
ar
X

iv
:1

90
6.

12
14

0v
1

 [c
s.

C
R

]
28

 J
un

 2
01

9

This work is supported in part by a research grant from the University Blockchain Research Initiative by Ripple.

SeF: A Secure Fountain Architecture for Slashing Storage
Costs in Blockchains

Swanand Kadhe, Jichan Chung, and Kannan Ramchandran

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley

f swanand.kadhe, jichan3751, kannanr gberkeley.edu

Full nodes, which synchronize the full blockchain history and independently validate all the blocks,
form the backbone of any blockchain network by playing a vital role in ensuring security proper-
ties. On the other hand, a user running a full node needs to paya heavy price in terms of storage
costs. In particular, blockchain storage requirements aregrowing near-exponentially, easily out-
pacing Moore's law for storage devices. For instance, the Bitcoin blockchain size has grown over
215GB, in spite of its low throughput. The ledger size for a high throughput blockchain Ripple has
already reached 8.4TB, and it is growing at an astonishing rate of 12GB per day!

In this paper, we propose an architecture based onfountain codes, a class of erasure codes, that
enables any full node toencodevalidated blocks into a small number ofcoded blocks, thereby re-
ducing its storage costs by orders of magnitude. In particular, our proposedSecure Fountain (SeF)
architecture can achieve anear optimaltrade-off between the storage savings per node and theboot-
strap costin terms of the number of (honest) storage-constrained nodes a new node needs to contact
to recover the entire blockchain. A key technical innovation in SeF codes is to make fountain codes
secure against adversarial nodes that can provide maliciously formed coded blocks. Our idea is to
use the header-chain as aside-informationto check whether a coded block is maliciously formed
while it is getting decoded. Further, therateless propertyof fountain codes helps in achieving high
decentralization and scalability. We evaluate the performance of the SeF architecture by performing
experiments on the Bitcoin blockchain. Our experiments demonstrate that SeF codes tuned to achieve
1000� storage savings enable full nodes to encode the 191GB Bitcoin blockchain into 195MB (on
average). A new node can recover the blockchain from an arbitrary set of storage-constrained nodes
as long as the set contains� 1100 honest nodes (on average). Note that for a 1000� storage sav-
ings, the fundamental bound on the number of honest nodes to contact is 1000: we need about 10%
more in practice. More generally, SeF codes can achieve a continuum of trade-offs between storage
savings and bootstrap cost to new nodes (number of honest storage-constrained nodes they have to
contact) that is near-optimal.

1 Introduction

Blockchains have played an instrumental role as the foundational technology for cryptocurrencies such
as Bitcoin and Ethereum. Moreover, they have the potential to disruptively impact diverse �elds such as
the Internet-of-Things [1], medicine [2], healthcare [3],and supply-chains [4] among others. This great
potential of blockchains comes from their key differentiating properties of decentralization, security,
trustlesssness, and scalability. (For simplicity, we refer to these properties as security properties.)

A blockchain network safeguards its security properties byrelying on its nodes to independently
validate every block added to the chain, store the entire blockchain history, and contribute in helping
new nodes that want to join the network. Node with these functionalities—often called “full nodes” in

http://arxiv.org/abs/1906.12140v1

2 Coding for Blockchains

Figure 1: The total size of all block headers and transactions for the Bitcoin blockchain, not including
database indexes (source: [6]).

the cryptocurrency parlance—form the backbone of any blockchain network, as they play a vital role in
ensuring the security properties. More speci�cally, by independently verifying transactions and blocks
without relying on any other node, full nodes contribute to the health of the network by safeguarding
its security and trustlessness, and by helping to bootstrap1 new nodes joining the network, they en-
sure decentralization and scalability of the network. Indeed, full nodes are critical for any blockchain
system's survival, and major cryptocurrencies typically recommend the users, which are running busi-
nesses, exchanges or block explorers, or participating in consensus (i.e., miners) to run full nodes to
achieve complete security (see,e.g., [5]).

On the other hand, a user running a full node needs to pay a heavy price in terms of storage and
computation costs. In particular, blockchain storage requirements are growing near-exponentially, easily
outpacing Moore's law for storage devices. To get a glimpse of the heavy costs required for storing
the blockchain's historical data, consider the case of Bitcoin. In spite of its low throughput of just 4-7
transactions per second, the Bitcoin blockchain size has grown over 215GB as of April 2019 [6] (see
Fig. 1). In fact,storage costs are going to be a pressing concern in the near future for high throughput
blockchains like Ripple. For instance, the Ripple (XRP) ledger size has already reached 8:4TB, and it is
growing at an astonishing rate of 12GB per day! (See [7].)

In current practice, there are two solutions for saving costs: (i) run alight or thin client, also known
as simpli�ed payment veri�cation (SPV) client [8, 9, 10], or(ii) enableblock pruning[11]. Running a
light client is the most economical way of saving costs. Light clients store only block headers, and do not
validate transactions. However, light clients are known tobe vulnerable to several security and privacy
attacks (see,e.g., [12, Chapter 6]). A pruned node stores only a budgeted number of most recent blocks,
and deletes old blocks after they are validated. Though, unlike light clients, pruned nodes have strong
security properties, they cannot contribute to scaling up the network in a secure and decentralized manner
as they are unable to assist new full nodes. Indeed, if a largenumber of full nodes enable pruning, then
new nodes will need to rely on a small number ofarchival nodes([5]) that store the entire blockchain in
order to bootstrap, greatly compromising the decentralization requirement (see Fig. 2 (a)).

1Henceforth, we will refer to “bootstrap” to mean “providinga new node with the entire blockchain history to bring it up to
speed”.

Kadheet al. 3

!"#$%&'()*+,

!"#$%& '(&%

!"#$% &'()* +,"-.%

!"# !$%"

!"#$%&' (#)&

!"#$%& '()%

!"#!"#

!"#$% &#'()*+

Figure 2: (a)Current architecture for a blockchain network consists of archival nodes, pruned nodes, and
light clients, out of which only archival nodes can help in bootstrapping a new node joining the network.
(b) SeF architecture envisions a blockchain network mainly consisting of the proposeddroplet nodes
that require low storage and computation resources. Duringbootstrap, a new node, called abucket
node,collects suf�ciently many droplets and recovers the blockchain even when some droplet nodes are
adversarial, providingmurky (malicious) droplets. After validating the blockchain, a bucket node will
perform encoding to turn itself into a droplet node. In this way, droplet nodes will slowly replace archival
nodes.

Compelled by the essential role that full nodes play in ensuring the security properties and the heavy
costs they incur, this paper presentsSeF, a Secure Fountain architecture founded on coding theory, that
enables storage-constrained machines to act as full nodes without affecting the security properties of the
blockchain.Our main focus is on decreasing the cost of storing the blockchain's historical data, which
is often much larger than that of storing itsstate(e.g., the state of Bitcoin, the so-called UTXO set, is
around 3GB, as compared to its overall size of 215GB [6]). Thekey challenge in reducing the cost of
storing blockchain's historical data is that it is requiredto bootstrap new nodes that join the network, and
bootstrapping plays a key role in scaling up the security anddecentralization capability of the network.

In particular, SeF must overcome the following challenges:

• Security:The protocol must ensure that the blockchain network can scale up in asecuremanner
even if a subset of storage-constrained full nodes are adversarial. Speci�cally, a new node should
be able to recover the blockchain even if any (limited) subset of storage-constrained full nodes act
adversarially and provide maliciously formed data to the new node. Moreover, the computational
cost associated with recovering the blockchain must be small.

• Decentralization:The protocol must bedecentralizedallowing every full node to perform compu-
tations to reduce its storage space without relying on any other full node.

• Bootstrap Cost:The protocol must have limitedbootstrap costin terms of the number of storage-
constrained full nodes that a new node needs to contact in order to recover the blockchain.

In fact, there is a fundamental trade-off between the storage savings and the bootstrap cost as shown

4 Coding for Blockchains

���� ���� ���� ���� �����

�������
������

�

����

����

����

����

�����

�����
���

���
���

�	�
��

�����������������

�
�	����

�������
�������

(a) SeF Codes

���� ���� ���� ���� �����

�������
������

�

�����

�����

�����

�����

������

������

������

���
���

���
�	�

��

�����������������

�
�	����

�������
�������

(b) Random Sampling

Figure 3:Theoretical and achievable trades-off between the bootstrap cost versus storage savings. We
de�ne bootstrap costas the number of storage-constrained full nodes (i.e., droplet nodes) that a new
node needs to contact in order to recover the entire blockchain with high probability (we consider 99%
in the plots). The optimal (theoretical) trade-off is shownwith a dashed line which depicts that for any
scheme withg-fold storage savings, the bootstraps cost is at leastg (see Sec. 4 for details.) Observe
in plot (a) that our proposed SeF codes achieve a near-optimal trade-off. We also highlight the heavy
bootstrap cost incurred by random sampling in plot (b).

in Fig. 3 (dashed line). Speci�cally, consider any scheme that enables full nodes to reduce their storage
space to 1=g fraction of the blockchain size (for some positive real number g). Then, a new node needs
to contact at leastdge storage-constrained full nodes to recover the blockchain.This is simply because
the total amount of data downloaded by a new node must be at least the size of the blockchain. As an
example, consider a scenario in which every full node restricts its storage space to 1GB. Then, a new
node in the Bitcoin network will need to contact at least 215 (honest) nodes to obtain the 215GB Bitcoin
blockchain. Whereas, a new node in the Ripple network will need to contact at least 84,000 (honest)
nodes to obtain the 8:4TBRipple (XRP) ledger. In summary, the larger the storage savings per full node,
the higher the bootstrap cost for a new node.

In a centralized system, it is easy to keep the bootstrap costto its minimum, for instance, by parti-
tioning the blockchain across nodes. However, using na�̈veapproaches to achieve decentralization can
result in prohibitively high bootstrap cost. As an example,consider the following simple protocol for full
nodes to cut down their storage space. For everyk blocks (say,k = 10,000), a node stores a randomly
selected block, independent of other nodes.2 Each node thus achievesk-fold storage savings. However,
it is not hard to show that, in this case, a new node requires tocontact a lot more thank nodes. In fact,
obtaining the blockchain in this scheme is, in fact, identical to the classical “coupon collector” problem
(see,e.g., [14, Chapter 3.6]), where there is a (multiplicative) logarithmic hit in the number of nodes
needing to be contacted (see Fig. 3b; green curve). Therefore, it is of paramount importance to design
decentralized schemes that achieve storage savings without incurring substantial bootstrap cost.

2The Ripple blockchain uses a similar scheme calledhistory shardingto save storage while contributing to preserving
historical XRP Ledger data [13]. In history sharding, the transaction history of the XRP Ledger is partitioned into segments,
called shards. A server that has enabled history sharding acquires and stores randomly selected shards, where the number of
stored shards depends on the budgeted storage space.

Kadheet al. 5

1.1 SeF Codes In a Nutshell

SeF addresses the aforementioned challenges by enabling full nodes toencodevalidated blocks into a
small number ofcoded blocks, thereby requiring signi�cantly less storage space. The core of SeF is
built up on a class of erasure codes calledfountain codes[15, 16] (see also [17, 18]). Theencoderof a
fountain code is a metaphorical fountain that takes as an input a set of blocks of �xed size and produces a
potentially endless supply ofwater drops(i.e., coded blocks). Anyone who wishes to recover the original
blocks holds abucketunder the fountain and collects drops until the number of drops in the bucket is
slightly larger than the number of original blocks. They canthendecodethe original blocks from the
collected drops.

