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Abstract

A fundamental open problem in the area of blockchain protocols is whether the Bitcoin
protocol is the optimal solution (in terms of e�ciency, security) for building a secure transaction
ledger. A recently proposed and widely considered alternative is the GHOST protocol which,
notably, was proposed to be at the core of Ethereum as well as other recent proposals for
improved Bitcoin-like systems. The GHOST variant is touted as o�ering superior performance
compared to Bitcoin (potentially o�ering block production speed up by a factor of more than
40) without a security loss. Motivated by this, in this work, we study from both a provable
security and attack susceptibility point of view the problem of transaction processing time for
both GHOST and Bitcoin.

We introduce a new formal framework for the analysis of blockchain protocols that relies on
trees (rather than chains) and we showcase the power of the framework by providing a uni�ed
description of the GHOST and Bitcoin protocols, the former of which we extract and formally
describe. We then prove that GHOST implements a �robust transaction ledger� (i.e., possesses
liveness and persistence) and hence it is a provably secure alternative to Bitcoin. Our proof
follows a novel methodology which may be of independent interest.

Given this, we then ask whether GHOST is a better alternative. We focus on the liveness
property of both Bitcoin and GHOST, i.e., the worst-case transaction con�rmation time that
can be expected when playing against an adversary. We present a general attack methodology
against liveness and we instantiate it with two attacks for Bitcoin and GHOST. We prove (i) our
attack for Bitcoin is optimal and (ii) GHOST, when under our attack, performs, in expectation,
worse than Bitcoin under the optimal attack, for various parameter choices.

With the above results, our work provides a �rst example of comparative study between
di�erent blockchain designs from a provable security perspective.

*Research supported by ERC project CODAMODA #25915 . Part of this work was based in a technical report
published in e-print (https://eprint.iacr.org/2015/1019).
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1 Introduction

The popularity of Bitcoin [19] has lead to a surge in the interest about its core protocol that main-
tains a distributed data structure called the �blockchain.� In [10], the core of the Bitcoin protocol
was abstracted under the moniker �Bitcoin Backbone� and it was demonstrated to be a powerful
tool for solving consensus, [23, 16], in a synchronous, anonymous and Byzantine setting where (un-
reliable) broadcast is the communication operation available to the participants, (a problem �rst
considered in [2, 20]). In [10], it was shown that the core protocol provably guarantees two proper-
ties: (i) persistence: if a transaction is reported as stable by one node, then it will be also reported
as such by any other honest node of the system, (ii) liveness: all honestly generated transactions
that are broadcasted are eventually reported as stable by some honest node. This provides a formal
framework for proving the security of systems like Bitcoin, since their security can be reduced to
the persistence and liveness of the underlying transaction ledger. Furthermore, it provides a way to
argue formally about transaction con�rmation time since the liveness property is equipped with a
delay parameter that speci�es the maximum transaction delay that can be caused by an adversary.

Naturally, implementing a robust transaction ledger may be achieved in various other ways, and
it is a fundamental open question of the area whether the Bitcoin protocol itself is an �optimal�
implementation of a robust transaction ledger. Indeed, many researchers have challenged various
aspects of the Bitcoin system and they have proposed modi�cations in its core operation. Some
of the modi�ed systems maintain the protocol structure but modify the hard-coded parameters
(like the block generation rate) or the basic primitives, e.g., the way proof of work is performed
(a number of alternative proof of work implementations have been proposed using functions like
scrypt [24], lyra2 [26] and others). However, more radical modi�cations are possible that alter the
actual operation of the protocol.

One of the most notable such variants is the GHOST protocol, which was suggested by Sompolinsky
and Zohar in [27]. After the initial suggestion many cryptocurrencies using variants of the GHOST

rule were proposed and implemented. The most popular among them, Ethereum [7] has received
substantial research attention [15, 14, 4, 25, 12, 21]. Ethereum is essentially a Bitcoin-like system
where transaction processing is Turing-complete and thus it can be used to implement any public
functionality in a distributed way. Bitcoin-NG [8] is another popular Bitcoin-like system relying on
GHOST that separates blocks in two categories, namely key blocks and microblocks, re�ecting the
fact that transaction serialization and leader election may be separated.

Unfortunately, the security analysis of [27] is not as general as [10] (e.g., their attacker does not
take advantage of providing con�icting information to di�erent honest parties), while the analysis
of [10] does not carry to the setting of GHOST. This is because the GHOST rule is a natural, albeit
radical, reformulation of how each miner determines the main chain. In GHOST, miners adopt blocks
in the structure of a tree. Note that in both Bitcoin and GHOST one can consider parties collecting
all mined blocks in a tree data structure. However, while in Bitcoin the miners would choose the
most di�cult chain as the main chain, in GHOST, they will determine the chain by greedily following
the �heaviest observed subtree.� This means that for the same subtree, a Bitcoin miner and a GHOST
miner may choose a completely di�erent main chain. Furthermore, it means that the di�culty of
the main chain of honest parties does not necessarily increase monotonically (it may decrease at
times) and thus a fundamental argument (namely that blockchains monotonically increase) that
made the analysis of [10] possible, does not hold anymore.

Our Results. We propose a new analysis framework for blockchain protocols focusing on trees of
blocks as opposed to chains as in [10]. Our framework enables us to argue about random variables on
the trees of blocks that are formed by the participants. In our framework, we can express concepts
like a node being d-dominant, which means that the block corresponding to that node would be
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preferred by a margin of d compared to other sibling nodes according to a speci�ed weight measure.
This actually enables us to unify the description of Bitcoin and GHOST by showing they obey the
same rule, but simply for a di�erent weight measure.

Using our framework we then provide a �rst formal security proof of the GHOST rule for blockchain
protocols. Speci�cally, we prove that GHOST is a robust transaction ledger that satis�es liveness and
persistence. We achieve this result, by a new methodology, that reduces the properties of the robust
transaction ledger to a single lemma, that we call the fresh block lemma and is informally stated as
follows.

Fresh Block Lemma. (Informally) At any point of the execution and for any past sequence
of s consecutive rounds, there exists an honest block mined in these rounds, that is
contained in the chain of any honest player from this point on.

As we demonstrate, the fresh block lemma is a powerful tool in the presence of an adversary: we
show easily that the properties of the robust transaction ledger reduce to it in a black-box fashion.
This provides an alternative proof methodology for establishing the properties of a robust transaction
ledger compared to [10], cf. also [13], who reduced the properties of the robust transaction ledger
to three other properties called common pre�x, chain quality and chain growth, and may be of
independent interest as it could be applicable to other blockchain variants.

Having established the provable security of GHOST, we then ask whether it is a more e�cient
alternative to bitcoin. The focus for this is the liveness property, and more speci�cally the delay
parameter that speci�es the worst-case con�rmation time that can be caused by an adversary.
We present a general attack methodology for attacking transaction con�rmation time. Our attack
method has three stages: (i) the attack preparation stage, (ii) the transaction denial stage and (iii)
the blockchain retarder stage. In the attack preparation stage, our attacker prepares the attack and
waits for the transaction that she dislikes to appear in the network (e.g., the attacker may mine a
private chain or may interfere with block adoption of the honest nodes to be at an advantageous
position). When the disliked transaction appears, the attacker moves to the transaction denial
phase where she tries to prevent honest nodes from adopting it. At any moment, the attacker may
switch to the third phase where she gives up on preventing the honest nodes from adopting the
transaction and tries to slow down the blockchain growth so that the con�rmation time might be
extended. Using this template, we present two attacks for Bitcoin and GHOST respectively.

We prove that our attack for Bitcoin is optimal in the sense that the cumulative distribution of
delay in Bitcoin transaction processing time, when under our attack, dominates the delay that may
be caused by any other attack. It follows that our attack can be used as a yardstick to show whether
a protocol can improve blockchain liveness compared to Bitcoin in the following manner: a protocol
will enjoy provably better liveness than Bitcoin provided that the delay an arbitrary attacker can
cause against the new blockchain protocol is strictly bounded by the delay caused by our attacker
against Bitcoin.

Interestingly, the attack we present for GHOST breaks this barrier. The attack is more involved
than the corresponding for Bitcoin, as it exploits the way that honest nodes pick the main chain in
a way that is intrinsic to the GHOST rule. This enables a powerful blockchain retarder phase that
slows down chain growth. We prove that the GHOST protocol, under our attack, is outperformed by
Bitcoin (when subjected to the optimal attack) for a wide range of parameter settings and numbers
of blocks that one wishes to wait in order to con�rm a transaction. Given the practical relevance
of our results, we also verify our results experimentally. We observe that the gap between the two
protocols in favor of Bitcoin becomes particularly signi�cant when the number of blocks required
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for con�rmation is very high (at the level that is required by various exchanges1).
Given that the main claims for the GHOST protocol is its alleged superior capability to allow

faster transactions compared to Bitcoin, cf. [27], it is important to re�ect that this is untrue in
the provable sense within our model. We note that, in order to compare �apples to apples,� we
compare the two protocols, GHOST and Bitcoin, using the same equally accelerated block production
rate. Comparing the two at an equal rate is justi�ed from our provable security analysis for the
persistence property which does not enable us to show a security advantage of GHOST over Bitcoin
for accelerated rates; (put di�erently, Bitcoin does not appear to lose security at a higher rate than
GHOST when accelerated.2)

We remark that a number of variants of GHOST have been considered in Ethereum (see [7]) with
the one currently selected being termed �uncles-only GHOST� for 7 generations. We remark that
recently, in [11], it was suggested that the actual implementation still uses a variant of Bitcoin and
resembles GHOST only in the reward mechanism. In any case, we show that our transaction con�rma-
tion time attack against GHOST may easily extend to variants such as uncles-only GHOST (albeit with
a slightly milder e�ect). There are other ways to modify GHOST that can be considered (e.g., [17])
and these may also be cast and analyzed both from a provable perspective in our framework as well
as from an attack potential perspective using our attack template.

