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Abstract

Consider a set of parties invited to execute a protocol Π. The protocol will incur some
cost to run while in the end (or at regular intervals), it will populate and update local tables
that assign (virtual) rewards to participants. Each participant aspires to offset the costs
of participation by these virtual payoffs that are provided in the course of the protocol. In
this setting, we introduce and study a notion of coalition-safe equilibrium. In particular, we
consider a strategic coalition of participants that is centrally coordinated and potentially
deviates from Π with the objective to increase its utility with respect to the view of at
least one of the other participants. The protocol Π is called a coalition-safe equilibrium
with virtual payoffs (EVP) if no such protocol deviation exists. We apply our notion to
study incentives in blockchain protocols. Compared to prior work, our framework has the
advantages that it simultaneously (i) takes into account that each participant may have
a divergent view of the rewards given to the other participants, as the reward mechanism
employed is subject to consensus among players (and our notion is well defined independently
of whether the underlying protocol achieves consensus or not) (ii) accounts for the stochastic
nature of these protocols enforcing the equilibrium condition to hold with overwhelming
probability (iii) provides a versatile way to describe a wide variety of utility functions that
are based on rewards recorded in the ledger and cost incurred during ledger maintenance.
We proceed to use our framework to provide a unified picture of incentives in the Bitcoin
blockchain, for absolute and relative rewards based utility functions, as well as prove novel
results regarding incentives of the Fruitchain blockchain protocol [PODC 2017] showing that
the equilibrium condition holds for collusions up to n− 1 players for absolute rewards based
utility functions and less than n/2 for relative rewards based utility functions, with the latter
result holding for any “weakly fair” blockchain protocol, a new property that we introduce
and may be of independent interest.

1 Introduction

A game involves a number of participants that engage with each other following a certain
strategy profile which incurs individual costs and rewards. The utility of each participant, which
rational participants aspire to maximize, is some compound real-valued function that takes into
account the costs incurred and rewards resulting by the interaction. A common characteristic
is that costs and rewards are bestowed authoritatively via some infrastructure that is typically
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external to the game execution. Contrary to this, in this work, we study a game-theoretic setting
where rewards are virtual and are recorded as an outcome of the interaction of the participants
individually in each participant’s local view. Thus, while costs are incurred authoritatively as
before, rewards are “in the eye of the beholder” and in the end of the interaction two participants
may have diverging views about the rewards that each game participant has received, while any
single participant P cares fundamentally that the other participants conclude in their local
views that P has received rewards.

Our motivation comes from the setting of distributed ledgers. These protocols were orig-
inally studied as an instance of the state machine replication problem [68] but recently were
popularised again due to the introduction of the Bitcoin blockchain protocol [60]. Bitcoin is a
cryptocurrency based on a blockchain protocol that maintains a public ledger containing the
history of all transactions. The protocol was formally analyzed in the cryptographic setting
in [31, 63]. The main idea behind the protocol is that transactions are organized into blocks
and blocks form a chain, as each block contains the hash of the previous block. The longest
chain is selected to determine the public ledger. A block is produced when a proof of work
puzzle [11, 25, 42, 65] is solved by a node called miner. The miner that produces a block earns
an amount of Bitcoin as a reward. One distinguishing feature of blockchain protocols is the
emphasis they put on the incentives of the participating entities. Classically, consensus [49]
was considered in various threat models, such as fail-stop failures or Byzantine. However the
incentive and game theoretic aspects of the protocol have received less attention.

In blockchain protocols, the rewards that are bestowed to the participants are not assigned
in an authoritative manner by some external entity, but rather are recorded as an outcome of
bookkeeping that takes place by the interaction of the participants. In such setting, the relevant
question is whether a strategic coalition of participants has an incentive to follow the protocol
or to deviate. In its simplest form we consider a “monolithic” such coalition (abstracted as an
adversary) that considers deviating from the protocol in a coordinated fashion with the aim to
increase the joint utility of its members.