A key technical innovation in SeF codes is to make fountain codes secure against adversarial nodes
(hence, the nameSecure Fountaincodes).3 Fountain codes admit a computationally ef�cient decoding
process, called apeeling decoder[16] (also known as abelief propagation; see,e.g., [19]). A peeling
decoder is an iterative decoder that decodes one block in each iteration andpeels off(removes) its con-
tribution from the remaining coded blocks. SeF codes introduce error-resiliency in the peeling process
by enabling the decoder to identify maliciously formed encoded blocks. In essence, the idea is to use the
header-chain as a side-information and leverage Merkle roots stored in block-headers to check whether
a coded block is maliciously formedwhile it is getting decoded. Indeed, the peeling decoder turns out to
be crucial in identifying maliciously formed droplets, andthus, achieving high security.

Fountain codes areratelessin the sense that it is possible to produce a potentially limitless number of
drops (coded blocks) from a �xed number of blocks.4 SeF codes inherit the rateless property from foun-
tain codes, which allows each node to produce coded blocks without relying on other nodes. Therefore,
SeF codes aredecentralized, makingevery nodeuseful for bootstrapping a new node.

Our proposedSeF codescreate a blockchain network consisting of full nodes with low storage re-
sources, referred to asdroplet nodes(see Fig. 2 (b)). Every droplet node independentlyencodesvalidated
blocks into a small number ofdroplets(i.e., coded blocks) using a fountain code, thereby requiring sig-
ni�cantly less storage space. To recover the blockchain during bootstrap, a new node acts like abucket,
and collects suf�ciently many droplets by contacting any arbitrary subset of droplet nodes. (Hence, the
terms droplets and droplet nodes, as any droplet is as usefulas the other!) Even if a fraction of droplet
nodes act adversarially and provide maliciously formed droplets (calledmurky droplets), our proposed
decoding can identify such murky droplets and delete them. Finally, the new (bucket) node turns it-
self into a droplet node by validating blocks and encoding the blockchain into droplets, and the process
continues.

SeF codes can achieve a near optimum trade-off between the storage savings and the bootstrap cost.
In particular, SeF codes allow the network to tune the storage savings as a parameter, depending upon
how much bootstrap cost new nodes can tolerate. When SeF codes are tuned to achievek-fold storage
savings, a new node is guaranteed to recover the blockchain with probability (1 � d) by contacting
k+ O(

p
kln2(k=d)) honest nodes. In fact, our experiments show much better results as shown in Fig. 3

(orange curve).

3Fountain codes have originally been designed to cater to random erasures, and cannot be directly used to correct adversarial
errors. See Sec. 1.2 for details.

4The termratelesscomes from the contrasting nature of fountain codes as compared to classical erasure codes (such as
Reed-Solomon codes; see [20]), in which a set of blocks of �xed size is encoded into a larger set of coded blocks of that is also
of �xed side. The ratio of the number of coded blocks to the number of original blocks is called the rate of the code.

6 Coding for Blockchains

1.2 Related Work

Bitcoin allows full nodes to reduce their storage costs by enabling block pruning [11]. However, pruned
nodes cannot help new nodes to join the network and do not contribute in preserving the historical
blockchain data. Ethereum uses state tree pruning [21] to reduce storage overhead, however, full nodes
typically store the entire blockchain. A recent proposal [22] for pruning the Ethereum blockchain dis-
cusses several ways of scaling storage requirements, such as of�oading the historical blockchain data to
decentralized archives such as IPFS, Swarm, or BitTorrent.On the other hand, SeF codes enable full
nodes to reduce their storage costs in such a way that they canstill contribute in bootstrapping new nodes
and preserving the blockchain history.

Ripple uses arandom samplingscheme, referred to ashistory sharding, for enabling servers to reduce
their storage in such a way that the ledger history is still preserved by the network [13]. In particular,
the transaction history of the XRP Ledger is partitioned into segments, called shards. A server that
has enabled history sharding acquires and stores randomly selected shards. As we discuss in Sec. 4.2,
random sampling results in signi�cant bootstrap cost, whereas SeF codes achieve near-optimal bootstrap
cost.

It is worth noting that, in a conventional blockchain network, every full node stores the entire history
of the blockchain. From the perspective of storage, such a network can be viewed as a distributed storage
system with replication. As erasure codes are known to be greatly successful in reducing storage costs
in distributed storage systems without reducing reliability [23, 24, 25], it is natural to consider erasure
codes to reduce storage costs in blockchains. This idea is considered in [26, 27, 28, 29].

In particular, references [26, 27] proposelow-storage nodeswhich split every block into small, �xed-
sized fragments, and store onlycoded fragments. These coded fragments are obtained by linearly com-
bining the block fragments with random coef�cients. The main limitation of these works is that they
only consider the the case when nodes can leave the network orcan be unreachable; they do not consider
adversarial nodes that can provide maliciously formed coded fragments.

In [28], the authors consider the problem of storing a blockchain with con�dentiality and reduced
storage. They propose to �rst dynamically partition the network into zones. Then each block is encrypted
with a key speci�c to a zone and the encrypted block is distributed across the nodes in a zone using a
distributed storage code, such as [23, 25].

In [29], the authors consider a sharded blockchain, and propose to compute acoded shardby linearly
combining uncoded shards. In particular, Reed-Solomon codes (see,e.g., [20]) are used to generate the
coded shards. With Reed-Solomon codes, it is possible to recover the original data in the presence of (a
limited number of) adversarial nodes providing malicious data [20].

All these coding schemes – random linear codes, distributedstorage codes, and Reed-Solomon codes
– need to operate over a suf�ciently large �nite �eld, and incur high computational complexity for de-
coding. On the other hand, SeF codes are based on fountain codes, especially LT codes, which are
substantially better in terms of computational cost (see Sec. 4.2).

It is important to note that fountain codes have been designed to handle (random) erasures. While it
is possible to decode from random errors (see,e.g., [30, 31, 32]), adversarial errors can be dif�cult to deal
with.5 In general, iterative decoding algorithm for fountain codes will readily propagate (and amplify)
any error in the received data into the recovered data. This is because fountain codes do not provide any
mechanism for checking the integrity of the decoded data. The key observation of this paper is that the

5Techniques proposed to handle adversarial errors such as [33] require shared secret between the encoder and the decoder.
This is not possible in a blockchain network since nodes are supposed to encode the blockchain in a decentralized manner.

Kadheet al. 7

!"#$"%

!"#$%#&!'($%

! !

! ! !

! ! !

!"#! ! ! ! ! ! "

!""# ! ! ! "

! ! ! "#$%&%$%

! !

Figure 4:Structure of a block and its header.

Merkle root of a block together with the header-chain structure of a blockchain enables one to check the
integrity of the decoded blocks.

2 System Overview

2.1 Blockchain Model

A blockchain is simply a sequence of blocks chained togetherusing cryptographic hashes. Each block
contains a list of transactions and a header. In particular,we consider the following generalized structure
of a block (see Fig. 4).

• Let hash(�) denote a cryptographic hash function (such as SHA-256).

• Let root (T) denote the Merkle (tree) root6 of a list of itemsT.

• The i-th block Bi in the blockchain is denoted asBi = f Hi ;Tig, where the payloadTi is a list of
transactions, and the headerHi = f root (Ti);hash(Hi� 1);Mig, whereMi denotes metadata such as
timestamp and consensus related information (the exact contents of the metadeta are not relevant
here). We sethash(H� 1) = 0 as a convention.

For simplicity, we assume that each block is of sizeL bits.7 Further, we assume that the �rstLh (< L)
bits of the block correspond to its header, whereas the remaining L � Lh bits correspond its payload.
Mining and Consensus:Blocks are created and appended to the blockchain via amining process, where
the participating nodes, known asminers, compete to become the next block proposer. A typical way
to compete is by solving a computationally-intensive puzzle, known asproof-of-work, with suf�cient
dif�culty. A blockchain network uses a consensus algorithmto determine which chain should be selected
in case there is a fork. For the clarity of exposition, we focus our attention to the proof-of-work based
Nakamoto consensus [8] in the paper.8 In the Nakamoto consensus, the chain with the most accumulated
work (referred to as thelongest chain) is selected in the event of a fork. In addition, there are protocol
rules to determine the validity of transactions and blocks.
Full Nodes: A typical node in a blockchain network, referred to as a full node, stores a copy of the
entire blockchain, and validates new blocks as well as transactions. Whenever a new full node joins
the network, it �rst needs to synchronize to the currentstate(e.g., account balances) by downloading

6A Merkle tree is a balanced binary tree where the value of eachnon-leaf node is the hash of its children [34].
7We discuss how to handle variable block sizes in Sec. 5.1.
8We discuss how the proposed coding scheme can be applied to other types of consensus algorithms such as proof-of-stake

in Sec. 7.

8 Coding for Blockchains

and validating the blockchain until that time.9 A typical full node stores the entire blockchain to help
bootstrap new nodes, and for preserving the history.

2.2 Threat Model and Problem Formulation

We are interested in designing protocols that signi�cantlyreduce the storage costs at full nodes. There
are two key components associated with blockchain storage costs: (a) The cost of storing the current
state that is necessary for validating the content getting added. For example, the state can be all currently
spendable transactions (e.g., Bitcoin) or all current account balances (e.g., Ethereum). This essentially
is the information necessary for full nodes to perform transaction validation. (b) The cost of storing the
blockchain's historical data. This is necessary to bootstrap new nodes that join the network, and is often
much larger than the state. For example, the size of the Bitcoin state is around 3GB, as compared to its
overall size of 215GB [6].

In this work, we focus our attention to reducing storage costs associated with storing the blockchain's
historical data. Our goal is to design a protocol that enables a full node to reduce its storage space in such
a way that the node is still able to help in bootstrapping a newnode. We refer to a node with reduced
storage space as adroplet node, and a new node joining the system as abucket node.

Threat Model: We consider a Byzantine adversary that can control an arbitrary subset of droplet nodes.
These malicious droplet nodes may collude with each other and can deviate from the protocol in any
arbitrary manner,e.g., by storing/sending arbitrary data to a bucket node, or staying silent. The remaining
nodes are honest and faithfully follow the protocol. We assume that the adversary is oblivious,i.e., it
does not observe the storage contents of droplet nodes before choosing which nodes to control.Our
goal is to design protocols that allow a bucket node to reconstruct the blockchain as long as a small
number of droplet nodes are honest.We measure the security performance of a coding scheme by the
minimum number of honest droplet nodes that are suf�cient torecover the blockchain with overwhelming
probability.

Our proposed scheme assumes that a bucket node can �rst obtain the honest (correct) header-chain.
Towards this end, we assume that the majority of the consensus (i.e., block producing nodes or miners) is
honest. Further, we assume that the adversary is computationally bounded, and cannot construct a longer
chain than the one constructed by the honest consensus.

Problem Formulation: Let t denote the current height of the (longest) blockchain, and letB= f B1;B2; : : : ;Btg.
For an arbitrary subset of blocksB0 � B, let size (B0) denote the size ofB0 in bits. Letg be a positive
real number greater than 1. Our goal is to design a pair of encoding and decoding schemes(Enc;Dec),
referred to as a coding scheme, for a target storage savings of g with the following properties:

1. Encis a (randomized)encoding schemethat enables a full node to reduce its storage space by a fac-
tor of g. In particular, nodej computes and storesCj = Enc(B; j) such thatsize (B)=size (Cj) =
g. We refer to thecoded blocks Cj asdroplets, and any node storing droplets as adroplet node.

As an example, using the proposed SeF codes, a droplet node can encode 191:48GBof the Bitcoin
blockchain into 195:6MB droplets.

2. Decis adecoding schemethat allows abucket node– a new node joining the network – to recover
the blockchainB from an arbitrary set of droplet nodes that contains a suf�cient number of honest
droplet nodes. Speci�cally, there exist positive integersK, n (� K) such that, for an arbitrary set of

9This is typically referred to asfull synchronization. A blockchain may offer other faster ways of synchronization (e.g., fast
synchronization in Ethereum). However, the full synchronization is the most secure way to join a blockchain network [35].

