed by the
original attacker.
GoldfingerCon [24] can be seen as a special case of the

transaction exclusion attack which rewards Bitcoin miners
for mining empty blocks with the help of an Ethereum smart
contract. Similarly, Pitchforks [18] leverages merged min-
ing to subsidize the creation of empty (or specially crafted)
blocks in the attacked chain [18].

The Script puzzle 38.2% [34] and CensorshipCon at-
tack [24] distract hashrate of bribable miners to gain an advan-
tage over the remaining honest miners from the main chain
towards puzzles which promise more rewards than honest
mining. The goal of both attacks is that the attacker gains the
majority of the hashrate in the respective chain, and he can
hence arbitrarily order and exclude transactions. Although, the
attack does not explicitly aim to allow the specific ordering of
certain transactions, this capability is achieved as a byproduct.
Neither attack is reverting blocks to change history, which is a
different scenario and requires further analysis in this context,
as reverting blocks would change the incentives of miners
which have produced them.

There are only two previously proposed attack methods
to theoretically achieve all three properties: Script Puzzle
double-spend [34] and negative-fee mining pools [6]. A
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Tx rev. Tx ord. Tx excl. Required chain
reorganization

Attacker
hashrate α

Rational
hashrate ω

Distracts
hashrate

Requires
smart contract Payment Trustless for

attacker
Trustless for
collaborator Subsidy Compensates

if attack fails
Checklocktime bribes [6] 3 7 7 Deep fork 7 ≈ [ 1

2 ,1] 7 7 in-band 3 ∼ 7 7

Negative fee miningpool [6] 3 3 3 Near-/No- /Deep forks 7 ≈ [ 1
2 ,1] 7 7 out-of-band 7 7 7 3

Whale Transactions [22] 3 7 7 Deep fork 7 ≈ [ 1
2 ,1] 7 7 in-band 3 ∼ 7 7

Script Puzzle double-spend [34] 3 ∼ 3 Deep fork (0, 1
2 ) 1−α 3 7 in-band ∼ 7 7 ∼

Script Puzzle 38.2% attack [34] 7 ∼ 3 Near-/No forks [0.382, 1
2 ) 1−α 3 ?† out-of-band ?† ?† 7 3

Proof-of-Stale blocks [23, 36] -? -? -? -? 7 - 3 3 out-of-band ∼ 3 7 3

CensorshipCon [24] 7 ∼ 3 Near-/No forks [ 1
3 ,

1
2 ) [ 1

3 ,
2
3 ) 3 3 in-band ∼ 7 3 7

HistoryRevisionCon [24] 3 7 7 Deep fork 7 ≈ [ 1
2 ,1] 7 3 in-band 3 ∼ 3 7

GoldfingerCon [24] - - 3all No fork 7 ≈ [ 1
2 ,1] 7 3 out-of-band 3 3 7 3

Pitchforks [18] - - 3all No fork 7 ( 1
3 ,1] 3 7 out-of-band 3 3 3 7

Front-running [10, 12] 7 3 7 No fork 7 (0,1] 7 7 in-band 7 3 7 3

Pay per Miner Censorship [37] 7 7 3 No fork 7 1 7 3 in-band ∼ ∼ 7 7

Pay per Block Censorship [37] 7 7 3 No fork 7 1 7 3 in-band ∼ ∼ 7 3

Pay per Commit Censorship [37] 7 7 3 Near-/No fork 7 1 7 3 in-band ∼ ∼ 7 7

P2W Tx Excl.& Ord. 7 3 3 Near-/No forks 7 [ 1
2 ,1] 7 3 out-of-band 3 3 7 3

P2W Tx Rev. & Excl. & Ord. 3 3 3 Deep fork 7 [ 1
2 ,1] 7 3 out-of-band 3 3 7 3

Table 1: Comparison of our P2W and existing incentive attacks on cryptocurrencies. A property is marked with 3 if it is achieved and with 7 otherwise, - is used if a property
does not apply. The symbol∼means that the property cannot be clearly mapped to any of the previously defined categories without further details or discussion. The symbol ? means
that this attack aims against mining pools and hence is not intended to manipulate the chain. The symbol † means that the paper does not explicitly specify the out-of-band payment
method but assumes its correctness.

negative-fee mining pool is like a classic mining pool, except
that it pays out an above-market return. “Because such a pool
would lose money on expectation, no honest pool should be
able to match this reward” [6]. As with most classic mining
pools3 the pool operator can define the content of a block
proposal and hence forge arbitrary attack blocks. Even if min-
ers are rational and hence willing to actively participate in
such operations, this approach has at least two major limita-
tions: First, miners would still have to trust the pool owner
to pay out the promised rewards. Second, miners could re-
port only blocks which are below the current difficulty tar-
get (shares) to prove that they are working for the pool, but
withhold blocks which actually match the difficulty target.
Thereby, they would potentially gain profits by pretending to
participate in the attack/pool without actually doing so. This
miner’s dilemma is a general problem for mining pools [13].
In Script Puzzle double-spend [34] PoW like puzzles,
offering in-band rewards, are published within the respec-
tive cryptocurrency with the intent to distract the hashrate of
rational miners. Using the gained advantage to overtake the
main chain requires attacker hashrate and transaction ordering
merely comes as a byproduct and was not an explicit design
goal. Moreover, upon successful execution rational miners are
deprived of their bribes, rendering the attack non-repeatable.
Required chain reorganization is outlined in 2.2.2 and clas-
sifies if an attack can be realized without, with a near- or
with a deep-fork. A classical double-spending attack sce-
nario [30, 32] requires deep forks (` > k) to reorganize the
chain. Since the attacker has full control over the required
hashrate to perform the attack, he can also arbitrarily order
and exclude transactions from the longest chain.

Depending on the scenario and the desired attack outcome,
e.g., if only ordering is relevant, deep forks are not necessarily
required. For instance, the order of unconfirmed transactions
can be manipulated without necessitating a fork, such as per-
forming front-running [12]. Ordering attacks on smart con-

3 In P2Pool for example, there is no single operator which can define the
content of a block proposal.

tract cryptocurrencies have not been intensively studied [31].
In the paper at hand, we generalize this ability in the context
of IMA and analyze how it can be realized (Section 5).
Requires attacker hashrate α for the attack to be success-
fully executed. As observable in Table 1 there are three
attacks which require α > 0. The Script Puzzle 38.2%
attack allows an adversary with appropriate hashrate to
establish a computational majority and gain a net profit
without considering double-spending attacks. In Script
Puzzle double-spend the adversary has no explicit min-
imum hashrate requirement, however low hashrate has to be
compensated with more puzzle funds. Moreover, it is designed
as a single-shot double-spending attack that, if successful, de-
prives rational miners of their bribes. CensorshipCon uses a
smart contract to offer in-band bribes for mining uncle blocks
to distract hashrate. Thus, it requires attacker hashrate to in-
clude uncle blocks from rational miners in the main chain.
Since it has to include all mined uncle blocks, it requires the
hashrate of the attacker to be larger than 1

3 and the hashrate
of the bribable miners to be between [ 1

3 ,
2
3 ).

It makes sense to bound the attacker hashrate below 1
2 since

otherwise the attacker has no need to perform bribing attacks
as he could overtake the chain single handedly.
Required minimal rational miner hashrate ω for the attack
to have a chance to succeed as described and evaluated in the
respective paper. Generally, all bribing attacks have to assume
that at least some of the miners are rational and hence bribable.
Both Script Puzzle attacks require all miners to be rational,
i.e., α+ω = 1, as well as the Pay per ... attacks (ω = 1).
Distracts hashrate from the valid tip(s) of the attacked
blockchain to some other form of puzzle or alternative branch
that does not contribute to state transitions, e.g., Ethereum
uncle blocks in case of CensorshipCon or another cryptocur-
rency in the case of Pitchforks.
Requires smart contracts holds true for all attacks which
necessitate the use of smart contracts to operate as expected.
Payment specifies where the payments to the bribees are
performed. Rewards are either in-band, i.e., in the respective
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cryptocurrency under attack or out-of-band, e.g. in a different
cryptocurrency. It can be argued that miners will try not to
harm the value of their own cryptocurrency by accepting in-
band bribes, hence out-of-band IMA are of particular interest.
Trustless for attacker specifies if the attack itself can be
exploited by allowing collaborating/bribed miners to profit
without adhering to the attack. For example, script puzzle
attacks require some form of freshness guarantee to prevent
bribees from intentionally waiting until the attack fails before
computing puzzle solutions to obtain rewards. It is also pos-
sible to claim rewards for stale honest blocks that are later
on submitted as uncles to the CensorshipCon. Also in naive
front-running attacks the attacker has no guarantee that the
desired ordering will be achieved by paying a high fee. The
Pay per ... attacks are modeled only theoretically and no
concrete instantiation is given, so it cannot be evaluated if
they are constructed trustless for the attacker or collaborator.
Trustless for collaborator specifies if bribees have to trust
the attacker that they will receive their payments, if they ad-
here to the attack. In Checklocktime bribes the adversary
can try to cheat by creating a conflicting/racing transaction.
However, this attempt is only possible if the attacker is un-
der control of some hashrate α > 0. The same holds true for
Whale Transactions, since the attacker has to provide new
high fee transactions for each block on the attack chain at
each step of the attack. While HistoryRevisionCon does
not explicitly consider trustlessness for collaborating miners,
an augmentation is possible4, CensorshipCon requires that
the attacker includes blocks produced by collaborating miners
as uncle blocks and thus is not trustless. The Script Puzzle
double-spend attack is designed as a one-shot attack that
defrauds collaborators. The Script Puzzle 38.2% attack
does not specify how payments are performed and assumes a
working trusteless out-of-band payment method.
Subsidy means that the attack leverages some characteristic
of the cryptocurrency or environment to become cheaper. In
case of CensorshipCon the rewards from uncle blocks are
used to subsidize the attack, whereas in Pitchforks the ad-
ditional income from merged mining is used as an incentive.
Compensates if attack fails refers to the property that at
least a portion of the bribe is paid irrespective of the out-
come. To successfully engage rational miners, attacks such
as Checklocktime bribes [6], Whale Transactions [22]
and HistoryRevisionCon [24], must pay high rewards in
case of success to compensate the financial risk faced by
bribees if the attack fails despite of their participation. So far
no attack facilitating transaction revision achieves this prop-
erty. Script Puzzle double-spend defrauds the bribed
miners if successful and hence actually only pays out rewards
if it fails.

4The issue stems from the fact that the bribing contract checks the balance
of the Ethereum account which should receive the bribing funds before
issuing any bribes, but without any additional locking constraints these funds
can be moved be the attacker once received.

In front-running attacks, high transaction fees are usually
incurred even if the desired ordering effect is not achieved.
Thus, in this case it is an undesirable property for the attacker.
The same holds true for negative-fee mining pools as rewards
have to be paid for performed work even if no attack block
fulfilling the difficulty target has been submitted by a miner.

3.1 Main Observations
3.1.1 Ordering attacks underrepresented

Ordering attacks on smart contract cryptocurrencies are
still not well understood and discussed [31], yet can be ob-
served in practice [10, 12]. It can be observed that most
bribing attack scenarios focus either on transaction revision
or transaction exclusion, and allow for transaction ordering
merely as a byproduct. All such currently available attacks
(CensorshipCon,Script Puzzle ...) require that the at-
tacker is in possession of some hashrate. Therefore, the ability
to order transactions arbitrarily comes as a byproduct of the
ability as a miner to freely define the order and set of trans-
actions to include in their own block proposals as long as a
valid block is produced.

