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Full nodes, which synchronize the full blockchain histonglandependently validate all the blocks,
form the backbone of any blockchain network by playing alvitde in ensuring security proper-
ties. On the other hand, a user running a full node needs t@peavy price in terms of storage
costs. In particular, blockchain storage requirementsgaogving near-exponentially, easily out-
pacing Moore's law for storage devices. For instance, tiiedBi blockchain size has grown over
215GB, in spite of its low throughput. The ledger size for ghhthroughput blockchain Ripple has
already reached 8.4TB, and it is growing at an astonishitega12GB per day!

In this paper, we propose an architecture basefbontain codesa class of erasure codes, that
enables any full node tencodevalidated blocks into a small number odded blocksthereby re-
ducing its storage costs by orders of magnitude. In pagicolur propose&ecure Fountain (SeF)
architecture can achievenear optimalrade-off between the storage savings per node anddbe
strap costin terms of the number of (honest) storage-constrainedsadew node needs to contact
to recover the entire blockchain. A key technical innovaiio SeF codes is to make fountain codes
secure against adversarial nodes that can provide madigibermed coded blocks. Our idea is to
use the header-chain assae-informationto check whether a coded block is maliciously formed
while it is getting decodedrurther, thaateless propertyf fountain codes helps in achieving high
decentralization and scalability. We evaluate the perforoe of the SeF architecture by performing
experiments on the Bitcoin blockchain. Our experimentsalestrate that SeF codes tuned to achieve
1000 storage savings enable full nodes to encode the 191GB Bitdotkchain into 195MB (on
average). A new node can recover the blockchain from anrarpiset of storage-constrained nodes
as long as the set containsl100 honest nodes (on average). Note that for a 108i@rage sav-
ings, the fundamental bound on the number of honest nodemtact is 1000: we need about 10%
more in practice. More generally, SeF codes can achievetincom of trade-offs between storage
savings and bootstrap cost to new nodes (number of honeagstaonstrained nodes they have to
contact) that is near-optimal.

1 Introduction

Blockchains have played an instrumental role as the foumtttechnology for cryptocurrencies such
as Bitcoin and Ethereum. Moreover, they have the potertidisruptively impact diverse elds such as
the Internet-of-Things [1], medicingl[2], healthcare [8hd supply-chains [4] among others. This great
potential of blockchains comes from their key differernitigt properties of decentralization, security,
trustlesssness, and scalability. (For simplicity, weraddhese properties as security properties.)

A blockchain network safeguards its security propertiegddying on its nodes to independently
validate every block added to the chain, store the entirekislain history, and contribute in helping
new nodes that want to join the network. Node with these fanatities—often called “full nodes” in
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Figure 1. The total size of all block headers and transastfonthe Bitcoin blockchain, not including
database indexes (sourde: [6]).

the cryptocurrency parlance—form the backbone of any laloak network, as they play a vital role in
ensuring the security properties. More speci cally, byeépendently verifying transactions and blocks
without relying on any other node, full nodes contribute tie tealth of the network by safeguarding
its security and trustlessness, and by helping to boolﬂ;mlepv nodes joining the network, they en-
sure decentralization and scalability of the network. gwefull nodes are critical for any blockchain
system's survival, and major cryptocurrencies typicalgammend the users, which are running busi-
nesses, exchanges or block explorers, or participatingpmsensusife. miners) to run full nodes to
achieve complete security (seeg, [5]).

On the other hand, a user running a full node needs to pay & heme in terms of storage and
computation costs. In particular, blockchain storage irequents are growing near-exponentially, easily
outpacing Moore's law for storage devices. To get a glimpsthe heavy costs required for storing
the blockchain's historical data, consider the case ofdgitc In spite of its low throughput of just 4-7
transactions per second, the Bitcoin blockchain size hawmyover 21%B as of April 2019 [6] (see
Fig.[d). In fact,storage costs are going to be a pressing concern in the neareftior high throughput
blockchains like RippleFor instance, the Ripple (XRP) ledger size has alreadyhesh84T B, and it is
growing at an astonishing rate of @B per day! (Se€[7].)

In current practice, there are two solutions for savingso8} run alight or thin client, also known
as simpli ed payment veri cation (SPV) client [8, 9, 110], i) enableblock pruning[11]. Running a
light client is the most economical way of saving costs. Liglents store only block headers, and do not
validate transactions. However, light clients are knowbeovulnerable to several security and privacy
attacks (seee.g, [12, Chapter 6]). A pruned node stores only a budgeted nuofhmost recent blocks,
and deletes old blocks after they are validated. Thoughkeifight clients, pruned nodes have strong
security properties, they cannot contribute to scalinghemietwork in a secure and decentralized manner
as they are unable to assist new full nodes. Indeed, if a langser of full nodes enable pruning, then
new nodes will need to rely on a small numbeiacthival nodeg[5]) that store the entire blockchain in
order to bootstrap, greatly compromising the decentr@dimaequirement (see Figl 2 (a)).

IHenceforth, we will refer to “bootstrap” to mean “providiagnew node with the entire blockchain history to bring it up to
speed”.
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Figure 2: (a)Current architecture for a blockchain network consists i@héval nodes, pruned nodes, and
light clients, out of which only archival nodes can help irotstrapping a new node joining the network.
(b) SeF architecture envisions a blockchain network mainlysigiimg of the proposedroplet nodes
that require low storage and computation resources. Dutiogtstrap, a new node, calledlaicket
node,collects suf ciently many droplets and recovers the blbelio even when some droplet nodes are
adversarial, providingnurky (malicious) droplets. After validating the blockchain, a bucket node will
perform encoding to turn itself into a droplet node. In thisywdroplet nodes will slowly replace archival
nodes.

Compelled by the essential role that full nodes play in @nguhe security properties and the heavy
costs they incur, this paper preseBisk, a Secure Fountain architecture founded on coding thebat
enables storage-constrained machines to act as full nodteswt affecting the security properties of the
blockchain. Our main focus is on decreasing the cost of storing the bluakés historical data, which
is often much larger than that of storing gtate(e.g, the state of Bitcoin, the so-called UTXO set, is
around 3GB, as compared to its overall size of 215GB [6]). Réyechallenge in reducing the cost of
storing blockchain's historical data is that it is requitedootstrap new nodes that join the network, and
bootstrapping plays a key role in scaling up the securitydawtntralization capability of the network.

In particular, SeF must overcome the following challenges:

» Security: The protocol must ensure that the blockchain network cale sgain asecuremanner
even if a subset of storage-constrained full nodes are sahrial. Speci cally, a new node should
be able to recover the blockchain even if any (limited) stibéstorage-constrained full nodes act
adversarially and provide maliciously formed data to the nede. Moreover, the computational
cost associated with recovering the blockchain must belsmal

» Decentralization:The protocol must bdecentralizedllowing every full node to perform compu-
tations to reduce its storage space without relying on amgrdgull node.

» Bootstrap CostThe protocol must have limitelootstrap cosin terms of the number of storage-
constrained full nodes that a new node needs to contact er twdecover the blockchain.

In fact, there is a fundamental trade-off between the stosayings and the bootstrap cost as shown
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(a) SeF Codes (b) Random Sampling

Figure 3: Theoretical and achievable trades-off between the bagistost versus storage savings. We
de ne bootstrap costas the number of storage-constrained full nodes (i.e., létopodes) that a new
node needs to contact in order to recover the entire blockchéth high probability (we consider 99%
in the plots). The optimal (theoretical) trade-off is showith a dashed line which depicts that for any
scheme withg-fold storage savings, the bootstraps cost is at leptee Sed.]4 for details.) Observe
in plot (a) that our proposed SeF codes achieve a near-optirade-off. We also highlight the heavy
bootstrap cost incurred by random sampling in plot (b).

in Fig.[3 (dashed line). Speci cally, consider any schera #mables full nodes to reduce their storage
space to %g fraction of the blockchain size (for some positive real nemd). Then, a new node needs
to contact at leagiige storage-constrained full nodes to recover the blockchaims is simply because
the total amount of data downloaded by a new node must be sittlea size of the blockchain. As an
example, consider a scenario in which every full node r&stits storage space t@B. Then, a new
node in the Bitcoin network will need to contact at least 2dé&nest) nodes to obtain the Z3B Bitcoin
blockchain. Whereas, a new node in the Ripple network wilch#o contact at least 84,000 (honest)
nodes to obtain the:8T BRipple (XRP) ledger. In summary, the larger the storagensgvwper full node,
the higher the bootstrap cost for a new node.

In a centralized system, it is easy to keep the bootstraptodtst minimum, for instance, by parti-
tioning the blockchain across nodes. However, using napgroaches to achieve decentralization can
result in prohibitively high bootstrap cost. As an examptmsider the following simple protocol for full
nodes to cut down their storage space. For ekdnjocks (sayk = 10,000), a node stores a randomly
selected block, independent of other nddeEach node thus achievisold storage savings. However,
it is not hard to show that, in this case, a new node requiresiitact a lot more thak nodes. In fact,
obtaining the blockchain in this scheme is, in fact, idaitto the classical “coupon collector” problem
(see,e.q, [14, Chapter 3.6]), where there is a (multiplicative) Iotfamic hit in the number of nodes
needing to be contacted (see Higl 3b; green curve). Thetdfds of paramount importance to design
decentralized schemes that achieve storage savings wittftauring substantial bootstrap cost.