Kadheet al. 9

droplet nodesf j1; j2; � � � ; jng that contains at leastK honest ones,Dec(Cj1;Cj2; � � � ;Cjn) = B with
overwhelming probability.

As an example, in our proposed SeF scheme targeted at achieving 1000� storage savings, a bucket
node can recover the blockchain with high probability fromK � 1100 honest droplet nodes.

In general, our goal is to design coding schemes that achievesmallK for a given storage savingsg.

Performance Metrics: We measure the performance of a coding scheme using the following metrics.

1. Storage Savingsof a node is the ratio of the total blockchain size to the size of the droplets it stores.

2. Bootstrap Costof a coding scheme is measured by the minimum number of honestdroplet nodes
that a bucket node needs to contact in order to ensure that theblockchain can be recovered with
overwhelming probability. Note that the bootstrap cost of acoding scheme re�ects itssecurity
performance. This is because the bootstrap cost can be considered as the minimum number of
honest droplet nodes that the system must contain to guarantee, with high probability, that the
historical blockchain data is preserved. The smaller the bootstrap cost of a coding scheme, the
better the security performance of the system using the scheme.

3. Bandwidth Overheadis the overhead in terms of the amount of data that a bucket node needs to
download for recovering the blockchain with high probability.

4. Computation Costof a coding scheme is measured in terms of the number of arithmetic operations
associated with the encoderEncand the decoderDec.

Design Objectives:As mentioned in the introduction, it is straightforward to show that there is a fun-
damental trade-off between the storage savings and the bootstrap cost (see Sec. 4 for details). Our main
goal is to design protocols that can achieve a near-optimal trade-off between the storage savings and
the bootstrap cost. Further, we want the protocols to have small bandwidth overhead and computational
cost. In addition, we are interested in designing encoding schemes that aredecentralized. Speci�cally, a
droplet node should be able to generate its droplets withoutknowing what any other node in the system
is storing.

3 Secure Fountain Architecture

3.1 Generic Framework

We begin with a generic framework for a coding scheme, which enables a node tocodeacross blocks
and save its storage space by storing only a small number ofcoded blocks. Recall that we refer to the
coded blocks asdroplets, the nodes storing coded blocks asdroplet nodes, and any new node joining the
system as abucket node.

(a) Encoding: We propose to compute droplets in epochs, where an epoch is de�ned as the time required
for the blockchain to grow byk blocks (e.g., k= 10000). In the current epoch, when the blockchain grows
by k blocks, the sub-chain of lengthk is encodedinto s droplets i.e., coded blocks(e.g., s= 10). Then,
the encoding process continues to the next epoch. To handle blockchain reorganizations due to potential
forks, the most recentt blocks are excluded from encoding and are stored in an uncoded format (e.g.,
t = 550).10 In addition, each node stores the header-chain for the original blockchain.

10In the Bitcoin blockchain, a pruned node is required to storeat least 550 blocks so that it can handle forks.

10 Coding for Blockchains

! !! ! ! ! ! ! ! ! "#" $" ! ! ! ! "#" $% ! !" ! !! ! ! ! ! ! ! ! !"! !" !"

! ! ! "
#"# ! ! ! "

#"# ! ! ! "
"#$! ! ! "

"## ! !! ! ! ! ! ! ! ! !"! !" !"

!"#$#%&' (')*+*,&#%

!"#$%& '$#()%"* !" ! #$

Figure 5:Encoding happens inepochs. An epoch is de�ned as the time required for the blockchain to
grow by k blocks. In the current epoch, when the blockchain grows by k blocks, the sub-chain of length
k is encoded into s droplets. Then, the encoding process continues to the next epoch. For example, for
k = 10000and s= 10, each droplet nodereduces its storage cost by a factor of 1=1000. This means a
node can encode the Bitcoin blockchain of size 190GB into little over 190 MB.

More speci�cally, the �rst epoch starts from the(t + 1)-th block. When the blockchain grows up to
block Bk+ t , a node encodes the blocksB1;B2; : : : ;Bk into sdroplets. The node then deletes thek original
blocks, and stores only thesdroplets for the �rst epoch. The process then continues intothe next epoch.
Let us denote thes droplets stored by nodej in epochl asC(j)

l ;1 ;C(j)
l ;2 ; : : : ;C(j)

l ;s . See Fig. 5 for a schematic
representation.
(b) Decoding: Considera bucket nodejoining the system when the height of the blockchain ist. Let
e = b(t � t)=kc. The bucket node �rst contacts an arbitrary subset ofn droplet nodes (of suf�cient
size), and collects (downloads) their droplets for epochs 1� l � e. The bucket node also downloads the
uncoded blocks (fromBek+ 1 onward) from one or more of then droplet nodes.

The encoding should be performed in such a way that the bucketnode can recover the blockchain
from the collected droplets. In particular, let us denote thendroplet nodes that are contacted asf j1; j2; : : : ; jng.
Then, for every epoch 1� l � e, the bucket node should be able todecodethe sub-chainf B(l � 1)k+ 1,

B(l � 1)k+ 2, : : :, Blkg from thensdropletsf C(ji)
l ;p : 1 � i � n;1 � p � sg.

3.2 Secure Fountain (SeF) Codes

We propose to perform the encoding using a Luby Transform (LT) code [16]. At the core of LT codes
lies the concept of afountain code[15]. A fountain code takes as an input a vector ofk input symbols,
and produces a potentially limitless stream of output symbols.11 The main property that is required of a
fountain code is that it should be possible to recover thek input symbols from any set ofK (� k) output
symbols with high probability. The parameterK is desired to be very close tok.

LT codes admit a computationally ef�cient decoding procedure known aspeeling decoder(also
known as abelief propagation) [19]. However, the peeling decoder is designed to decode inthe presence

11Here, a symbol refers to a sequence of bits, and all symbols are assumed to be of the same size. Note that a block can be
considered as a symbol.

Kadheet al. 11

! !

!"#$%&'

!"#$%&'() * ! ! ! " ! " " ! #"

! ! ! " " " " # " " $

!"#$""% ! & '

! !

Figure 6:An example for the LT code encoder. To generate a droplet in anepoch, a node �rst randomly
samples a degree d2 f 1;2; : : : ;kg using the degree distribution (see Sec. 3.2.4). Then, it chooses, uni-
formly at random, d blocks from the epoch, and computes a bit-wise XOR of these blocks. These d blocks
are called the neighbors of the droplet.

of erasures and it cannot handle maliciously produced output symbols. Our key observation is that the
peeling process can be exploited to introduce resiliency against maliciously formed blocks by using the
header-chain as a side-information and leveraging Merkle roots stored in block-headers. We refer to LT
codes with the error-resilient peeling decoder asSecure Fountain (SeF) codes.

3.2.1 Encoder of a Luby Transform (LT) Code

In every epoch, a droplet node computes a droplet as follows.The node �rst�ips its private coinsto
generate a random numberd between 1 andk. Then, it selectsd out of k blocks uniformly at random.
Finally, it computes a bit-wise XOR of thesed blocks to obtain a droplet. The node stores the droplet
along with the indices of thed blocks used to obtain the droplet. This process is repeated to compute
each of thesdroplets.

In the terminology of LT codes, the numberd is refereed to as thedegreeof a droplet and the blocks
used to compute a droplet are referred to as itsneighbors. This terminology stems from considering a
bipartite graph, withk original blocks as left vertices ands droplets as right vertices, in which there is
an edge joining a block to a droplet if the block is used to compute the droplet. Further, the probability
distribution onf 1;2; : : : ;kg used to sample degrees is referred to as thedegree distribution.12 See Fig. 6
for an example.

Now, we describe the encoding process formally. For simplicity, we focus our attention to the �rst
epoch in the following. The encoding procedure is the same for all subsequent epochs. A droplet node
computes itsj-th dropletCj , 1 � j � s, independent of the other droplets, as follows.

1. Randomly choose thedegree dof the droplet from the degree distributionm(�).

2. Choose, uniformly at random,d distinct blocks from thek blocks, and set the dropletCj as the
bit-wise XOR of thesed blocks. (Thesed blocks are calledneighborsof Cj .)

12We will describe the degree distribution used in SeF codes inSec. 3.2.4.

12 Coding for Blockchains

DenoteCj = f H j ;Tjg, whereH j are the �rstLh bits of Cj , referred as its header, andTj are the
remainingL � Lh bits ofCj , referred as its payload.13

3. StoreCj along with a length-k binary vectorv j computed as follows: if them-th blockBm is among
thed blocks chosen to computeCj then them-th entry ofv j is 1, else it is 0.

In addition tosdroplets, each droplet node stores the header-chainH for the original blockchain. As
we will see, vectorv j and header-chainH are required in the decoding process. In particular,v j will be
used to identify which original blocks are combined to generateCj , while the header-chain will enable
the decoder to identify maliciously formed droplets.

Remark 1. There are other, potentially more ef�cient, ways to convey which original blocks are com-
bined to compute a droplet Cj than storing the length-k binary vector. For instance, it ispossible to store
a seed using which a pseudo-random generator can produce thebinary vector vj . We refer the reader
to [16, 17] for more details. Since storing vj takes much smaller size (e.g., 1250 bytes for k= 10000) as
compared to typical block size (e.g., 1MB), we do not consider other methods.

3.2.2 Adversarial Behavior Against SeF Codes

We outline how an adversarial droplet node can behave in the SeF architecture. In addition to staying
silent when contacted by a bucket node, an adversarial droplet node can act maliciously in the following
two ways:

• Store arbitrary values forCl , vl , andH. In particular, for a speci�c epoch, letB be ak� L binary
matrix, in which thei-th row corresponds to thei-th block in the epoch. Then, for an honest node
j, v j andCj are such thatCj = v jB. On the other hand, an adversarial nodel can store any values
for Cl andvl such thatCl 6= vl B. We refer to such a droplet as amurky droplet.

• Arbitrarily choose degreed, and arbitrarily choosed blocks to compute a droplet. Store the coded
blockCj and the vectorv j correctly. We refer to such a droplet as anopaque droplet. This attack
is essentially targeted at increasing the probability of decoding failure.

We refer to the droplets computed by honest nodes asclear droplets.

3.2.3 Error-Resilient Peeling Decoder

Consider a bucket node that is interested in recovering the blockchainB. It contacts an arbitrary subset
of n (n � k) droplet nodes, and downloads the stored data. This includesdropletsCj 's and vectorsv j 's.
Without loss of generality, let us (arbitrarily) label the downloaded droplets asC1;C2; : : : ;Cns. Note that,
since a coded droplet does not have any semantic meaning, thebucket node cannot differentiate between
the clear, murky, and opaque droplets within the downloadedones.

We assume that the bucket node has access to the honest header-chain. Note that this is can simply be
done by contacting several droplet nodes, and obtaining thelongest valid header-chain. We discuss the
details in Sec. 5.2. Then, the node leverages this header-chain to perform error-resilient peeling decoding
for an LT code, described as follows.

The decoding proceeds in iterations. In each iteration the algorithm decodes (at most) one block until
all the blocks are decoded, otherwise the decoder declares failure. We �rst describe the algorithm and
then present a toy example. Letf H1;H2; : : : ;Hkg denote the �rstk headers from the honest header-chain.

13Note that the header and payload of a coded block may not have any semantic meaning.

Kadheet al. 13

1. Initialization: Form a bipartite graphGwith thek original blocks as left vertices and thensdroplets
as right vertices. There is an edge connecting a dropletCj to an original blockBm if Bm is used in
computingCj . (Recall that this can be identi�ed usingv j . See Fig. 7 for a toy example.)

SetB̂m = NULLfor m= 1;2; : : : ;k, whereNULLdenotes null value.

Set iteration numberi = 1 andGi� 1 = G.