With the above results, our work provides a �rst example of comparative study between di�erent
blockchain designs from a provable security perspective. We believe that this a fruitful direction
which may lead to either future improvements of blockchain protocols or optimality results for the
protocols that are already known.

On the generality of the adversarial model. The adversarial model we adopt in this work
is the one proposed by Garay et al. [10]. This model is quite general in the sense that, it can
captures many attack models that were proposed in the literature. For example, it captures the
double spending attacker of [19], the block withholding attacker of [9] (which can be simulated
because the adversary can change the order that messages arrive for each honest player) and the
eclipse attacker of [6] where the communication of a portion of the honest nodes in the network is
completely controlled (eclipsed) by the adversary (this can be simulated by simply considering the
eclipsed nodes to be controlled by the adversary and having the adversary honestly execute their
program while dropping their incoming messages). For a quantitative analysis of these attacks the
reader is referred to [11].

Limitations and directions for future research. Our analysis is in the standard Byzantine
model where parties fall into two categories, those that are honest (and follow the protocol) and
those that are dishonest and may deviate in an arbitrary (and coordinated) fashion as dictated by
the adversary. It is an interesting direction for future work to consider the rational setting where
all parties wish to optimize a certain utility function. Designing suitable incentive mechanisms, for
instance see [18] for a suggestion related to the GHOST protocol, or examining the requirements for
setup assumptions, cf. [1], are related important considerations. Our analysis is in the static setting,
i.e., we do not take into account the fact that parties change dynamically and that the protocol
calibrates the di�culty of the POW instances to account for that; we note that this may open
the possibility for additional attacks, say [3], and hence it is an important point for consideration
and future work. While we discover an optimal attack against the liveness property for bitcoin,

1Kraken and Poloniex are currently the biggest Ethereum exchanges. Kraken initially had used 6000 blocks for
con�rmation time, while Poloniex 375 blocks. See Figure 7 for experimental results at this level.

1Currently the Ethereum Frontier reports an average of about 14 seconds, cf. https://etherchain.org; the 12
seconds rate was discussed by Buterin in [5]. In contrast, Bitcoin block generation rate is 10 minutes.

2We note that even though the analysis of [27] suggests that there is an advantage, their analysis is performed in
a much more restricted attack model than ours.
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the provable security bound for the delay in the liveness property of GHOST is not matched by an
attacker. Even though, we demonstrate that our GHOST attacker causes higher delays than Bitcoin
for most choices of the parameters, it does not match the worst case provable bound, something that
means that the bound might be lowered (or alternatively the attack may be improved). Finally, it
is interesting to consider our results in more general models such as the semi-synchronous model of
[22].

Organization. In section 2 we overview the model that we use for expressing the protocols and the
theorems regarding the security properties. In section 3 we introduce our new tree-based framework.
Then, in section 4 we present our security analysis of an abstraction of the GHOST protocol that
demonstrates it is a robust transaction ledger in the static setting. In section 5 we present our
liveness attacks against Bitcoin and GHOST variants, we prove the optimality of the attack against
Bitcoin and we compare the two attacks by performing simulations for various parameter choices.

2 Preliminaries and the GHOST Backbone protocol

2.1 Model

For our model we adopt the abstraction proposed in [10]. Speci�cally, in their setting, called the
q-bounded setting, synchronous communication is assumed and each party is allowed q queries
to a random oracle. The network supports an anonymous message di�usion mechanism that is
guaranteed to deliver messages of all honest parties in each round. The adversary is rushing and
adaptive. Rushing here means that in any given round he gets to see all honest players' messages
before deciding his own strategy. However, after seeing the messages he is not allowed to query
the hashing oracle again in this round. In addition, he has complete control of the order that
messages arrive to each player. The model is ��at� in terms of computational power in the sense
that all honest parties are assumed to have the same computational power while the adversary has
computational power proportional to the number of players that it controls.

The total number of parties is n and the adversary is assumed to control t of them (honest
parties don't know any of these parameters). Obtaining a new block is achieved by �nding a hash
value that is smaller than a di�culty parameter D. The success probability that a single hashing
query produces a solution is p = D

2κ where κ is the length of the hash. The total hashing power of
the honest players is α = pq(n − t), the hashing power of the adversary is β = pqt and the total
hashing power is f = α+ β. A number of de�nitions that will be used extensively are listed below.

De�nition 1. A round is called:

� successful if at least one honest player computes a solution in this round.

� uniquely successful if exactly one honest player computes a solution in this round.

De�nition 2. In an execution blocks are called:

� honest, if mined by an honest party.

� adversarial, if mined by the adversary.

De�nition 3. (chain extension) We will say that a chain C′ extends another chain C if a pre�x of
C′ is a su�x of C.
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In [10], a lower bound to the probabilities of two events, that a round is successful or that is
uniquely successful (de�ned bellow), was established and denoted by γu = α−α2. While this bound
is su�cient for the setting of small f , here we will need to use a better lower bound to the probability
of those events, denoted by γ, and with value approximately αe−α (see Appendix). Observe that
γ > γu.

2.2 The GHOST Backbone Protocol

In order to study the properties of the core Bitcoin protocol, the term Backbone Protocol was
introduced in [10]. On this level of abstraction we are only interested on properties of the blockchain,
independently from the data stored inside the blocks. The main idea of the Bitcoin Backbone is
that honest players, at every round, receive new chains from the network and pick the longest valid
one to mine. Then, if they obtain a new block (by �nding a small hash), they broadcast their chain
at the end of the round. For more details we refer to [10, Subsection 3.1].

The same level of abstraction can also be used to express the GHOST protocol. The GHOST

Backbone protocol, as presented in [27], is based on the principle that blocks that do not end up in
the main chain, should also matter in the chain selection process. In order to achieve this, players
store a tree of all mined blocks they have received, and then using the greedy heaviest observed
subtree (GHOST) rule, they pick which chain to mine.

Algorithm 1 The chain selection algorithm. The input is a block tree T . The | · | operator
corresponds to the number of nodes of a tree.

1: function GHOST(T )
2: B ← GenesisBlock
3: if childrenT (B) = ∅ then
4: return C = (GenesisBlock, ..., B)
5: else

6: B ← argmaxc∈childrenT (B)|subtreeT (c)|
7: return GHOST(subtreeT (B))
8: end if

9: end function

At every round, players update their tree by adding valid blocks sent by other players. The
same principle as Bitcoin applies; for a block to be added to the tree, it su�ces to be a valid child
of some other tree block. The adversary can add blocks anywhere he wants in the tree, as long as
they are valid. Again, as on Bitcoin, players try to extend the chains they choose by one or more
blocks. Finally, in the main function, a tree of blocks is stored and updated at every round. If a
player updates his tree, he broadcasts it to all other players.

The protocol is also parameterized by three external functions V (·), I(·), R(·) which are called:
the input validation predicate, the input contribution function, and the chain reading function,
respectively. V (·) dictates the structure of the information stored in each block, I(·) determines the
data that players put in the block they mine, R(·) speci�es how the data in the blocks should be
interpreted depending on the application.

2.3 Security Properties

In [10, De�nitions 2&3] two crucial security properties of the Bitcoin backbone protocol were con-
sidered, the common pre�x and the chain quality property. The common pre�x property ensures
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Algorithm 2 The GHOST backbone protocol, parameterized by the input contribution function I(·)
and the reading function R(·). xC is the vector of inputs of all block in chain C.

1: T ← GenesisBlock . T is a tree.
2: state← ε
3: round← 0
4: while True do

5: Tnew ← update(T , blocks found in Receive())
6: C̃ ← GHOST(Tnew)
7: 〈state, x〉 ← I(state, C̃, round, Input(),Receive())
8: Cnew ← pow(x, C̃)
9: if C̃ 6= Cnew or T 6= Tnew then

10: T ← update(Tnew, head(Cnew))
11: Broadcast(head(Cnew))
12: end if

13: round← round+ 1
14: if Input() contains Read then

15: write R(xC) to Output()
16: end if

17: end while

that two honest players have the same view of the blockchain if they prune a small number of blocks
from the tail. On the other hand the chain quality property ensures that honest players chains' do
not contain long sequences of adversarial blocks. These properties are de�ned as predicates over the

random variable formed by the concatenation of all parties views' denoted by view
H(·)
Π,A,Z(κ, q, z).

De�nition 4 (Common Pre�x Property). The common pre�x property Qcp with parameter k ∈ N
states that for any pair of honest players P1, P2 maintaining the chains C1, C2 in view

H(·)
Π,A,Z(κ, q, z),

it holds that
Cdk1 � C2 and Cdk2 � C1.

De�nition 5 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and ` ∈ N states that for any honest party P with chain C in view

H(·)
Π,A,Z(κ, q, z), it holds that for

any ` consecutive blocks of C the ratio of adversarial blocks is at most µ.