2The Ripple blockchain uses a similar scheme caliisiory shardingto save storage while contributing to preserving
historical XRP Ledger data [13]. In history sharding, thensaction history of the XRP Ledger is partitioned into segts,
called shards. A server that has enabled history shardiqgires and stores randomly selected shards, where the nurhbe
stored shards depends on the budgeted storage space.
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1.1 SeF Codes In a Nutshell

SeF addresses the aforementioned challenges by enablimpdies toencodevalidated blocks into a
small number oftoded blocksthereby requiring signi cantly less storage space. Theead SeF is
built up on a class of erasure codes caliedntain code$§15,16] (see alsd [17, 18]). Thencoderof a
fountain code is a metaphorical fountain that takes as ar mpet of blocks of xed size and produces a
potentially endless supply @fater dropg(i.e., coded blocks Anyone who wishes to recover the original
blocks holds aucketunder the fountain and collects drops until the number opslrio the bucket is
slightly larger than the number of original blocks. They ¢handecodethe original blocks from the
collected drops.

A key technical innovation in SeF codes is to make fountaitlesosecure against adversarial nodes
(hence, the nam8ecure Fountaim:odesﬁ Fountain codes admit a computationally ef cient decoding
process, called peeling decodefl6] (also known as elief propagation see,e.g, [19]). A peeling
decoder is an iterative decoder that decodes one block mitation andoeels off(removes) its con-
tribution from the remaining coded blocks. SeF codes intcederror-resiliency in the peeling process
by enabling the decoder to identify maliciously formed edemblocks. In essence, the idea is to use the
header-chain as a side-information and leverage Merkles isiored in block-headers to check whether
a coded block is maliciously formaslhile it is getting decodedndeed, the peeling decoder turns out to
be crucial in identifying maliciously formed droplets, attais, achieving high security.

Fountain codes amatelessn the sense that it is possible to produce a potentiallytless number of
drops (coded blocks) from a xed number of blodkSeF codes inherit the rateless property from foun-
tain codes, which allows each node to produce coded blodkeutirelying on other nodes. Therefore,
SeF codes ardecentralizedmakingevery nodaiseful for bootstrapping a new node.

Our proposedseF codesreate a blockchain network consisting of full nodes with ktorage re-
sources, referred to asoplet nodegsee Figl R (b)). Every droplet node independeatigodewalidated
blocks into a small number afroplets(i.e., coded blocks) using a fountain code, thereby requiring sig
ni cantly less storage space. To recover the blockchairnndubootstrap, a new node acts likdacket
and collects suf ciently many droplets by contacting anittary subset of droplet nodes. (Hence, the
terms droplets and droplet nodes, as any droplet is as usethle other!) Even if a fraction of droplet
nodes act adversarially and provide maliciously formegldits (calledmurky droplety our proposed
decoding can identify such murky droplets and delete theinally, the new (bucket) node turns it-
self into a droplet node by validating blocks and encodirglitockchain into droplets, and the process
continues.

SeF codes can achieve a near optimum trade-off betweenotfagstsavings and the bootstrap cost.
In particular, SeF codes allow the network to tune the stisyings as a parameter, depending upon
how much bootstrap cost new nodes can tolerate. When SeB eogléuned to achievefold storage
saving&,_ a new node is guaranteed to recover the blockchiiinpnobability (1 d) by contacting
k+ O(C kIn?(k=d)) honest nodes. In fact, our experiments show much betteltsemishown in Fid.13
(orange curve).

SFountain codes have originally been designed to cater tiorarerasures, and cannot be directly used to correct adiarsa
errors. See Selc. 1.2 for details.

4The termratelesscomes from the contrasting nature of fountain codes as cadpa classical erasure codes (such as
Reed-Solomon codes; s€e[[20]), in which a set of blocks ofl ize is encoded into a larger set of coded blocks of thasés al
of xed side. The ratio of the number of coded blocks to the bemof original blocks is called the rate of the code.
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1.2 Related Work

Bitcoin allows full nodes to reduce their storage costs tahéing block pruning([1i1]. However, pruned
nodes cannot help new nodes to join the network and do notilbot& in preserving the historical
blockchain data. Ethereum uses state tree pruhing [21deceestorage overhead, however, full nodes
typically store the entire blockchain. A recent proposd][®r pruning the Ethereum blockchain dis-
cusses several ways of scaling storage requirements, swaffoading the historical blockchain data to
decentralized archives such as IPFS, Swarm, or BitTorr@nt.the other hand, SeF codes enable full
nodes to reduce their storage costs in such a way that thestitaontribute in bootstrapping new nodes
and preserving the blockchain history.

Ripple uses aandom samplingcheme, referred to asstory shardingfor enabling servers to reduce
their storage in such a way that the ledger history is stilsprved by the network [13]. In particular,
the transaction history of the XRP Ledger is partitioneda iségments, called shards. A server that
has enabled history sharding acquires and stores rand@ielgted shards. As we discuss in Secl 4.2,
random sampling results in signi cant bootstrap cost, velasrSeF codes achieve near-optimal bootstrap
cost.

It is worth noting that, in a conventional blockchain netlyavery full node stores the entire history
of the blockchain. From the perspective of storage, suctiveank can be viewed as a distributed storage
system with replication. As erasure codes are known to batlgreuccessful in reducing storage costs
in distributed storage systems without reducing religb{23, [24,[25], it is natural to consider erasure
codes to reduce storage costs in blockchains. This ideansdered in[[26, 27, 28, 29].

In particular, references [26, 27] propdsev-storage nodewhich split every block into small, xed-
sized fragments, and store ordgded fragmentsThese coded fragments are obtained by linearly com-
bining the block fragments with random coef cients. The mamitation of these works is that they
only consider the the case when nodes can leave the netwodhdre unreachable; they do not consider
adversarial nodes that can provide maliciously formed ddigments.

In [28], the authors consider the problem of storing a blbelie with con dentiality and reduced
storage. They propose to rstdynamically partition thewmtk into zones. Then each block is encrypted
with a key speci c to a zone and the encrypted block is digteld across the nodes in a zone using a
distributed storage code, such as [23, 25].

In [29], the authors consider a sharded blockchain, andgs®p compute eoded shardy linearly
combining uncoded shards. In particular, Reed-Solomoes¢skee.g, [20]) are used to generate the
coded shards. With Reed-Solomon codes, it is possible aveethe original data in the presence of (a
limited number of) adversarial nodes providing malicioasad[20].

All these coding schemes — random linear codes, distrilsitgdge codes, and Reed-Solomon codes
— need to operate over a suf ciently large nite eld, and imchigh computational complexity for de-
coding. On the other hand, SeF codes are based on founta@s,cespecially LT codes, which are
substantially better in terms of computational cost (see[&2).

It is important to note that fountain codes have been deditméandle (random) erasures. While it
is possible to decode from random errors (se@, [30,[31/32]), adversarial errors can be dif cult to deal
withB In general, iterative decoding algorithm for fountain cedeéll readily propagate (and amplify)
any error in the received data into the recovered data. $hisc¢ause fountain codes do not provide any
mechanism for checking the integrity of the decoded data@ Kely observation of this paper is that the

5Techniques proposed to handle adversarial errors sucfBheeffuire shared secret between the encoder and the decoder
This is not possible in a blockchain network since nodes @peased to encode the blockchain in a decentralized manner.
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Figure 4:Structure of a block and its header.

Merkle root of a block together with the header-chain strtebf a blockchain enables one to check the
integrity of the decoded blocks.

2 System Overview

2.1 Blockchain Model

A blockchain is simply a sequence of blocks chained togetk&rg cryptographic hashes. Each block
contains a list of transactions and a header. In particwlaiconsider the following generalized structure
of a block (see Fid.]4).

e Lethash( ) denote a cryptographic hash function (such as SHA-256).
e Letroot (T) denote the Merkle (tree) rddof a list of itemsT.

» Thei-th block B; in the blockchain is denoted & = f H;; Tig, where the payload; is a list of
transactions, and the headigr= froot (T;);hash(H; 1);Mig, whereM; denotes metadata such as
timestamp and consensus related information (the exatewmiznof the metadeta are not relevant
here). We sehash(H 1) = 0 as a convention.

For simplicity, we assume that each block is of sizbits[] Further, we assume that the rkf, (< L)
bits of the block correspond to its header, whereas the rentgl. Ly, bits correspond its payload.
Mining and Consensus:Blocks are created and appended to the blockchain wieneng processwhere
the participating nodes, known asiners compete to become the next block proposer. A typical way
to compete is by solving a computationally-intensive peizkinown asproof-of-work with suf cient

dif culty. A blockchain network uses a consensus algoritttndetermine which chain should be selected
in case there is a fork. For the clarity of exposition, we ®our attention to the proof-of-work based
Nakamoto consensus [8] in the paEen the Nakamoto consensus, the chain with the most accuedulat
work (referred to as theongest chaipis selected in the event of a fork. In addition, there ardqual
rules to determine the validity of transactions and blocks.

Full Nodes: A typical node in a blockchain network, referred to as a fulde, stores a copy of the
entire blockchain, and validates new blocks as well as a&etitns. Whenever a new full node joins
the network, it rst needs to synchronize to the currstdte (e.g, account balances) by downloading

6A Merkle tree is a balanced binary tree where the value of eachleaf node is the hash of its childrén][34].

"We discuss how to handle variable block sizes in Beg. 5.1.

8We discuss how the proposed coding scheme can be applieldetotppes of consensus algorithms such as proof-of-stake
in Sec[T.
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and validating the blockchain until that tifdeA typical full node stores the entire blockchain to help
bootstrap new nodes, and for preserving the history.

2.2 Threat Model and Problem Formulation

We are interested in designing protocols that signi caméguce the storage costs at full nodes. There
are two key components associated with blockchain storages:c(a) The cost of storing the current
state that is necessary for validating the content getiilligd. For example, the state can be all currently
spendable transactions.§, Bitcoin) or all current account balancesd, Ethereum). This essentially
is the information necessary for full nodes to perform teantion validation. (b) The cost of storing the
blockchain's historical data. This is necessary to boapstrew nodes that join the network, and is often
much larger than the state. For example, the size of the iBigtate is around 3GB, as compared to its
overall size of 215GB [6].