A notable exception are front-running attacks. However,
the attacks observed in practise provide no guarantees for
the attacker that the desired ordering is achieved even if the
highest transaction fee has been paid as the resulting game is
an all pay auction [10]. Moreover, we argue that front-running
is only a subset of possible (re-)ordering attacks. For instance,
it can be desirable to position a transaction precisely between
two other transactions. An example where such a constellation
would result in a successful attack can be found in [31], where
a vulnerability in the BlockKing contract is described. In the
paper at hand, scenarios where the ordering of transactions can
be manipulated by attackers who themselves are not miners
are of particular interest.

3.1.2 No out-of-band attacks facilitating transaction re-
vision

Moreover, we also observe insufficiencies of existing out-of-
band IMA. The only available technique beyond Goldfin-
ger attacks (GoldfingerCon, Pitchforks), is the Script
Puzzle 38.2% attack, which requires substantial attacker
hashrate. Proof-of-stale-blocks [23] represents a special
case aimed at mining pools. So far there exists no out-of-band
attack which facilitates transaction revision. Theoretically, all
attacks in which the payment is performed out-of-band can
be used to launch Goldfinger-style attacks, as the reward of
the bribee is not directly bound to the value of the respective
cryptocurrency under attack. The question of whether or not
such attacks are profitable depends on the external utility that
can be generated from the failing cryptocurrency.

In the following, we propose two new IMA aimed at differ-
ent scenarios to fill the outlined gaps.
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4 Pay-To-Win Incentive Attacks

We introduce two new pay-to-win IMA that are trustless, both
for the attacker and the collaborating miners. Our attacks
do not require the adversary to control any hashrate, i.e., we
assume α = 0. The payment is performed out-of-band there-
fore, we differentiate between a target cryptocurrency, where
the attack is to be executed, and a funding cryptocurrency,
where the attack is coordinated and funded. While the fund-
ing cryptocurrency must support sufficiently expressive smart
contracts, there are no such requirements for the target cryp-
tocurrency. For presentation purposes, we use Bitcoin as target
and Ethereum as funding cryptocurrency to instantiate and
describe our attacks5. When relying on trustless out-of-band
payments, the assumption that miners of the target cryptocur-
rency would not harm their own revenue channel does not
necessarily hold true anymore. In a world where more than
one cryptocurrency with a certain PoW algorithm exists, this
is a even more compelling argument.

Sections 5-6 each describe one of the introduced attacks in
detail and follow the same structure: (i) a general overview
of the attack, (ii) a step-by-step description, (iii) evaluation
of the attack. Note that we also describe two new in-band
IMA: in-band transaction ordering and in-band transaction
exclusion in the full version of this paper6. The latter was
also described and analysed in concurrent work by Winzer et
al. [37].

5 Transaction exclusion and ordering attack
(out-of-band)

In this section we describe how out-of-band incentive attacks,
which facilitate both transaction exclusion and ordering, can
be constructed. This might be used to perform multiple front-
running attacks at once, or/and to censor certain transactions.
Such attacks can be profitable for an attacker attempting to
falsely close an off-chain payment channel (i.e., publish an
old/invalid state) but prevent the victim from executing the
usual penalizing measures [11, 26, 29]. To execute the attack,
we describe how an attacker can construct a smart contract
which temporarily rewards the creation of attacker-defined
blocks on the target cryptocurrency. We call this technique
an ephemeral mining relay, as it combines elements from
a mining pool and a chain relay. The attack presented here
can also be viewed as a form of the feather forking attack
proposed by Miller [8]. In a feather fork the attacker publicly
promises that he will ignore any block containing a blacklisted
transaction. The attack proposed in the paper at hand uses
smart contracts on a funding cryptocurrency to provide a more
credible threat.

5Theoretically, the attack can be funded on any smart contract-capable
funding cryptocurrency which fulfills the requirements listed in Appendix C.

6Blinded for review

5.1 Description

Initialization. The attacker’s goal is to prevent an uncon-
firmed transaction txV from being included within N newly
mined Bitcoin blocks 7 . The adversary initializes an at-
tack smart contract, which provides the functionality of an
ephemeral mining relay, by specifying block templates. These
templates have to be used by the collaborating Bitcoin miners
to be eligible for rewards. This allows the attacker to fully
control the content of the mined blocks, including ordering
and inclusion of transactions. For each block template, the
corresponding bribe is also conditionally locked within the
smart contract, ensuring miners will be reimbursed indepen-
dently of the final attack outcome as long as they provide a
valid solution.

In the case of Bitcoin block templates, the adversary pub-
lishes incomplete block headers to the attack contract, as well
as the corresponding coinbase transaction. The latter is nec-
essary to allow collaborating miners to include their own
Ethereum payout addresses within the block template, as this
is later used by the smart contract for reimbursement if a valid
block is submitted. Miners joining the attack can only freely
change the nonce (used to iterate over PoW solutions) and the
coinbase field (include Ethereum address) in the generated
Bitcoin blocks.

We point out that it is the attacker who must receive the Bit-
coin block rewards and not the collaborating miners. Instead,
collaborators are reimbursed the value of the Bitcoin block
reward as part of the bribing payouts in the Ethereum attack
contract. This is required as an additional payout guarantee
for the bribee in order to render the attack trustless for collab-
orators. Thereby, rational miners are not required to verify if
the block template they are bribed to mine on will result in a
valid block
Attack. Rational miners submit valid Bitcoin blocks, based
on the attacker’s block templates, to the attack smart contract
on Ethereum via the ephemeral mining relay attack contract,
which verifies that they form a valid chain. As multiple miners
may race to claim the rewards for the same block template,
they are incentivized to publish any valid PoW solutions they
find in a timely manner. An additional incentive for the bribee
to publish a solution promptly, comes from the fact that the
attack contract pays an additional ε for each solution if the
bribing attack as a whole is successful. The incentive of the
attacker to publish the solutions together with the associated
full block in Bitcoin comes from the rewards he receives in
any case, plus the gain from a successful attack.

At each step, the attacker adds new Bitcoin block templates
after each submission to the attack contract and, if necessary,
can even increase the bribes. If no new templates are submit-
ted, the attack halts. It is possible to include more than one
block template in a single block, as shown in e3 (for details

7Additional information can be found in Figure 1 which provides a visu-
alization of an attack.

7



see Appendix E).
Payout. Miners can claim payouts in the attack contract once
kB Bitcoin blocks have been mined after the attack has ended
(kB being a security parameter defined by the attacker). The
attack smart contract is responsible for verifying the validity
of submitted blocks, i.e., their PoW in compliance with the
specified block template, and that all blocks form a valid
attack chain. If a submitted PoW is valid, the attack contract
rewards miners even if the attack chain did not succeed to
become the main chain, i.e., collaborating miners face no risk.
The first miner to submit a valid PoW for the respective block
template will, in any case, receive value equivalent to the full
Bitcoin block reward in Ether, regardless if the attack has
failed, plus an extra ε if the attack is successful.

5.2 Evaluation with Rational Miners Only
(ω = 1)

As previously outlined, the attacker locks up a bribe per sub-
mitted block template, to ensure miners face no payout risk
and are incentivized to join the attack. For an attack duration
of N blocks, we can derive a lower bound for the financial
resources (budget) for Blofeld in Ether ( fB) required for this
attack. Let us assume Blofeld wants to run the attack for N
blocks (before the attack has finished, N is only known to the
attacker).
Necessary attack budget: The budget of the attack contract
must cover and compensate all lost rewards8 (rb) , for every
Bitcoin attack chain block in Ether9, in case the attack fails,
plus an extra bribe ε per block in case the attack was success-
ful. These values together with the funds of the attacker fB,
define the maximum duration of the attack N in terms of
attack chain blocks that can be financed:

fB = N · (rb + ε)+ coperational (1)

There, coperational specifies the operational costs for smart con-
tract deployment and execution (e.g., gas costs on Ethereum).
Compared to the current block rewards, the operational costs
for managing the smart contract are insignificant given the
measurements in [24] and Section D. Although, costs cur-
rently being below 100 USD (see D), we decided to set
coperationl = 0.5 BTC to provide a future-proof and permissive
margin. Assume an attacker wants to specify the transaction
ordering and/or exclusion in Bitcoin for the duration of one
hour i.e., N = 6. A lower bound for the budget of the at-
tacker fB can thus be derived by the current block reward
(12.5 BTC) including approximated10 fees (1 BTC) amount-
ing to rb = 13.5 BTC. Providing an additional ε = 1 BTC,

8This encompasses, block rewards including fees. In a concrete attack rb
is not constant, but given by the coinbase output values of every submitted
block.

9For simplicity we assume a fixed exchange rate between cryptocurren-
cies.

10According to https://blockchain.com/charts the average transac-
tion fees per Bitcoin block over the last year are 0.69 BTC. Accounting

yielding approximately 87.5 BTC as a lower bound for the
budget in this example.
Costs of a failed attack: Although the attack cannot fail in
a model where all miners are rational and the attacker has
enough budget, it is relevant for a scenario where ω < 1 to
determine the worst case cost for an unsuccessful attack. Note
that the actual costs for a failed attack can be much lower,
since Blofeld is able to halt the attack by not publishing any
further block templates. In the worst case the attack duration
is N and not one block produced by complacent miners (ac-
cording to a published block template) made it into the main
chain. Then the costs would be close to the maximum budget,
reduced by N ·ε, which amounts to approximately cfail = 81.5
BTC in our example:
Costs and profitability of a successful attack: If the attack
is successful, the attacker earns the block rewards on the main
chain in BTC which compensate his payouts to bribed miners
in Ether. The costs for a successful attack are thus reduced
by N · rb main chain blocks, whereas rewards must be paid
for N · (rb+ε) block templates. Therefore, in our example the
costs for a successful attack would be approximately 6.5 BTC,
which amounts to roughly 48 000 USD at current exchange
rates11:

csuccess = N · ε+ coperational (2)

Since we assume only rational miners, the attack in this sce-
nario is always successful iff ε > 0 and no fork is required.
Theoretically the bribe can be much smaller than in our ex-
ample. For a successful attack to be profitable, the amount
(va) gained from ordering, or transaction withholding, must
exceed csuccess.

While the attacker must have the funds to compensate col-
laborating miners regardless of the outcome of the attack –
the attack becomes cheaper than comparable attacks since
the additional bribe does not have to account for the risk of
getting nothing, faced by rational miners in the other brib-
ing scenarios. Other previously proposed incentive attacks
aiming at transaction exclusion require the attacker to have a
sizeable portion of the overall hashrate (in the target cryptocur-
rency) under their direct control to even stand a chance. At
least 1/3 for CensorshipCon, or at least 38.2% for Script
Puzzle 38.2%. Acquiring or sustaining the required amount
of hashrate already bares large costs, not to mention the addi-
tionally required bribes. The costs for renting 1/3 of Bitcoin’s
total hashrate with NiceHash12 for the duration of one hour
are approximately 470 000 USD.

The Pay per ... attacks proposed in concurrent work
[37] operate in a comparable setting as our described attack
and also highlight the economic feasibility without going into

for standard deviation of fee and produced blocks per day the value varies
between 0.75 BTC and 0.64 BTC. To provide a permissive margin we round
to 1 BTC.

11Exchange rates from end of October 2019.
12cf. https://www.crypto51.app/
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detail how such attacks can be constructed. The main differ-
ences to our attack are, that they focus on an in-band setting
and only consider a model where all miners are rational.