These two properties were shown to hold for the Bitcoin backbone protocol. Formally, in [10,
Theorems 9&10] the following were proved:

Theorem 6. Assume f < 1 and γu ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that

λ2−fλ−1 ≥ 0. Let S be the set of the chains of the honest parties at a given round of the backbone

protocol. Then the probability that S does not satisfy the common-pre�x property with parameter k
is at most e−Ω(δ3k).

Theorem 7. Assume f < 1 and γu ≥ (1+δ)λβ for some δ ∈ (0, 1). Suppose C belongs to an honest

party and consider any ` consecutive blocks of C. The probability that the adversary has contributed
more than (1− δ

3) 1
λ` of these blocks is less than e

−Ω(δ2`).

Robust public transaction ledger. In [10] the robust public transaction ledger primitive was
presented. It tries to capture the notion of a book where transactions are recorded, and it is used
to implement Byzantine Agreement in the honest majority setting.
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A public transaction ledger is de�ned with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an e�cient membership test. A ledger x ∈ L is a vector of
sequences of transactions tx ∈ T . Each transaction tx may be associated with one or more accounts,
denoted a1, a2, . . . Ledgers correspond to chains in the backbone protocols. An oracle Txgen is
allowed in the protocol execution that generates valid transactions (this represents transactions
that are issued by honest parties). For more details we refer to [10].

De�nition 8. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting if it satis�es the following two properties:

Persistence: Parameterized by k ∈ N (the �depth� parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from
the end of the ledger, then tx will always be reported in the same position in the ledger by any
honest player from this round on.

Liveness: Parameterized by u, k ∈ N (the �wait time� and �depth� parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k blocks from the end of the ledger.

These two properties were shown to hold for the ledger protocol ΠPL build on top of the Bitcoin
backbone protocol. Formally, in [10, Lemma 15&16] the following were proved:

Lemma 9 (Persistence). Suppose f < 1 and γu ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1
such that λ2 − fλ− 1 ≥ 0. Protocol ΠPL satis�es Persistence with probability 1− e−Ω(δ3k), where k
is the depth parameter.

Lemma 10 (Liveness). Assume f < 1 and γu ≥ (1 + δ)λβ, for some δ ∈ (0, 1), λ ∈ [1,∞) and let

k ∈ N. Further, assume oracle Txgen is unambiguous. Then protocol ΠPL satis�es Liveness with

wait time u = 2k/(1− δ)γu and depth parameter k with probability at least 1− e−Ω(δ2k).

3 A uni�ed description of Bitcoin and GHOST backbone

Next, we introduce our new analysis framework for backbone protocols that is focusing on trees of
blocks and we show how the description of the Bitcoin and GHOST can be uni�ed. In this model,
every player stores all blocks �he hears� on a tree, starting from a pre-shared block called the Genesis
(or vroot) block. This is the model where GHOST was initially described. Bitcoin, and other possible
backbone variants, can also be seen in this model and thus a uni�ed language can be built. We �rst
de�ne block trees (or just trees) that capture the knowledge of honest players (regarding the block
tree on di�erent moments at every round).

De�nition 11. We denote by TPr (resp. T ∃r ) the tree that is formed from the blocks that player P
(resp. at least one honest player) has received until the beginning of round r. Similarly, T+

r is the
tree that contains T ∃r and also includes all blocks mined by honest players at round r. For any tree
T and block b ∈ T , we denote by T (b) the subtree of T rooted on b.

Notice that, due to the fact that broadcasts of honest players always succeed, blocks in T+
r are

always in TPr+1. Thus for every honest player P it holds that:

TPr ⊆ T ∃r ⊆ T+
r ⊆ TPr+1
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Intuitively, heavier trees represent more proof of work. However, there is more than one way to
de�ne the weight of a tree. For example, in Bitcoin the heaviest tree is the longest one. On the other
hand, for GHOST a heavy tree is one with many nodes. To capture this abstraction we condition our
de�nitions on a norm w that assigns weights on trees. This norm will be responsible for deciding
which tree has more proof of work, and thus which tree is favored by the chain selection rule. We
choose to omit w from the notation since it will always be clear from the context which norm we
use.

De�nition 12. Let w be a norm de�ned on trees. For any tree T let siblings(v) denote the set
of nodes in T that share the same parent with v. Then node v is d-dominant in T (denoted by
DomT (v, d)) i�

w(T (v)) ≥ d ∧ ∀v′ ∈ siblings(v) : w(T (v)) ≥ w(T (v′)) + d

The chain selection rule in the Bitcoin protocol can be described using the notion of the d-
dominant node. Let w(T ) be the height of some tree T . Each player P , starting from the root of
his TPr tree, greedily decides on which block to add on the chain by choosing one of its 0-dominant
children and continuing recursively3 (ties are broken based on time-stamp, or based on which block
was received �rst). Interestingly, the GHOST selection rule can also be described in exactly the same
way by setting w to be the number of nodes of the tree. Thus we have a uni�ed way for describing
the chain selection rule in both protocols. Building upon this formalism we can describe the paths
that fully informed honest players may choose to mine at round r (denoted by HonestPaths(r)) in
a quite robust way, thus showcasing the power of our notation.

HonestPaths(r) = {p = vrootv1 . . . vk|p is a root-leaf path in T ∃r ∧ ∀i ∈ {1, .., k} DomT∃r
(vi, 0)}

We conclude this section by presenting two crucial properties that both the Bitcoin and GHOST

backbones satisfy. The �rst property states that by broadcasting k blocks the adversary can decrease
the dominance of some block at most by k. Intuitively, it tells us if the adversary's ability to mine
new blocks is limited, then his in�uence over the block tree is also limited. On the other hand, the
second property states that uniquely successful rounds increase the dominance only of nodes in the
path from the root to the new block.

We will use the term node and block interchangeably from now on.

Proposition 13. For the Bitcoin and GHOST backbones protocols it holds that:

� If the adversary publishes k ≤ d blocks at round r − 1 then for every block v ∈ T+
r−1 it holds

that DomT+
r−1

(v, d) implies DomT∃r
(v, d− k).

� If r is a uniquely successful round and the newly mined block extends a path in HonestPaths(r),
then for any block v in T ∃r it holds that: DomT∃r

(v, d) implies DomT+
r

(v, d+ 1) if and only if
v is in the path from vroot to the new block.

Proof. The lemma stems from the fact that adding only one block in the tree reduces or increases
the dominance of some block by at most 1. For the �rst bullet, adding k blocks one by one, implies
that the dominance of any node will reduce or increase by at most k. For the second bullet, notice
that dominance increases only for blocks that get heavier. The only blocks that get heavier in
this case are the ones in the path from the root to the newly mined block. Since these blocks
are in HonestPaths(r), they are at least 0-dominant and so their dominance will further increase.
Furthermore, the newly mined block is 1-dominant since it does not have any siblings.

3This is exactly algorithm 1 with a minor modi�cation. At line 6 the subtree T that is chosen maximizes w(T ).
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Figure 1: An example of the change in dominance after a uniquely successful round. The only nodes
which increase their dominanceare the ones in the path from the root to the newly mined block as
stated in Proposition 13.

4 Security Analysis and Applications

Next, we prove that the GHOST backbone protocol is su�cient to construct a robust transaction
ledger. From now on we assume that w(T ) is the total number of nodes of tree T .

4.1 The Fresh Block Lemma

In [10], it was shown that the Bitcoin Backbone satis�es two main properties: common pre�x and
chain quality. However, another fundamental property needed for their proof, is that the chains of
honest players grow at least at the rate of successful rounds. This does not hold for GHOST. The
reason is that, if an honest player receives a chain that is heavier than the one he currently has, he
will select it, even if it is shorter. To re�ect these facts, we develop an argument that is a lot more
involved and leads to a power lemma that we call the �fresh block lemma.�

First, we introduce a new notion, that of a path that all of its nodes are dominant up to a certain
value. Intuitively, the more dominant a path is, the harder it gets for the adversary to stop honest
players from choosing it.

De�nition 14. (pdom(r, d)) For d > 0, pdom(r, d) is the longest path p = vrootv1 . . . vk in T
+
r s.t.

p 6= vroot ∧ ∀i ∈ {1, . . . , k} : DomT+
r

(vi, d)

If no such path exists pdom(r, d) = ⊥.

Note that the dominant path pdom(r, d), if it is not ⊥, will be unique (this stems from the
requirement that d > 0).

In the next lemma, we show that unless the number of blocks the adversary broadcasts in a
round interval is at least as big as the number of uniquely successful rounds that have occurred, an
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honest block mined in one of these rounds will be deep enough in the chains of honest players. More
speci�cally, for any sequence of m (not necessarily consecutive) uniquely successful rounds starting
at some round r′, no matter the strategy of the adversary, at round r there will be at least one
honest block in pdom(r,m− k) where k is the number of adversarial blocks that have been released
during rounds [r′ − 1, r − 1].

Lemma 15. Let r1, .., rm be uniquely successful rounds from round r′ until round r. If the adversary
broadcasts k < m blocks from round r′ − 1 until round r − 1, then there exists an honest block b,
mined in one of the rounds r1, .., rm such that b is in pdom(r,m− k).

Proof. We are �rst going to prove two preliminary claims that show the e�ect of a uniquely successful
round to pdom. The �rst claim shows that if a uniquely successful round s is not compensated
accordingly by the adversary, a newly mined block will be forced into pdom(s, 1).

Claim 1. Let round s be a uniquely successful round and b be the honest block mined at round s.
If the adversary does not broadcast any block at round s− 1 then b ∈ pdom(s, 1).