In this work, we focus our attention to reducing storagesassociated with storing the blockchain's
historical data. Our goal is to design a protocol that ersablill node to reduce its storage space in such
a way that the node is still able to help in bootstrapping a nede. We refer to a node with reduced
storage space asdaoplet nodeand a new node joining the system dsuaket node

Threat Model: We consider a Byzantine adversary that can control an arpisubset of droplet nodes.
These malicious droplet nodes may collude with each othdrcan deviate from the protocol in any
arbitrary manner.g, by storing/sending arbitrary data to a bucket node, oirggigsilent. The remaining
nodes are honest and faithfully follow the protocol. We assuhat the adversary is obliviouisg., it
does not observe the storage contents of droplet nodesebetimosing which nodes to controDur
goal is to design protocols that allow a bucket node to retroes the blockchain as long as a small
number of droplet nodes are hone¥tle measure the security performance of a coding scheme by the
minimum number of honest droplet nodes that are suf ciemetmver the blockchain with overwhelming
probability.

Our proposed scheme assumes that a bucket node can rshdlbahonest (correct) header-chain.
Towards this end, we assume that the majority of the consdhnstiblock producing nodes or miners) is
honest. Further, we assume that the adversary is comma#yidounded, and cannot construct a longer
chain than the one constructed by the honest consensus.

For an arbitrary subset of blocl&? B, let size (B9 denote the size d°in bits. Letgbe a positive
real number greater than 1. Our goal is to design a pair ofdingaand decoding schemé&nc, Deqg),
referred to as a coding scheme, for a target storage savirgwith the following properties:

1. Encis a (randomized¢ncoding schenthat enables a full node to reduce its storage space by a fac-
tor of g. In particular, nodg computes and stor€ = Enc(B; j) such thasize (B)=size (Cj) =
g. We refer to thecoded blocks Casdroplets and any node storing droplets adraplet node
As an example, using the proposed SeF codes, a droplet nodmcade 1948GB of the Bitcoin
blockchain into 19%MB droplets.

2. Decis adecoding schemtihat allows aucket node- a new node joining the network — to recover
the blockchairB from an arbitrary set of droplet nodes that contains a sehtinumber of honest
droplet nodes. Speci cally, there exist positive integérs ( K) such that, for an arbitrary set of

9This is typically referred to afull synchronization A blockchain may offer other faster ways of synchronizaie.g, fast
synchronization in Ethereum). However, the full synchration is the most secure way to join a blockchain netwjorlk.[35
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droplet nodes j1; j2; ; jng that contains at least honest onesDec(C;;;Cj,; ;Cj,) = Bwith
overwhelming probability.

As an example, in our proposed SeF scheme targeted at achi800 storage savings, a bucket
node can recover the blockchain with high probability fr&km 1100 honest droplet nodes.

In general, our goal is to design coding schemes that ackieadl K for a given storage savingg

Performance Metrics: We measure the performance of a coding scheme using thevfiefjanetrics.

1. Storage Savingsf a node is the ratio of the total blockchain size to the sfz@droplets it stores.

2. Bootstrap Cosbf a coding scheme is measured by the minimum number of hdneglket nodes
that a bucket node needs to contact in order to ensure thaldbkchain can be recovered with
overwhelming probability. Note that the bootstrap cost @oding scheme re ects itsecurity
performance This is because the bootstrap cost can be considered asirttreumn number of
honest droplet nodes that the system must contain to geasanith high probability, that the
historical blockchain data is preserved. The smaller thaetdtiap cost of a coding scheme, the
better the security performance of the system using thesehe

3. Bandwidth Overheadbs the overhead in terms of the amount of data that a bucket nedds to
download for recovering the blockchain with high probadiili

4. Computation Cosdf a coding scheme is measured in terms of the number of attbrmperations
associated with the encodencand the decodddec

Design Objectives: As mentioned in the introduction, it is straightforward twe that there is a fun-
damental trade-off between the storage savings and thethamtost (see Sdd. 4 for details). Our main
goal is to design protocols that can achieve a near-optimdetoff between the storage savings and
the bootstrap cost. Further, we want the protocols to hawal frmandwidth overhead and computational
cost. In addition, we are interested in designing encoduhgisies that ardecentralized Speci cally, a
droplet node should be able to generate its droplets witkiwaitving what any other node in the system
is storing.

3 Secure Fountain Architecture

3.1 Generic Framework

We begin with a generic framework for a coding scheme, whitdbées a node toodeacross blocks

and save its storage space by storing only a small numbeodsd blocks Recall that we refer to the
coded blocks adroplets the nodes storing coded blocksdieplet nodesand any new node joining the
system as aucket node

(a) Encoding: We propose to compute droplets in epochs, where an epochiescdas the time required
for the blockchain to grow bl blocks €.g, k= 10000). In the current epoch, when the blockchain grows
by k blocks, the sub-chain of lengthis encodednto s droplets i.e.coded blockge.g, s= 10). Then,

the encoding process continues to the next epoch. To haludiechain reorganizations due to potential
forks, the most recertt blocks are excluded from encoding and are stored in an udcfmimat €.g,

t= 550) In addition, each node stores the header-chain for thenadigplockchain.

101n the Bitcoin blockchain, a pruned node is required to sabieast 550 blocks so that it can handle forks.
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Figure 5:Encoding happens ispochs An epoch is de ned as the time required for the blockchain to
grow by k blocks. In the current epoch, when the blockchaiwvgrby k blocks, the sub-chain of length
k is encoded into s droplets. Then, the encoding processncestto the next epoch. For example, for
k= 10000and s= 10, each droplet nodeeduces its storage cost by a factor of 41000 This means a
node can encode the Bitcoin blockchain of size 190GB irite biver 190 MB.

More speci cally, the rst epoch starts from theg + 1)-th block. When the blockchain grows up to

blocks, and stores only tredroplets for the rst epoch. The process then continuestiminext epoch.
Let us denote thedroplets stored by nodgin epochl asCl(;‘l);Cl(;’z); o ;CI(;’S). See Figlb for a schematic
representation.

(b) Decoding: Considera bucket nodgoining the system when the height of the blockchain. i.et
e= b(t t)=kc. The bucket node rst contacts an arbitrary subsenafroplet nodes (of suf cient
size), and collects (downloads) their droplets for epochsl1 e. The bucket node also downloads the
uncoded blocks (fronBe 1 onward) from one or more of thedroplet nodes.

The encoding should be performed in such a way that the budds can recover the blockchain

Then, for every epoch 1 | e, the bucket node should be abledecodethe sub-chairf B 1)+ 1,
Bi 1)k+2: -5 Bikg from thensdropletsf C|(;in)) 1 i ml p w3

3.2 Secure Fountain (SeF) Codes

We propose to perform the encoding using a Luby Transforn) ¢obe [16]. At the core of LT codes
lies the concept of fountain codd15]. A fountain code takes as an input a vectokafiput symbols,
and produces a potentially limitless stream of output sysﬂ)The main property that is required of a
fountain code is that it should be possible to recoverkthgut symbols from any set &€ (k) output
symbols with high probability. The parametelis desired to be very close o

LT codes admit a computationally ef cient decoding procedénown aspeeling decodefalso
known as @elief propagatioh [19]. However, the peeling decoder is designed to decotieeipresence

HMHere, a symbol refers to a sequence of hits, and all symbelassumed to be of the same size. Note that a block can be
considered as a symbol.
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Figure 6:An example for the LT code encoder. To generate a droplet Epach, a node rst randomly
samples a degree 2if 1;2;:::;kg using the degree distribution (see Sec. 3.2.4). Then, bsd® uni-
formly at random, d blocks from the epoch, and computes wisi#-XOR of these blocks. These d blocks
are called the neighbors of the droplet.

of erasures and it cannot handle maliciously produced ostpubols. Our key observation is that the
peeling process can be exploited to introduce resilieneynatymaliciously formed blocks by using the
header-chain as a side-information and leveraging Meddésrstored in block-headers. We refer to LT
codes with the error-resilient peeling decodeSasure Fountain (SeF) codes

3.2.1 Encoder of a Luby Transform (LT) Code

In every epoch, a droplet node computes a droplet as folloMe node rst ips its private coinsto
generate a random numbabetween 1 and#. Then, it selectsl out of k blocks uniformly at random.
Finally, it computes a bit-wise XOR of theskblocks to obtain a droplet. The node stores the droplet
along with the indices of thd blocks used to obtain the droplet. This process is repeatedrpute
each of thesdroplets.

In the terminology of LT codes, the numbeis refereed to as thaegreeof a droplet and the blocks
used to compute a droplet are referred to aséighbors This terminology stems from considering a
bipartite graph, withk original blocks as left vertices argidroplets as right vertices, in which there is
an edge joining a block to a droplet if the block is used to cotapghe droplet. Further, the probability
distribution onf 1;2;:::;kg used to sample degrees is referred to asltdggee distributiofd See Figlb
for an example.

Now, we describe the encoding process formally. For sinipliazve focus our attention to the rst
epoch in the following. The encoding procedure is the samalfeubsequent epochs. A droplet node
computes itg-th dropletCj, 1 j s, independent of the other droplets, as follows.

1. Randomly choose ttaegree dof the droplet from the degree distributiar( ).

2. Choose, uniformly at randondl, distinct blocks from thek blocks, and set the droplé€l; as the
bit-wise XOR of thesal blocks. (These&l blocks are calleseighborsof C;.)