5.3 Evaluation with Altruistic Miners
(ω+β = 1)

We now discuss a more realistic scenario where not all miners
switch to the attack chain immediately, i.e., some of them act
altruistically. Altruistic miners follow the protocol rules and
only switch to the attack chain if it becomes the longest chain
in the network – but do not attempt to optimize their revenue,
contrary to economically rational or bribable miners13.

Blocks of altruistic miners are likely to also include trans-
actions and transaction orderings that are undesirable to the
attacker. Therefore, blocks of such miners may have to be
excluded by the attacker, i.e., by providing templates which
intentionally fork away these blocks. If altruistic miners find
a block, the attacker and colluding miners must mine at least
two blocks for the attack chain to become the longest chain
again – which altruistic miners will then follow. Hence, the
security parameter kgap is equal to 1 in this case, as we start
our attack immediately after one undesired block has been
mined. Therefore, near-forks are required.

We derive the probability of the attack chain to win a race
against altruistic miners, based on the budget of the attacker.
The attack chain must find two blocks more than the altruistic
main chain – but must achieve this within the upper bound of
N blocks (maximum funded attack duration). Each new block
is appended to the main chain with probability β, and to the
attack chain with probability ω respectively (β+ω = 1). We
therefore seek all possible series of blocks being appended
to either chain, and calculate the sum of the probabilities of
the series which lead to a successful attack. In a successful
series i∈N blocks are added to the main chain and kgap+ i+1
blocks are added to the attack chain. The probability for such
a series is ωkgap+i+1 ·βi.
For any prefix strictly shorter than the whole series, the num-
ber of appended blocks to the attack chain is smaller than
kgap + 1, as otherwise the attack would have ended sooner.
It follows that the last block in a successful series is always
appended to the attack chain. The number of combinations for
such a series is derived similarly to Bertrand’s ballot theorem,
with a difference of kgap for the starting point:((

kgap +2i
i

)
−
(

kgap +2i
i−1

))
(3)

Assuming the attacker can only fund up to N blocks on the
attack chain, the probability of a successful attack is hence

13Another explanation can be that some miners have imperfect information,
which might be the case in practice.

given by:

i≤N−kgap−1

∑
i=0

((
kgap +2i

i

)
−
(

kgap +2i
i−1

))
·ωkgap+i+1 ·βi

(4)

It can be observed 14 that N quickly approaches the maximum
achievable probability of catching up one block within an
unlimited number of blocks 15. For example if ω = 0.66, then
there is a 85% probability to catch up one block after six total
blocks (N = 6) and a 96% probability after twelve total blocks
(N = 12). This means, the attacker can decide whether or not
to extend the attack period and increase N to win an ongoing
race with a higher probability.
Costs of a successful and failed attack: The success proba-
bility of the attack has an influence on the choice of N and
thus on the required budget fB. But the calculations for the
respective bounds in terms of costs are the same as in the
previous model with only rational miners (Section 5.2).

6 Transaction revision, exclusion and order-
ing attack (out-of-band)

In the following, we describe an out-of-band transaction revi-
sion attack which directly facilitates double-spend collusion.
Miners are bribed to mine blocks on the favored branch of
a target cryptocurrency, in our case Bitcoin, in which the ad-
versary is executing a double-spend. Moreover, we show how
the attack can be constructed to always reward collaborating
miners, regardless of the outcome of the attack. Interestingly,
this renders our approach significantly cheaper than compara-
ble attacks [22]. To further reduce the costs, we describe how
smart contracts can be used to crowdfund and/or combine
multiple double-spending attempts into a single coordinated
attack, which further reduces the costs for participants. While
we focus on transaction revision in our description, the pre-
sented attack also bares the possibility for an adversary to
exclude and/or order transactions.

6.1 Description
Initialization phase. First the attacker (Blofeld) creates the
uninitialized attack contract and publishes it on the Ethereum
blockchain 16. This is done with a deploy transaction included
in some Ethereum block e0 from an Ethereum account con-
trolled by the attacker17 . Then, Blofeld creates a conflicting

14Figure 2 visualizes the probability of catching up one block for different
hash rates of ω.

15The Probability to catch up one block within an unlimited number of
blocks is (ω

β
)2 according to [27, 30]

16Additional information can be found in Figure 3 which shows the stages
and two different outcomes of the attack.

17It is also possible to deploy and initialize the attack contract at the same
time (e1), but publishing an uninitialized attack contract upfront ensures
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pair of Bitcoin transactions. The spending transaction txB
is published on the main chain in Bitcoin immediately, and
the double-spending transaction tx′B is kept secret. After the
confirmation period of kV blocks, defined by the victim, has
passed on the Bitcoin main chain, Blofeld releases an initial-
ization transaction which defines the conditions of the attack
in the smart contract on the Ethereum chain. The block e1 rep-
resents the first block on the Ethereum chain after the Bitcoin
block bkV has been published.

In e1 the contract is initialized with kV + 1 new Bitcoin
block templates, each carrying the transactions from the origi-
nal chain to collect their fees, but instead of txB the conflicting
transaction tx′B is included. Collaborating miners are now free
to mine on these block templates, where they are allowed to
change the nonce and the coinbase field to find a valid PoW
and include their payout Ethereum address. Once a solution
has been found, it has to be submitted by the miner to the
attack contract, which verifies the correctness of the PoW
and that only allowed fields (nonce and coinbase) have been
changed. If the submitted solution is valid, the contract knows
which previous block hash to use to verify the next solution
and so forth. As soon as the attacker becomes aware that a
valid solution was broadcasted in the Ethereum P2P network,
he uses the PoW solution to complete the whole block and
submits it to the Bitcoin P2P network. As in our previous
attack, Blofeld and the collaborating miners have an incentive
to submit solutions timely. The collaborating miners want to
collect an additional bribe ε in case the attack succeeds, and
the attacker wants to get his blocks included in the Bitcoin
main chain to receive the Bitcoin block rewards
Attack phase: Bribed miners now proceed to mine kV + 1
blocks on the attack chain. If additional blocks are found on
the main chain, the attacker can update the attack contract
with new block templates for blocks kV +2 to N, where N is
the maximum number of attack blocks that can be funded by
the adversary.
Payout phase: Once the attack has ended at time T , the min-
ers who joined the attack can collect their bribes from the
contract. To accurately pay out bribes, the contract has to
determine which chain in Bitcoin has won the race and is now
the longest chain. Since collaborating miners are competing
for mined blocks, the contract should have received all attack
chain blocks {b′1, . . . ,b′T} by them and hence know exactly
the state of the attack branch. Additionally, the attacker who
initialized the contract and provided the funds has an incen-
tive to feed the main chain, if such a conflicting longer chain
({b1, . . . ,bT}) exists, since he would pay an additional ε for
every block otherwise. Therefore there is always some actor
who has an incentive to feed the correct longest chain to the
attack contract.

that potential collaborators can audit it and familiarize themself with the
procedure. In any case, it is important that the double-spend transaction tx′B
is disclosed after block bkV on the main chain, as otherwise Vincent may
recognize the double-spending attack and refuse to release the goods.

The attack contract then distinguishes between the two
possible outcomes:
I) Attack fails (Main chain wins). In this case the contract
must fully compensate the bribed miners for their attack chain
blocks at most {b′1, . . . ,b′N}, which are now stale. Every col-
laborating miner who mined and successfully submitted a
block on the attack chain receives the reward for that block
without an additional ε.
II) Attack succeeds (Attack chain wins). If the attack chain
wins, then the contract executes the following actions: 1) Fully
compensate the miners of kV main chain blocks starting from
b1 to provide an initial motivation also for them to switch
to the attack chain. 2) Pay the miner of every attack chain
block, b′1 to b′kV+2 in our example ( max. till b′N), the full
block reward plus an additional ε as a bribe in Ether.

Upon being invoked with a miner’s cash-out transaction,
the contract checks if the attack has already finished and a
valid chain up to a predefined block height T is known. The
delta between bN and bT (or b′N and b′T respectively) is the
confirmation period kB defined by the attacker. This ensures
that every participant had enough time to submit information
about the longest Bitcoin chain to the contract and that the
blocks 1 to N have received sufficient confirmations according
to an acceptance policy logarithmic in the chain’s length as
specified in [32]. If the acceptance policy is fulfilled, the
contract unlocks the payment of compensations and rewards
to the miners of the associated blocks.

For blocks on the attack chain, in the simplest case all
bribed miners directly provide Ethereum addresses in the
coinbase fields or disclose their public keys directly via pay-
to-pubkey outputs in the coinbase transaction in Bitcoin, as
described and implemented in the Goldfinger attack example
in [24]. For the first kV main chain blocks, where miners were
not yet aware of the attack, they must prove to the contract
that they indeed mined the respective block(s). This can be
achieved, e.g., by providing the ECDSA public keys corre-
sponding to the payouts in the respective coinbase outputs to
the smart contract such that it can check if they match and
then recompute the corresponding Ethereum addresses.

6.2 Evaluation with Rational Miners Only
(ω = 1)

A lower bound for the required funds of the attacker(s) fB can
be derived analogous to the evaluation in section 5 by also
adjusting for the security parameter kV defined by the victim
Vincent.
Necessary attack budget: A lower bound for the attack bud-
get in Ether fB can be derived due to the condition N > kV
which has to hold for an attack to be feasible. For Bitcoin, a
common choice of kV = 6 requiring N to be at least 7. Setting
the current block reward, fees, bribe as in 5.2 leads to to a
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budget of 96 BTC:

fB = N · rb +(N− kV ) · (rb + ε)+ coperational (5)

Costs of a failed attack: The costs of a failed attack are
determined by its duration and thus N s.t., c f ail = N · rb +
coperational , which leads to c f ail = 95 BTC in our example.
Costs and profitability of a successful attack: Again, if the
attack is successful, it is cheaper. The costs for a successful
attack are given by the kV · rb main chain blocks that have to
be compensated on the attack chain plus the additional N · ε
bribes.

csuccess = kV · rb +N · ε+ coperational (6)

The initial kV compensations are necessary to provide the
same incentive for all miners that have already produced
blocks on the main chain to switch to the attack chain. Since
we assume rational miners, the attack in this scenario is always
successful iff N > kV holds and ε > 0. For Bitcoin, this means
that the costs of a successful double spend with kV = 6 and
rb = 13.5 and ε = 1 are ≈ 88.5 BTC. For a successful attack
to be profitable, the value of the double-spend vd has to be
greater than this value. In Bitcoin transactions carrying more
than 88.5 BTC are observed regularly18. For comparison, in
its cheapest configuration, the whale attack costs approxi-
mately 770 BTC [22], but it operates in a setting where not
all miners are assumed to be rational.

6.3 Evaluation with Altruistic Miners
(ω+β = 1)

Adjusting formula 4 for kgap = kV , we can calculate the suc-
cess probability of the attack. The number of confirmation
blocks required by victim Vincent is kV = 6. Clearly, the at-
tack requires N > kV to have a chance of being successful. As
with the classical 51% attacks, the attack eventually succeeds
once the bribable hash rate is above the 50% threshold and
the number of payable blocks N grows 19.

Given these probabilities we can calculate the required
number of blocks N that need to be funded s.t., the proba-
bility20 of success approaches 100%, while fixing the values
for kV and ω. Assuming more than ω > 0.5 rational hashrate,
bribing attacks are eventually successful if they can be funded
long enough. The relevant question is how expensive it is to
sustain the attack for a long enough period s.t., the probability
for success is deemed sufficiently high i.e., 99.5% in our case.
Table 6 shows a comparison against the simulation results of
the whale attack described in [22]. It can be observed that,

18cf. https://www.blockchain.com/btc/
largest-recent-transactions

19Figure 4 shows the probabilities for different values of rational hashrate
ω, as well as different amounts of blocks N these bribed miners can be
rewarded/compensated for.