2. Find a dropletCl that is connected toexactly oneblock Bm in Gi� 1. (Such a droplet is called a
singleton.)

If there is no singleton, the decoding halts and declares failure.

3. LetHl andTl be the header and payload ofCl , respectively.

(a) Compute the Merkle root ofTl , denoted asroot (Tl). If Hl matches with the headerHm in the
header-chainH and if root (Tl) matches with the Merkle root stored inHm, then setB̂m = Cl .
(In this case, the dropletCl is said to beaccepted, and them-th block is said to be decoded to
B̂m.)

(b) Otherwise, deleteCl together with all its incoming edges fromGi� 1 to obtainGi . (In this
case, the dropletCl is said to berejected.)
Incrementi by 1.
Go to Step (2).

4. For all dropletsCl0 that are connected toBm in Gi� 1, setCl0 Cl0 � B̂m. (Here, � denotes the
bit-wise XOR.)

5. Remove all the edges connected to the blockBm from Gi� 1 to obtainGi.

6. Incrementi by 1.

7. If all the original blocks are not yet decoded, go to Step (2).

Note that Step (3) differentiates the error-resilient peeling decoder from the classical peeling decoder for
an LT code [16]. More speci�cally, the classical peeling decoder alwaysacceptsa singleton, whereas
the error-resilient peeling decoder mayrejecta singleton if its header and/or Merkle root does not match
with the one stored in the header-chain.

Note that at the initialization phase, it is not possible to determine whether a droplet is clear or
murky if the droplet is not a singleton. However, when a droplet becomes a singleton, verifying whether
its header matches with the corresponding one in the header-chain and whether the Merkle root of its
payload matches with the one stored in the corresponding header in the header-chain provides a mecha-
nism for checking the integrity of the droplet. This signi�es the importance of singletons and underlines
how crucial the peeling process is for achieving error-resiliency.

Next, we present a toy example for the decoder.
Toy Example: We describe the decoder algorithm on the example shown in Fig. 7. We consider the
epoch size ofk = 6 blocks, and suppose that the bucket node has collected 9 droplets, denoted as
C1;C2; : : : ;C9. The corresponding bipartite graphG is shown in Fig. 7. Suppose dropletsC2 andC6 are
murky. Note that the decoder does not know this at the beginning of the decoding. We assume that the
bucket node has access to the honest header-chain, and denote its �rst k = 6 headers asf H1;H2; : : : ;H6g.

Consider the �rst iteration. The decoder begins with �ndinga droplet, called singleton, that is con-
nected to exactly one node inG0 = G. The only singleton inG0 isC4, and is connected toB3 (see Fig. 8).
The decoder then compares the header ofC4 with H3 from the header-chain, and then veri�es whether
the Merkle root of the payload ofC4 matches with the Merkle root stored inH3. SinceC4 is clear, the

14 Coding for Blockchains

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 7: Toy example for the error-resilient peeling decoder for k = 6 blocks andns= 9 droplets. The
bipartite graphG at the initialization Step (1).

decoder will accept it (see Proposition 2 in Appendix A), anddecodesB̂3 = C4. Then, it XORsC4 to the
neighbors ofB3 excludingC4, namelyC1, C2, C6, andC8. (In subsequent iterations, we refer to this step
asupdatingthe other neighbors of a decoded block.) It then removes the edges fromB3 to obtainG1 as
shown in Fig. 9.

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 8: Iteration 1 with the bipartite graphG0: the decoder acceptsC4 and decodesB3.

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 9: Iteration 2 with the bipartite graphG1: the decoder rejectsC6.

In iteration 2, there are two singletonsC6 andC8. Suppose the decoder selectsC6. Since the droplet
is murky, the matching fails for either the header or the Merkle root (or both), and the decoder rejectsC6

(see Proposition 2). It deletesC6 along with its edge fromG1 to obtainG2 as shown in Fig. 10.
In iteration 3, the only singleton droplet isC8 that is connected toB6. Since the droplet is clear, the

headers and the Merkle roots would match. The decoder acceptsC8 and decodeŝB6 = C8. It updates the

Kadheet al. 15

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 10: Iteration 3 with the bipartite graphG2: the decoder acceptsC8 and decodesB6.

other neighbors ofB6, and removes the edges fromB6 to obtainG3 as shown in Fig. 11.

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 11: Iteration 4 with the bipartite graphG3: the decoder acceptsC5 and decodesB1.

In iteration 4, there are two singletonsC1 andC5. Suppose the decoder selectsC5. Since the droplet
is clear, the headers and the Merkle roots would match. The decoder acceptsC5 and decodeŝB1 = C5. It
updates the other neighbors ofB1, removes the edges fromB1 to obtainG4 as shown in Fig. 12.

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 12: Iteration 5 with the bipartite graphG4: the decoder rejectsC2.

In iteration 5, there are three singletonsC1, C2, andC3. Suppose the decoder selectsC2. Since the
droplet is murky, the matching fails for either the header orthe Merkle root (or both), and the decoder
rejectsC2. It deletesC2 to obtainG5 as shown in Fig. 13.

In iteration 6, out of the two singletonsC1 andC3, suppose the decoder selectsC3. Since the droplet
is clear, the headers and the Merkle roots will match. The decoder acceptsC3 and decodeŝB5 = C3. It
updates the other neighbors ofB5, and removes the edges fromB5 to obtainG6 as shown in Fig. 14.

16 Coding for Blockchains

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 13: Iteration 6 with the bipartite graphG5: the decoder acceptsC3 and decodesB4.

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 14: Iteration 7 with the bipartite graphG6: the decoder acceptsC9 and decodesB2.

In iteration 7, the decoder chooses the singletonC9. It accepts it, and decodeŝB2 = C9. It updates
the other neighbors ofB2. The graphG7 after removing edges fromB2 is shown in Fig. 15.

! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 15: Iteration 8 with the bipartite graphG7: the decoder acceptsC7 and decodesB5.

Finally, iteration 8, the the decoder chooses the singletonC7. It accepts it, and decodeŝB5 = C7. As
all the 6 blocks are decoded, the decoder stops.
Decoding Failure: As we will show in Sec. 4.1, when a bucket node contacts a set ofdroplet nodes
that contains slightly more thatk=shonest nodes, it can successfully decode the original blockchain with
high probability. However, if the decoder cannot decode from thensdroplets collected by a bucket node,
the node can simply contact additional droplet nodes to collect more droplets until it �nds a singleton. In
particular, the bucket node contacts ˆn additional droplet nodes for some ˆn � n (which can be a predeter-
mined parameter). Arbitrarily label the downloaded droplets asCns+ 1, Cns+ 2, : : :, C(n+ n̂)s. First, remove
the contribution of already decoded blocks from each ofCj . Speci�cally, if block a block, sayBm, used in

Kadheet al. 17

computingCj is already decoded, then updateCj asCj Cj � B̂m. Next, append these updated droplets
as right vertices inGi� 1. Add an edge connecting a dropletCj , ns+ 1 � j � (n+ n̂)s, to blockBm if Bm

is not yet decoded and it is used in computingCj . If there is a singleton amongst the newly downloaded
droplets, then proceed to Step (3). Otherwise, contact ˆn additional droplet nodes. The decoder declares
failure when the bucket node is unable to �nd additional droplet nodes.
Turning from a bucket node to a droplet node: After the bucket node decodes the original blockchain,
it computes its own droplets for every epoch by following theencoder in Sec. 3.2.1. At this point, the
bucket node turns itself into a droplet node which, in turn, can help a new bucket node.

3.2.4 Degree Distribution

While the encoder and the decoder are valid for any degree distribution, the probability of successfully
decoding the input symbols (the blockchain in our case) froma given number of output symbols (droplets
in our case) depends on the choice of the degree distribution. In the following, we describe therobust
soliton degree distributionproposed by Luby [16]. The robust soliton degree distribution is shown to
have good probability of success (without any adversarial nodes) in [16].

Recall that adegree distributionm(�) is a discrete probability mass function on integers between1
andk. In order to describe the robust soliton degree distribution, we introduce the following notation.
First, de�ne a functionr (�) as:14

r (d) =

(
1
k for d = 1

1
d(d� 1) for d = 2; : : : ;k:

(1)

Next, for given 0< d < 1 andc > 0, de�ne

R= c
p

kln
�

k
d

�
: (2)

Further, de�ne a functionq(�) as

q(d) =

8
><

>:

R
dk for d = 1; : : : ;k=R� 1
R
k ln

� R
d

�
for d = k=R

0 for d = k=R+ 1; : : : ;k:

(3)

As we will see in Sec. 4, the parameterd gives a (conservative) bound on the probability that the decoding
fails to succeed after a certain number of droplets are downloaded. The parameterc is a free parameter
that can be tuned to optimize the number of droplets requiredto recover the blockchain. Addingr (�) to
q(�) and normalizing gives therobust soliton distributionas:

m(d) =
r (d) + q(d)

b
; for d = 1; : : : ;k; (4)

where

b =
k

å
d= 1

r (d) + q(d): (5)

14It is not hard to verify thatå k
d= 1 r (d) = 1, and thus,r is a probability distribution. This distribution is referred to as the

ideal soliton distribution. For further details, and to understand why it is called “soliton”, we refer the reader to [16, Sec. 3.2].

18 Coding for Blockchains

4 Performance Analysis

We begin with formally de�ning the performance metrics thatwere brie�y described in Sec. 2.2. Con-
sider a coding scheme with a pair of encoding and decoding schemes(Enc;Dec).
Storage Savingsof a coding scheme is the ratio of the total blockchain size tothe size of the encoded
blockchain. Speci�cally, the storage savings of a droplet node j is size (B)

size (Enc(B; j)) .

Bootstrap Cost: Consider a coding scheme with a storage savings ofg. For a given 0< d < 1, the boot-
strap cost of a coding scheme is measured by the minimum number of honest droplet nodesK(g;d) that
a bucket node needs to contact in order to ensure that the blockchain can be recovered with probability
at least 1� d.

Note thatK(g;d) can be considered as the minimum number of honest droplet nodes that the system
must contain to guarantee, with probability at least 1� d, that the historical blockchain data is preserved.
Thus, the bootstrap cost of a coding scheme re�ects thesecurity performanceof the system.
Bandwidth Overhead is the overhead in terms of the amount of data that a bucket node needs to down-
load for recovering the blockchain with high probability. Speci�cally, the bandwidth overhead is com-
puted as the amount of data required to be downloaded for ensuring successful blockchain recovery
minus the size of the blockchain (at the time of bootstrap) divided by the size of the blockchain. For a
coding scheme with storage savings ofg, wherein as -fraction of droplet nodes are malicious and the
blockchain should be recovered with probability at least 1� d, we denote the bandwidth overhead by
b (g;d;s).
Computation Cost of a coding scheme is measured in terms of the average number of arithmetic op-
erations associated with the encoderEnc and the decoderDec. In particular, the encoding cost is the
expected number of arithmetic operations suf�cient for generating droplets, divided by the number of
original blocks. Similarly, the decoding cost is the expected number of arithmetic operations suf�cient
to recover the blockchain, divided by the number of originalblocks.
Decentralization: a droplet node should be able to generate its droplets without knowing what any other
node in the system is storing.

We begin with establishing a fundamental trade-off betweenthe storage savings and bootstrap cost
for any coding scheme. For simplicity, we focus our attention to coding schemes in which each droplet
node achieves the storage savings ofg.15

Theorem 1. For any 0 � d < 1, the bootstrap cost of any coding scheme in which each droplet node
achieves the storage savings ofg is lower bounded bydge, i.e., K(g;d) � d ge.

Proof. Suppose that there existnhonest droplet nodes from which it is possible to recover theblockchain.
In order to recover the blockchain, the total size of the downloaded data must be at least the size of the
blockchain. Further, each of then droplet nodes can contributesize (B)=g amount, since every droplet
node is achieving the storage savings ofg. Therefore,n should be at leastdge.