12\\e will describe the degree distribution used in SeF cod&ei{3.2.4.
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DenoteC; = fHj; T;g, whereH; are the rstL;, bits of Cj, referred as its header, afi¢gl are the
remainingL Ly, bits of Cj, referred as its payloﬂ.

3. StoreCj along with a lengtrk binary vector; computed as follows: if thexth block By, is among
thed blocks chosen to compu@ then them-th entry ofv; is 1, else itis 0.

In addition tosdroplets, each droplet node stores the header-dhdor the original blockchain. As
we will see, vectorv; and header-chaill are required in the decoding process. In particuawyill be
used to identify which original blocks are combined to geteC;, while the header-chain will enable
the decoder to identify maliciously formed droplets.

Remark 1. There are other, potentially more ef cient, ways to convéycl original blocks are com-
bined to compute a droplet;@han storing the length-k binary vector. For instance, ip@ssible to store
a seed using which a pseudo-random generator can produchitiagy vector y. We refer the reader
to [16,[17] for more details. Since storing takes much smaller size (e.g., 1250 bytes for000Q as
compared to typical block size (e.g., 1MB), we do not comsitleer methods.

3.2.2 Adversarial Behavior Against SeF Codes

We outline how an adversarial droplet node can behave in éreagchitecture. In addition to staying
silent when contacted by a bucket node, an adversarialetroptle can act maliciously in the following
two ways:

 Store arbitrary values fdag;, v;, andH. In particular, for a speci ¢ epoch, | be ak L binary
matrix, in which thei-th row corresponds to theth block in the epoch. Then, for an honest node
j, vj andC;j are such tha€; = v;B. On the other hand, an adversarial nb@an store any values
for C; andyv, such thatC, 6 viB. We refer to such a droplet asraurky droplet

* Arbitrarily choose degred, and arbitrarily choosd blocks to compute a droplet. Store the coded
block C; and the vectow; correctly. We refer to such a droplet as@waque droplet This attack
is essentially targeted at increasing the probability afodiéng failure.

We refer to the droplets computed by honest nodedess droplets

3.2.3 Error-Resilient Peeling Decoder

Consider a bucket node that is interested in recovering lttekthainB. It contacts an arbitrary subset
of n(n k) droplet nodes, and downloads the stored data. This incldigsetsC;'s and vectorsy;'s.

since a coded droplet does not have any semantic meanirigt¢ket node cannot differentiate between
the clear, murky, and opaque droplets within the downloautess.

We assume that the bucket node has access to the honesttleaitleNote that this is can simply be
done by contacting several droplet nodes, and obtainingptigeest valid header-chain. We discuss the
details in Sed. 5]2. Then, the node leverages this head@r-tthperform error-resilient peeling decoding
for an LT code, described as follows.

The decoding proceeds in iterations. In each iteration Iai#hm decodes (at most) one block until
all the blocks are decoded, otherwise the decoder declailasef We rst describe the algorithm and

13Note that the header and payload of a coded block may not Imgveemantic meaning.
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1. Initialization: Form a bipartite grapt® with thek original blocks as left vertices and thedroplets
as right vertices. There is an edge connecting a dr@hléd an original blockBy, if By is used in
computingC;. (Recall that this can be identi ed using. See Fig[l for a toy example.)

Setém: NULLfor m= 1;2;:::;k, whereNULLdenotes null value.
Set iteration number= 1 andG' 1= G.

2. Find a dropleC; that is connected texactly oneblock B, in G' 1. (Such a droplet is called a
singleton)
If there is no singleton, the decoding halts and declardsréai

3. LetH, andT, be the header and payload@f respectively.

(a) Compute the Merkle root df, denoted asoot (T;). If H matches with the headbfm in the
header-chaitd and ifroot (T;) matches with the Merkle root storedHty,, then seB, = C;.
(Jn this case, the dropl€}; is said to beacceptedand them-th block is said to be decoded to
Bm.)

(b) Otherwise, delet€; together with all its incoming edges fro@ ! to obtainG'. (In this
case, the dropldf; is said to baejected)
Increment by 1.
Go to Step (2).

4. For all dropletCio that are connected B, in G' 1, setCo  Cpo B (Here, denotes the
bit-wise XOR.)

5. Remove all the edges connected to the bBgkrom G' 1 to obtainG'.
6. Increment by 1.
7. If all the original blocks are not yet decoded, go to Stép (2

Note that Step (3) differentiates the error-resilient peptiecoder from the classical peeling decoder for
an LT code[[16]. More speci cally, the classical peeling dder alwaysacceptsa singleton, whereas
the error-resilient peeling decoder m@yecta singleton if its header and/or Merkle root does not match
with the one stored in the header-chain.

Note that at the initialization phase, it is not possible &tedmine whether a droplet is clear or
murky if the droplet is not a singleton. However, when a debplecomes a singleton, verifying whether
its header matches with the corresponding one in the heddén-and whether the Merkle root of its
payload matches with the one stored in the correspondindeh@athe header-chain provides a mecha-
nism for checking the integrity of the droplet. This sigrs ¢he importance of singletons and underlines
how crucial the peeling process is for achieving errorliersty.

Next, we present a toy example for the decoder.

Toy Example: We describe the decoder algorithm on the example shown irfZ-i§Ve consider the
epoch size ok = 6 blocks, and suppose that the bucket node has collected@etiiodenoted as

Consider the rstiteration. The decoder begins with ndiaglroplet, called singleton, that is con-
nected to exactly one node@P = G. The only singleton it is C4, and is connected 8; (see FigB).
The decoder then compares the headeatofvith Hz from the header-chain, and then veri es whether
the Merkle root of the payload @@, matches with the Merkle root stored k. SinceC, is clear, the
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Figure 7: Toy example for the error-resilient peeling desrdor k = 6 blocks anchs= 9 droplets. The
bipartite graphG at the initialization Step (1).

decoder will accept it (see Propositioh 2 in Apperidix A), dedode®B; = Ca. Then, it XORL, to the
neighbors oB3; excludingC,4, namelyC,, Cy, Cg, andCg. (In subsequent iterations, we refer to this step
asupdatingthe other neighbors of a decoded block.) It then removesdbesefromBs to obtainG! as
shown in Fig[®.

(I e o B

Dl

Figure 8: lteration 1 with the bipartite graj@?: the decoder accep® and decodeBs.

L >t > = [ 1

Figure 9: lteration 2 with the bipartite graj@t: the decoder rejects.

In iteration 2, there are two singleto@g andCg. Suppose the decoder seleCts Since the droplet
is murky, the matching fails for either the header or the Neerkot (or both), and the decoder rejeCts
(see Proposition] 2). It delet& along with its edge fronG?! to obtainG? as shown in Fid._10.

In iteration 3, the only singleton droplet @ that is connected tBg. Since the droplet is clear, the
headers and the Merkle roots would match. The decoder asCgphd decodeBg = Cg. It updates the
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Figure 10: Iteration 3 with the bipartite gra@?: the decoder accep® and decodeBs.

other neighbors oBg, and removes the edges frddg to obtainG® as shown in Fig 1.

> ]

Figure 11: Iteration 4 with the bipartite gra®?: the decoder accep®; and decodeB;.

In iteration 4, there are two singleto@s andCs. Suppose the decoder seleCts Since:[he droplet
is clear, the headers and the Merkle roots would match. Toed#e accept€s and decodeB; = Cs. It
updates the other neighbors®f, removes the edges froBi to obtainG* as shown in Fig_12.

(o B L

Figure 12: Iteration 5 with the bipartite gra@f: the decoder rejects,.

In iteration 5, there are three singletdds C,, andCs. Suppose the decoder seleCts Since the
droplet is murky, the matching fails for either the headether Merkle root (or both), and the decoder
rejectsC,. It deletesC, to obtainG® as shown in Fig_13.

In iteration 6, out of the two singletort3 andCs, suppose the decoder seleCts Since the droplet
is clear, the headers and the Merkle roots will match. Thedecaccept€s and decode8s = Cs. It
updates the other neighborsBY, and removes the edges frddg to obtainG® as shown in Fig_14.
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Figure 14: Iteration 7 with the bipartite gra@?: the decoder accep® and decodeB,.

In iteration 7, the decoder chooses the singlé@an It accepts it, and decodd®s = Cy. It updates
the other neighbors @,. The graphG’ after removing edges frof, is shown in Fig[Ib.

L > > = > 1 ]

Figure 15: lteration 8 with the bipartite gra{: the decoder accep® and decodeBs.

Finally, iteration 8, the the decoder chooses the singl€torit accepts it, and decod& = C;. As
all the 6 blocks are decoded, the decoder stops.
Decoding Failure: As we will show in Sec[4]1, when a bucket node contacts a sdtapflet nodes
that contains slightly more th&ts honest nodes, it can successfully decode the original blaik with
high probability. However, if the decoder cannot decodeiftbensdroplets collected by a bucket node,
the node can simply contact additional droplet nodes t@cbthore droplets until it nds a singleton. In
particular, the bucket node contactadditional droplet nodes for sonme ™ n (which can be a predeter-
mined parameter). Arbitrarily label the downloaded drepksCis: 1, Cnst 2, 112, Cns pys: First, remove
the contribution of already decoded blocks from eadGjofSpeci cally, if block a block, sayn, used in
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computingC; is already decoded, then upd&gasC; C; Bm. Next, append these updated droplets
as right vertices it 1. Add an edge connecting a drop@t ns+ 1 j (n+ A)s, to blockBy, if By,

is not yet decoded and it is used in computiig If there is a singleton amongst the newly downloaded
droplets, then proceed to Step (3). Otherwise, comtaatditional droplet nodes. The decoder declares
failure when the bucket node is unable to nd additional debpodes.