20We used 99.5% as a target success probability in our calculations.

in contrast to the whale attack, our attack becomes cheaper
when ω grows large since the required probability is reached
faster and therefore fewer bribes have to be paid. Moreover,
the whale attack has to pay substantially more funds to ac-
count for the risk rational miners face if the attack fails. Our
approach is hence between ≈ 85% and ≈ 95% cheaper than
the whale attack. Additionally, the costs of our attack in case it
succeeds are lower than if it fails, even without accounting for
the potential gain from the successful double-spend. For com-
parison, we also provide the expected number of blocks after
which the attack is expected be successful and the resulting
costs if the attack is stopped at that point in time21.

6.4 Crowdfunding
The attack described above also opens up the possibility to
be crowdfunded. The simplest crowdfunding approach would
be to allow donations as soon as the attack contract has been
deployed. This method allows to collect funds but does not
offer any guarantees for the backers.

A solution which incentivizes multiple attackers to perform
double-spending attacks concurrently would allow to split the
funds for the attack among collaborators. Thereby, theoret-
ically multiple double-spends of low value transactions by
different parties could also be made feasible22 if they together
accumulate enough attack funds ( fB). The main challenges
that have to be solved in such a scenario are:

• It has to be ensured that every collaborating attacker, who
invests funds to achieve a double-spend attack, has some
chance that his individual double-spend is successful,
i.e., if the invested value is used by the contract, then a
double-spend attack has to be performed.

• It has to be ensured that the attack cannot be poisoned by
collaborating attackers such that they are able to sabotage
the whole attack for all participants, i.e., it should not be
possible for any participant to cause the attack to fail.

• The attack should not rely on any trusted third party.

On a high level, the stages of the attack are as follows. First,
the initialization transaction only announces that an attack
might happen and the block interval from b1 to bkV that will
be affected. Then, all Bitcoin users who have performed trans-
actions in block b1 can decide whether or not to invest in
the attack to potentially double-spend their transaction. The
collaborating attackers, i.e., the backers, submit their double-
spending transaction to the contract, together with some brib-
ing funds in ether that increase the overall funds fB of the
attack23.

21Further ideas for cost optimization are briefly discussed in Appendix G
22See Appendix H for a brief discussion on the available funds.
23Theoretically, an attacker can also specify a fixed rate of funds he wants

to collect, depending on the overall value of the submitted Bitcoin transaction
which should be double-spent.
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If the funding goal of reverting at least kV +1 blocks has
been reached, the attack starts as previously described. Since
the attacker who initialized the contract has to take care of
producing new block templates for the chain containing the
double-spend transactions, some method has to be imple-
mented that the transactions of other backers are assured to
be included in b′1. We describe a method which requires a
collateral from the original attacker (Blofeld) as high as the
funds he wants to collect ( fB). In doing so, it can be ensured
that the other backers only pay if their transaction was really
included in the new chain in block b′1, which can be proven
to the smart contract. Otherwise they are refunded from the
collateral submitted by the initial attacker.

The phases of the attack are as follows:
1) Blofeld who initiates the attack, deploys an attack contract
in Ethereum and locks his collateral of value fB with this
contract. Additionally, he publishes his spending transaction
txB1 on the main network.
2) Once kV blocks on the main chain have been mined, Blofeld
initializes the attack contract with his double-spend tx′B1

, his
part of the attack funds fB1 , the block b1 to be forked, and the
common ancestor block b0.
3) Everybody who has included a transaction in block b1 is
then allowed to submit double-spending transactions tx′B{2,...,x}
including some amount of ether fB{2,...,x} that he or she is will-
ing to invest in the attack. If these backers reach the funding
goal of compensating at least kV + 1 blocks before kV + 1
main chain blocks have been submitted to the attack contract,
the attack starts automatically. All invested funds (excluding
the collateral fB) are then free to be used by the EMR as
described in the original attack.
3) Once the attack has been started by the attack contract,
Blofeld publishes a block template to the attack contract. The
Merkle branch of this template includes all submitted double-
spending transactions tx′B{2,...,x} , which are i) valid according
to information from his full node ii) backed by some ether.
Additionally, the attack contract has to require some freshness
information such that Blofeld is unable to produce blocks
before officially starting the attack to rip compensations in-
creasing his invested value fB1 from his fellow backers. An
example for such a freshness guarantee would be the inclu-
sion of the latest funding chain block hash e1 in the block
template.
4) Then the attack proceeds as originally described.
5) When N blocks are mined and published to the attack con-
tract, the backers who have not witnessed that their double-
spending transaction was included in the attack chain can now
claim their invested ether back from the attack contract. There-
fore, the attack contract automatically allows any backer to
reclaim their money if Blofeld cannot submit a valid Merkle
inclusion proof for the respective double-spending transac-
tion.

In this approach, Blofeld has to provide a collateral as large
as the total funds required for a successful attack fB. If he

behaves honestly, the collateral will be returned to him by the
attack contract once the attack has ended – regardless if it was
successful or failed. The collateral ensures that the initiator
is able to compensate additional backers, in case their funds
have been used for the attack but Blofeld did not include their
double-spending transaction(s).

Like all other backers, Blofeld is required to invest funds
fB1 into the double-spending attack. This investment by
Blofeld should ensure that he is indeed willing to execute
an attack and also loses funds if he is not able to provide cor-
rect block templates. For example, if the initiator purposely
stalls the attack e.g., by not producing any block templates or
not forwarding them in time to the Bitcoin main network, the
attack will fail. But then he will also lose his invested funds
fB1 . Thus, backers are advised not to invest more Ether than
Blofeld (excluding the required collateral).

7 Discussion and Mitigations

Through our comprehensive analysis of related work in the
area of incentive manipulation attacks (IMA) (see Table 1),
we are able to highlight unconsidered attack types and present
new and improved techniques that address outlined gaps. Our
attacks further serve to highlight the security dependency
between transaction value and confirmation time kV , as also
stated in [32]. As with the negative-fee mining pools presented
by Bonneau in [6], there exists an interesting analogy between
an incentive manipulation attack and a mining pool. At an
abstract level, the presented attacks rely on a construction
comparable to a mining pool, where the pool owner/attack
operator defines specific rules for block creation for the tar-
geted cryptocurrency within a smart contract. Moreover, every
participant must be able to claim their promised rewards in a
trustless fashion, based on the submitted blocks and state of
the targeted cryptocurrency. The construction of an ephemeral
mining relay, presented within this paper, provides exactly
this functionality. Luu et al. [23] also proposes a mining pool
(Smart pool) which itself is governed by a smart contract.
However, its design and intended application scenarios did
not consider use-cases with malicious intent. Smart pool does
not enforce any properties regarding the content and validity
of submitted blocks beyond a valid PoW, as the intrinsic in-
centive among participants is assumed to earn mining rewards
in the target cryptocurrency, which is only possible if valid
blocks have been created.

A natural question which arises from the presented attacks
is how such IMA can be mitigated. We now discuss possible
counter measures and limitations of the described attacks.

Counter attacks For the victim(s) counter bribing is a vi-
able strategy against IMA. The difficulty of successfully ex-
ecuting counter bribing highly depends on the respective
scenario. In the end counter bribing can also be countered
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by counter-counter bribing and so forth. Therefore, as soon
as this route is taken, the result becomes a bidding game.
Against transaction exclusion attacks, counter bribing can be
performed by increasing the fee of txV such that it surpasses
the value promised for not including the transaction24. If de-
fenders have imperfect information, they may not be able to
immediately respond with counter bribes. In this case some
of the attack chain blocks may have already been mined, or
even take the lead, before they are recognized by defend-
ers. Counter bribing then necessitates the incentivization of a
fork, and thus a more expensive transaction revision attack,
leading to asymmetric costs in the bidding game. This illus-
trates an important aspect of IMA, namely their visibility. On
the one hand, sufficiently many rational miners of the target
cryptocurrency have to recognize that an attack is occurring,
otherwise they won’t join in and the attack is likely to fail.
On the other hand, if the victims of the attack recognize its
existence, they can initiate and coordinate a counter bribing
attack. So the optimal conditions for IMA arise if all rational
miners have been informed directly about the attack, while
all victims/merchants do not monitor the chain to check if an
attack is going on and are not miners themselves.

Although our proposed attacks are clearly visible on the
funding cryptocurrency, they are not necessarily observable
in the target cryptocurrency. In the best case, the transaction
exclusion and ordering attack proposed in the paper does not
even produce a fork in the target cryptocurrency when all min-
ers act rationally. But even if forks are induced, participating
miners can make use of the fact that the PoW mining process
itself does not require any strong identity by using different
payout addresses. Of course their received rewards can be
traced in the funding cryptocurrency, but available privacy
techniques could be used to camouflage the real recipient of
the funds e.g., [17, 25].

The great benefit of the herein described attacks is that
bribes are payed out-of-band. Hereby, our attacks are ren-
dered more stealthy to victims, who only monitor the target
cryptocurrency. It can hence be argued that counter attacks
by victims are harder to execute as they are not immediately
aware of the bribing value that is being bet against them on
a different funding cryptocurrency. We also follow the argu-
ment in [6] that requiring clients to monitor the chain and
actively engage in counter bribing is undesirable, and our out-
of-band attacks further amplifies this problem as clients would
have to concurrently monitor a variety of cryptocurrencies.

Another interesting aspect of counter bribing is revealed
if crowdfunded attacks are assumed. In this case the funds
required to counter bribe can be higher than the invested
funds of each individual attacker. In a scenario with multiple
victims, organizing coordinated counter bribing is difficult.
All victims would be better off if the attack fails, but for an
individual victim it is cheaper to not take action and hope

24Another possible counter attack would be to launch a DoS attack against
the censor, see Appendix F for details

that others will fund the counter bribe, leading to a collective
action problem.

Cross-chain Verifiability One crucial aspect of our attacks
is that a smart contract within the funding cryptocurrency
must be able to validate core protocol and consensus rules
of the target chain, in particular it must be able to determine
the validity of blocks. If this is not possible the attack cannot
be executed trustlessly. For example, it is currently not pos-
sible to execute an IMA against Litecoin using Ethereum as
a funding cryptocurrency in a fully trustless manner, as it is
economically unfeasible to verify the Scrypt hash function
within a smart contract. On a high level, the technical require-
ments for out-of-band attacks to be considered trustless are
summarized in Appendix C.