Proof of Claim. First, notice that since the adversary does not broadcast any block it holds that
for any honest player P , T ∃s = TPs . Therefore, all nodes in the path from vroot to the parent of b are
at least 0-dominant in T ∃s and thus this path is in HonestPaths(s). Since s is uniquely successful,
all conditions of the second bullet of Proposition 13 are met, and thus it is implied that all nodes
up to the newly mined block in T+

s are 1-dominant. It follows that b ∈ pdom(s, 1). a

The second claim shows the e�ect of a uniquely successful round s to an existing pdom(s− 1, d)
path. Notice that if the adversary broadcasts less than d blocks the same nodes continue to be at
least 1-dominant in the following round.

Claim 2. Let round s be a uniquely successful round, b be the honest block mined at round
s and pdom(s − 1, d) 6= ⊥. If the adversary broadcasts (i) k < d blocks at round s − 1 then
pdom(s − 1, d) ⊆ pdom(s, d + 1 − k), (ii) k = d blocks at round s − 1 then either b ∈ pdom(s, 1) or
pdom(s− 1, d) ⊆ pdom(s, 1) and b is a descendant of the last node in pdom(s− 1, d).

Proof of Claim. There are two cases. In the �rst case suppose the adversary broadcasts k < d
blocks. Then, according to the �rst bullet of Proposition 13, the adversary can lower the dominance
in T ∃s of nodes in pdom(s− 1, d) by at most k. Thus pdom(s− 1, d) will be a pre�x of all the chains
in HonestPaths(s). But because s is a uniquely successful round, the dominance in T+

s of all nodes
in pdom(s− 1, d) will increase by one. Therefore pdom(s− 1, d) ⊆ pdom(s, d+ 1− k) and b will be a
descendant of the last node in pdom(s− 1, d).

In the second case suppose the adversary broadcasts k = d blocks. If he does not broadcast all
of these blocks to reduce the dominance in T ∃s of the nodes in pdom(s − 1, d), then pdom(s − 1, d)
will be a pre�x of all the chains in HonestPaths(s) and as in the previous case, pdom(s − 1, d) ⊆
pdom(s, d+ 1− k) and b will be a descendant of the last node in pdom(s− 1, d).

Otherwise the adversary will reduce the dominance in T ∃s of at least one node in pdom(s− 1, d)
to zero. If b is a descendant of the last node in pdom(s−1, d), then all nodes in pdom(s−1, d) will be
1-dominant in T+

s and pdom(s− 1, d) ⊆ pdom(s, 1) = pdom(s, d+ 1− d). If b is not a descendant of
the last node in pdom(s− 1, d), then for the player P that mined this block it holds that TPs = T ∃s ,
because he would have not mined a chain that does not contain pdom(s−1, d) at round s otherwise.
Therefore, P at round s was mining a chain that belonged to HonestPaths(s, vroot) and thus all
nodes in the chain are at least 0-dominant in T ∃s . But because s is a uniquely successful round the
dominance of all nodes in the chain that b belongs to will increase by one and thus b ∈ pdom(s, 1). a
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Let bi denote the honest block mined at round ri. Let us assume that r = rm. We are going to
prove the lemma using induction on the number of uniquely successful rounds m.

For the base case suppose m = 1. The adversary does not broadcast any block until round
r1 − 1 and from the �rst claim b1 ∈ pdom(r1, 1). Thus the base case is proved. Suppose the lemma
holds for m − 1 uniquely successful rounds and let k1 be the number of blocks that the adversary
broadcasts in the round interval [r′ − 1, rm−1 − 1]. We have two cases.

(First case) k1 = m− 1 and the adversary broadcasts no blocks in the rest of the rounds. From
the �rst claim it follows that bm ∈ pdom(rm, 1).

(Second case) k1 < m − 1 and from the induction hypothesis there exist blocks b′1, ..., b
′
m−1−k1

mined by honest players at the uniquely successful rounds r1, .., rm−1 where b
′
i ∈ pdom(rm−1, i). Let

k2 be the number of blocks that the adversary broadcasts until round rm − 2 and k3 the number
of blocks he broadcasts at round rm − 1. If k2 = m − 1 then again from the �rst claim it follows
that bm ∈ pdom(rm, 1). If k2 < m − 1 then if k3 + k2 = m − 1 then from the second claim either
bm ∈ pdom(rm, 1) or b′m−1−k1 ∈ pdom(rm, 1). If k3 + k2 < m− 1 then again from the second claim at
round rm, b

′
i ∈ pdom(rm−1, i) for i in {k2 +k3 + 1, ..,m−1−k1} and either b′k2+k3

is in pdom(rm, 1)
or bm is in pdom(rm, 1). This completes the induction proof.

We proved that if k4 < m is the number of blocks the adversary broadcasts until round rm − 1,
then there exists honest blocks b′1, .., b

′
m−k4 s.t. b′i is in pdom(rm, i). Now in the case r > rm, let

k5 < m−k4 be the number of blocks the adversary broadcasts in the remaining rounds. The lemma
follows easily from the second claim.

Remark 1. Let r1, .., rm be uniquely successful rounds up to round r and the honest block mined at
round r1 be in pdom(r1, 1). If the adversary broadcasts k < m blocks from round r1 until round r−1,
then there exists an honest block b mined in one of the rounds r1, .., rm such that b in pdom(r,m−k).
(to see why the remark holds notice that that blocks that the adversary broadcasts before round r1

a�ect only the dominant path at round r1, and not at the following rounds)

The fresh block lemma is stated next. Informally, it states that at any point in time, in any past
sequence of s consecutive rounds, at least one honest block was mined and is permanently inserted
in the chain that every honest player adopts, with overwhelming probability on s.

Lemma 16. (Fresh Block Lemma) Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1) and f < 1.
Then, for all s ∈ N and r ≥ s it holds that there exists a block mined by an honest player on and

after4 round r− s, that is contained in the chain which any honest player adopts on and after round

r with probability 1− e−Ω(δ2s).

Proof sketch. The di�culty of proving this lemma stems from the fact that in GHOST, the chains
of honest players are not always strictly increasing. That is, honest players may switch from a
longer to a shorter chain. Monotonicity allows us to prove many useful things; for example that the
adversary cannot use very old blocks in order to maintain a fork as in [10].

To overcome this di�culty, we �rst show that whenever the adversary forces honest players to
work on a di�erent branch of the block tree, he has to broadcast as many blocks as the ones that
where mined on uniquely successful rounds on this branch of the tree. Hence, it is hard for the
adversary to force honest players to change branches all the time, and moreover, after s rounds this
will be impossible due to the fact that γ ≥ (1 + δ)β. But if all honest players stay on one branch,
the blocks near the root of the branch will permanently enter their chains. We show that at least

4Throughout this work, we only consider executions that run for a polynomial number of rounds in the security
parameter κ.
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one of these blocks will be mined by an honest player. By applying this idea in an iterative manner,
the lemma follows.

Due to space limitations, for the proof of the lemma we refer to the Appendix.

4.2 A robust public transaction ledger

In [10] it is shown how to instantiate the functions V,R, I so that the resulting protocol, denoted by
ΠPL, built on top of the Bitcoin backbone, implements a robust transaction ledger (see Appendix,
De�nition 8). In this section we show how we can achieve the same goal, using exactly the same
instantiation of V,R, I, but on top of the GHOST backbone. We call the resulting protocol, ΠGHOST

PL .
Having established that every s rounds a fresh and honest block is inserted in the chain of all

players, we are in a position to prove the main properties of a robust transaction ledger. Liveness
stems from the fact that after s2 rounds, s fresh honest blocks mined on this interval will be in the
chain of any honest player. On the other hand, Persistence is implied by the fact that all honest
players share a freshly mined block. This block will stay in their chains for the subsequent rounds,
therefore the history until this block has become persistent. But this block cannot be very deep in
the main chain, because the number of blocks succeeding it are limited by the total block generation
rate.

Lemma 17 (Liveness). Assume γ ≥ (1 + δ)β, for some δ ∈ (0, 1) and f < 1. Further, assume

oracle Txgen is unambiguous. Then for all k ∈ N protocol ΠGHOST
PL satis�es Liveness with wait time

u = k(k + 1) rounds and depth parameter k with probability at least 1− e−Ω(δ2k).

Proof. We prove that assuming all honest players receive as input the transaction tx for at least u
rounds, any honest party at round r with chain C will have tx included in Cdk. Let Ei be the event
where no block that is in chain C was computed during rounds [r − (i + 1)k, r − ik] by an honest
player. For i ∈ {0, ..., k}, by Lemma 16, Ei occurs with probability at most e−Ω(δ2k). Thus, if none
of this events holds, it follows that a total of k+1 honest blocks, each mined in the respective round
interval, are in C and the �oldest� of them should contain tx. Hence, tx is included in Cdk at round
r. By the union bound the probability that E0 ∨ . . .∨Ek occurs is at most e−Ω(δ2k) and the lemma
follows.

Lemma 18 (Persistence). Suppose γ ≥ (1 + δ)β, for some real δ ∈ (0, 1) and f < 1. Then for

all k ∈ N protocol ΠGHOST
PL satis�es Persistence with probability 1 − e−Ω(δ2k), where k is the depth

parameter.

Proof. Let C be the chain that an honest player adopts at round r. It is su�cient to show that the
head of Cdk has been computed before round r − k/((1 + δ)f), because then from Lemma 16 there
exists an honest block computed at least at this round that is on the chain that players adopt from
round r and afterwards.