Turning from a bucket node to a droplet node: After the bucket node decodes the original blockchain,
it computes its own droplets for every epoch by following #meoder in Sec. 3.2.1. At this point, the
bucket node turns itself into a droplet node which, in tuam belp a new bucket node.

3.2.4 Degree Distribution

While the encoder and the decoder are valid for any degrésbditson, the probability of successfully
decoding the input symbols (the blockchain in our case) faagiven number of output symbols (droplets
in our case) depends on the choice of the degree distributiothe following, we describe thebust
soliton degree distributioproposed by Luby [16]. The robust soliton degree distrinutis shown to
have good probability of success (without any adversandes) in [16].

Recall that adegree distribution( ) is a discrete probability mass function on integers betwieen
andk. In order to describe the robust soliton degree distrilmtige introduce the following notation.
First, de ne a functiorr () as*

% ford= 1

rd)= L _ ford= 2;::::k @)

Next, for given < d < 1 andc> 0, de ne

R= cp kin = 2)
Further, de ne a functiorg( ) as
8
25 ford=1;:::k=R 1
qd)=_ BIn B ford= k=R )
"0 ford= k=R+ 1;:::;k

As we will see in Sec. 4, the parametkgives a (conservative) bound on the probability that thedeg
fails to succeed after a certain number of droplets are dmad@dd. The parameteris a free parameter
that can be tuned to optimize the number of droplets requoedcover the blockchain. Adding( ) to
q() and normalizing gives thebust soliton distributioras:

md) = 7r(d);q(d); ford= 1;:::;k; 4)

where )
b= @ r(d)+ q(d): (5)

d=1

14t is not hard to verify thaé'ézlr (d) = 1, and thusr is a probability distribution. This distribution is refed to as the
ideal soliton distribution For further details, and to understand why it is calleditsal’, we refer the reader to [16, Sec. 3.2].
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4 Performance Analysis

We begin with formally de ning the performance metrics thatre brie y described in Sec. 2.2. Con-
sider a coding scheme with a pair of encoding and decodingnses Enc Deg.

Storage Saving=f a coding scheme is the ratio of the total blockchain sizéhéosize of the encoded

blockchain. Speci cally, the storage savings of a dropledaj is %.

Bootstrap Cost: Consider a coding scheme with a storage savings Bbr a given &< d < 1, the boot-
strap cost of a coding scheme is measured by the minimum muohbenest droplet nodds(g; d) that

a bucket node needs to contact in order to ensure that thiedblaien can be recovered with probability
atleast1 d.

Note thatk(g; d) can be considered as the minimum number of honest droplesrbdt the system
must contain to guarantee, with probability at leastd, that the historical blockchain data is preserved.
Thus, the bootstrap cost of a coding scheme re ects#uwairity performancef the system.

Bandwidth Overhead is the overhead in terms of the amount of data that a bucket nedds to down-
load for recovering the blockchain with high probabilitype®i cally, the bandwidth overhead is com-
puted as the amount of data required to be downloaded foriagssuccessful blockchain recovery
minus the size of the blockchain (at the time of bootstrapided by the size of the blockchain. For a
coding scheme with storage savingsgpfivherein as -fraction of droplet nodes are malicious and the
blockchain should be recovered with probability at leastd, we denote the bandwidth overhead by
b(gd;s).

Computation Cost of a coding scheme is measured in terms of the average nurhbethonetic op-
erations associated with the encodarc and the decodeDec In particular, the encoding cost is the
expected number of arithmetic operations suf cient for ggating droplets, divided by the number of
original blocks. Similarly, the decoding cost is the expechumber of arithmetic operations suf cient
to recover the blockchain, divided by the number of originlacks.

Decentralization: a droplet node should be able to generate its droplets witrmwing what any other
node in the system is storing.

We begin with establishing a fundamental trade-off betwibenstorage savings and bootstrap cost
for any coding scheme. For simplicity, we focus our attento coding schemes in which each droplet
node achieves the storage savingg.6t

Theorem 1. For any0 d < 1, the bootstrap cost of any coding scheme in which each droplde
achieves the storage savingsgat lower bounded bylge, i.e., K(g;d) d ge.

Proof. Suppose that there exishonest droplet nodes from which it is possible to recovebtbekchain.

In order to recover the blockchain, the total size of the doatied data must be at least the size of the
blockchain. Further, each of timedroplet nodes can contribuggze (B)=g amount, since every droplet
node is achieving the storage savinggolhereforen should be at leasige. O

Note that the above theorem implies that the network mudiagomt leastige honest droplet nodes to
guarantee that the historical blockchain data is preserved

I5When this is not the case, using the similar proof as that df i, easy to show that the lower bound on the security
performance for a coding schemegign, which is the minimum storage savings achieved by the scheme
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4.1 SeF Codes

First, we show that SeF codes guarantee that the blockchaime successfully recovered with over-
whelming probability as long as the set of droplet nodesaiet] by a bucket node contains suf ciently
many honest droplet nodes. Towards this end, we assumerti@édnodes randomly sample degrees
and neighbors for computing the droplets in the rst epode(Step (2) of the encoder), and then use
the same degree and neighbors in subsequent epbchs.

Lemma 1. Consider a bucket node IOthat contacts an arbitrary set of ldtspnodes during its bootstrap.
If this set contains at least k+ O  kin?(k=d)  honest droplet nodes, then the probability that the
error-resilient peeling decoder fails to recover the eatilockchain is at mogd.

Proof. The proof is deferred to Appendix A. O

The above lemma implies that successful blockchain regaseguaranteed with high probability as long
as the network contain§ k+ O  kin?(k=d)  honest droplet nodes. In other words, SeF codes can

ensure that the blockchain history is preserved even if arradry corrupts a large fraction of droplet
nodes.

Next, we analyze the performance of SeF codes.
Assumptions: We make the following assumptions to simplify the analysis.

() While characterizing the storage savings, we assumiethleastorage space required to store the
binary vectorv; corresponding to a droplet is negligible as compared to ithee af the droplet.
Note that storing a lengtk-binary vector requires onlyog,(k) bits; e.g, for k= 10000, it takes
only 1250 bytes. Thus, for large enough block siggy( 1MB), this assumption can be justi ed.
Further, we assume that the storage space required to B®teetder-chain and the blocks in
the current epoch is negligible as compared to the size oblinekchain. Note that, since the
blockchain is an ever-growing data structure, this assiomgian be easily justi ed.

(i) While characterizing the bandwidth overhead, we assuhat, if as-fraction of droplet nodes
are malicious, then a droplet node contacted by a bucket hads out to be malicious with
probability s, independent of the other contacted nodes. Here, we irtiplassume that a bucket
node can contact a random subset of droplet nodes. This &ibecin any protocol, malicious
nodes can induce heavy bandwidth overheadunyoundinga bucket node, say by hijacking its
connections, and by providingarbagedata. Therefore, assuming that a bucket node can contact
a random subset of droplet nodes allows us to obtain avei@gdwidth overhead.

(iif) While characterizing the computation cost assodatéth decoding, we do not include the number
of arithmetic operations required to compute a Merkle rooBiep 3(a). This is because a node
anyway needs to compute the Merkle root in order to validdi®ek.

Theorem 2. SeF codes are decentralized and achieve the following pedioce measures:
1. Storage savingsg= k=s;

ke O(" Kin?(k=d))
s )

2. Bootstrap cost: Kk=s;d) =

3. Bandwidth overheadb(k=s,2d;s)= O ('1”2—(5";3)—‘_( ;

16As we will see in the proof of Lemma 1, this assumption enstirasif a bucket node can (resp. cannot) recover the blocks
in the rst epoch, it can (resp. cannot) recover all (respy. af) the subsequent epochs.
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4. Computation cost: encoding cost = ém“;—:d) , decoding cost = O '”1(":;’)

Proof. The proof is deferred to Appendix B. O

We can immediately make the following observations aboaifterformance of SeF codes.
Remark 2. First, observe that the bootstrap cost for SeF codes is offifits optimal value oE (see

P 2(1—
Theorem 1) by—o( Kin(i=))

S
. O(In%(k=d . . :
is O(in (R )), which goes to zero as k increases. Next, observe that thewbdii overhead also goes

to zero as k increases. In fact, it is easy to see that the biitidhwverhead (resp. bandwidth cost)
is proportional to the bootstrap overhead (resp. bootstcast). This essentially follows from all the
blocks, and hence, all the droplets having the same sizeh®nther hand, in a practical blockchain,
bandwidth overhead is no longer proportional to bootstrajgidiead due to variability in block size as
we will see in our experiments (Sec. 6). Finally, the norgaliencoding cost goes to zero with k, while
the normalized decoding costs grows logarithmically in k.

. In other words, the overhead with respect to the optimalt&tomp cost

4.2 Random Sampling and Reed-Solomon Codes

Random Sampling: In this simple scheme, in each epoch of lenktla droplet node storesdistinct
blocks that are selected uniformly at randdmNote that this scheme achieves the storage savings of
k=s, since the storage grows kylocks when the blockchain grows kyblocks.

As noted in [16], random sampling can be considered as aamase of LT codes for the following
degree distribution (referred to al-at-oncedistribution).

(
1 ifd=s
r(d)= 6
() 0 otherwise ©)

Even though random sampling has trivial encoding and dagochsts, its major limitation is that it
incurs a signi cant bootstrap cost. To see this, consgderl for simplicity, and focus on the rst epoch.
Itis easy to see that recovering the blockchain in this casquivalent to the classical “coupon collector”
problem (seeg.qg, [14, Chapter 3.6]), which incurs a (multiplicative) loghmic hit in bootstrap cost?

In particular, it is necessary to contadh(k=d) honest droplet nodes on average in order to recover the
blockchain with probability at least 1 d.