Different aspects of incentives in Bitcoin were studied in [10,12,18,22,26,41,46,54,57] and
some type of incentive compatibility for blockchain protocols was studied in the context of a
few protocols, see e.g., [7,14,64] (cf. Appendix A for background information on game theoretic
notions). With respect to studying the participation in the core blockchain protocol, Kroll et al.
in [41] show that a certain modeling of the Bitcoin protocol is a Nash equilibrium, while Eyal
and Sirer in [26] show that Bitcoin is not incentive compatible because of a type of attack called
selfish mining that works for any level of hashing power (for Nash equilibrium and incentive
compatibility definition see Appendix A). Then again, Kiayias et al. in [46] show that there are
thresholds of hashing power where certain games that abstract Bitcoin have honest behavior
as a Nash equilibrium. The above seemingly contradictory results stem from differences in
the game theoretic modeling of the underlying blockchain protocol and the utility function
that is postulated. In addition, the existing notions of equilibria (cf. Section 1.2 below) do
not appear to be sufficient to completely capture the rational behavior of participants. First,
given the anticipated long term execution length of such games it is important to consider the
variance of utility and thus merely looking at expected utility might be insufficient. Second,
the reward mechanism employed is subject to consensus among participants and given that the
protocol itself aims to achieve such consensus, each participant may have a divergent view of the
rewards given to the other participants. Thus it is important that the model used to examine
the protocol takes into account the possibility of such divergence and the game should be well
defined independently of whether the resulting interaction achieves consistency or safety, as such
properties should be the result of the rational interaction of participants, not a precondition for
it!
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1.1 Our Results

Execution model: Our model generalizes the execution model of [31] and it is based on
the “real-world” protocol execution model of [19–21,44] with the additional feature that certain
operations of the protocol are abstracted as oracles and calling such oracles incurs a certain
cost to the callee. In this way, the cost of each participant is solely dependent on participants’
actions and aggregates the expenditure that is incurred during the execution based on the oracle
queries posed. For example in the case of a proof-of-work blockchain protocol this may amount
to the number of queries posed to the hash function.

Utility with Virtual Payoffs: At any point of an execution, each participant has a local
view regarding the virtual rewards of all participants, including themselves. The key observation
for defining utility in our setting is that given that the rewards are virtual, it is not particularly
advantageous for a participant to be in a state where according to its own bookkeeping she has
collected some rewards; instead what is important, is what other participants believe about one
participant’s rewards. In this way we define two types of reward functions Rmax, Rmin which
will correspondingly give rise to two utility functions. The Rmax rewards of a coalition represent
the maximum amount of rewards a coalition has received quantified over all other participants
(which do not belong to the coalition), while Rmin is similarly the minimum amount of rewards.

Equilibria with Virtual Payoffs (EVP): Based on these functions (reward, cost and utility
functions), we present a formal notion of approximate Nash equilibrium, called coalition-safe
Equilibrium with Virtual Payoffs (EVP). Informally, a protocol Π is an EVP if it guarantees
that with overwhelming probability, a rational strategic actor (hence called the adversary) who
controls a coalition of participants, cannot gain by deviating more than an insignificant amount
in terms of utility in the view of any of the other participants. As a result, for a given protocol
Π, if there is a small, but non-negligible, probability that the utility of the adversary deviating
from Π becomes significantly higher in the view of a single other participant then such protocol
will not be an EVP.

In more details, our notion of equilibrium is defined by examining two independent execu-
tions of the protocol in question. In the first execution the adversary controlling a coalition
follows the protocol while in the second execution it might deviate in some strategic fashion.
In both executions the participants who are not controlled by the adversary (we refer to them
as honest participants) follow the protocol. The way in which we examine these two executions
is by comparing the utilities of the adversary in these two executions for all possible environ-
ments. The underlying protocol is EVP when with overwhelming probability the Umax utility
of the adversary when it deviates is not significantly higher compared to its Umin utility when
it follows the protocol. This means that in order for our protocol not to be an EVP, there will
be an alternative strategy and an environment with respect to which, the execution where the
adversary deviates in the view of one honest participant results, with a non-negligible probabil-
ity, to a significantly higher utility compared to the lowest utility determined for the adversarial
coalition in the execution where it follows the protocol when quantified over all the honest
participants.