Suppose, for the sake of contradiction, that the head of Cdk is computed after round r− k/((1 +
δ)f). The length of C cannot be greater than the number of solutions Y obtained from the oracle
in this amount of rounds. By the Cherno� bound,

Pr[Y ≥ (1 + δ)f(k/((1 + δ)f))] ≤ e−δ2fs/3.

It follows that, with probability 1 − e−δ2fs/3, Y < k which is a contradiction and thus the lemma
follows.
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Corollary 19. The protocol ΠGHOST
PL is a robust transaction ledger.

As a �nal note, Lemma 16 is su�cient to prove Persistence and Liveness in a black-box way.
Compared to the approach of [10], that was further expanded in [13] and [22], only one property,
instead of three, of the underlying �backbone� protocol su�ces in order to get a robust public
transaction ledger in a black-box manner. On the other hand, the three properties described in
these works, common-pre�x, chain quality and chain growth, also serve as metrics of the e�ciency
of the underlying mechanism and provide more information than the fresh block lemma.

5 Liveness Attacks

In this section we introduce and analyze a novel class of attacks on the transaction con�rmation
time of blockchain protocols, and compare the Bitcoin and GHOST protocols from the point of view
of these attacks. The attacks we consider try to delay as much as possible the con�rmation time
(De�nition 8) of a target transaction and follow the template depicted in Figure 2.

First, at the attack preparation phase, the attacker tries to build a potential advantage against
honest players, until the time the target transaction tx is broadcast. For instance, the adversary
may build a private chain. Next, in the transaction denial phase, the attacker tries to delay a
new honest block containing tx from entering honest players' chains. When the attacker decides
that further delay is improbable, it may proceed to the blockchain retarder phase, where it tries to
decrease the rate at which the chain containing tx grows. Remember, that the veri�er waits until
tx is buried k blocks deep in order to accept a transaction. Therefore, by slowing down the rate at
which chains grow, con�rmation time is further delayed.

In the following sections we will provide two instantiations of this attack template in the case
of Bitcoin and GHOST. We will prove the attack against Bitcoin to be optimal and we will compare
it with the attack against GHOST. In this respect, we will prove that the GHOST attack slows down
transaction con�rmation time substantially more than the Bitcoin can be possibly slowed down for
a range of parameters. We also experimentally validate this result for a wide set of parameters.

Figure 2: The template of our attacks on con�rmation time.

5.1 On Bitcoin Liveness

First, we are going to analyze an attack based on this template against Bitcoin. We are going to
present the three phases of the attack separately. In the attack preparation phase, honest players
want to ensure that at the point the target transaction is released, they would have the maximum
advantage. Advantage here is interpreted as the number of blocks the adversary's secret chain is
ahead compared to the honest players' chains. Interestingly, the well known sel�sh mining attack [9],
where the attacker (1) tries to mine a secret chain ahead of the honest players, and when they surpass
him, he adopts their chain and (2) only broadcasts blocks from his chain when the honest parties
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have mined a block in the same height, has exactly this property. So until tx is released the attacker
executes this type of sel�sh mining attack.

Next, in the transaction denial phase, the attacker tries to extend for as long as possible the
secret chain he built in the previous phase, while not helping honest parties catch up. He does
this by only mining blocks on his secret chain that do not contain tx, and selectively broadcasting
his blocks only when the honest parties have mined a block on the same height. The di�erence
with the previous phase is that the attacker persists on extending the longest chain that does not
contain tx, instead of trying to extend the longest one among all chains. For the blockchain retarder
phase, the attacker is not going to do anything speci�c, since, as we will see, it already during the
transaction denial phase plays optimally regarding to the chain growth speed. Hence, he can stay
at the transaction denial phase until the attacker deems that it is impossible that its private chain
is going be selected by any honest player.

In a more compact form our attack goes as follows: (1) the attacker runs a type of sel�sh mining
until tx is released, (2) afterwards it tries to extend its private chain as much as possible, while not
including tx on its blocks, and broadcasting parts of its chain only when the honest parties mine
blocks on the same height.

In order to show the optimality of our attack we focus our attention to the random variable
uΠ
A, which is the time a speci�c transaction tx takes to be con�rmed in an execution where honest

players run protocol Π against some attacker A. We are going to consider executions on the q-
bounded synchronous setting (see Section 2), with the additional restriction that the environment
at a speci�c time t0 releases the target transaction tx to the network. Therefore, the sample space
of uΠ

A contains the aforementioned executions against attacker A and that is what we mean anytime
some probability involving uΠ

A appears in the text from now on. We next show that our attack is
optimal against Bitcoin.

Let ABTC be the attacker we described above and ΠPL the �ledger� version of the Bitcoin Backbone
mentioned in Section 4.2.

Theorem 20. For any attacker A′ against protocol ΠPL, it holds that for any positive k

Pr[uΠPL
ABTC

> k] ≥ Pr[uΠPL
A′ > k]

Proof. Let Xe be the sequence of uniquely successful rounds in some execution e and Ze be the the
sequence of the number of blocks mined by the adversary at each round in the same execution. Let
ABTC be the attacker described above and A′ be an arbitrary attacker. We are going to �rst prove
that for executions e1 and e2 against attackers ABTC and A

′ respectively, if (Xe1 , Ze1) = (Xe2 , Ze2)
then the con�rmation time of some transaction tx in e1, denoted by uΠPL

ABTC
(e1), is at least equal to

uΠPL
A′ (e2).
Let C′ be the chain of some honest player that con�rms transaction tx at e2, and b2 be the

block of C ′ that contains tx and was mined at round t2. Without loss of generality suppose that
b2 was mined by an honest player. Let b3 be the last honest block in C ′ before b2, that was mined
at round t3 and is at height l3. Then by round t2 all honest players will have received a chain of
length l2 = l3 +

∑t2−1
i=t3+1X

e2
i , where Xi is 1 if i is a successful round and 0 otherwise. Since b2 is

honest, the chain the honest miner extended must have had height at least equal to l2, otherwise no
honest player would have selected this chain. Also, all blocks between b3 and b2 are by de�nition
adversarial and also descendants of b3. Hence, it follows that they were mined after round t3 and
are at least

∑t2−1
i=t3+1X

e2
i . Notice also, that round t3 should be before round t0, otherwise b3 would

contain tx, which is a contradiction.
Let chain C be the chain of some honest player that con�rms transaction tx at e1, and b1 be

the block of C that contains tx. We will argue that for attacker ABTC it holds that if there exists
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some round t3 before t0 such that the blocks mined by the adversary up to round t2 − 1 are more
than the number of uniquely successful rounds in the same period, then b1 will be mined at least at
round t2. From round t3 until round t0 − 1, the adversary runs sel�sh mining and thus at round t0
he has a secret chain that exceeds the chain of any honest player by Zt3,t0−1 −Xt3,t0−1 (if positive)
blocks, where the random variables represent the blocks mined by the adversary during rounds
[t3, t0−1] and the number of successful rounds respectively. Since Zt3,t2−1 ≥ Xt3,t2−1 it follows that
Xt0,t2−1 ≥ Zt3,t0−1 −Xt3,t0−1 + Zt0,t2−1 and for the remaining rounds the adversary will be able to
maintain a secret chain that is as big as the chain of any honest player and thus e�ectively block
tx from entering the chain of any honest player.

Since the condition we argued about holds the sequences (Xe2 , Ze2), it will also hold for
(Xe1 , Ze1) an thus b1 is going to be mined at least at round t2. Moreover, ABTC never helps honest
parties lengthen their chains more than the number of successful rounds. Therefore, the chains of
honest players in execution e1, grow at least as slow as in e2, and thus uΠPL

ABTC
(e1) ≥ uΠPL

A′ (e2). It
follows that:

(Xe1 , Ze1) = (Xe2 , Ze2)⇒ uΠPL
ABTC

(e1) ≥ uΠPL
A′ (e2) (1)

But for any executions e it holds that Xe is independent of the strategy of the adversary.
Moreover, we can assume without loss of generality that all adversaries spend all their queries at
the random oracle at each round without asking the same query twice. In this case, Ze is also
independent of the strategy of the adversary. Thus for any (x, z), the probability that (Xe, Ze) =
(x, z) in some execution e is the same, independently of the adversary's strategy. Hence:

∀A′, k > 0, P r[uΠPL
A′ > k] =∑

∀x,z
Pr[uΠPL

A′ (e′) > k|(Xe′ , Ze
′
) = (x, z)]Pr[(Xe′ , Ze

′
) = (x, z)] ≤

∑
∀x,z

Pr[uΠPL
ABTC

(e) > k|(Xe, Ze) = (x, z)]Pr[(Xe, Ze) = (x, z)] =

Pr[uΠPL
ABTC

> k]⇒ Pr[uΠPL
ABTC

> k] ≥ Pr[uΠPL
A′ > k]

where the probabilities are taken over all executions against attackers A′ and ABTC respectively. The
�rst equality follows from the law of total probability. The inequality follows from Inequality 1.

5.2 On GHOST Liveness

Having described the optimal attack against Bitcoin we turn our attention to GHOST. GHOST was
designed to prevent sel�sh-mining type of attacks. Hence, the attack we described for Bitcoin is
going to be much less e�cient against GHOST. Instead, a weak point of the protocol is that the length
of honest players' chains is not strictly increasing as time goes by. The key idea of our scheme is
that the attacker tries to reduce the speed that the chains of honest players grow (also referred to as
chain growth speed) and thus is named the GHOST-retarder attack. By succeeding, it can e�ectively
decrease the transaction con�rmation time for any observer waiting for a transaction to be k blocks
deep in his chain.