Reed-Solomon (RS) CodesiVe begin with the following notation. Lé&t; denote the Galois eld of size
g. Note that, when the maximum size of a blockibits, every block can be considered as an element
of Fo.. ConsideL® L such that dividesL? Then,F,.ois an extension eld of ,.. For simplicity, we
assume that®= W(log,(N)), whereN denotes the total number of droplet nodes in the network.

Now, we describe the encoding procedure for an RS code,ifagos the rstepoch. A droplet node
sampless points fromF .0 uniformly at random, and stores the evaluations the folguyiolynomialB(x)
on these pointsB(x) = By + Box+  + Bix 1+ BexX* 1, whereBy;:::;By are the rstk blocks. Note
that it is possible to interpolatB(x) from its evaluations on ank distinct points. Further, for a large

171t is worth noting that a similar scheme is used in the Ripptekchain, and is referred to dmsstory sharding[13]. In
history sharding, the transaction history of the XRP Ledggartitioned into segments, called shards. A server tastehabled
history sharding acquires and stores randomly selectedsha

18|t is worth noting that, fois> 1, the random sampling scheme is equivalent to the coupdactmi with group drawing
problem, and the analysis is similar, seeg, [36].
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enough % an arbitrary set df=s honest droplet nodes will have evaluationdB¢%) onk distinct points
with high probability. Therefore, an RS code allows a buciae to decode the blockchain (with high
probability) from anyk=s honest droplet nodes via polynomial interpolation. HeaceR S code achieves
the optimalbootstrap cost df=s. Moreover, as long as the network contakas honest droplet nodes, it
is possible, in principle, to recover the blockchain.

However, recovering the blockchain when the network castaismall number of honest nodes will
require heavy computation cost. To see this, consider the wéden the network contains exadtlys
honest droplet nodes. Since a bucket node cannot distmgmisionest droplet node from a malicious
one just by observing its stored droplets, it needs to emitieyfollowing decoding strategy. First, it
contacts an arbitrary subsetlofs droplet nodes, and downloads their droplets. Using thesglets, it
recovers a candidate blockchain via polynomial interpmtatand checks the validity of the recovered
blockchain using the header chain. If the validity failsc@intacts another subset lofs droplet nodes
and repeats the procedure. In the worst case, the node maymeentact everyk=s)-subset of droplet
nodes, resulting in a prohibitive computation cost.

In practice, one can use algorithms designed to decode R& dndhe presence of errors,g,
Peterson-Gorenstein-Zierler algorithm [20]. The bestvkmaomputation cost for decoding a lendth-
RS code i9O(N polylogN)), see,e.qg.[37]. Note that algorithms designed to decode RS codes in the
presence of errors do not need to use the header chain asiafeigieation. However, such algorithms
can tolerate onI>fNSTk) adversarial droplets amongsdroplets. Thus, the blockchain can be recovered
only when the network contains at Iea§+ 2Ls honest droplet nodes, requiring more than half of the
droplet nodes to be honest.

5 Practical Issues

5.1 Tackling Variability in Block Size

Until now, we have assumed that all the blocks have the saaae®in the other hand, popular blockchains
such as Bitcoin and Ethereum produce blocks with varialzie (§ee [38] and [39], respectively). In this
section, we discuss how to handle variability in block size.

In a blockchain with a limit on the block size, the simplestwvia deal with variable block sizes is
to zero pad every block to the maximum size during encodirmyvéver, when the average block size is
smaller than the maximum, this results in higher storagéscas the following, we discuss two simple
and ef cient protocols to handle variable block size.

1. Adaptive zero-padding: Recall that in LT encoding a node rst chooses a degresing a degree
distribution. Then, it chooses distinct blocks from the epoch under consideration. Thdmlen
computing the bit-wise XOR, the node can simply zero-padtbeks to the largest block among
thed blocks. We refer to this procedure as adaptive zero-padding

Adaptive zero-padding performs well when the variance otblsize is small. However, it can
perform poorly when the variance in block size is large. Teroeme this issue, we propose to
concatenate several contiguous blocks in the following.

2. Block Concatenation: A natural way to reduce variance in block size isto rst caecete blocks
to form super-blockof approximately same size, and then perform encoding osttper-blocks.
More speci cally, letL denote the maximum block size, andligt L be a design parameter. For
example, for the Bitcoin blockchain with= 1MB, we usd_s= 1;5; and 1B in our simulations.
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For two binary string$; andBj, let B; jj B; denote their concatenation. For simplicity, we assume
that the block header contains the size of the block.

Block concatenation procedure:
() Initialization: Set super-block courjt= 1 and block counit= 1.
(i) Set super-block; = NULL
a. Ifsize (BjjiB) Ls,

SetB; Bjjj Bi.

Increment.

Go to Step (ii)-a.
b. Else,

Increment;.

Go to Step (ii).

We de ne an epoch as the time required for the blockchain ¢avdsy k super-blocks. The actual
number of blocks produced in an epoch will vary dependinghentlock sizes. LT encoding is
performed on super-blocks. For instance, in the rst epddhgncoding is then performed on
super-blocksB;, B,, , Bx. Note that the encoder may still need to use adaptive zerdipgd
while XORing super-blocks. However, the size of a supechlis at leasL.s L. Thus, choos-

ing Ls to be suf ciently larger tharl. ensures small variance in super-block sizes, reducing the
overhead incurred by adaptive zero padding.

In the error-resilient peeling decoder in Sec. 3.2.3, weifpdstep 3 to check all the blocks in
a singleton super-block. To be more precise, consider Ste@Pwhich the bucket node nds a
singleton super-block, say. Assuming that the header contains the block size, the budde
knows from the header chain that théh super-block should be a concatenation of bloicksl
toi+ pforsomei 0Oandp 0. Inother words, iiC is a clear droplet, then it will have the
following structure:C = ff Hiv1; Ti+ 10;f Hiv 2, Tie 20; ;T His p; Tiv pgg for somei and p.
Assuming that the headers have the same size and the bimrkssincluded in the header, it is
possible to decomposg in the following form:C; = ff Hy,;Ti,g;fH,; Ti,g;  ifHi; T, 09 Then,
in the Step 3, the singletdd is accepted only if, foreach 1 j p, I3||j matches witfH;. ; and
root 'ﬁj matches with the Merkle root iH;. j. Otherwise, the singleton is rejected. The rest of
the decoding algorithm remains the same.

5.2 Obtaining the Honest Header-Chain

While describing the error-resilient peeling decoder, wsuaned that a bucket node has an access to
the honest (correct) header-chain. It is easy for a buckeé 1o obtain the correct header chain. In
particular, a bucket node can simply query a large numberaglet nodes to obtain the longestlid*®
header-chain. Note that even though the error-resiliegliqgedecoding is performed separately for each
epoch, a node obtains a copy of the longest valid headen-chmto the current height. Assuming that
the majority of the mining power is honest and the adversasylimited computing power, the longest
valid header-chain is the correct header chain with ovelwimg probability. Thus, as long as the bucket
node can contact one honest droplet node, it is guarantesutdm the correct header-chain.

It is worth noting that light (also called SPV or thin) clisptwhich are an integral part of several
practical blockchain protocols like Bitcoin and Etherewsng designed to obtain the longest header-

19A header-chain is said to be valid if it follows the hash-chstructure, and proof-of-work puzzles are correctly stlve



Kadheet al. 23

(a) SeF Codes (b) Random Sampling

Figure 16:Average bootstrap cost versus storage savings.

chain; seege.g.[9, 10]. Thus, a bucket node can rst act as a light client befstarting to collect the
droplets.

6 Simulation Results

We begin with numerical analysis of the performance of tteppsed SeF codes. Without loss of gen-
erality, we consider the rst epoch. We consider the follogriset of parameters for LT codes (cf. (2)):
c=10:010:03,0:1;0:3g andd = f0:1;0:3;0:5; 0:79. We choose the values ofandd that result in the
best performance. For any setup that we consider, the expets are repeated 100 times to compute
the statistics.

First, we plot the average bootstrap cost versus storadgegsafor SeF codes in Fig. 16a. We also
plot the minimum and maximum bootstrap cost over 100 tridlsserve that, for a given storage savings
of g, the bootstrap cost of SeF codes is close to the optimum tb@ptsostg. For comparison, we plot
the bootstrap cost versus storage savings for random sagripliFig. 16b. To highlight that SeF codes
achieve near optimum trade-off between the bootstrap calstree storage savings, we plot the bootstrap
cost that ensures successful blockchain recovery with 99%g. 17 along with the optimal bootstrap
cost.

Next, we study the effect of epoch-lendtlon the bootstrap costin Fig. 18. In particular, we increase
k ands such that the storage savingskis= 1000, and plot the average bootstrap cost. One can see that
as the epoch length increases, the bootstrap cost for S&s getks closer to the optimal value of 1000.
This is because LT codes are more ef cient for largerOn the other hand, for a larger epoch-length
k, a droplet node needs larger buffer space to store the blufcke current epoch before they can be
encoded. We also plot the bootstrap cost versus the epogthlr random sampling for comparison in
Fig. 18b.

Next, we plot bandwidth overhead as a function of a fractiasf adversarial droplet nodes in Fig. 19.
Recall that we make the following assumption about the né¢wwpdel during the bootstrap process: if
a s -fraction of droplet nodes are malicious, then a dropletencohtacted by a bucket node turns out to
be malicious with probabilitys . We consider two parameter settings, targeted at 10816rage savings:
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Figure 17:Bootstrap cost versus storage savings to ensure succédstldchain recovery with9%

(a) SeF Codes (b) Random Sampling

Figure 18:Average bootstrap cost versus epoch-length k.