EVP Analysis of Blockchain Protocols: In our analysis, we revisit three important utility
definitions for blockchain protocols: (i) absolute rewards (ii) absolute rewards minus absolute
cost and (iii) relative rewards. With the term absolute rewards we refer to the amount of the
rewards that a set of participants receives at the end of the execution. With the term absolute
cost we mean the cost that this set of participants pays during the execution expressed in
absolute terms. With the term relative rewards we refer to the rewards of this set of participants
divided by the total rewards given to all the participants. We note that the first and the third
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type of utility have been considered in a number of previous works, specifically, [41,64] used the
first type and [14,26,46] used the third type. In addition the second type was used in [12,48,69].

Using our model we prove positive and negative results regarding the incentives in Bitcoin
unifying previous seemingly divergent views on how the protocol operates in terms of incentives,
cf. Theorems 1,3,5. Specifically, we prove that Bitcoin with fixed target is an EVP in the static
setting with utility based on absolute rewards, and absolute rewards minus absolute costs, while
it is not with respect to relative rewards, cf. Figure 1.

Next, we prove regarding incentives of Fruitchain, [64], the following new result: when the
utility is based on absolute rewards minus absolute cost, the Fruitchain protocol is an EVP
in the static setting against a coalition including even up to all but one of the participants
(Theorem 8). Moreover we define a property called “(t, δ)-weak fairness” that is weaker than
“fairness” defined in [64] or “ideal chain quality” described in [31] and the “race-free property”
in [14] (for more details see Section 4) and is sufficient for proving that a protocol is EVP
when the utility is based on relative rewards (Theorem 6). This allows us to also prove the
following result: when the utility is based on relative rewards, the Fruitchain protocol is EVP
in the static synchronous setting against any coalition including fewer than half of the number
of the participants (assuming participants of equal hashing power, cf. Theorem 7). Further, we
note that the approximation factor in the EVP is merely a constant additive factor. Regarding
the level of rewards, in [64] the total rewards V of an execution are derived from from (a) the
flat rewards of the fruits (for details regarding what a fruit according to [64] is, see subsection
5) and (b) the transaction fees from the transactions inside the fruits; in both cases these are
distributed evenly among the miners and V is a fixed constant in the whole execution. Our
result is also stronger in this respect, for both absolute and relative rewards based utilities,
where we show that the protocol is an EVP even if rewards are a function of the security
parameter or the length of the execution.

We note that our model is synchronous and in our results we consider that the adversary is
static and decides in the beginning of the execution the participants it will control and the cost
it will pay during each round. We will refer to it as “static adversary with fixed cost.” This type
of cost model is consistent with cloud mining [1] where participants establish a contract and
they pay a fixed rental fee per time unit. In addition we suppose that the difficulty in mining a
block is fixed. Interesting directions for future work is devising protocols that are EVPs against
a dynamic adversary which adaptively fluctuates its mining resources, while the protocol itself
adjusts mining difficulty; designing and proving that such EVP protocols exist is an interesting
open question.