8 Conclusion

The analysis of incentive manipulation attacks presented in
this paper forms a necessary prerequisite and basis for the
comparison and discussion of related work. We close some
of the hereby identified research gaps by describing and eval-
uating two new trustless IMA that achieve new character-
istics and are rendered cheaper than comparable previous
approaches. Our new attacks, as well as the existing body of
research on IMA, demonstrates that it is not only the hashrate
distribution among permissionless PoW based cryptocurren-
cies that plays a central role in defining their underlying se-
curity guarantees. The ratio of rational miners and available
funds for performing IMA also form a key component, as
rational miners can be incentivized to act in a Byzantine man-
ner. The possibility of trustless out-of-band attacks highlights
that being able to cryptographically interlink cryptocurrencies
increases this attack surface. Further, Smart contract based
IMA introduce the possibility to align the interests of multiple
attackers who want to perform double-spends during the same
time period, making low value double-spends theoretically
feasible. Together with the topic of counter bribing, new re-
search directions are shown that raise fundamental questions
on the incentive compatibility of Nakamoto consensus. All
previously proposed, or in-the-wild observed, IMA, as well as
the attacks described in this paper, indicate that the security
properties of permissionless PoW based cryptocurrencies are
neither accurately reflected by assuming only rational actors,
nor by ignoring the existence of incentives at all, i.e., only
considering honest and Byzantine miners. IMA show that,
as soon as rational players are considered, interesting ques-
tions arise whether or not the incentive structures of prevalent
cryptocurrencies actually encourage desirable outcomes. Ad-
ditionally, in a world where multiple cryptocurrencies coexist,
it is likely not sufficient to model them individually as closed
and independent systems.
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A Variables and symbols

Symbol Description

B The attacker that wants to execute the double-spending attack
V The victim or merchant, e.g., the actor who would lose money

if the double-spending attack is successful
B1,B2, ...,Bx Other accounts/addresses under the control of the attacker(s)
V1,V2, ...,Vx Other accounts/addresses under the control of the victim(s)
txV , txB, tx′B, Transactions: i.e., transaction of the victim, transaction of the

attacker, conflicting transaction of the attacker.
f ee(txV ) Function that returns the fee of given transaction e.g., txV

fB Required initial funds of the attacker
re,rb Funds equivalent to one block reward in Ethereum and Bit-

coin respectively (including fees)
ε Additional reward paid for a block on the attack chain. The to-

tal reward for a block on the attack chain received by a bribed
miner hence is rb + ε

ρ Profit of the attacker
v,vd , ... Value, e.g., value of the double-spend transaction
csuccess Total costs of a successful pay-2-win attack

cfail Total costs of a failed pay-2-win attack
cexpected Total costs of a successful pay-2-win attack finished with the

expected number of blocks
coperational Total operational costs for smart contract deployment and gas

ccounter Total operational costs to launch a counter bribing attack e.g.,
transaction fees, gas, etc.

Table 2: Variables and symbols related to actors and costs.

Symbol Description

α Hash rate of the attacker
β Hash rate of all honest miners that are not bribable
ω Hash rate of all rational i.e., bribable miners ω = 1− (α+β) and

each mining entity i controls ωi such that ω = ∑
k
i=1 ωi

ωm Hashrate of some rational mining entity, which evaluates the prof-
itability of accepting bribes.

ωα Estimated hashrate of rational mining entities which will accept
bribes and follow the attackers strategy.

Table 3: Variables and symbols related to hashrate.

Symbol Description

kV ,kB,kgap Number of confirmation blocks till block is considered as con-
firmed by the actor which depends on the respective scenario.
This could either be the victim, attacker or given by the desired
interference.

` The length of the attacker chain since the block causing the fork.
N Maximum length of the attack chain during the attack.

Nexpected The expected length of the attack chain for a successful attack, it
holds that N < Nexpected .

ex Some funding chain block at (relative) height x. In our examples
the funding chain is considered to be Ethereum. The notation ex >
ey specifies that ex has been mined after block ey i.e., ex has a
higher blockheight.

bx Some target chain block at (relative) height x. In our examples
the target chain is considered to be Bitcoin. The notation bx > by
specifies that bx has been mined after block by i.e., bx has a higher
blockheight.

Table 4: Variables and symbols related to blockchain mechan-
ics.
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Figure 1: Example timeline showing blockchain structure and
resulting payouts of a failed, and a successful tx exclusion
and ordering attack with out-of-band payments. The attack is
initialized when the attack contract is published in block e0.
Block templates are published as transactions in the funding
cryptocurrency and refer to blocks in the target cryptocur-
rency. The payouts are performed in block eT . The colored
blocks are rewarded by the attack contract, either only with
their original value (reward + fee normalized to 1) or with an
additional ε if the attack was successful. The numbers above
colored blocks indicated those normalized rewards for the
respective block.

Figure 2: The probability of catching up one block on the
y-axis (log scale) within N blocks on the x-axis for different
hashrates ω. The dashed line is the maximum probability to
catch-up one block after an unlimited number ( N = ∞) of
blocks i.e., (ω

β
)2.
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Figure 3: Example timeline showing blockchain structure
and resulting payouts of a failed, and a successful tx revision
attack with out-of-band payments. The attack contract can be
deployed before the actual attack starts. After kV blocks on the
target chain have passed, the attack contract is initialized with
kV +1 block templates. The double-spend transaction(s) are
included in block b′1. The payouts are performed in block eT .
The colored blocks are rewarded by the attack contract, either
with their original value (reward + free normalized to 1) or
with an additional ε if the attack was successful. The numbers
above colored blocks indicated those normalized rewards. If
the attack succeeds, the first kV blocks on the Bitcoin main
chain also have to be compensated to provide an incentive for
the respective miners to also mine on the attack chain.

Figure 4: Attack success probability of a double-spending at-
tack depending on the amount of blocks N that can be compen-
sated/rewarded and different values for the rational hashrate
ω. The number of required confirmation blocks by Vincent is
set to kV = 6.

C Technical requirements

On a high level the technical requirements which would allow
to trustlessly execute all our attacks can be generalized by the
five main points listed below.

1. Given a block in a block interval (on the target chain)
defined by the attacker, a trustless way to verify that:

(a) a certain state transition was performed (e.g., a
transaction was included in the blockchain).

(b) a certain state transition was not performed (e.g., a
transaction was not included).

2. A trustless way to uniquely attribute blocks to miner
addresses, as well as a way to map the latter to corre-
sponding addresses in the funding cryptocurrency.

3. A trustless way to transfer value in the funding cryptocur-
rency to a uniquely attributed address of a collaborating
miner (see point 2).

4. A trustless way to determine the state of the target cryp-
tocurrency after T blocks have been mined on top of a
block pre-defined by the attacker, i.e., the longest chain.
This implies that it is possible to verify the PoW of the
target cryptocurrency in smart contracts on the funding
cryptocurrency.

5. A trustless way to determine the state of the attack on the
target cryptocurrency after T blocks have been mined on
top of a block pre-defined by the attacker, i.e., the attack
chain anchored at this specific block.

D Evalution of the ephemeral mining relay

To verify the outcome of the attack and correctly pay rewards
in trustless out-of-band scenarios, we introduce the concept
of ephemeral mining relays (EMR)25. An ephemeral mining
relay is a smart contract that combines the functionality of a
chain relay [1, 9, 38] and mining pool [23, 36].

Chain relays are smart contracts which allow to verify the
state of other blockchains, i.e., verify the proof-of-work and
difficulty adjustment mechanism, differentiate between the
main chain and forks, and verify that a transaction was in-
cluded within a specific block (via SPV Proofs [5]). However,
a naive chain relay implementation allows only to verify that
a certain block (or transaction) was included in a chain with
the most accumulated proof-of-work (i.e., heaviest chain). It
does not allow to verify whether the blocks and transactions
included in this heaviest chain are indeed valid, i.e., adhere to
the consensus rules of the corresponding blockchain.

25We use the term “ephemeral" as the mining relay is instantiated only
temporarily and does not require verification of the entire blockchain, but
only the few blocks relevant for the attack.
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In contrast to previous proposals, our EMR is capable of
fully validating the consensus rules of the target cryptocur-
rency by restricting the allowed block structure. In our case
the set of transactions within blocks generated by collabo-
rating miners is specified by the block template provided by
the adversary. As Blofeld wants to submit collected PoW
solutions to Bitcoin, it is in his best interest to provide only
templates including valid transactions. Conversely, collabo-
rating rational miners do not care if the block template they
mine on is actually valid in Bitcoin, since the rewards they re-
ceive for solutions are guaranteed to be paid out by the smart
contract in Ethereum.

Furthermore our EMR tracks all ongoing blockchain
branches, which is not only a necessary feature to determine
the winning branch, but also to correctly compensate the failed
branch of an incentive attack.

Liveness: The liveness of chain relays in general depends
upon the submission of new blocks to advance their state.
Therefore, if the relay starves through a lack of submitted
blocks - long range attacks have a higher chance to succeed,
as attackers gain additional time to compute long fake chains.

In our concrete EMR instantiation liveness is less of an
issue as the duration of the attack is finite and well defined.
Moreover, involved actors have an incentive to feed the correct
information to the relay in a timely fashion. Consider, for
example, a rational miner R who mined a block template for b′3
(see figure 1). Then R has an incentive to submit the solution
to the PoW for this template timely, since he is competing with
other rational miners for the offered rewards and bribe. As
the additional bribe ε is only payed if the attack is successful,
this further incentivizes rational miners to publish solutions
timely. Our scenario also enables the attacker, at any stage, to
cease publishing additional new block templates in order to
reduce his losses in case the attack appears likely to fail.

Costs estimates: We implement a fully functional EMR on
Ethereum, which is capable of verifying the state of the Bit-
coin blockchain. We use Solidity v0.6.2 and use a local in-
stance of the Ethereum blockchain for cost analysis. The
cost estimates for the identified operations are summarized
in Table 5 We used our EMR to approximate the costs for
submitting a block template for a Bitcoin block ($ 0.58 USD),
as well as the costs for submitting and verifying a new Bitcoin
block ($ 0.90 USD) in the worst case. In total the costs of an
example attack on Bitcoin with kV = 6 and kB = 6 and a gas
price of 12 Gwei are about $ 30 USD. This confirmes that the
costs for maintaining an EMR are marginal when compared
to the potential scale of incentive attacks described in this
paper. For comparison: the reward for a single Bitcoin block
(excluding transaction fees) at the time of writing amounts to
$ 76 875 USD.

Operation
Approx. costs
Gas USD

Deployment 6 156 688 11.86

Initialization phase 1 364 277 2.63

Attack phase 8 203 136 15.80

Payout phase 64 511 0.12

Total operational costs 15 788 612 30.41

one submitted block template 302 228 0.58

one submitted block 468 273 0.90

Gas price: Gas price 12 Gwei, exchange rate 160.53 USD/ETH [2]

Table 5: Overview of operational costs coperational for each
of the main Ethereuem smart contract operations of the
ephemeral chain relay (EMR) executing a successful trans-
action revsion,exclusion and ordering attack on Bitcoin with
kV = 6 and kB = 6.

E Evaluation of Desynchronization

Publishing new block templates timely is a key requirement
of this attack. In favor of an easier presentation we chose
to rely on the assumption that the difference between block
intervals on the two chains, namely Bitcoin and Ethereum, is
big enough such that before every new Bitcoin block there
will be a new Ethereuem block announcing the new block
template. Although, it is possible for the target and the funding
chain to desynchronize, i.e., that two or more Bitcoin blocks
are mined before a single Ethereum block has been found.
To identify the need to account for such events within the
duration of an attack, we analyze the probability that the
block intervals fluctuate in a way such that Bitcoin blocks
are mined in close succession. In other words: What is the
probability that the two chains (funding and attack chain)
desynchronize during an attack, i.e., that two Bitcoin blocks
are mined in close succession without an Ethereum block in
between.

The time between Bitcoin and Ethereum blocks follows
an exponential distribution. Assuming constant difficulty and
overall hashrate, Ethereum has a mean block interval, i.e., an
expected value of 15 seconds (EET H(x) = 15), whereas Bit-
coin has a mean block interval of 10 ·60 seconds (EBTC(x) =
600). To approximate the probability that the two chains
desynchronize, we first calculate the probability that the time
between two Bitcoin blocks is less than the Ethereum mean
block interval (x = 15):

λ =
1

EBTC(x)
(7)

P(X < x) = 1− e−λ·x (8)
P(X < 15)≈ 2.47% (9)

The probability that this happens within N Bitcoin blocks i.e.
the probability that the time between two Bitcoin blocks is
smaller than 15 seconds during N total Bitcoin blocks is given
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by:

P(N) = 1−
(
1−P(X < 15)

)N−1 (10)
P(32)≈ 53.93% (11)

This result already shows that it is necessary to provide tem-
plates for more than one Bitcoin block in one Ethereum block
when executing long running attacks.