() (k= 1000,s= 1); and (ii) k= 10000,s= 10). Observer that = 10000,s= 10 results in a smaller
bootstrap overhead as comparedkto 1000,s= 1.

Simulations on the Bitcoin Blockchain

In this section, we describe experiments carried out on titeoi blockchain. We consider two pa-
rameter settings, targeted at 1006torage savings: (ik(= 1000,s= 1); and (ii) = 10000,s= 10).
We observe that the actual storage savings (as well as thbvitith overhead) is affected by variability
in block size. To tackle block size variability, we use adaptzero padding and block concatenation
as discussed in Sec. 5.1. We list the average values fogst@avings, bootstrap cost, and bandwidth
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Figure 19:Average bandwidth overhead versus fraction of adversahiaplet nodes for SeF codes.

k= 1000,s= 1

Adaptive Zero

Block Concatenatiory

Block Concatenatior

Block Concatenatior

(10% Malicious)

Padding to 1MB to 5SMB to 10MB
Average Storage | g 4, 896.06 961.33 978.93
Savings
Average Bootstrap 44,4 1128 1128 1128
Cost
Average Bandwidth
Overhead 50.58% 25.97% 17.35% 15.32%
(All Honest)
Bandwidth
Overhead 67.30% 39.95% 30.35% 27.97%

Table 1: Results on the Bitcoin blockchain for 1000 ands= 1.

overhead in Tables 1 and 2. (We include the details of thergrpatal results in Appendix C.)

We observe that simply using adaptive zero padding doesialat § good performance, since the
block size variability in the Bitcoin is signi cantly largeOn the other hand, block concatenation suc-
cessfully mitigates the block size variability. As we inase the super-block size fronMB to 10MB,
the variance in the super-block size reduces, resultingarperformance improvement.
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K= 10000.s= 10 Adaptivg Zero| Block Concatenation Block Concatenation) Block Concatenation
' Padding to 1IMB to 5MB to 10MB
Average Storage | ;4 g 894.47 958.60 976.61
Savings
Average Bootstrapl ;g 1048 1048 1048
Cost
Average Bandwidth
Overhead 40.69% 17.10% 9.26% 7.33%
(All Honest)
Average Bandwidth
Overhead 56.38% 30.19% 21.59% 19.50%
(10% Malicious)

Table 2: Results on the Bitcoin blockchain for 10000 ands= 10.

7 Discussion

7.1 SeF Codes with Proof-of-X and Hybrid Blockchains

For simplicity, we have focused our attention in this papepmof-of-work based Nakamoto consensus
that is used in Bitcoin and Ethereum. SeF codes, howeveheased with anproof-of-X protocol40],
such as proof-of-stake [41] or proof-of-space [42], withnimmial changes. Essentially, a proof-of-X
protocol uses an energy-ef cient alternative to proofwairk to build a chain based on the longest chain
rule, similar to Bitcoin and Ethereum. SeF codes can be usttdany such protocol that allows a node
to verify the validity of consensus rules for each block uidlially. For instance, a node should be able
to verify that the block creator has spent a certain amouatresource uniquely for the block.

In contrast to protocols that grow their chains based ondhgdst chain rule allowing forks, a class
of protocols that avoids forks are called hybrid blockchaiotocols, seeg.q.[43, 44, 45, 46, 47, 41, 48].
Such a protocol typically elects@mmitteeof block validators and relies on classical Byzantine fault
tolerant (BFT) consensus protocoks.d, [49]). These committees are usually re-elected at a slower
rate than the rate at which transaction blocks are addecetblttkchain. The protocol also creates a
special type of blocks, calleidentity blocks that contains the list of committee members. Speci cally,
every identity block contains the list of members of a new ootiee, signed by the previous committee.
When SeF codes are used with a hybrid protocol, a new nodestitieed to download and verify every
identity block before error-resilient peeling decoding ¢e performed.

7.2 Achieving Dynamic Storage Savings

One limitation of our current proposal is that SeF codes amned to achieve a predetermined storage
savings by xing the epoch lengtk and the number of droplets stored per epschAn easy way
to achieve dynamic storage savings is to allow droplet nodehoose anyg 1 depending on their
storage budget. In this way, a node can achieve any storageg dzetweerf k; k=2; k=3;:::;1g. In fact,
a node can choose different valuessddr different epochs. One natural way is to choose a largeg,
s= 10) for all epochs, and then decreast®r older epochs by deleting randomly selected droplets in
those epochs.

Additionally, it is possible to choose multiple paifl;s) with increasing epoch lengths, and per-
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Figure 20:Using multiple increasing epoch lengths to achieve dynataage savings. As an example,
we considern(k; = 10000s; = 10); (ko = 5000Qs; = 5). In every small epoch of length kdroplet
nodes compute droplets using a SeF code with paramékers 1000Qs; = 10). After a period of
ve small epochs (which we call a long epoch), a droplet nodtsas a new node, collects droplets
for each of the ve previous small epochs, and decodes thekbl@min for these epochs. Then, it re-
encodes the blockchain using a SeF code with paramékgrs 50000s, = 5), and deletes the droplets
corresponding to the small epochs.

form encoding for longer epochs in the background. To beigpdet us consider an example of
(kg = 1000Qs; = 10);(k, = 50000s; = 5). A droplet node encodes small epochs using SeF codes
with parametergk; = 1000Qs; = 10). After a period of ve small epochs,e., when the blockchain
grows byk, (which we call as a long epoch), it acts as a new node, coltiojslets for each of the ve
previous small epochs, and decodes the blockchain for #@sehs. Then, it re-encodes the decoded
blockchain using a SeF code with parametégs= 5000Qs, = 5), and deletes the droplets correspond-
ing to the small epochs. (See Fig. 20.) A bucket node joinmegnetwork downloads droplets for older
long epochs and recent small epochs. For instance, corsidew node joining the network when
the height of the longest chaintiss 63000. Then, a bucket node collects droplets corresportdireg
SeF code witHk, = 5000Qs, = 5) for the rst long epoch, and droplets corresponding to a Sediec
with (k; = 1000Qs; = 10) for the sixth smaller epoch. (See Fig. 20.) Note here thatjdmpding and
re-encoding for longer epochs in the background, dropldeaare trading-off computation as well as
communication for increasing their storage savings.

7.3 Reducing Bandwidth Overhead by Downloading Droplets A®leeded

It is possible to signi cantly reduce the bandwidth overtidey selectively downloading droplets. This
is especially easy in the case of random sampling. Spety,cafiter contacting a droplet node, a bucket
node can rst query just the indices of the droplets that istizring. Then, it will download only the
droplets that it has not previously downloaded. This allevigicket node to reduce its bandwidth over-
head close to the minimum (assuming that the queries ocalatively small bandwidth compared to
the block-size).
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Adaptive Zero| Block Concatenation Block Concatenatior] Block Concatenatior
Padding to 1MB to 5MB to 10MB
k= 1000,s= 1 31.92% 11.16% 3.88% 2.07%
k= 10000,s= 10 33.19% 11.45% 4.24% 2.35%

Table 3: Average bandwidth overhead for SeF codes on thaiBitalockchain when downloading
droplets “as needed” . We consider the case that all dropld¢sare honest.

Similar idea can be used to reduce the bandwidth overheaBdbrcodes. In particular, a bucket
node will rst download only the binary vectorg;'s from a large number of droplet nodes. Then, it
starts decoding by forming a bipartite gra@husing the binary vectors (see Step 1). In every iteration,
if there exists a droplet that will result in a singleton, avwhloads that particular droplet by contacting
the droplet node which provided the corresponding binaptore Here we assume that it is possible to
re-contact droplet nodes. We list the bandwidth overheadried by this algorithm in Table 3.

7.4 Dealing with Non-Oblivious Adversary

As we showed in Sec. 4.1, SeF codes are secure against aiowbladversary that does not observe
storage contents of droplet nodes before choosing whickesta control. However, a non-oblivious
adversary can corrupt a limited number of nodes to inducedieg failure for SeF codes. As an ex-
ample, consider the followingribery attack An adversary rst acts as a bucket node to learn about the
storage of a large number of honest droplet nodes. Thened tiss information to corrupt (bribe) a
subset of nodes. Such an adversary can induce decodingefaijufor example, bribing droplet nodes
that store at least one singleton droplet. In this case,aa&y to see that the adversary needs to bribe

only O( kin 5 ) droplet nodes out df+ O ~ kIn?(k=d) ones to induce decoding failure (assuming

s= 1 for simplicity). This is becausk+ O P kin?(k=d) clear droplets contai@(IO kin 5 ) single-
ton droplets on average (see (4)). We leave the problem @jrdeg computationally ef cient coding
schemes that are secure against a non-oblivious adversarjugure work.

It is worth noting that, in a typical blockchain network, neades will keep joining the network. If
new honest nodes join the network at a rate that is greatartbigarate at which adversary can observe
and control nodes, then SeF codes will be secure.
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A Proof of Lemma 1

The proof relies on three propositions. The rst two propiosis establish the behavior of the decoder
in Step (3). Note that in every iteration, the error-resilipeeling decoder either decodes a block or a
deletes a droplet in Step (3). First, we show that it nevesnmctly decodes a block. Next, we show that
it never deletes a droplet that is not murky. For simplicitg consider the rst epoch.

Proposition 1. If the error-resilient peeling decoder decodes a block iepS{3), it must be a correct
block.

Proof. Consider an iteration in which the decoder decodesrtiie block toB,,. LetC, = f H,; Tig be the
singleton droplet connected By, in G' 1 in Step (2). Thus, we havé, = C;.