The �rst two stages of our attack are similar to the attack against Bitcoin: the attacker �rst
runs a sel�sh mining attack against GHOST, trying to build maximum advantage until tx is released,
and then tries to extend his secret chain so that the time that honest parties adopt a chain that
contains tx is delayed. When honest miners adopt a chain that is longer than his private chain the
adversary proceeds to the blockchain retarder phase.
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Algorithm 3 The pseudocode of the adversary during the blockchain retarded phase of the attack
against the liveness of GHOST with parameter τ (τ must be greater or equal to 3).

1: 〈tH , tA〉 ← 〈0, 0〉 . The weight of the competing trees.
2: Receive new blocks and update the block tree
3: C ← argminC∈HonestPaths|C|
4: Mine head(C)
5: if |blocks mined| = 0 then
6: Restart attack
7: else

8: B ← newly mined block
9: 〈tH , tA〉 ← 〈tH , tA + new adversarial blocks〉
10: end if

11: while tH < τ do
12: Receive new blocks and update the block tree
13: Mine blocks on top of B
14: 〈tH , tA〉 ← 〈tH + new honest blocks, tA + new adversarial blocks〉
15: if (tA ≥ tH) and (length of honest subtree ≥ τ) then
16: Broadcast subtree(B)
17: Restart attack
18: end if

19: end while

In the blockchain retarder phase the attacker exploits the fact that in GHOST thin and long trees
may have the same or less weight than short and wide trees (see Figure 3). So in this phase, the
goal of the adversary is to mine, in secret, a subtree of height two that is heavier than the naturally
longer subtree that the honest players are mining by themselves. If the adversary's subtree gets
heavier, he can publish it and following the GHOST rule force the honest players to switch to a shorter
chain.

By doing this repeatedly, every time starting from a recently mined block, and by restarting
if honest miners get too far ahead, a concrete reduction of the chain growth speed is achieved.
This will be exploited in the proposition below. It is also presented experimentally in Figure 5. A
more detailed description of the blockchain retarder phase of our attack is given in Appendix and
Figure 4.

Let AGHOST be the attacker we described above for GHOST.

Proposition 21. Let f = 0.3, α = 0.17 and p < 10−4. Then, for any attacker A′ against Bitcoin
it holds that

E[u
ΠGHOST

PL
AGHOST

]− E[uΠPL
A′ ] = Ω(k)

Proof. From Theorem 20 it is implied that

E[u
ΠGHOST

PL
AGHOST

]− E[uΠPL
A′ ] ≥ E[u

ΠGHOST
PL

AGHOST
]− E[uΠPL

ABTC
]

We �rst focus on E[u
ΠGHOST

PL
AGHOST

]. Let the random variable NB(τ, 1 − p) denote the number of i.i.d.
Bernoulli trials, with probability of success 1 − p, until τ failures occur. The random variable will
follow the well known negative binomial distribution. It holds that:
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T1

T2

Figure 3: The fundamental idea of our attack. The adversary tries to mine in secret subtree T2,
before the honest players mine subtree T1. Observe that T2 has the same weight as T1, despite being
shorter.

race 1 race 2 race 3

Figure 4: The blockchain retarder phase of the liveness attack on GHOST. The adversary has managed
to mine �rst 4 blocks (�lled blocks) only on the last two races. Instead of having a chain of length
13 (since 12 successful rounds have occurred), honest parties have chains of length 9.

Pr[NB(τ, 1− p) ≤ k] = 1− I1−p(k + 1, τ)

where I1−p(k + 1, τ) is the regularized incomplete beta function.
Suppose that we launch the blockchain retarder the attack described previously with parameter

τ (see Algorithm 3); the adversary tries to mine a short and wide tree with τ nodes before the
honest players manage to mine a tree with the same number of nodes. Let E1 be the event where
the number of rounds that the adversary needs in order to mine τ blocks is less than s, and E2 be
the event where the number of rounds that the honest parties needs to have τ successes is more
than s. Then, if E3 is the event where the adversary wins the race and forces honest players to a
shorter chain that has grown only by two blocks after s rounds (see Figure 3), it holds that:

Pr[E3] ≥ Pr[E1 ∧ E2] ≥

Pr[NB(τ, 1− p) ≤ βs

p
∧NB(τ, 1− p) > αs

p
] =

(1− I1−p(
βs

p
+ 1, τ))I1−p(

αs

p
+ 1, τ)
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The last equality follows from the fact that the two events are independent. For f = 0.3,
α = 0.17, β = 0.13, p < 10−4, s = 37 and τ = 6 we get that Pr[E3] ≥ 0.14.

Let random variable Ri be equal to 1 if A wins race i and 0 otherwise; we start counting i from the
�rst race after tx has been broadcast. From our previous argument it holds that Pr[Ri = 1] ≥ 0.14.

We are going to calculate a lower bound on E[u
ΠGHOST

PL
AGHOST

]. Let random variable N be the number of
races that have been completed until some honest players con�rms tx. On average the adversary is
going to win E[

∑N
i=1Ri] ≥ 0.14 · E[N ] of them. On the rest of the races, it should take on average

6/α rounds for honest players to mine 6 blocks. Thus, by the linearity of expectation

E[u
ΠGHOST

PL
AGHOST

] ≥ (0.14 · 37 + (1− 0.14)6/α)E[N ]

In order for some honest party to con�rm tx, the chain must have grown by at least k blocks. Hence

E[N ](0.14 · 2 + (1− 0.14)6) ≥ k

Thus, by combining the inequalities we get that

E[u
ΠGHOST

PL
AGHOST

] ≥ k(0.14 · 37 + (1− 0.14)6/α)

0.14 · 2 + (1− 0.14)6
≥ 6.53k

We now turn our attention to the Bitcoin attack. Fix a round t0 during which a transaction tx is
released. Let the random variable F be equal to the minimum round t1 ≥ t0 that has the property
Xt′,t > Zt′,t for any t, t

′ such that t′ < t0 ≤ t1 < t, where Xt′,t is the number of uniquely successful
rounds between t′, t and similarly Zt′,t is the number of blocks mined by the adversary in the same
sequence of rounds. Notice, that as we argued in Theorem 20, an honest block containing tx will
enter the chains of all honest players permanently at round F . Essentially, the maximum advantage
that the adversary will have at round t0 due to sel�sh mining, will not be enough so that his secret
chain is maintained at the same length as any honest player's chain, and thus a fresh honest block
will enter the honest players' chains. Clearly this random variable is independent of k and should
have constant in k expected value.

In addition, honest parties need at most k/γ′ ≤ 6.42k rounds on expectation in order to mine
k blocks, where γ′ is the probability of a successful round. It holds that γ′ = 1 − (1 − p)q(n−t) ≥
1− e−α = 0.156. Thus, it follows that

E[uΠPL
ABTC

] ≤ E[F ] + k/γ′

But then
E[uGHOSTA′ ]− E[uΠPL

ABTC
] ≥ 6.53k − E[F ]− 6.42k = Ω(k)

where the last inequality follows from the fact that E[F ] is constant.

The above result, establishes that GHOST can be delayed substantially more than Bitcoin in the
presence of an attacker commanding about 43% of the hashing power as long as the target is not too
�easy.� Note that the expectation becomes worse as k grows, i.e., the stronger the level assurance
that is sought by the parties. While this already establishes the lack of e�ciency of GHOST we explore
further via experiments a wider set of parameters.

Experimental evaluation. The above analysis shows GHOST's Liveness is worse than that of Bitcoin
in an asymptotic way. Given the importance of these results also from a practical point of view
we present an experimental analysis. Our experiments were obtained via simulating a network of
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honest parties running the respective protocol against an adversary that follows the program of
liveness attacks. The simulation operates for a certain number of rounds prior to the transaction
to be attacked appears, giving the adversary the ability to perform all three phases of our attack.
We �rst examine the rate the honest players' chains grow in the retarder phase of the attacks. The
results are shown in Figure 5 where we contrast Bitcoin and GHOST miners' chain growth. Then
we proceed to test the complete attacks. Given our asymptotic analysis above, as the depth that
a transaction needs to �nd itself in a chain in order to be con�rmed, denoted by k, grows bigger,
we also expect the con�rmation time of Bitcoin to become favorable than that of GHOST. This is
indeed observed, see Figures 6 and 7. Our simulation also shows (see Figure 10) that the GHOST

attack performs worse for β approaching γ compared to the Bitcoin optimal attack. So the critical
scenario for the GHOST attack, is an adversary who even though it does not have enough power to
break security, it can still use our attack to slow down con�rmation times signi�cantly for the entire
network. Since it is not clear whether the GHOST-retarder attack is optimal, it remains an open
question whether a more e�cient attack on con�rmation time can be devised when β approaches
γ. This question though might be of lesser interest.

(a) (b)

Figure 5: The rate that the chains of honest players grow against our attacks for f = 1. Note that
as the hashing power of the adversary increases both Bitcoin and GHOST speed decrease. However,
Bitcoin is clearly favorable to GHOST (a) and in fact the ratio of Bitcoin to GHOST chain speed
increases (b).

(a) (b)

Figure 6: The expected con�rmation time plotted for di�erent values of k and parameters (a)f =
0.3, β/f = 36% and (b)f = 1, β/f = 30%. Observe that the delay di�erence when Bitcoin is not
attacked and when Bitcoin is attacked remains the same, while the di�erence with GHOST grows.
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Figure 7: The charts depicts the cumulative distribution function of the con�rmation time of the Bit-
coin and GHOST based ledgers against the two attacks described in section 5, as well as the expected
con�rmation of Bitcoin when the attacker stays silent. The parameters used in the experiments are
f = 1, and adversary hashing power β/f = 30%.