Note that the above theorem implies that the network must contain at leastdge honest droplet nodes to
guarantee that the historical blockchain data is preserved.

15When this is not the case, using the similar proof as that of 1,it is easy to show that the lower bound on the security
performance for a coding scheme isgmin, which is the minimum storage savings achieved by the scheme.

Kadheet al. 19

4.1 SeF Codes

First, we show that SeF codes guarantee that the blockchain can be successfully recovered with over-
whelming probability as long as the set of droplet nodes contacted by a bucket node contains suf�ciently
many honest droplet nodes. Towards this end, we assume that droplet nodes randomly sample degrees
and neighbors for computing the droplets in the �rst epoch (see Step (2) of the encoder), and then use
the same degree and neighbors in subsequent epochs.16

Lemma 1. Consider a bucket node that contacts an arbitrary set of droplets nodes during its bootstrap.
If this set contains at least1s

�
k+ O

� p
kln2(k=d)

��
honest droplet nodes, then the probability that the

error-resilient peeling decoder fails to recover the entire blockchain is at mostd.

Proof. The proof is deferred to Appendix A.

The above lemma implies that successful blockchain recovery is guaranteed with high probability as long

as the network contains1s

�
k+ O

� p
kln2(k=d)

��
honest droplet nodes. In other words, SeF codes can

ensure that the blockchain history is preserved even if an adversary corrupts a large fraction of droplet
nodes.

Next, we analyze the performance of SeF codes.
Assumptions: We make the following assumptions to simplify the analysis.

(i) While characterizing the storage savings, we assume that the storage space required to store the
binary vectorv j corresponding to a droplet is negligible as compared to the size of the droplet.
Note that storing a length-k binary vector requires onlylog2(k) bits; e.g., for k = 10000, it takes
only 1250 bytes. Thus, for large enough block size (e.g., 1MB), this assumption can be justi�ed.
Further, we assume that the storage space required to store the header-chain and the blocks in
the current epoch is negligible as compared to the size of theblockchain. Note that, since the
blockchain is an ever-growing data structure, this assumption can be easily justi�ed.

(ii) While characterizing the bandwidth overhead, we assume that, if as -fraction of droplet nodes
are malicious, then a droplet node contacted by a bucket nodeturns out to be malicious with
probabilitys , independent of the other contacted nodes. Here, we implicitly assume that a bucket
node can contact a random subset of droplet nodes. This is because, in any protocol, malicious
nodes can induce heavy bandwidth overhead bysurroundinga bucket node, say by hijacking its
connections, and by providinggarbagedata. Therefore, assuming that a bucket node can contact
a random subset of droplet nodes allows us to obtain average bandwidth overhead.

(iii) While characterizing the computation cost associated with decoding, we do not include the number
of arithmetic operations required to compute a Merkle root in Step 3(a). This is because a node
anyway needs to compute the Merkle root in order to validate ablock.

Theorem 2. SeF codes are decentralized and achieve the following performance measures:

1. Storage savings:g = k=s;

2. Bootstrap cost: K(k=s;d) =
k+ O(

p
kln2(k=d))
s ;

3. Bandwidth overhead:b (k=s;2d;s) = O
�

ln2(k=d)
(1� s)

p
k

�
;

16As we will see in the proof of Lemma 1, this assumption ensuresthat if a bucket node can (resp. cannot) recover the blocks
in the �rst epoch, it can (resp. cannot) recover all (resp. any of) the subsequent epochs.

20 Coding for Blockchains

4. Computation cost: encoding cost = O
�

sln(k=d)
k

�
, decoding cost = O

�
ln(k=d)

1� s

�
.

Proof. The proof is deferred to Appendix B.

We can immediately make the following observations about the performance of SeF codes.

Remark 2. First, observe that the bootstrap cost for SeF codes is off from its optimal value ofks (see

Theorem 1) by
O(

p
kln2(k=d))

s . In other words, the overhead with respect to the optimal bootstrap cost

is
O(ln2(k=d))

p
k

, which goes to zero as k increases. Next, observe that the bandwidth overhead also goes
to zero as k increases. In fact, it is easy to see that the bandwidth overhead (resp. bandwidth cost)
is proportional to the bootstrap overhead (resp. bootstrapcost). This essentially follows from all the
blocks, and hence, all the droplets having the same size. On the other hand, in a practical blockchain,
bandwidth overhead is no longer proportional to bootstrap overhead due to variability in block size as
we will see in our experiments (Sec. 6). Finally, the normalized encoding cost goes to zero with k, while
the normalized decoding costs grows logarithmically in k.

4.2 Random Sampling and Reed-Solomon Codes

Random Sampling: In this simple scheme, in each epoch of lengthk, a droplet node storess distinct
blocks that are selected uniformly at random.17 Note that this scheme achieves the storage savings of
k=s, since the storage grows bysblocks when the blockchain grows byk blocks.

As noted in [16], random sampling can be considered as a special case of LT codes for the following
degree distribution (referred to asall-at-oncedistribution).

r (d) =

(
1 if d = s

0 otherwise:
(6)

Even though random sampling has trivial encoding and decoding costs, its major limitation is that it
incurs a signi�cant bootstrap cost. To see this, considers= 1 for simplicity, and focus on the �rst epoch.
It is easy to see that recovering the blockchain in this case is equivalent to the classical “coupon collector”
problem (see,e.g., [14, Chapter 3.6]), which incurs a (multiplicative) logarithmic hit in bootstrap cost.18

In particular, it is necessary to contactkln(k=d) honest droplet nodes on average in order to recover the
blockchain with probability at least 1� d.

Reed-Solomon (RS) Codes:We begin with the following notation. LetFq denote the Galois �eld of size
q. Note that, when the maximum size of a block isL bits, every block can be considered as an element
of F2L . ConsiderL0� L such thatL dividesL0. Then,F2L0 is an extension �eld ofF2L . For simplicity, we
assume thatL0= W(log2(N)) , whereN denotes the total number of droplet nodes in the network.

Now, we describe the encoding procedure for an RS code, focusing on the �rst epoch. A droplet node
samplesspoints fromF2L0 uniformly at random, and stores the evaluations the following polynomialB(x)
on these points:B(x) = B1 + B2x+ � � � + Bixi� 1 + Bkxk� 1, whereB1; : : : ;Bk are the �rstk blocks. Note
that it is possible to interpolateB(x) from its evaluations on anyk distinct points. Further, for a large

17It is worth noting that a similar scheme is used in the Ripple blockchain, and is referred to ashistory sharding[13]. In
history sharding, the transaction history of the XRP Ledgeris partitioned into segments, called shards. A server that has enabled
history sharding acquires and stores randomly selected shards.

18It is worth noting that, fors > 1, the random sampling scheme is equivalent to the coupon collector with group drawing
problem, and the analysis is similar, see,e.g., [36].

Kadheet al. 21

enough 2L
0
, an arbitrary set ofk=shonest droplet nodes will have evaluations ofB(x) onk distinct points

with high probability. Therefore, an RS code allows a bucketnode to decode the blockchain (with high
probability) from anyk=shonest droplet nodes via polynomial interpolation. Hence,an RS code achieves
theoptimalbootstrap cost ofk=s. Moreover, as long as the network containsk=shonest droplet nodes, it
is possible, in principle, to recover the blockchain.

However, recovering the blockchain when the network contains a small number of honest nodes will
require heavy computation cost. To see this, consider the case when the network contains exactlyk=s
honest droplet nodes. Since a bucket node cannot distinguish an honest droplet node from a malicious
one just by observing its stored droplets, it needs to employthe following decoding strategy. First, it
contacts an arbitrary subset ofk=s droplet nodes, and downloads their droplets. Using these droplets, it
recovers a candidate blockchain via polynomial interpolation, and checks the validity of the recovered
blockchain using the header chain. If the validity fails, itcontacts another subset ofk=s droplet nodes
and repeats the procedure. In the worst case, the node may need to contact every(k=s)-subset of droplet
nodes, resulting in a prohibitive computation cost.

In practice, one can use algorithms designed to decode RS codes in the presence of errors,e.g.,
Peterson-Gorenstein-Zierler algorithm [20]. The best known computation cost for decoding a length-N
RS code isO(N polylog(N)) , see,e.g. [37]. Note that algorithms designed to decode RS codes in the
presence of errors do not need to use the header chain as a side-information. However, such algorithms
can tolerate only(Ns� k)

2 adversarial droplets amongNsdroplets. Thus, the blockchain can be recovered
only when the network contains at least

� N
2 + k

2s

�
honest droplet nodes, requiring more than half of the

droplet nodes to be honest.

5 Practical Issues

5.1 Tackling Variability in Block Size

Until now, we have assumed that all the blocks have the same size. On the other hand, popular blockchains
such as Bitcoin and Ethereum produce blocks with variable size (see [38] and [39], respectively). In this
section, we discuss how to handle variability in block size.

In a blockchain with a limit on the block size, the simplest way to deal with variable block sizes is
to zero pad every block to the maximum size during encoding. However, when the average block size is
smaller than the maximum, this results in higher storage costs. In the following, we discuss two simple
and ef�cient protocols to handle variable block size.

1. Adaptive zero-padding: Recall that in LT encoding a node �rst chooses a degreed using a degree
distribution. Then, it choosesd distinct blocks from the epoch under consideration. Then, while
computing the bit-wise XOR, the node can simply zero-pad theblocks to the largest block among
thed blocks. We refer to this procedure as adaptive zero-padding.

Adaptive zero-padding performs well when the variance in block size is small. However, it can
perform poorly when the variance in block size is large. To overcome this issue, we propose to
concatenate several contiguous blocks in the following.

2. Block Concatenation:A natural way to reduce variance in block size is to �rst concatenate blocks
to form super-blocksof approximately same size, and then perform encoding on thesuper-blocks.
More speci�cally, letL denote the maximum block size, and letLs � L be a design parameter. For
example, for the Bitcoin blockchain withL = 1MB, we useLs = 1;5; and 10MB in our simulations.

22 Coding for Blockchains

For two binary stringsBi andB j , let Bi jj B j denote their concatenation. For simplicity, we assume
that the block header contains the size of the block.

Block concatenation procedure:

(i) Initialization: Set super-block countj = 1 and block counti = 1.
(ii) Set super-blockB̄ j = NULL.

a. If size (B̄ j jj Bi) � Ls,
SetB̄ j B̄ j jj Bi.
Incrementi.
Go to Step (ii)-a.

b. Else,
Incrementj.
Go to Step (ii).

We de�ne an epoch as the time required for the blockchain to grow by k super-blocks. The actual
number of blocks produced in an epoch will vary depending on the block sizes. LT encoding is
performed on super-blocks. For instance, in the �rst epoch,LT encoding is then performed on
super-blocksB̄1, B̄2, � � � , B̄k. Note that the encoder may still need to use adaptive zero padding
while XORing super-blocks. However, the size of a super-block is at leastLs � L. Thus, choos-
ing Ls to be suf�ciently larger thanL ensures small variance in super-block sizes, reducing the
overhead incurred by adaptive zero padding.

In the error-resilient peeling decoder in Sec. 3.2.3, we modify Step 3 to check all the blocks in
a singleton super-block. To be more precise, consider Step 2in at which the bucket node �nds a
singleton super-block, sayCl . Assuming that the header contains the block size, the bucket node
knows from the header chain that thel -th super-block should be a concatenation of blocksi + 1
to i + p for somei � 0 andp � 0. In other words, ifCl is a clear droplet, then it will have the
following structure:Cl = ff Hi+ 1;Ti+ 1g; f Hi+ 2;Ti+ 2g; � � � ; f Hi+ p;Ti+ pgg for somei andp.