We are now interested in the numbers of block templates
the attacker has to provide per Ethereum block. Therefore, we
analyze how probable it is that at least n Bitcoin blocks are
mined before one Ethereum block. We approximate this value
by calculating the probability that at least n Bitcoin blocks are
found within the Ethereum mean block interval of 15 seconds.
The Bitcoin block discovery is a Poisson point process, where
the Poisson distribution parameter Λ = E(X = n) = t

EBTC(x)
refers to the expected value of the number of events happening
within t = 15 time. Then the complementary probability of
finding at most n−1 blocks is given by:

P(X > n) = 1−P(X ≤ n−1) (12)

P(X ≤ n) = F(x) = e−λ
n−1

∑
i=0

λi

i!
(13)

P(X > 1)≈ 2.47% (14)
P(X > 2)≈ 0.03% (15)

P(X > 3)≈ 2.556 ·10−4% (16)

P(X > 4)≈ 1.595 ·10−6% (17)

Since both chains start at the same point in time, n = 1 al-
ready refers to a sequence of two Bitcoin blocks without an
Ethereum block in between. We now calculate the probabil-
ity that at least n Bitcoin blocks are found within the mean
Ethereum block interval t during a period of N Bitcoin blocks
in total:

P(n,N) = 1−
(
1−P(N > n)

)d(N−1)/ne (18)
P(n = 1,N = 32)≈ 53.930% (19)
P(n = 2,N = 32)≈ 0.490% (20)
P(n = 3,N = 32)≈ 0.003% (21)

So when providing three Bitcoin block templates, there re-
mains approximately a 0.490% chance that all of them are
consumed before the next Ethereum block is published.

To further justify these numbers and account for the fact
that Ethereum blocks are exponentially distributed as well, we
implemented a tool to simulate such parallel blockchain chain
executions. Measuring the probability of desynchronization
yields comparable results to our calculations with a mean
Ethereum block interval of 15 section. After 10,000 runs of
our simulation limited to N = 32 total Bitcoin blocks each,
a chain of at least two consecutive Bitcoin blocks before
a corresponding Ethereum block was found in 53.0% of all

cases. A chain of at least three consecutive Bitcoin blocks was
found in 1.57% of all cases, a chain of at least four consecutive
Bitcoin blocks in 0.08% of all cases. Consecutive chains of
length 5 or longer have never occurred during 10,000 runs.

E.1 Block template distribution
Given the above probabilities, the attacker is advised to pub-
lish block templates for multiple blocks in advance (leaving
references to previous blocks to be filled in by miners). Also
in practice collaborating miners would want to have at least a
couple of block templates available to ensure that their hard-
ware does not stall. To ensure that new block templates are
available to rational miners, independently of block intervals
in the funding cryptocurrency, several approaches are possi-
ble. The attacker could, for example, publish a sequence of
block templates where only the first includes the previous
block hash and the other previous block hash values are filled
and checked automatically by the smart contract based on the
previously submitted valid attack blocks.

Other approaches can also be envisioned. In theory, it is not
even necessary that the Ethereum block with the new block
template has been mined before the next Bitcoin block for
which the template has to be used. This is possible if the
attack contract is implemented in a way that accepts any valid
Ethereum transaction signed by the attacker as a proof that the
therein announced new block template for a specific attack
was approved, and is rewarded accordingly. Then any such
transaction can be seen as a guarantee for the collaborating
miners that they will receive a reward if they mine a block
according to the template. At some later point the transac-
tion defining the target chain block template is included in
the funding cryptocurrency and presents proof to the attack
contract that indeed the respective block on the target chain
was based on a valid template.

F DoS against transaction censorship

We consider Bitcoin as a target, however in principle our
transaction censorship attack is also applicable to other types
of cryptocurrencies. Although, we argue that (quasi) Turing
complete smart contract capable cryptocurrencies are more
resistant to censorship than Bitcoin:

Let’s assume, for the remainder of this discussion, that
transaction censorship should take place within Ethereum as
a target cryptocurrency. Moreover, the respective transactions,
or their side effects, can be accurately identified and all miners
agree that these transactions exhibit unwanted behaviour. This
opens up the possibility of denial-of-service attacks launched
by the victim(s) in such a case. The reason for this stems from
the fact that the effects of an unwanted transaction can be
proxied through multiple layers of smart contract invocations
and interactions. Hereby, the problem arises that miners may
only learn of the unwanted behavior of a transaction by first
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evaluating its state changes. If the resulting behavior is to
be censored, miners have to roll back all changes and cannot
collect transaction fees for their efforts. Therefore, the attacker
can waste the resources of every censoring miner without a
loss of funds.

It is impossible to directly overcome this issue without
changing the consensus rules, however by basing the attack
on block templates, the problem is shifted away from the
collaborating rational miners toward the attacker. Hereby, the
attacker may choose to only include simple transactions for
which he is certain that they cannot hide any unwanted activity
e.g., all value transfer transactions, or calls to known contracts
such as ERC20 Tokens.

G Ideas for cost optimizations

The biggest cost in the proposed out-of-band transaction revi-
sion attack derives from the compensation of kV main chain
blocks to provide an incentive for all rational miners (which
already have contributed blocks to the main chain between
block b1 and bkV ) to switch to the attack chain. In a blockchain
where every block is uniquely attributable to a set of known
miners, and where the overall hashrate of those miners can
be adequately approximated, the payout of compensations
can be further optimized in various ways. As an example,
consider the scenario where a small miner, compared to the
other miners, is lucky and mines several blocks within kV .
Then it may be cheaper for the attacker to exclude this miner
from being eligible for compensation since it is unlikely that
he will substantially contribute to the attack chain.

H Available crowdfunding funds

With the possibility to crowdfund attacks, theoretically mul-
tiple double-spends of low value transactions by different
parties could also be made feasible if they together accumu-
late enough attack funds ( fB). The discrepancy between the
value transferred in one Bitcoin block and the rewards (includ-
ing fees) distributed for mining one Bitcoin block, show that
the funds for long range double-spending attacks using this
technique are theoretically available. Over the last year26 the
median value of bitcoins transacted per day (excluding change
addresses) is approximately 780 million USD, whereas the
median mining reward per day including transactions fees is
approximately 11 million USD.

26Numbers retrieved from https://www.blockchain.com/charts

I Transaction revision (out-of-band) attack
costs

ω Whale costs P2W costs
c f ailed

P2W costs
csuccess

N P2W costs
cexpected

N
expect.

0.532 2.93e+23 6953 596 515 136 55
0.670 999.79 554 122 41 95 14
0.764 768.09 298 104 22 92 10
0.828 1265.14 216 98 16 90 9
0.887 1205.00 176 94 13 89 8
0.931 1806.67 149 92 11 89 8
0.968 2178.58 122 90 9 89 7
0.999 2598.64 108 90 8 89 7

Table 6: Comparison of attack costs given in BTC for the
whale attack [22] and our out-of-band tx. revision attack with
kV = 6, rb = 13.5, coperational = 0.5 and ε = 1.
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J Transaction ordering attack (in-band)

This no-fork attack pays additional rewards to miners for
reordering unconfirmed transactions, comparable to front-
running attacks [10, 12]. In front-running attacks, the adver-
sary increases the chance of his transaction being included
before others by increasing the transaction fee paid to miners.
However, the result is an all pay auction: even if the attack
fails, the high-fee transaction can be included by miners. As
such, the adversary must always pay the fee, independent of
the attack outcome [10]. In contrast, our attack ensures the
adversary pays colluding miners only if the attack was suc-
cessful, i.e. if the desired transaction ordering was achieved.

J.1 Description
Initialization. The adversary (Blofeld) observes the P2P net-
work and initiates the attack once he sees a victim’s (Vincent)
transaction txV which he wants to front-run (e.g. registering a
domain name or interacting with an exchange). First, Blofeld
publishes his front-running transaction txB. Simultaneously,
he publishes and initializes an attack contract with the iden-
tifiers of the two transactions, the desired order ( txB < txV ),
the block in which the transaction(s) are to be included, and
a bribe ε. Once the contract creation transaction has been
included into a block, (i) the configuration can no longer be
changed and (ii) the bribe is locked until the attack times out.
This is necessary to prevent the attacker from attempting to
defraud colluding miners by altering the payout conditions,
after the attack was executed.
Attack. If the attack is successful, colluding miners generate
a block which has the desired ordering of transactions. Note:
even if the victim attempts to update the original transaction
txV with tx′V , e.g. using replace by fee [3], txV remains valid
and can alternatively be included by miners to invalidate tx′V .
Rational miners will hence include txB and txV in the specified
order, fulfilling the payout conditions, as long as this results
in the highest reward.
Payout. After kB blocks (kB is the blockchain’s security pa-
rameter defined by the attacker in this case), miners can claim
their payouts, whereby the smart contract first checks if the
ordering of the two transactions is as specified.

J.2 Evaluation with Rational Miners Only
(ω = 1)

First, we assume a scenario where all miners act rationally,
i.e., are bribable. Miners are incentivized to collude with the
adversary, as the contract guarantees a reward ε > 0 in addi-
tion to normal mining. Participation in the attack does not
require to mine on an alternative fork, hence colluding min-
ers face no additional risk that their blocks will be excluded
from the main chain. It is also possible for miners to include
an unconfirmed attack contract creation transaction in the

same block as the ordering attack itself and still be certain of
payment if their block becomes part of the longest chain.

J.3 Evaluation with Altruistic Miners
(ω+β = 1)

In theory, this attack is practicable with any hash rate of brib-
able miners ω> 0, however the higher the hash rate, the higher
the chances of success. If 2/3 of the hash rate is controlled
by rational miners, the attack is expected to succeed in two
out of three cases. We refer to the Section K in the Appendix
for an analysis where rational miners are additionally incen-
tivized to near-fork main chain blocks to successfully remove
a undesired block from the chain.

J.4 Counter Mechanisms
For a list of general counter mechanisms, e.g., require blinded
commitments up-front, which can be used to avoid such vul-
nerability during the design of smart contracts see [10, 12].
In this section we focus on counter bribing as a mitigation
strategy. Therefore, we distinguish the counter bribing based
on the point in time where the counter attack is performed.

Immediate Counter Bribing As long as the new block
has not been mined, an effective counter measure against
this attack is to immediately perform counter bribing through
the same attack mechanism. Hereby, attacker and victim en-
gage in an English auction, as only the winner pays the
bribe, instead of the all-pay-auction observed in other front-
running [10]. This defensive strategy assumes that Vincent
is actively monitoring the P2P network and immediately be-
comes aware of the attack.

Delayed Counter Bribing If Vincent only has an SPV
(Simple Payment Verification [27]) wallet, he may only rec-
ognize the attack after a new block with the intended ordering
of the attacker has already been mined. Since, Vincent is not
in possession of any hash rate, he cannot directly launch a
counter attack to fork the respective block. Thus, the costs for
a successful counter bribing attack have become much higher
than the costs for the original attacker Blofeld. Moreover,
among the previously described bribing attacks in Section 3,
no attack is directly applicable by Vincent in this scenario.
For an analysis on how much it costs to remove one block
from the chain see Appendix K.