Suppose, for contradiction, thBf, 6 Bn, which, in turn, givesC; 6 Bn. Now, from Step (3a), we
must haveH, = Hp,, androot (T)) = root (Ty,). Since every droplet node is assumed to be computation-
ally bounded andhash( ) is cryptographically secure, we must haye= T,,. Thus,C; = B, resulting
in a contradiction. O

Proposition 2. If the error-resilient peeling decoder rejects a dropletStep (3), then it must a murky
droplet.

Proof. Consider an iteratiom in which the decoder deletes a dropgt= fH,;Tig. Suppose that the
decoder has decoded 1 blocks until that iteration, for some 1s k. Denote the decoded blocks as
Bi,;Bj,;:::;Bj, ,. From Step (2)C must be connected to exactly one blockdh . Denote that block
asBj,. Letd be the degree d; in G at the initialization Step (1).

Case 1: &= 1. The lengthk vectory, associated witky; is such that itgs-th entry is 1 and every other
entry is 0. Suppose, for contradiction, tiéatis not murky. That isC; = vB = Bj,. However, since the
decoder delete§, eitherH; 6 Hj, orroot (Tj) & root (Tj,) (or both), which results in a contradiction.
Hence C, must be murky.

Case2:d 2. Since, atiteration C, is connected to onl;,, it must be thatl sand the othed 1
neighbors ofC| form a subset oBJl,BJZ;::"BJ .- Without loss of generality, I%,l,BJZ;::"BJd 11 Bijs

its i-th entry is 1 fori = j1;j2;:::;jd 1;js» @nd every other entry is 0. Moreover, at iteratiprwe
havec, = c” B, B, Bj, ,, whereC'” be the value of the droplet at the initialization. By
Proposition 1, each of the 1 decoded blocks are correct, and thOsz C(O) B, Bj, Bj, .-
Suppose, for contradiction, th@t is not murky. That is, at the beglnnlng of the decoding, weshav
Cl(o) =vB=Bj, Bj, Bj, . Bj.- Thus, atiteratiom, we must hav€, = Bj,. However, since the
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decoder delete§,, eitherH; 6 Hj, orroot (T;) 6 root (Tj,) (or both), which results in a contradiction.
Hence Cy must be murky. O

Recall that Step (3) differentiates the error-resilientlipgy decoder from the classical peeling de-
coder for an LT code [16]. In particular, in contrast to thasslical peeling decoder which alwaepts
a singleton, the error-resilient peeling decoder meggcta singleton if its header and/or Merkle root does
not match with the one stored in the header-chain. Now, ss@pimat we could identify the subset of
clear dropletsS among the set of collected dropledsat the beginning of the decoding. Then, we can
use the classical peeling decoder to recover the blockdhaim these clear dropletS In the follow-
ing proposition, we show that if the classical peeling decalicceeds to recover the entire blockchain
from §, then the error-resilient peeling decoder must succee® ewen though it is not possible for the
decoder to identify the clear droplets at the beginning efdacoding.

Proposition 3. Let S denote a set of droplets corresponding to an arbitranycl that are collected by
a bucket node, an& denote the subset of clear droplets from S. If the claspieeling decoder can

recover the blockchain for the epoch frcﬁnthen the error-resilient decoder must be able to recdver t
blockchain for the epoch from S.

Proof. First, note that the classical and error-resilient decodee equivalent 0B. This is because the
error-resilient peeling decoder will never delete a droflem S, since all the droplets are clear (see
Proposition 2). Therefore, it suf ces to focus only on theoeiresilient decoder in the proof. In other
words, it suf ces to show that if the error-resilient peglidecoder succeeds to decode the epoch om
it will also succeed to decode the epoch fr&m

Note that any block decoded froBimust be correct by Proposition 1. Thus, it is suf cient towho
that if the error-resilient peeling decoder does not decfailure when decoding fror§, it will not
declare failure when decoding frog

Let G and G be the bipartite graphs in Step (1) when decoding fi®and S, respectively. Now,
since decoding witlG as the starting point succeeds, at each iteratidh i Kk, there is at least
one singleton droplet i6' 1. Note that this happens irrespective of which singleton efasen in the
previous iteration, because, if there are multiple simgistavailable in an iteration, the choice of the
singleton does not affect the success of the decoder ineegogvthe blockchain.

Availability of at least one singleton droplet while decaglifromG implies that, when decoding with
G as the starting point, there must be at least one clear simgtizoplet orG! 1 at every iteratiorj. This
is because deleting a murky droplet does not change theale§eny clear singleton, and accepting a
singleton corresponding to an opaque droplet can only eethecdegree of some clear droplets, which in
turn helps in creating clear singletons. Therefore, if thiereresilient peeling decoder does not declare
failure when decoding fron$, it will not declare failure when decoding fro® This completes the
proof. O

Now, we are ready to prove Lemma 1. First, note that the buai@é has at leakt O P kIn?(k=d)

clear droplets, as the set of droplet nodes it contacts itenéd Ieast% k+ O P kin?(k=d)  honest

nodes. Let us denote the set of clear droplet§.aurther, note that the adversary cannot in uence
the probability of decoding failure frorB. This is because the adversary corrupts droplet nodes with-
out observing their storage contents, and thus, it is ahliwito the contents of the honest nodes. Now,
from [16, Theorem 17], it follows that the probability thégt classical peeling decoder fails to recover
thek blocks of an arbitrary epoch fro®is at mostd. Now, recall that we assume that the same random-
ness is used for encoding every epoch. Thus, the recoverny afléirary epoch ensures the recovery of



Kadheet al. 33

all the epochs. Therefore, the classical peeling decodéfailito recover the blockchain frors with
probability at mosd. Finally, using Proposition 3 completes the proof of Lemma 1

B Proof of Theorem 2

Decentralization follows directly from the property of Lbaes that the degree and neighbors for every
droplet are chosen independent of the other droplets. Tdrerea droplet node does not need to rely on
any other node in the network while computing its droplets.

It is easy to see that the storage savingk=s each droplet node storesdroplets whenever the
blockchain grows bk blocks. Here we use the assumption that all blocks are ofdheesize together
with assumption (i).

The bootstrap cost immediately follows from Lemma 1.

To prove the bandwidth overhead, it is suf cient to show tiigdossible to recover the blockchain

with high probability by contacting = K(lk=ss;d) droplet nodes. Towards this end, &t (12"‘50)'”. Now,

assumption (ii) states that the probability that each ofatetacted droplet node is honest(ls s)
independent of the others. Thus, using the Chernoff bouraptobability that thesa nodes contain
smaller thar(1 €)(1 s)nhonest nodes is at most(1 $)"2 Combining this with Lemma 1, it is
not hard to show that the probability of successfully desgdhe blockchain from thasdroplets is at
least1 2d.

Finally, the computation cost follows from the propertidstiee LT codes as shown in [16]. In
particular, it shown in [16, Theorem 13] that the averagaeegf a droplet i©(In(k=d)). Thus, it takes
O(sIn(k=d)) operations on average to computeroplets. This give the encoding cost. To compute
the decoding cost, note that it is proportional to the awenagmber of edges in the graghformed
at the beginning of decoding. (Recall assumption (iii) tvatdo not consider the cost of computing
Merkle roots.) The average number of edges can be easilyweahjpy noting that the average number
of droplets suf cient to recover the blockchain with highopebility is %% and each droplet is of
degreeO(In(k=d)) on average.




34 Coding for Blockchains
C Details of Experimental Results on the Bitcoin Blockchain

Super-block size No concatenation

Number of blocks
Number of epochs
Original blockchain size
Average storage per node
Average download sizEs = 0)
Average download sizEs = 0:1)

565876
565
197063.58MB
262.95MB
296748.18MB
329693.39MB

Super-block size
Number of super-blocks
Number of epochs
Original blockchain size
Average storage per node
Average download sizgs = 0)
Average download sizEs = 0:1)

1MB
220254
220
197677.34MB
220.61MB
249012.71MB
276640.20MB

Super-block size
Number of super-blocks
Number of epochs
Original blockchain size
Average storage per node
Average download sizés = 0)
Average download sizEs = 0:1)

5MB
42843
42
194142.21MB
201.95MB
227821.25MB
253057.85MB

Super-block size
Number of super-blocks
Number of epochs
Original blockchain size
Average storage per node
Average download sizés = 0)
Average download sizés = 0:1)

10MB
20688
20
191480.81MB
195.60MB
220816.31MB
245039.65MB

Table 4: Simulations on the Bitcoin blockchain for 1000 ands= 1. (The number of epochs denote
the number of past epochs. The current epoch is exclude@ whihputing the original blockchain size
and the average download size.)
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Super-block size No concatenation
Number of blocks 565876
Number of epochs 56

Original blockchain size 192105.30MB
Average storage per node 257.93MB
Average download sizEs = 0) 270278.67MB
Average download sizés = 0:1) 300407.17MB
Super-block size 1MB
Number of super-blocks 220254
Number of epochs 22
Original blockchain size 197677.34MB
Average storage per node 221.00MB
Average download sizgs = 0) 231485.75MB
Average download sizEs = 0:1) 257355.23MB
Super-block size 5MB
Number of super-blocks 42843
Number of epochs 4
Original blockchain size 185091.69MB
Average storage per node 193.09MB
Average download sizgs = 0) 202225.28MB
Average download sizEs = 0:1) 225054.46MB
Super-block size 10MB
Number of super-blocks 20688
Number of epochs 2
Original blockchain size 191480.81MB
Average storage per node 196.07MB
Average download sizés = 0) 205516.55MB
Average download sizEs = 0:1) 228827.68MB
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Table 5: Simulations on the Bitcoin blockchain for 10000 andgs= 10. (The number of epochs denote
the number of past epochs. The current epoch is exclude@ wbihputing the original blockchain size
and the average download size.)
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