Assuming that the headers have the same size and the block-size is included in the header, it is
possible to decomposeCl in the following form:Cl = ff Ĥl1; T̂l1g; f Ĥl2; T̂l2g; � � � ; f Ĥlp; T̂lpgg. Then,
in the Step 3, the singletonCl is accepted only if, for each 1� j � p, Ĥl j matches withHi+ j and
root

�
T̂l j

�
matches with the Merkle root inHi+ j . Otherwise, the singleton is rejected. The rest of

the decoding algorithm remains the same.

5.2 Obtaining the Honest Header-Chain

While describing the error-resilient peeling decoder, we assumed that a bucket node has an access to
the honest (correct) header-chain. It is easy for a bucket node to obtain the correct header chain. In
particular, a bucket node can simply query a large number of droplet nodes to obtain the longestvalid19

header-chain. Note that even though the error-resilient peeling decoding is performed separately for each
epoch, a node obtains a copy of the longest valid header-chain up to the current height. Assuming that
the majority of the mining power is honest and the adversary has limited computing power, the longest
valid header-chain is the correct header chain with overwhelming probability. Thus, as long as the bucket
node can contact one honest droplet node, it is guaranteed toobtain the correct header-chain.

It is worth noting that light (also called SPV or thin) clients, which are an integral part of several
practical blockchain protocols like Bitcoin and Ethereum,are designed to obtain the longest header-

19A header-chain is said to be valid if it follows the hash-chain structure, and proof-of-work puzzles are correctly solved.

Kadheet al. 23

���� ���� ���� ���� ���� ���� ���� 	���
��� �����

�������
������

�

����

����

����

	���

�����

���
���

���
���

��

(a) SeF Codes

���� ���� ���� ���� ���� ���� ���� 	���
��� �����

�������
������

�

�����

�����

�����

	����

������

������

������

���
���

���
���

��

(b) Random Sampling

Figure 16:Average bootstrap cost versus storage savings.

chain; see,e.g. [9, 10]. Thus, a bucket node can �rst act as a light client before starting to collect the
droplets.

6 Simulation Results

We begin with numerical analysis of the performance of the proposed SeF codes. Without loss of gen-
erality, we consider the �rst epoch. We consider the following set of parameters for LT codes (cf. (2)):
c = f 0:01;0:03;0:1;0:3g andd = f 0:1;0:3;0:5;0:7g. We choose the values ofc andd that result in the
best performance. For any setup that we consider, the experiments are repeated 100 times to compute
the statistics.

First, we plot the average bootstrap cost versus storage savings for SeF codes in Fig. 16a. We also
plot the minimum and maximum bootstrap cost over 100 trials.Observe that, for a given storage savings
of g, the bootstrap cost of SeF codes is close to the optimum bootstrap costg. For comparison, we plot
the bootstrap cost versus storage savings for random sampling in Fig. 16b. To highlight that SeF codes
achieve near optimum trade-off between the bootstrap cost and the storage savings, we plot the bootstrap
cost that ensures successful blockchain recovery with 99% in Fig. 17 along with the optimal bootstrap
cost.

Next, we study the effect of epoch-lengthk on the bootstrap cost in Fig. 18. In particular, we increase
k andssuch that the storage savings isk=s= 1000, and plot the average bootstrap cost. One can see that
as the epoch length increases, the bootstrap cost for SeF codes gets closer to the optimal value of 1000.
This is because LT codes are more ef�cient for largerk. On the other hand, for a larger epoch-length
k, a droplet node needs larger buffer space to store the blocksof the current epoch before they can be
encoded. We also plot the bootstrap cost versus the epoch length for random sampling for comparison in
Fig. 18b.

Next, we plot bandwidth overhead as a function of a fractions of adversarial droplet nodes in Fig. 19.
Recall that we make the following assumption about the network model during the bootstrap process: if
a s -fraction of droplet nodes are malicious, then a droplet node contacted by a bucket node turns out to
be malicious with probabilitys . We consider two parameter settings, targeted at 1000� storage savings:

24 Coding for Blockchains

���� ���� ���� ���� �����
���������������

�

����

����

����

����

�����

�����

���
���

���
�	�

��

��������
��������

��
�	����

Figure 17:Bootstrap cost versus storage savings to ensure successfulblockchain recovery with99%.

���� ���� ���� ���� ���� ���� ���� 	���
��� �����

�������������

�

���

���

���

	��

����

����

����

���
���

���
���

��

(a) SeF Codes

���� ���� ���� ���� ���� ���� ���� 	���
��� �����

�������������

�

����

����

����

�����

�����

�����

�����

���
���

���
���

��

(b) Random Sampling

Figure 18:Average bootstrap cost versus epoch-length k.

(i) (k = 1000,s= 1); and (ii) (k = 10000,s= 10). Observer thatk = 10000,s= 10 results in a smaller
bootstrap overhead as compared tok = 1000,s= 1.

Simulations on the Bitcoin Blockchain

In this section, we describe experiments carried out on the Bitcoin blockchain. We consider two pa-
rameter settings, targeted at 1000� storage savings: (i) (k = 1000,s= 1); and (ii) (k = 10000,s= 10).
We observe that the actual storage savings (as well as the bandwidth overhead) is affected by variability
in block size. To tackle block size variability, we use adaptive zero padding and block concatenation
as discussed in Sec. 5.1. We list the average values for storage savings, bootstrap cost, and bandwidth

Kadheet al. 25

� ��� ��� ��� ���
������������
��� ���������

�

��

��

	�

���

���

���

�	�

���
���

���
�

�
��������
�

�
���������
��

Figure 19:Average bandwidth overhead versus fraction of adversarialdroplet nodes for SeF codes.

k = 1000,s= 1
Adaptive Zero

Padding
Block Concatenation

to 1MB
Block Concatenation

to 5MB
Block Concatenation

to 10MB

Average Storage
Savings

749.44 896.06 961.33 978.93

Average Bootstrap
Cost

1128 1128 1128 1128

Average Bandwidth
Overhead

(All Honest)
50.58% 25.97% 17.35% 15.32%

Bandwidth
Overhead

(10% Malicious)
67.30% 39.95% 30.35% 27.97%

Table 1: Results on the Bitcoin blockchain fork = 1000 ands= 1.

overhead in Tables 1 and 2. (We include the details of the experimental results in Appendix C.)

We observe that simply using adaptive zero padding does not yield a good performance, since the
block size variability in the Bitcoin is signi�cantly large. On the other hand, block concatenation suc-
cessfully mitigates the block size variability. As we increase the super-block size from 1MB to 10MB,
the variance in the super-block size reduces, resulting in the performance improvement.

26 Coding for Blockchains

k = 10000,s= 10
Adaptive Zero

Padding
Block Concatenation

to 1MB
Block Concatenation

to 5MB
Block Concatenation

to 10MB

Average Storage
Savings

744.80 894.47 958.60 976.61

Average Bootstrap
Cost

1048 1048 1048 1048

Average Bandwidth
Overhead

(All Honest)
40.69% 17.10% 9.26% 7.33%

Average Bandwidth
Overhead

(10% Malicious)
56.38% 30.19% 21.59% 19.50%

Table 2: Results on the Bitcoin blockchain fork = 10000 ands= 10.

7 Discussion

7.1 SeF Codes with Proof-of-X and Hybrid Blockchains

For simplicity, we have focused our attention in this paper on proof-of-work based Nakamoto consensus
that is used in Bitcoin and Ethereum. SeF codes, however, canbe used with anyproof-of-X protocol[40],
such as proof-of-stake [41] or proof-of-space [42], with minimal changes. Essentially, a proof-of-X
protocol uses an energy-ef�cient alternative to proof-of-work to build a chain based on the longest chain
rule, similar to Bitcoin and Ethereum. SeF codes can be used with any such protocol that allows a node
to verify the validity of consensus rules for each block individually. For instance, a node should be able
to verify that the block creator has spent a certain amount ofa resource uniquely for the block.

In contrast to protocols that grow their chains based on the longest chain rule allowing forks, a class
of protocols that avoids forks are called hybrid blockchainprotocols, see,e.g.[43, 44, 45, 46, 47, 41, 48].
Such a protocol typically elects acommitteeof block validators and relies on classical Byzantine fault-
tolerant (BFT) consensus protocols (e.g., [49]). These committees are usually re-elected at a slower
rate than the rate at which transaction blocks are added to the blockchain. The protocol also creates a
special type of blocks, calledidentity blocks, that contains the list of committee members. Speci�cally,
every identity block contains the list of members of a new committee, signed by the previous committee.
When SeF codes are used with a hybrid protocol, a new node will�rst need to download and verify every
identity block before error-resilient peeling decoding can be performed.

7.2 Achieving Dynamic Storage Savings

One limitation of our current proposal is that SeF codes are tuned to achieve a predetermined storage
savings by �xing the epoch lengthk and the number of droplets stored per epochs. An easy way
to achieve dynamic storage savings is to allow droplet nodesto choose anys � 1 depending on their
storage budget. In this way, a node can achieve any storage saving betweenf k;k=2;k=3; : : : ;1g. In fact,
a node can choose different values ofs for different epochs. One natural way is to choose a larges (e.g.,
s = 10) for all epochs, and then decreases for older epochs by deleting randomly selected droplets in
those epochs.

Additionally, it is possible to choose multiple pairs(ki ;si) with increasing epoch lengths, and per-

Kadheet al. 27

!"#$#%&' (')*+*,&#%

! ! ! ! ! !"""" ! !"""# ! !"""" ! !"""# ! !"###

! ! ! "
#"# ! ! ! "

#"#$! ! ! "
#"$! ! ! "

#"$%

!! ! ! "
#"#

!! ! ! "
#"$

! !"""" ! !"""#

! ! ! "
#"$! ! ! "

#"$%

!"#$%& &$#'(%") *+%, "+% -(#./.+01, +%12+" 1) (%)) "+0, 34444

!"#$%& &$#'(%") *+%, "+% -(#./.+01, +%12+" 1) 2$%0"%$ "+0, 34444

Figure 20:Using multiple increasing epoch lengths to achieve dynamicstorage savings. As an example,
we consider(k1 = 10000;s1 = 10); (k2 = 50000;s1 = 5). In every small epoch of length k1, droplet
nodes compute droplets using a SeF code with parameters(k1 = 10000;s1 = 10). After a period of
�ve small epochs (which we call a long epoch), a droplet node acts as a new node, collects droplets
for each of the �ve previous small epochs, and decodes the blockchain for these epochs. Then, it re-
encodes the blockchain using a SeF code with parameters(k2 = 50000;s2 = 5), and deletes the droplets
corresponding to the small epochs.

form encoding for longer epochs in the background. To be speci�c, let us consider an example of
(k1 = 10000;s1 = 10); (k2 = 50000;s2 = 5). A droplet node encodes small epochs using SeF codes
with parameters(k1 = 10000;s1 = 10). After a period of �ve small epochs,i.e., when the blockchain
grows byk2 (which we call as a long epoch), it acts as a new node, collectsdroplets for each of the �ve
previous small epochs, and decodes the blockchain for theseepochs. Then, it re-encodes the decoded
blockchain using a SeF code with parameters(k2 = 50000;s2 = 5), and deletes the droplets correspond-
ing to the small epochs. (See Fig. 20.) A bucket node joining the network downloads droplets for older
long epochs and recent small epochs. For instance, considera new node joining the network when
the height of the longest chain ist = 63000. Then, a bucket node collects droplets correspondingto a
SeF code with(k2 = 50000;s2 = 5) for the �rst long epoch, and droplets corresponding to a SeF code
with (k1 = 10000;s1 = 10) for the sixth smaller epoch. (See Fig. 20.) Note here that, bydecoding and
re-encoding for longer epochs in the background, droplet nodes are trading-off computation as well as
communication for increasing their storage savings.