J.5 Details and implementation of tx ordering
in-band

There are two methods which allow to implement verification
of transaction ordering in Ethereum. The first method only
relies on proofs over the transaction trie of a given block to
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verify the desired transaction ordering. The second method
tries to verify the desired state.

J.5.1 Verify transaction ordering

This methods works via a transaction trie inclusion proof
provided to the attack smart contract. Since the key in the trie
is the index of the transaction in the block and the value is the
transaction hash, the ordering of any two or more transactions
can be proven to a smart contract in retrospect.

The advantage of this approach is that it is conceptionally
simple, but it bears certain drawbacks. Lets assume the trans-
action hash of the involved target transaction txV changes e.g.,
if a transaction was updated via replace by fee, or a completely
different but conflicting transaction form the same address
with the same nonce has been issued tx′V . This case can still
be captured by an attack contract which also checks the nonce
of the respective transaction. Since the original transaction
txV is still valid and can be included by a complacent rational
miner, all transactions with the same nonce from the same
account become invalid.

A problem arises if the victim publishes another transaction
tx′′V from a different account which has not been included in
the initialization of the attack contract. This transaction might
be semantically equivalent to txV , e.g., it would register the
same name in sENS, but would not be covered in the attack
condition of the contract. Thus, a naive contract only working
with transaction hashes and nonces of known transaction can
be fooled by a victim to pay out bribes although the attack
was not successful because tx′′V has been included before txB
and just txV has been included after txB.

J.5.2 Verify operation on certain state

This approach addresses the issue of interfering transactions
mentioned in the previous section in two different ways.

Retrospective check It is proven to the attack contract in
retrospect hat it has successfully operated on the correct world-
/smart contract state before any funds are unlocked.

Up to Ethereum EIP-150 revision the transaction receipt
also contained the post-transaction27 state Rσ. This would
have allowed to prove to the attack contract the state before
any transaction as well as the state after a specific transaction.
Unfortunately the post-transaction state was removed from
the transaction receipt for performance reasons.

A currently working generic method for Ethereum around
this would be to require that the racing attack transaction
has to be at index 0 in the new block mined by the miner.
It would then be possible to prove to the attack contract in
retrospect that the specified transaction at index 0 operated
on a specific world state i.e., the word state of the previous

27The according Ethereum yellowpaper describing this is still available at
http://gavwood.com/Paper.pdf (accessed: 2019-05-04)

block, e.g., where the name to register was not registered yet.
The only way to also generically prove that the resulting state
was indeed the required one without any side effects is that
only transactions which are directly relevant to the attack are
included in the new block in the respective order, because
then the resulting world state can be pre-computed. This of
course renders the attack more expensive and less generic.

Runtime check During runtime a smart contract in
Ethereum does not know at which position the transaction
which invoked the contract is location in the current block.
Moreover, it is not possible to query the indices of other trans-
actions during runtime. An alternative to working with indices
of transactions is working directly with the required states.
The attack contract checks if it is operating on the correct
world state directly before even performing the attack e.g.,
check if the name it wants to register is available. If the attack
contract would encounter an error while performing an attack
it could prevent any future payouts of bribes.

In our front running example, the front running transaction
can also be sent to the attack contract directly, which addi-
tionally works as a proxy or dispatcher and only forwards i.e.,
performs the transaction, iff a queriable attack condition is
met i.e., the target contract is in a specific pre-defined state.
Since the state (storage) of a contract cannot directly be ac-
cessed from another contract, only accessible functions, vari-
ables and certain state variables like balance can be accessed.
Note that for publicly accessible variables getter functions
are created automatically. These, runtime checks ensure that
no payments happen if the race is not won i.e,. the attack is
not successful. Summarizing, it can be said if such checks are
possible, the attack becomes more efficient and more complex
attack scenarios can be envisioned.

K Transaction exclusion (in-band)

To highlight why executing incentive attacks out-of-band may
be desirable for an adversary, we describe an in-band trans-
action exclusion attack. Thereby, we outline challenges an
attacker must overcome and describe how existing attacks are
evaluated in the classical setting for bribing attacks.

The purpose of this near- or no-fork attack is it to exclude
one or multiple unconfirmed transactions from their generated
blocks.

K.1 Description
Initialization. The attacker knows some transaction txV
which he wants to prevent from getting into the main chain.
He then intializes the attack contract at block e−1, specifying
the transaction and the duration N (in blocks) of the exclusion
attack.
Attack. The attack contract will pay an extra ε for every
block mined between block e1 and eN that (i) does not include
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Figure 5: The figure shows a ongoing-, a failed- as well as
a successful Transaction exclusion attack with in-band pay-
ments. The attack is initialized when the attack contract is
published in block e1. If the unwanted transaction has been
included, this can be proven to the attack contract as shown
in the failure case in block eN+x. The payouts are performed
in block eT . The colored blocks are rewarded by the attack
contract with an additional ε.

transaction txV itself and (ii) does not extend any block that
included transaction txV . That is, if an altruistic miner decides
to include txV in his block ei (i < N), colluding miners must
perform a near-fork, i.e., extend block ei−1 rather than ei, if
they wish to receive rewards.
Payout. Collaborating miners can claim payouts once kB
blocks have passed after the end of the attack, i.e., at a block
eT ≥ eN+kB , where kB is the security parameter defined by
the attacker. Most PoW blockchains use accumulators, such
as Merkle trees, to store and efficiently prove inclusion of
transactions in a block. However, proving non-existence of an
element in a such accumulator is often inefficient. To this end,
the attack contract will reward any submitted block between
e1 and eN , unless the adversary submits an inclusion proof
for txV , before the payouts are claimed in block eT . If the
adversary proves that a block ex included txV , any blocks
extending ex, i.e., ex+1,ex+2, ..., will not receive any payouts.
Figure 5 shows a failed attack where txV was included in
block e3 - thus only blocks up to, but not including, e3 are
rewarded.

More information on the technicalities of this attack when
implemented in Ethereum are presented in Section K.5.

K.2 Evaluation with Rational Miners Only
(ω = 1)

Estimating the costs of such an attack in a scenario where all
miners are rational (α = β = 0 and ω = 1) and have perfect

Figure 6: Finite Markov chain for calculating the probability
of mining at least ` consecutive blocks with hashrate ω.

information about the attack is trivial. In this case, it is a
no-fork attack and the respective transaction would not be
included into the block chain as long as the bribe ε for non-
inclusion surpasses the fee miners can gain from including
transaction, i.e., ε > fee(txV ).

K.3 Evaluation with Altruistic Miners
(ω+β = 1)

If a fraction of miners behaves altruistically, i.e., will not
join the attack independent of profit, rational miners need an
additional incentive to perform near-forks, excluding blocks
containing txV .

Probability of success without a fork As rational miners
find a block with probability ω, the likely hood of rational
miners finding chains of consecutive blocks decreases ex-
ponentially in their length `. For example, given ω = 2

3 the
probability of generating a chain of `= 6 consecutive blocks
is merely 8.3%. But what if the attack of delaying a certain
reoccurring transaction or set of such transactions at some
point in time within the next N total blocks. Like for example
deny all transaction to a smart contract token to manipulate
the price. The probability for a miner with hashrate ω = 2

3 to
mine at least `= 6 consecutive blocks at least once within the
next N = 100 total blocks is approximately 97.2%. This can
be calculated for different values of N, ` and ω by computing
the matrix of the finite Markov chain depicted in 6 with N as
exponent as shown in formula 22.

P=



β ω 0 · · · 0

β 0 ω · · · 0
...

...
...

. . .
...

β 0 0 · · · ω

0 0 0 · · · 1



N

·
[
1 0 0 · · · 0

]
(22)

Probability of success and costs with near-forks To in-
crease the chance of success, the adversary must increase
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the bribe ε paid to colluding miners, to reimburse the risk
of loosing block rewards re due to a failed fork. Assume a
block containing txV was mined by altruistic miners. In this
scenario, the attack chain, i.e., the fork produced by collabo-
rating miners which must not contain txV , is only one block
behind the main chain. As such, the required bribing funds
are significantly lower, when compared to deep fork bribing
attacks. To estimate the bribing costs of this attack, we revisit
the analysis of Whale Transactions from [22] (specifically,
we extend the analysis after Equation 4 in the aforementioned
paper).

A rational miner with hashrate ωm will mine on the attack
chain if he his expected profit is higher than with honest
mining. To make a rational decision on which chain to mine,
he must estimate and compate the hashrate of (i) all miners
expected to join the attack ωα, and (ii) the hashrate of all
altruistic miners extending the conflicting main chain branch
β. Note that ω = ωα +ωm. For simplicity, we normalize the
block reward (incl. transaction fees) to re = 1. The expected
revenue of a rational miner m with hash rate ωm for mining
on the main chain is given by the probability that the main
chain wins multiplied with his share of mining power on the
main chain:

ρ =

(
1−
(

α+ωα

β+ωm

)z+1) ·ωm

β+ωm
(23)

where z is the number of blocks the attacker chain is behind
the main chain - in our case z = 1. In contrast, the profit from
mining on the attack chain is given:

ρ
′ =

(
α+ωα+ωm

β

)z+1 ·ωm

α+ωα +ωm
· (ε+1) (24)

A rational miner m will only join the attack if ρ′ > ρ. We
hence derive the necessary bribe ε as follows:

ε >

(
1−
(

α+ωα

β+ωm

)z+1)
β+ωm

· α+ωα +ωm(
α+ωα+ωm

β

)2 −1 (25)

To estimate a worst case lower bound for the necessary
bribe, we set ωα = 0 and a calculate ε for a small rational
miner with hashrate ωm = 0.05. We receive ε≈ 17 · re, i.e., if
a rational miner m assumes no other miners will join the at-
tack, a bribe 17 times the value of a block reward is necessary.
We provide a detailed overview of necessary bribing values ε

for different attack constellations (ωα and ωm) in Table 7 in
Section K.5. We observe that once ωm +ωα exceeds 38.2%,
a rational miner m is always incentivized to mine on an at-
tack chain with z = 1, independent of the bribe value ε (i.e.,
necessary ε = 0).

Table 7 shows the costs for incentivizing in-band transac-
tion exclusion if blocks that include the respective transaction
should be forked by rational miners.

K.3.1 Comparison to Existing Attacks

A comparable attack allowing arbitrary transaction exclusion
is HistoryRevisionCon [24]. While HistoryRevisionCon
only requires bribing amounts ε between 0.09375 · re and
1.4375 · re (depends on how effective uncle block inclusion
can be optimized), it also requires a substantial attacker
hashrate (α > 1

3 ). For comparison: if we assume ω = 0.33
s.t., ωα = 0.28 and ωm = 0.05, our attack would require
ε≈ 0.603 · re.

The only other comparable transaction exclusion attack is
the Script Puzzle 38.2% attack, which requires α > 38.2% (in
Bitcoin). For comparison, if we assume ω= 0.382, our attacks
requires a bribe value ε close to zero: mining on the attacker
chain becomes the highest paying strategy independent of the
bribe.

K.4 Counter Mechanisms
Unique transaction specification: To deny some transac-
tion from getting into the blockchain, the respective transac-
tion has to be known. We made the simplifying assumption
that the transaction hash is known to the attacker and wont
change. Although, in practice this might not hold true because
of several ways around this restriction: Even if transaction
malleability is not possible for any third party, transactions
can be recreated by the sender s.t. they are semantically equiv-
alent but their transaction hash differs. Ethereum actively
supports this as replace-by-fee, when a new transaction from
the same account with a higher gas value is available it will be
preferred by miners. The new transaction is not even required
to be semantically equivalent to the original one.