Uncle-only GHOST. A prominent GHOST variant is uncle-only GHOST. It was introduced along
with Ethereum as a variant between GHOST and Bitcoin. The way uncle-only GHOST works is that
each block can refer to a number of uncles (siblings of his ancestor blocks), and for each uncle
referred, the chain gains one more unit of weight. Obviously in the same chain, the same uncle can
be referred only once. Moreover, in order to reduce the computational overhead of counting uncles
deep in the tree, only uncles that are certain levels above (currently suggested 7 in [7]) are counted.

Interestingly, our GHOST-retarder attack still applies to this variant with a small modi�cation.
The adversary again tries to mine a short and wide tree. When it decides to release the short tree
it has to mine a block under the short tree, in order to capitalize on the blocks mined previously
(see Figure 8 for an example).
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A Probability of uniquely successful rounds

In this section we demonstrate a lower bound on the probability of uniquely successful rounds. This
bound allows us to argue about the security of GHOST even when f is larger than 1.

Lemma 22. For p < 0.1 and a ∈ (p, 2k) : e−a−kp ≤ (1− p)
a
p
−k ≤ e−a+kp

Proof. The second inequality is well studied and holds for p > 0. For the �rst inequality by solving
for a we get a ≤ k ln(1−p)

1+
ln(1−p)

p

which holds for p < 0.1 and a ∈ (p, 2k).

Let γ be a lower bound on the probability of a uniquely successful round (a round where only
one block is found). From the event where (n− t) players throw q coins each and exactly one coin
toss comes head, the probability of a uniquely successful rounds is at least:

(n− t)qp(1− p)q(n−t)−1 ≥ αe−α−kp

We set γ = ae−a−kp, for the minimum k that satis�es the relation α ∈ (p, 2k). This is a
substantially better bound that γu and is also a lower bound for the event that at a round is
successful. The relation of the two bounds is depicted in Figure 9.
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B GHOST Backbone protocol

In this section we present for completeness the remaining procedures of the GHOST backbone protocol.
The function pow is the same as the one de�ned in [10]. The function update gets a block tree and
a set of blocks and returns the updated tree containing all new blocks.

Algorithm 4 The proof of work function, parameterized by q, D and hash functions H(·), G(·).
The input is (x, C).

1: function pow(x, C)
2: if C = ε then . Determine proof of work instance
3: s← 0
4: else

5: 〈s′, x′, ctr′〉 ← head(C)
6: s← H(ctr′, G(s′, x′))
7: end if

8: ctr ← 1
9: B ← ε
10: h← G(s, x)
11: while (ctr ≤ q) do
12: if (H(ctr, h) < D) then
13: B ← 〈s, x, ctr〉
14: break

15: end if

16: ctr ← ctr + 1
17: end while

18: C ← CB . Extend chain
19: return C
20: end function

Algorithm 5 The tree update function, parameterized by q, D and hash functions H(·), G(·). The
inputs are a block tree T and an array of blocks.

1: function update(T ,B)
2: foreach 〈s, x, ctr〉 in T
3: foreach 〈s′, x′, ctr′〉 in B
4: if ((s′ = H(ctr,G(s, x))) ∧ (H(ctr′, G(x′, ctr′)) < D)) then
5: childrenT (〈s, x, ctr〉) = childrenT (〈s, x, ctr〉) ∪ 〈s′, x′, ctr′〉 . Add to the tree.
6: end if

7: return T
8: end function
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Figure 9: Comparison of the lower bounds on the probability of a uniquely successful round, γ and
γu, used respectively in this work and [10]. Notice that γ allows as to argue about security when f
is greater than 1.

(a) (b)

Figure 10: The expected con�rmation time of GHOST and Bitcoin for (a) f = 0.3 , (b) f = 1 against
the two attacks described in section 5, as well as the expected con�rmation of Bitcoin when the
attacker stays silent. Notice that when the hashing power of the adversary approaches γ, Bitcoin's
con�rmation becomes worse than that of GHOST.
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C Proofs

C.1 Proof of Lemma 16

Proof. Let random variable Zs1,s2 (resp. Z
pub
s1,s2) denote the number of blocks the adversary computes

(resp. broadcasts) from round s1 until round s2, and random variable Xs1,s2 denote the number of
rounds that are uniquely successful in the same interval.

We are �rst going to prove two preliminary claims. We show that as long as from some round
r and afterwards the adversary broadcasts less blocks than the total number of uniquely successful
rounds, the chain that any honest player adopts after round r extends pdom(r,X1,r − Z1,r). More
generally we can prove the following claim.

Claim 3. Consider any execution such that for all s2 ≥ s1 it holds that Z1,s2 < X1,s2 . Then, the
chain that any honest player adopts after round s1 extends pdom(s1, X1,s1 − Z1,s1).

Proof of Claim. Since X1,s1 > Z1,s1 from Lemma 15 if follows that p = pdom(s1, X1,s1 − Z1,s1−1) 6=
⊥. As long as the number of blocks that the adversary broadcasts at round s2 are less than the
dominance of the nodes in p in T+

s2−1, all honest players at round s2 will adopt chains containing
p. Thus uniquely successful rounds will increase the dominance of these nodes. But since from the
assumptions made, Z1,s2 < X1,s2 , in all rounds after round s1, the nodes in p are at least 1-dominant
in every TPs2 where P is an honest player; the claim follows. a

Next we will show that if successive u.s. rounds occur such that the blocks mined are on di�erent
branches, then the adversary must broadcast an adequate number of blocks, as speci�ed below.

Claim 4. Consider any execution where s1 < s2 < ... < sm are u.s. rounds and sk is the �rst u.s.
round such that the honest block mined in this round is not a descendant of the honest block mined
in round sk−1, for k ∈ {2, ..,m}. Then either Zpubs1−1,sm−1 > Xs1,sm−1 or Zpubs1−1,sm−1 = Xs1,sm−1 and
the honest block mined at round sm will be in pdom(sm, 1).

Proof of Claim. Let b1, .., bm denote the honest blocks mined at rounds s1, .., sm respectively. We
are going to prove the claim for m = 2. Suppose, for the sake of contradiction, that Zpubs1−1,s2−1 <
Xs1,s2−1. By the de�nition of s2, the honest blocks mined on all u.s. rounds until round s2 − 1 are
descendants of b1. From Lemma 15 at least one honest block b computed in one of the u.s. rounds
in [s1, s2−1] will be in pdom(s2−1, Xs1,s2−1−Zpubs1−1,s2−2). Since from our hypothesis the adversary

will broadcast less than Zpubs2−1,s2−1 < Xs1,s2−1−Zpubs1−1,s2−2 blocks at round s2−1, it is impossible for

b2 not to be a descendant of b and thus of b1 which is a contradiction. Hence, Zpubs1−1,s2−1 ≥ Xs1,s2−1.

If Zpubs1−1,s2−1 > Xs1,s2−1 the base case follows. Otherwise, Zpubs1−1,s2−1 = Xs1,s2−1 and we have two

cases. In the �rst case, Xs1,s2−1 = Zpubs1−1,s2−2 and at round round s2 − 1 the adversary does not
broadcast any block. From Claim 1 of Lemma 15, b2 will be in pdom(s2, 1). In the second case,

it holds that the adversary broadcasts exactly Xs1,s2−1 − Zpubs1−1,s2−2 blocks at round s2 − 1. From
Claim 2 of Lemma 15, since b2 cannot be a descendant of the last node of pdom(s2 − 1, 1), b2 will
be in pdom(s2, 1). Hence, the base case follows.

Suppose the lemma holds until round sm. By the inductive hypothesis we have two cases. In the
�rst case Zpubs1−1,sm−1 > Xs1,sm−1 which implies Zpubs1−1,sm−1 ≥ Xs1,sm . If no u.s. round happens during
rounds sm+1, . . . , sm+1−1 then from Claim 1 in the proof of Lemma 15 the claim follows. Otherwise,
a u.s. round s′ happens during these rounds, where the honest block mined is a descendant of bm.
Then we can make the same argument as for the base case starting from round s′ and get that
either Zpubs′−1,sm+1−1 > Xs′,sm+1−1 or Z

pub
s′−1,sm+1−1 = Xs′,sm+1−1 and the honest block mined at round
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sm+1 will be in pdom(sm+1, 1). Since Zpubs′−1,sm+1−1 < Zpubsm−1,sm+1−1 and Xs′,sm+1−1 = Xsm+1,sm+1−1,
by the inequality of the inductive hypothesis the claim follows.

In the second case Zpubs1−1,sm−1 = Xs1,sm−1 and the honest block bm mined at round sm will
be in pdom(sm, 1). From Remark 1 of the proof of claim Lemma 15, for an application of this
Lemma from rounds sm until sm+1 − 1 we can count the adversarial blocks starting from round
sm. Thus from the same argument as for the base case starting from round sm we get that either
Zpubsm,sm+1−1 > Xsm,sm+1−1 or Zpubsm,sm+1−1 = Xsm,sm+1−1 and the honest block mined at round sm
will be in pdom(sm, 1). By the equality of the inductive hypothesis the claim follows. a

Next, we observe that Lemma 15 as well as Claim 3 and 4 can be applied on a subtree of the
block tree, if all honest blocks mined after the round the root of the subtree was mined are on this
subtree.