7.3 Reducing Bandwidth Overhead by Downloading Droplets AsNeeded

It is possible to signi�cantly reduce the bandwidth overhead by selectively downloading droplets. This
is especially easy in the case of random sampling. Speci�cally, after contacting a droplet node, a bucket
node can �rst query just the indices of the droplets that it isstoring. Then, it will download only the
droplets that it has not previously downloaded. This allowsa bucket node to reduce its bandwidth over-
head close to the minimum (assuming that the queries occupy relatively small bandwidth compared to
the block-size).

28 Coding for Blockchains

Adaptive Zero
Padding

Block Concatenation
to 1MB

Block Concatenation
to 5MB

Block Concatenation
to 10MB

k = 1000,s= 1 31.92% 11.16% 3.88% 2.07%
k = 10000,s= 10 33.19% 11.45% 4.24% 2.35%

Table 3: Average bandwidth overhead for SeF codes on the Bitcoin blockchain when downloading
droplets “as needed” . We consider the case that all droplet nodes are honest.

Similar idea can be used to reduce the bandwidth overhead forSeF codes. In particular, a bucket
node will �rst download only the binary vectorsv j 's from a large number of droplet nodes. Then, it
starts decoding by forming a bipartite graphG using the binary vectors (see Step 1). In every iteration,
if there exists a droplet that will result in a singleton, it downloads that particular droplet by contacting
the droplet node which provided the corresponding binary vector. Here we assume that it is possible to
re-contact droplet nodes. We list the bandwidth overhead incurred by this algorithm in Table 3.

7.4 Dealing with Non-Oblivious Adversary

As we showed in Sec. 4.1, SeF codes are secure against an oblivious adversary that does not observe
storage contents of droplet nodes before choosing which nodes to control. However, a non-oblivious
adversary can corrupt a limited number of nodes to induce decoding failure for SeF codes. As an ex-
ample, consider the followingbribery attack. An adversary �rst acts as a bucket node to learn about the
storage of a large number of honest droplet nodes. Then, it uses this information to corrupt (bribe) a
subset of nodes. Such an adversary can induce decoding failure by, for example, bribing droplet nodes
that store at least one singleton droplet. In this case, it iseasy to see that the adversary needs to bribe

only O(
p

kln
� k

d

�
) droplet nodes out ofk+ O

� p
kln2(k=d)

�
ones to induce decoding failure (assuming

s= 1 for simplicity). This is becausek+ O
� p

kln2(k=d)
�

clear droplets containO(
p

kln
� k

d

�
) single-

ton droplets on average (see (4)). We leave the problem of designing computationally ef�cient coding
schemes that are secure against a non-oblivious adversary as a future work.

It is worth noting that, in a typical blockchain network, newnodes will keep joining the network. If
new honest nodes join the network at a rate that is greater than the rate at which adversary can observe
and control nodes, then SeF codes will be secure.

Acknowledgement

S. Kadhe would like to thank O. Ozan Koyluoglu for helpful comments on initial drafts of this paper.

References

[1] N. Teslya and I. Ryabchikov, “Blockchain-based platform architecture for industrial IoT,” in2017 21st Con-
ference of Open Innovations Association (FRUCT), Nov 2017, pp. 321–329.

[2] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec:Using blockchain for medical data access and
permission management,” in2016 2nd International Conference on Open and Big Data (OBD), Aug 2016,
pp. 25–30.

Kadheet al. 29

[3] M. Mettler, “Blockchain technology in healthcare: The revolution starts here,” in2016 IEEE 18th Interna-
tional Conference on e-Health Networking, Applications and Services (Healthcom), Sept 2016, pp. 1–3.

[4] M. J. Casey and P. Wong, “Global supply chains are about toget better, thanks to
blockchain,” Harvard Business Review, Mar 2017. [Online]. Available: https://hbr.org/2017/03/
global-supply-chains-are-about-to-get-better-thanks-to-blockchain

[5] Bitcoin Wiki, “Full node,” https://en.bitcoin.it/wiki/Full node, Feb 2019, [Online; Accessed on 06/20/2019].

[6] “Blockchain Luxembourg S.A.” https://www.blockchain.com/charts/blocks-size, [Online; Accessed on
06/20/2019].

[7] Ripple Documentation, “Capacity planning,” https://developers.ripple.com/capacity-planning.html, [Online;
Accessed on 06/20/2019].

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [Online]. Available: http://www.
bitcoin.org/bitcoin.pdf

[9] Bitcoin Wiki, “Simpli�ed payment ver�cation,” https://en.bitcoinwiki.org/wiki/Simpli�ed Payment
Veri�cation, [Online; Accessed on 06/20/2019].

[10] Ethereum Wiki, “Light client protocol,” https://github.com/ethereum/wiki/wiki/Light-client-protocol, [On-
line; Accessed on 06/20/2019].

[11] BitcoinCore Documentation, “Running a full node,” https://bitcoin.org/en/full-node#what-is-a-full-node,
[Online; Accessed on 06/20/2019].

[12] G. Karame and E. Audroulaki,Bitcoin and Blockchain Security. Norwood, MA, USA: Artech House, Inc.,
2016.

[13] R. Documentation, “History sharding,” https://developers.ripple.com/history-sharding.html, [Online; Ac-
cessed on 06/20/2019].

[14] R. Motwani and P. Raghavan,Randomized Algorithms. Cambridge University Press, 1995.

[15] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain approach to reliable distribution
of bulk data,” inProceedings of the ACM SIGCOMM '98 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, ser. SIGCOMM '98. New York, NY, USA: ACM,
1998, pp. 56–67.

[16] M. Luby, “LT codes,” in43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 Novem-
ber 2002, Vancouver, BC, Canada, Proceedings, 2002, p. 271.

[17] D. J. C. MacKay, “Fountain codes,”IEE Proceedings - Communications, vol. 152, no. 6, pp. 1062–1068, Dec
2005.

[18] A. Shokrollahi and M. Luby, “Raptor codes,”Foundations and Trends in Communications and Information
Theory, vol. 6, no. 3–4, pp. 213–322, 2011. [Online]. Available: http://dx.doi.org/10.1561/0100000060

[19] T. Richardson and R. Urbanke,Modern Coding Theory. New York, NY, USA: Cambridge University Press,
2008.

[20] F. MacWilliams and N. Sloane,The Theory of Error-Correcting Codes, 2nd ed. North-holland Publishing
Company, 1978.

[21] V. Buterin, “State tree pruning,” https://blog.ethereum.org/2015/06/26/state-tree-pruning/, Jun 2015, [Online;
Accessed on 06/20/2019].

[22] P. Szilágyi, “Pruning historical chain segments,” https://gist.github.com/karalabe/
60be7bef184c8ec286fc7ee2b35b0b5b, Nov 2018, [Online; Accessed on 06/20/2019].

[23] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network codes for distributed storage,”
Proceedings of the IEEE, vol. 99, no. 3, pp. 476–489, March 2011.

[24] J. S. Plank, “Erasure codes for storage systems: A briefprimer,” ;login: the Usenix magazine, vol. 38, no. 6,
December 2013.

30 Coding for Blockchains

[25] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin, “Erasure coding in
windows azure storage,” inPresented as part of the 2012 USENIX Annual Technical Conference (USENIX
ATC 12), Boston, MA, 2012, pp. 15–26.

[26] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasurecode-based low storage blockchain node,”CoRR,
vol. abs/1805.00860, 2018. [Online]. Available: http://arxiv.org/abs/1805.00860

[27] M. Dai, S. Zhang, H. Wang, and S. Jin, “A low storage room requirement framework for distributed ledger in
blockchain,”IEEE Access, vol. 6, pp. 22 970–22975, 2018.

[28] R. K. Raman and L. R. Varshney, “Dynamic distributed storage for scaling blockchains,”CoRR, vol.
abs/1711.07617, 2017. [Online]. Available: http://arxiv.org/abs/1711.07617

[29] S. Li, M. Yu, S. Avestimehr, S. Kannan, and P. Viswanath,“Polyshard: Coded sharding achieves linearly
scaling ef�ciency and security simultaneously,”CoRR, vol. abs/1809.10361, 2018. [Online]. Available:
http://arxiv.org/abs/1809.10361

[30] O. Etesami and A. Shokrollahi, “Raptor codes on binary memoryless symmetric channels,”IEEE Transac-
tions on Information Theory, vol. 52, no. 5, pp. 2033–2051, May 2006.

[31] M. G. Luby and M. Mitzenmacher, “Veri�cation-based decoding for packet-based low-density parity-check
codes,”IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 120–127, Jan 2005.

[32] R. Karp, M. Luby, and A. Shokrollahi, “Veri�cation decoding of raptor codes,” inProceedings. International
Symposium on Information Theory, 2005. ISIT 2005., Sep. 2005, pp. 1310–1314.

[33] A. Juels, J. Kelley, R. Tamassia, and N. Triandopoulos,“Falcon codes: Fast, authenticated lt codes (or:
Making rapid tornadoes unstoppable),” inProceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS '15, 2015, pp. 1032–1047.

[34] R. C. Merkle, “Protocols for public key cryptosystems,” 1980 IEEE Symposium on Security and Privacy, pp.
122–122, 1980.

[35] “Ethereum fast synchronization,” https://github.com/ethereum/go-ethereum/pull/1889, Oct 2015, [Online;
Accessed on 06/20/2019].

[36] W. Stadje, “The collector's problem with group drawings,” Advances in Applied Probability, vol. 22, no. 4,
pp. 866–882, 1990.

[37] F. Didier, “Ef�cient erasure decoding of reed-solomoncodes,”CoRR, vol. abs/0901.1886, 2009.

[38] “Blockchain Luxembourg S.A.” https://www.blockchain.com/en/charts/avg-block-size, [Online; Accessed
on 06/20/2019].

[39] “Etherscan: Ethereum block size history,” https://etherscan.io/chart/blocksize, [Online; Accessed on
06/20/2019].

[40] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, and G. Danezis, “Consensus in
the age of blockchains,”CoRR, vol. abs/1711.03936, 2017.

[41] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure proof-of-stake
blockchain protocol,” inAdvances in Cryptology – CRYPTO 2017, J. Katz and H. Shacham, Eds., 2017,
pp. 357–388.

[42] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of space,” Cryptology ePrint Archive,
Report 2013/796, 2013, https://eprint.iacr.org/2013/796.

[43] R. Pass and E. Shi, “Hybrid Consensus: Ef�cient Consensus in the Permissionless Model,” in31st Interna-
tional Symposium on Distributed Computing (DISC 2017), vol. 91, 2017, pp. 39:1–39:16.

[44] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solida: A Blockchain Protocol Based on
Recon�gurable Byzantine Consensus,” in21st International Conference on Principles of Distributed Systems
(OPODIS 2017), vol. 95, 2018, pp. 25:1–25:19.

[45] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,E. Syta, and B. Ford, “Omniledger: A secure, scale-
out, decentralized ledger via sharding,” in2018 IEEE Symposium on Security and Privacy (SP), May 2018,
pp. 583–598.

Kadheet al. 31

[46] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via full sharding,” inProceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS '18, 2018,
pp. 931–948.

[47] P. Daian, R. Pass, and E. Shi, “Snow white: Provably secure proofs of stake,” Cryptology ePrint Archive,
Report 2016/919, 2016, https://eprint.iacr.org/2016/919.

[48] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling byzantine agreements for
cryptocurrencies,” inProceedings of the 26th Symposium on Operating Systems Principles, ser. SOSP '17,
2017, pp. 51–68.

[49] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” inProceedings of the Third Symposium on
Operating Systems Design and Implementation, ser. OSDI '99, 1999, pp. 173–186.

A Proof of Lemma 1

The proof relies on three propositions. The �rst two propositions establish the behavior of the decoder
in Step (3). Note that in every iteration, the error-resilient peeling decoder either decodes a block or a
deletes a droplet in Step (3). First, we show that it never incorrectly decodes a block. Next, we show that
it never deletes a droplet that is not murky. For simplicity,we consider the �rst epoch.