Therefore, the victim can evade the attack if the attack con-
tract relies on transaction hashes. A possible but less generic
way around this is to evaluate contract states instead of trans-
action hashes to determine if the effects of some unwanted
transaction have made it into the blockchain. Although, this
seams like a promising approach, the feasibility of this so-
lution highly depends on the individual case as outlined in
Section J.5.

Counter Bribing The most effective counter measure
against the attack is to increase the fee of txV s.t. it surpasses
the value promised by the attack contract. Since the transac-
tion exclusion incentives have to be made public, the attack
cannot be considered stealthy in the target cryptocurrency.
This motivates that the incentivization of the attack happens
out-of-band on a distinct funding cryptocurrency and thus
hidden from clients which only operate and monitor the target
cryptocurrency. Such an attack is described in the Section 5

Proof a negative Since we are in an in-band scenario, the
successful execution of the attack relies on a proof that trans-
action txV was included to correctly pay out rewards and
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ωm = 0.05 ωm = 0.1 ωm = 0.2 ωm = 0.3 ωm = 0.33 ωm = 0.382 ωm = 0.4

ωα = 0.00

β = 0.950
ρ = 0.050
ε = 17.050
ρ′ = 0.050
P = 0.003

β = 0.900
ρ = 0.100
ε = 7.100
ρ′ = 0.100
P = 0.012

β = 0.800
ρ = 0.200
ε = 2.200
ρ′ = 0.200
P = 0.062

β = 0.700
ρ = 0.300
ε = 0.633
ρ′ = 0.300
P = 0.184

β = 0.670
ρ = 0.330
ε = 0.360
ρ′ = 0.330
P = 0.243

β = 0.618
ρ = 0.382
ε = 0.000
ρ′ = 0.382
P = 0.382

β = 0.600
ρ = 0.400
ε = 0.000
ρ′ = 0.444
P = 0.444

ωα = 0.05

β = 0.900
ρ = 0.052
ε = 7.503
ρ′ = 0.052
P = 0.012

β = 0.850
ρ = 0.105
ε = 4.056
ρ′ = 0.105
P = 0.031

β = 0.750
ρ = 0.210
ε = 1.362
ρ′ = 0.210
P = 0.111

β = 0.650
ρ = 0.315
ε = 0.267
ρ′ = 0.315
P = 0.290

β = 0.620
ρ = 0.346
ε = 0.062
ρ′ = 0.346
P = 0.376

β = 0.568
ρ = 0.401
ε = 0.000
ρ′ = 0.512
P = 0.578

β = 0.550
ρ = 0.420
ε = 0.000
ρ′ = 0.595
P = 0.669

ωα = 0.10

β = 0.850
ρ = 0.055
ε = 4.286
ρ′ = 0.055
P = 0.031

β = 0.800
ρ = 0.110
ε = 2.512
ρ′ = 0.110
P = 0.062

β = 0.700
ρ = 0.219
ε = 0.792
ρ′ = 0.219
P = 0.184

β = 0.600
ρ = 0.329
ε = 0.000
ρ′ = 0.333
P = 0.444

β = 0.570
ρ = 0.362
ε = 0.000
ρ′ = 0.437
P = 0.569

β = 0.518
ρ = 0.419
ε = 0.000
ρ′ = 0.686
P = 0.866

β = 0.500
ρ = 0.439
ε = 0.000
ρ′ = 0.800
P = 1.000

ωα = 0.20

β = 0.750
ρ = 0.059
ε = 1.637
ρ′ = 0.059
P = 0.111

β = 0.700
ρ = 0.117
ε = 0.914
ρ′ = 0.117
P = 0.184

β = 0.600
ρ = 0.234
ε = 0.055
ρ′ = 0.234
P = 0.444

β = 0.500
ρ = 0.352
ε = 0.000
ρ′ = 0.600
P = 1.000

β = 0.470
ρ = 0.387
ε = 0.000
ρ′ = 0.623
P = 1.000

β = 0.418
ρ = 0.448
ε = 0.000
ρ′ = 0.656
P = 1.000

β = 0.400
ρ = 0.469
ε = 0.000
ρ′ = 0.667
P = 1.000

ωα = 0.30

β = 0.650
ρ = 0.058
ε = 0.408
ρ′ = 0.058
P = 0.290

β = 0.600
ρ = 0.117
ε = 0.050
ρ′ = 0.117
P = 0.444

β = 0.500
ρ = 0.233
ε = 0.000
ρ′ = 0.400
P = 1.000

β = 0.400
ρ = 0.350
ε = 0.000
ρ′ = 0.500
P = 1.000

β = 0.370
ρ = 0.385
ε = 0.000
ρ′ = 0.524
P = 1.000

β = 0.318
ρ = 0.445
ε = 0.000
ρ′ = 0.560
P = 1.000

β = 0.300
ρ = 0.466
ε = 0.000
ρ′ = 0.571
P = 1.000

ωα = 0.33

β = 0.620
ρ = 0.057
ε = 0.144
ρ′ = 0.057
P = 0.376

β = 0.570
ρ = 0.113
ε = 0.000
ρ′ = 0.132
P = 0.569

β = 0.470
ρ = 0.226
ε = 0.000
ρ′ = 0.377
P = 1.000

β = 0.370
ρ = 0.339
ε = 0.000
ρ′ = 0.476
P = 1.000

β = 0.340
ρ = 0.373
ε = 0.000
ρ′ = 0.500
P = 1.000

β = 0.288
ρ = 0.432
ε = 0.000
ρ′ = 0.537
P = 1.000

β = 0.270
ρ = 0.452
ε = 0.000
ρ′ = 0.548
P = 1.000

ωα = 0.38

β = 0.568
ρ = 0.050
ε = 0.000
ρ′ = 0.067
P = 0.578

β = 0.518
ρ = 0.100
ε = 0.000
ρ′ = 0.180
P = 0.866

β = 0.418
ρ = 0.200
ε = 0.000
ρ′ = 0.344
P = 1.000

β = 0.318
ρ = 0.300
ε = 0.000
ρ′ = 0.440
P = 1.000

β = 0.288
ρ = 0.330
ε = 0.000
ρ′ = 0.463
P = 1.000

β = 0.236
ρ = 0.382
ε = 0.000
ρ′ = 0.500
P = 1.000

β = 0.218
ρ = 0.400
ε = 0.000
ρ′ = 0.512
P = 1.000

ωα = 0.40

β = 0.550
ρ = 0.046
ε = 0.000
ρ′ = 0.074
P = 0.669

β = 0.500
ρ = 0.093
ε = 0.000
ρ′ = 0.200
P = 1.000

β = 0.400
ρ = 0.185
ε = 0.000
ρ′ = 0.333
P = 1.000

β = 0.300
ρ = 0.278
ε = 0.000
ρ′ = 0.429
P = 1.000

β = 0.270
ρ = 0.306
ε = 0.000
ρ′ = 0.452
P = 1.000

β = 0.218
ρ = 0.354
ε = 0.000
ρ′ = 0.488
P = 1.000

β = 0.200
ρ = 0.370
ε = 0.000
ρ′ = 0.500
P = 1.000

Table 7: Comparison of minimum bribing attack costs ε for certain attack hashrates ωα and undecided individual miners ωm. The
table also shows the expected reward of m if ωm would be directed towards the attack chain ρ′, as well as the expected reward ρ

if ωm would be directed towards the main chain.
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detect unwanted inclusion. It can be argued that rational min-
ers would be disincentivised to include this proof and collect
the rewards for mined blocks anyway. Moreover, the exact
same incentive attack can be used to keep this proof trans-
action out of the blockchain. We now show that this is not
an efficient counter attack by introducing and additional cost
gap. To introduce this cost gap between the attack and its
counter attack, the stabilization period between eN and eT can
be increased s.t. it is larger than the period between e1 and
eN . Thereby, the counter attack gets more expensive than the
original attack. This leverages the fact that the victim has to
get his transaction into the blockchain before eN , whereas the
attacker of can choose a longer stabilization period.

Nevertheless, an approach that poses more convincing evi-
dence of transaction absence is desirable. An in-band method
that relies on a proof that the transaction txV was indeed
not included in the chain in the respective interval would be
ideal. Thereby, the attacker can be sure that the payment only
happens if the requested condition is fulfilled. In practice
such proves are less efficient in current cryptocurrencies like
Ethereum. A possible way around this is to provide a block
template for every block, which must be used by the miners
to be later able to collect the associated additional reward ε.
Thereby, it can be ensured by the attacker that only wanted
transactions are included as well as their order. The block
template can be provided in a transaction to an attack contract
which encompasses all transaction hashes in their respective
order which should be included in the next block, excluding
his own hash.

Another alternative would be to use out-of-band techniques
and launch the attack form a different smart contract capable
funding cryptocurrency whose miners are not affected by the
attack. Moreover, if the set of miners is distinct, the incentives
of the miners to not include a inclusion prove of txV are less
of an issue. We describe an out-of-band attack which uses
the technique of block templates and also allows for arbitrary
ordering in Section 5.

K.5 Details and implementation of tx exclu-
sion in-band

The two important aspects of this attack are: i) Determine if
the unwanted transaction txV was included, and if so in which
block ii) Correctly reward complacent miners.

To collect the reward, a rational miner has to submit the
block header he mined in the respective range to the attack
contract. The attack contract then checks if this block really
lies in the respective interval in the recent history of the chain.
In Ethereum, the last 256 block hashes can be accessed from
within a smart contract, thereby the smart contract can verify
if a submitted block header really is part of the recent history.
From the submitted block header the contract can also extract
the beneficiary / coinbase address of the respective miner
directly.

K.5.1 Transaction inclusion proof

The naive way of determining if txV has been included in
a block is to request a Merkle patricia trie inclusion prove,
as described in Section J.5, that the respective transaction is
part of a given block header which lies in the defined interval.
This approach has the drawback that it will not detect other
semantically equivalent transactions with a different hash.

A way around this in an in-band scenario on Ethereum
is to define state conditions which must be met depending
on the use-case at hand. For example, if you can show me
a transaction to a certain address / contract that is part of a
block in the specified interval than I consider this as a prove
that an unwanted interaction with the respective address /
contract has taken place and do not reward the miners from
that block on. Thereby, care has to be taken to account for
transaction obfuscation via proxy contracts which perform
message calls on behalf of a transaction from an externally
owned account. These, cannot easily be proven to a contract
since the respective transaction has to be evaluated on the
EVM with the correct world-state. Thus, this variant is only
error free if the unwanted transaction has to come from an
externally owned account directly, e.g., as required by certain
Tokens28.

Therefore, the safest variant is do check if the state change
or condition which should have been triggered by an unwanted
transaction has occurred or not. For example if the balance
of a contract has been raised/decreased, or if certain public
accessible state variable has changed in an undesired way. If
this can be checked by the attack contract before perform-
ing any payouts, it is not possible to collect rewards if the
requested condition has not been fulfilled.

K.5.2 Block template in-band

Another way around the previously outlined problem of prov-
ing that an unwanted operation / transaction has not taken
place is to specify exactly what transactions are allowed to
take place. Interestingly, this is easier in an out-of-band sce-
nario than in an in-band scenario since the attacker has to
convincingly ensure the collaborating rational miners that
they will receive their bribes while defining the content of all
blocks in a way that can be proven to the attack smart contract.
At the same time the content of the blocks also has to define
those blocks, which leads to a recursive dependency since the
transaction to the attack contract cannot define itself because
their hash is not known in advance.

28Interestingly, a UTXO model would also be easier to censor if the output
which has to be spent in an unwanted transaction is known.
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