Observation 1. Let b be an honest block computed at round s1 that is in the chains adopted by all
honest players after round s2. Also, suppose that all blocks mined at u.s. rounds after round s1 are
descendants of b. Then the following hold:

1. Regarding applications of Lemma 15 and Claim 4 on the subtree of the block tree rooted on
b after round s1, we can ignore all blocks that the adversary has mined up to round s1.

2. Regarding applications of Claim 3 after round s2, we can ignore all blocks that the adversary
has mined up to round s1.

To see why the observation holds consider the following. Since the adversary receives block b
for the �rst time at round s1 + 1, all blocks that the adversary mines before round s1 + 1 cannot
be descendants of b. Regarding the �rst point, blocks that are not descendants of b do not a�ect
the validity of Lemma 15 and Claim 4 on the subtree of the block tree rooted on b; this is because
blocks that are not descendants of b, do not a�ect the dominance of the nodes of the subtree rooted
at b. Regarding the second point, consider the dominant path at round s3 > s2 in the subtree that
is rooted on b. Then, this path can be extended up to the root node, since, by our assumption, b is
in the chains adopted by all honest players after round s2.

We are now ready prove the lemma. First, we are going to de�ne a set of bad events which we
will show that hold with probability exponentially small in s. Assuming these events don't occur
we will then show that our lemma is implied, and thus the lemma will follow with overwhelming
probability.

Let BAD(s1, s2) be the event that Xs1,s2 ≤ Zs1,s2 . In [10, Lemma 5], by an application of the
Cherno� bounds it was proved that assuming that γ ≥ (1 + δ)β for some δ ∈ (0, 1), then with

probability at least (1− e−
β
75
δ2s′)(1− e−

γ
32
δ2s′) ≥ 1− e−(min( β

75
, γ
32

)δ2s′−ln(2)) for any r′ > 0, s′ ≥ s:

Xr′,r′+s′−1 > (1 +
δ

2
)Zr′,r′+s′−1 (2)

Thus, there exists an appropriate constant ε = δ2 min( β75 ,
γ
32), independent of r, such that it

holds that for any r′ > 0, s′ ≥ s, BAD(r′, r′ + s′ − 1) occurs with probability at most e−εδ
2s′+ln 2.

From an application of the union bound, we get that for the function g(s) = εδ2s−ln 2+ln(1−e−εδ2),
the probability that

∨
r′≥sBAD(s1 + 1, s1 + r′) happens is:

Pr[
∨
r′≥s

BAD(s1 + 1, s1 + r′)] ≤
∑
r′≥s

e−εδ
2r′+ln 2

≤ eln 2
∑
r′≥s

e−εδ
2r′ ≤ eln 2 e−εδ

2s

1− e−εδ2
≤ e−g(s)
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Until now we have assumed that the execution we are studying is collision-free; no two queries
in the oracle return the same value for di�erent inputs. Let COLL denote the event where a
collision occurs in our execution. The probability of COLL in a polynomial number of rounds, is
exponentially small on κ.

Pr[COLL] ≤ (fκc)2/2κ+1 = e−Ω(κ) ≤ e−Ω(s)

Let BAD(s1) denote the event where
∨
r′≥sBAD(s1 + 1, s1 + r′) or COLL happens. From the

union bound the probability that BAD(s1) happens, for any s1 is negligible.

Pr[BAD(s1)] ≤ e−g(s) + e−Ω(s) ≤ e−Ω(s)

We are going to show next that, conditioning on the negation of this event the statement of the
lemma follows.

We will use the convention that block bi is mined at round ri. Let b1 be the most recent honest
block that is in the chains that all honest players have adopted on and after round r, such that the
blocks mined at all u.s. rounds after round r1 are descendants of b1. This block is well de�ned,
since in the worst case it is the genesis block. If r1 is greater or equal to r − s, then the lemma
follows for block b1 with probability 1.

Suppose round r1 is before round r − s and that BAD(r1) does not happen. The negation of
BAD(r1) implies that Xr1+1,r−1+c > Zr1+1,r−1+c, for c ≥ 0. By Lemma 15 and Claim 3 there exists
at least one honest block b2, mined in a u.s. round and contained in the chains of all honest players
on and after round r. W.l.o.g. let b2 be the most recently mined such block. By the de�nition of
b1, b2 is a descendant of b1. If r2 is greater or equal to r − s then the lemma follows, since b2 is an
honest block mined on and after round r − s that satis�es the conditions of the lemma.

Suppose round r2 is before round r − s. Let r3 be the earliest u.s. round, such that b3 and the
blocks mined at all u.s. rounds afterwards are descendants of b2. Since b2 will be in the chains of all
honest players after round r, round r3 is well de�ned. Also let s1 < . . . < sm < . . . be the sequence
of u.s. rounds after round r1 that satisfy the conditions of Claim 4. That is, sk is the �rst u.s. round
such that the honest block mined in this round is not a descendant of the honest block mined in
round sk−1, for k ∈ {2, ..,m}. The �rst u.s. round after round r1 corresponds to s1.

We will argue that r3 is equal to some si > s1 in the aforementioned sequence. Suppose, for
the sake of contradiction that it does not. This implies that the honest block mined at round r3

(denoted by b3) is a descendant of the honest block mined at some round si of the sequence. W.l.o.g.
suppose that si is the largest such round that is before round r3. There are three cases. In the
�rst case, r2 < si < r3. By the de�nition of si and r3, the block mined at round si is an ancestor
of b3 and also a descendant of b2. Hence, si satis�es the de�nition of r3 which is a contradiction
(there is an earlier round than r3 with the same property). In the second case, si = r4, where b4 is
a descendant of b1 and either b2 = b4 or b4 is an ancestor of b2. Then b4 is a block that satis�es the
de�nition of b1, and is more recent, which is a contradiction. In the third case, r1 < si < r2 and the
block mined at round si is not an ancestor of b2. By the de�nition of si, the honest block mined at
round si is an ancestor of b3, that has been mined before round r2. But this is contradictory, since
no honest block can be an ancestor of b3, mined before round r2, but not be an ancestor of b2.

Since we proved that r3 is equal to some si we can apply Claim 4 from round r1 + 1 until round
r3. Again, from Observation 1, regarding applications of Claim 4 after round r1 we can ignore
blocks that were mined before round r1 + 1. Then either Zr1+1,r3−1 ≥ Zpubr1+1,r3−1 > Xr1+1,r3−1 or

Zr1+1,r3−1 ≥ Zpubr1+1,r3−1 = Xr1+1,r3−1 and the honest block mined at round r3 will be in pdom(r3, 1).
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Suppose, for the sake of contradiction, that round r3 is after round r2 + s. Then (r3 − 1) −
(r1 + 1) ≥ s and Zr1+1,r3−1 ≥ Xr1+1,r3−1. This is a contradiction, since in this case ¬BAD(r1)
implies Zr1+1,r3−1 < Xr1+1,r3−1. Therefore, r3 ≤ r2 + s < r. In addition, notice that ¬BAD(r1)
also implies

Xr1+1,r2+s > Zr1+1,r2+s (3)

We are going to apply Lemma 15 and Observation 1 from round r3 until round r2 + s in the
subtree rooted at b2. According to the analysis we made previously there are two cases. In the
�rst case, Zpubr1+1,r3−1 > Xr1+1,r3−1 or equivalently Zpubr1+1,r3−1 ≥ Xr1+1,r3 . Suppose, for the sake of
contradiction, that r3 = r2 + s. Then Zr1+1,r2+s−1 ≥ Xr1+1,r2+s. But this is a contradiction, since
¬BAD(r1) implies Inequality 3. Therefore, r3 < r2 + s. From Inequality 3:

Xr3+1,r2+s ≥ Xr1+1,r2+s −Xr1+1,r3

> Zr1+1,rk+s − Zpubr1+1,r3−1 ≥ Z
pub
r3,r2+s

The last inequality, stems from two facts: that we can ignore blocks that were mined before round
r1 + 1 regarding applications of Lemma 15 and also that the blocks that the adversary broadcasts
at distinct rounds are di�erent (adversaries that broadcast the same block multiple times can be
ignored without loss of generality).

In the second case, Zpubr1+1,r3−1 = Xr1+1,r3−1 and the honest block mined at round r3 will be in
pdom(r3, 1). Again from Inequality 3:

Xr3,r2+s = Xr1+1,r2+s −Xr1+1,r3−1

> Zr1+1,rk+s − Zpubr1+1,r3−1 ≥ Z
pub
r3,r2+s

The same analysis holds for all rounds after r2 + s. By an application of Claim 3, an honest
block b, computed in one of the u.s. rounds after round r2 and before round r, will be in the chains
that honest players adopt on and after round r. Since b2 is the most recently mined block, before
round r− s, included in the chain of all honest players, b must have been mined on and after round
r − s (since r3 > r2). Let A be the event that there exists a block mined by an honest player on
and after round r− s, that is contained in the chain which any honest player adopts after round r.
We have proved that (¬BAD(r1)) implies A. Then:

Pr[A] =Pr[A ∧BAD(r1)] + Pr[A ∧ ¬BAD(r1)]

≥Pr[A ∧ ¬BAD(r1)]

=Pr[A|¬BAD(r1)]Pr[¬BAD(r1)]

=Pr[¬BAD(r1)]

≥1− e−g(s)

Hence, the lemma holds with probability at least 1− e−g(s).
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