Proposition 1. If the error-resilient peeling decoder decodes a block in Step (3), it must be a correct
block.

Proof. Consider an iteration in which the decoder decodes them-th block toB̂m. LetCl = f Hl ;Tl g be the
singleton droplet connected toBm in Gi� 1 in Step (2). Thus, we havêBm = Cl .

Suppose, for contradiction, thatB̂m 6= Bm, which, in turn, givesCl 6= Bm. Now, from Step (3a), we
must haveHl = Hm, androot (Tl) = root (Tm). Since every droplet node is assumed to be computation-
ally bounded andhash(�) is cryptographically secure, we must haveTl = Tm. Thus,Cl = Bm, resulting
in a contradiction.

Proposition 2. If the error-resilient peeling decoder rejects a droplet inStep (3), then it must a murky
droplet.

Proof. Consider an iterationi in which the decoder deletes a dropletCl = f Hl ;Tl g. Suppose that the
decoder has decodeds� 1 blocks until that iteration, for some 1� s � k. Denote the decoded blocks as
B̂ j1; B̂ j2; : : : ; B̂ js� 1. From Step (2),Cl must be connected to exactly one block inGi� 1. Denote that block
asB js. Let d be the degree ofCl in G at the initialization Step (1).

Case 1: d= 1. The length-k vectorvl associated withCl is such that itsjs-th entry is 1 and every other
entry is 0. Suppose, for contradiction, thatCl is not murky. That is,Cl = vl B = B js. However, since the
decoder deletesCl , eitherHl 6= H js or root (Tl) 6= root (Tjs) (or both), which results in a contradiction.
Hence,Cl must be murky.

Case 2: d� 2. Since, at iterationi,Cl is connected to onlyB js, it must be thatd � sand the otherd� 1
neighbors ofCl form a subset ofB j1;B j2; : : : ;B js� 1. Without loss of generality, letB j1;B j2; : : : ;B jd� 1;B js
be thed neighbors ofCl in G at the initialization. In other words, the length-k vector vl is such that
its i-th entry is 1 fori = j1; j2; : : : ; jd� 1; js, and every other entry is 0. Moreover, at iterationi, we
haveCl = C(0)

l � B̂ j1 � B̂ j2 � � � � � B̂ jd� 1, whereC(0)
l be the value of the droplet at the initialization. By

Proposition 1, each of thes� 1 decoded blocks are correct, and thus,Cl = C(0)
l � B j1 � B j2 � � � � � B jd� 1.

Suppose, for contradiction, thatCl is not murky. That is, at the beginning of the decoding, we have
C(0)

l = vl B = B j1 � B j2 � � � � � B jd� 1 � B js. Thus, at iterationi, we must haveCl = B js. However, since the

32 Coding for Blockchains

decoder deletesCl , eitherHl 6= H js or root (Tl) 6= root (Tjs) (or both), which results in a contradiction.
Hence,Cl must be murky.

Recall that Step (3) differentiates the error-resilient peeling decoder from the classical peeling de-
coder for an LT code [16]. In particular, in contrast to the classical peeling decoder which alwaysaccepts
a singleton, the error-resilient peeling decoder mayrejecta singleton if its header and/or Merkle root does
not match with the one stored in the header-chain. Now, suppose that we could identify the subset of
clear dropletsS̃ among the set of collected dropletsS at the beginning of the decoding. Then, we can
use the classical peeling decoder to recover the blockchainfrom these clear droplets̃S. In the follow-
ing proposition, we show that if the classical peeling decoder succeeds to recover the entire blockchain
from S̃, then the error-resilient peeling decoder must succeed onS, even though it is not possible for the
decoder to identify the clear droplets at the beginning of the decoding.
Proposition 3. Let S denote a set of droplets corresponding to an arbitrary epoch that are collected by
a bucket node, and̃S denote the subset of clear droplets from S. If the classicalpeeling decoder can
recover the blockchain for the epoch from̃S, then the error-resilient decoder must be able to recover the
blockchain for the epoch from S.

Proof. First, note that the classical and error-resilient decoders are equivalent oñS. This is because the
error-resilient peeling decoder will never delete a droplet from S̃, since all the droplets are clear (see
Proposition 2). Therefore, it suf�ces to focus only on the error-resilient decoder in the proof. In other
words, it suf�ces to show that if the error-resilient peeling decoder succeeds to decode the epoch fromS̃,
it will also succeed to decode the epoch fromS.

Note that any block decoded fromSmust be correct by Proposition 1. Thus, it is suf�cient to show
that if the error-resilient peeling decoder does not declare failure when decoding from̃S, it will not
declare failure when decoding fromS.

Let G andG̃ be the bipartite graphs in Step (1) when decoding fromS andS̃, respectively. Now,
since decoding withG̃ as the starting point succeeds, at each iterationi, 1 � i � k, there is at least
one singleton droplet iñGi� 1. Note that this happens irrespective of which singleton waschosen in the
previous iteration, because, if there are multiple singletons available in an iteration, the choice of the
singleton does not affect the success of the decoder in recovering the blockchain.

Availability of at least one singleton droplet while decoding fromG̃ implies that, when decoding with
G as the starting point, there must be at least one clear singleton droplet onG j � 1 at every iterationj. This
is because deleting a murky droplet does not change the degree of any clear singleton, and accepting a
singleton corresponding to an opaque droplet can only reduce the degree of some clear droplets, which in
turn helps in creating clear singletons. Therefore, if the error-resilient peeling decoder does not declare
failure when decoding from̃S, it will not declare failure when decoding fromS. This completes the
proof.

Now, we are ready to prove Lemma 1. First, note that the bucketnode has at leastk+ O
� p

kln2(k=d)
�

clear droplets, as the set of droplet nodes it contacts contains at least1s

�
k+ O

� p
kln2(k=d)

��
honest

nodes. Let us denote the set of clear droplets asS̃. Further, note that the adversary cannot in�uence
the probability of decoding failure from̃S. This is because the adversary corrupts droplet nodes with-
out observing their storage contents, and thus, it is oblivious to the contents of the honest nodes. Now,
from [16, Theorem 17], it follows that the probability that the classical peeling decoder fails to recover
thek blocks of an arbitrary epoch from̃Sis at mostd. Now, recall that we assume that the same random-
ness is used for encoding every epoch. Thus, the recovery of an arbitrary epoch ensures the recovery of

Kadheet al. 33

all the epochs. Therefore, the classical peeling decoder will fail to recover the blockchain from̃Swith
probability at mostd. Finally, using Proposition 3 completes the proof of Lemma 1.

B Proof of Theorem 2

Decentralization follows directly from the property of LT codes that the degree and neighbors for every
droplet are chosen independent of the other droplets. Therefore, a droplet node does not need to rely on
any other node in the network while computing its droplets.

It is easy to see that the storage savings isk=s: each droplet node storess droplets whenever the
blockchain grows byk blocks. Here we use the assumption that all blocks are of the same size together
with assumption (i).

The bootstrap cost immediately follows from Lemma 1.
To prove the bandwidth overhead, it is suf�cient to show thatit possible to recover the blockchain

with high probability by contactingn = K(k=s;d)
1� s droplet nodes. Towards this end, lete =

q
2lnd

(1� s)n. Now,

assumption (ii) states that the probability that each of thecontacted droplet node is honest is(1 � s)
independent of the others. Thus, using the Chernoff bound, the probability that thesen nodes contain
smaller than(1� e)(1� s)n honest nodes is at moste� e2(1� s)n=2. Combining this with Lemma 1, it is
not hard to show that the probability of successfully decoding the blockchain from thensdroplets is at
least 1� 2d.

Finally, the computation cost follows from the properties of the LT codes as shown in [16]. In
particular, it shown in [16, Theorem 13] that the average degree of a droplet isO(ln(k=d)) . Thus, it takes
O(sln(k=d)) operations on average to computes droplets. This give the encoding cost. To compute
the decoding cost, note that it is proportional to the average number of edges in the graphG formed
at the beginning of decoding. (Recall assumption (iii) thatwe do not consider the cost of computing
Merkle roots.) The average number of edges can be easily computed by noting that the average number
of droplets suf�cient to recover the blockchain with high probability is sK(k=s;d)

1� s , and each droplet is of
degreeO(ln(k=d)) on average.

34 Coding for Blockchains

C Details of Experimental Results on the Bitcoin Blockchain

Super-block size No concatenation
Number of blocks 565876
Number of epochs 565

Original blockchain size 197063.58MB
Average storage per node 262.95MB

Average download size(s = 0) 296748.18MB
Average download size(s = 0:1) 329693.39MB

Super-block size 1MB
Number of super-blocks 220254

Number of epochs 220
Original blockchain size 197677.34MB
Average storage per node 220.61MB

Average download size(s = 0) 249012.71MB
Average download size(s = 0:1) 276640.20MB

Super-block size 5MB
Number of super-blocks 42843

Number of epochs 42
Original blockchain size 194142.21MB
Average storage per node 201.95MB

Average download size(s = 0) 227821.25MB
Average download size(s = 0:1) 253057.85MB

Super-block size 10MB
Number of super-blocks 20688

Number of epochs 20
Original blockchain size 191480.81MB
Average storage per node 195.60MB

Average download size(s = 0) 220816.31MB
Average download size(s = 0:1) 245039.65MB

Table 4: Simulations on the Bitcoin blockchain fork = 1000 ands= 1. (The number of epochs denote
the number of past epochs. The current epoch is excluded while computing the original blockchain size
and the average download size.)

Kadheet al. 35

Super-block size No concatenation
Number of blocks 565876
Number of epochs 56

Original blockchain size 192105.30MB
Average storage per node 257.93MB

Average download size(s = 0) 270278.67MB
Average download size(s = 0:1) 300407.17MB

Super-block size 1MB
Number of super-blocks 220254

Number of epochs 22
Original blockchain size 197677.34MB
Average storage per node 221.00MB

Average download size(s = 0) 231485.75MB
Average download size(s = 0:1) 257355.23MB

Super-block size 5MB
Number of super-blocks 42843

Number of epochs 4
Original blockchain size 185091.69MB
Average storage per node 193.09MB

Average download size(s = 0) 202225.28MB
Average download size(s = 0:1) 225054.46MB

Super-block size 10MB
Number of super-blocks 20688

Number of epochs 2
Original blockchain size 191480.81MB
Average storage per node 196.07MB

Average download size(s = 0) 205516.55MB
Average download size(s = 0:1) 228827.68MB

Table 5: Simulations on the Bitcoin blockchain fork = 10000 ands= 10. (The number of epochs denote
the number of past epochs. The current epoch is excluded while computing the original blockchain size
and the average download size.)

	1 Introduction
	1.1 SeF Codes In a Nutshell
	1.2 Related Work

	2 System Overview
	2.1 Blockchain Model
	2.2 Threat Model and Problem Formulation

	3 Secure Fountain Architecture
	3.1 Generic Framework
	3.2 Secure Fountain (SeF) Codes
	3.2.1 Encoder of a Luby Transform (LT) Code
	3.2.2 Adversarial Behavior Against SeF Codes
	3.2.3 Error-Resilient Peeling Decoder
	3.2.4 Degree Distribution

	4 Performance Analysis
	4.1 SeF Codes
	4.2 Random Sampling and Reed-Solomon Codes

	5 Practical Issues
	5.1 Tackling Variability in Block Size
	5.2 Obtaining the Honest Header-Chain

	6 Simulation Results
	7 Discussion
	7.1 SeF Codes with Proof-of-X and Hybrid Blockchains
	7.2 Achieving Dynamic Storage Savings
	7.3 Reducing Bandwidth Overhead by Downloading Droplets As Needed
	7.4 Dealing with Non-Oblivious Adversary

	A Proof of Lemma ??
	B Proof of Theorem ??