AbsR/AbsR-C RelR

Bitcoin fixed target n− 1 (∗) NO(1)

Bitcoin variable target NO(2) NO(3)

Fruitchain (n− 1) (†) < n/2

Figure 1: Overview of our results as well as previous results that are consistent with the EVP
model. AbsR stands for a utility based on absolute rewards, AbsR-C for a utility based on
absolute rewards minus absolute cost, while RelR stands for a utility based on relative rewards.
The function in n specifies the larger coalition size for which the equilibrium stands. (1),(3) are
derived from [26], (2) is derived from [28]. The (∗) result is informally postulated in [41]. A
weaker bound of the (†) result in terms of coalition size (< n/2) was shown in [64].
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1.2 Other Related Work

A closely related work that focused on Byzantine Agreement and rational behavior is [35]. Some
distinctions between our work and [35] are that (i) their utility model is tailored to the setting
of (single shot) binary Byzantine agreement, while we focus on distributed ledgers that record
transaction and rewards for the participants, (ii) in the definition of equilibrium they consider
the expectation of utility as opposed to bounds on utility that are supposed to hold with high
probability, (iii) at equilibrium, the rational adversary may deviate from the protocol as long as
the properties of Byzantine agreement are not violated, while we consider any protocol deviation
as potentially invalidating our equilibrium objective as long as the adversarial coalition benefits
in the view of one of the other participants.

One model, introduced in [8], that combines Byzantine participants, i.e., participants that
can deviate from the protocol arbitrarily, in addition to honest and rational participants, is
“BAR.” This model includes three types of participants: altruistic, Byzantine and rational and
was used to analyse two types of protocols, IC-BFT (Incentive-Compatible Byzantine Fault
Tolerant) and Byzantine Altruistic Rational Tolerant (BART) protocols [8]. The first type of
protocols (i) satisfies the security properties of a Byzantine Fault Tolerant protocol (safety and
liveness) in a setting with Byzantine/honest participants and (ii) guarantees that the best choice
for rational participants is to follow the protocol. This guarantee is provided under the following
assumptions: (a) if following the protocol is a Nash equilibrium then the rational participants
will adopt it as a strategy, (b) rational participants do not collude, and (c) the expected utility
of the rational participants is computed considering that the Byzantine participants react in
such a way that minimizes the utility of the rational participants. One of the advantages of
the IC-BFT model is that it can be used to argue that rational participants have incentives to
follow the protocol due to property (ii) and thus they can be considered as honest and in such
case the resulting protocol will still be resilient to some Byzantine behaviour due to property
(i).

Another game theoretic notion that takes into account malicious and rational participants
in the context of multi-party computation is called “ǫ-(k, t)-robust Nash equilibrium” defined
in [4]. In this type of equilibrium no participant in a coalition of up to k participants should
be able to increase their utility given that there exist up to t malicious participants. Note that
in our case following [64] when we consider coalitions we study their joint utility (by summing
individual rewards) and not the utility of each participant separately something that results
in a more relaxed notion in this respect (but still suitable for the distributed ledger setting:
following [31, 64] when we study proof of work cryptocurrencies, each participant represents a
specific amount of computational power. So a coalition of participants could also be thought to
represent one miner).

In [30] a framework for “rational protocol design” is described that is based on the simulation
paradigm. That framework was extended and used for examining the incentive compatibility of
Bitcoin in [12]. The basic premise is that the miners aim to maximize their expected revenue
and the framework describes a game between two participants: a protocol designer D and an
attacker A. The Designer D aims to design a protocol that maximizes the expected revenue of the
non adversarial participants and keep the blockchain consistent without forks. The adversary A
aims to maximize its expected revenue. One difference of our model compared to [12] is that we
let the adversary deviate from the protocol not only if its expected utility increases significantly
by deviating, but even if it can increase its actual utility significantly just with not negligible
probability. In addition [12] focuses exclusively on the incentive compatibility of Bitcoin and
only when utility is equivalent to absolute rewards minus absolute cost.

Other related works that study the incentive compatibility of Bitcoin according to a specific
utility are [26,41,46]. In addition, the incentives of nodes who do not want necessarily to engage
in mining but they want to use the Bitcoin system for transactions have been studied in [37].

As we already mentioned, in [64] the Fruitchain protocol is presented, which preserves the
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security properties of Bitcoin protocol and satisfies a δ-approximate fairness property (assum-
ing honest majority) that is shown to be enough for incentive compatibility when the utility
is equivalent to absolute rewards. In addition, in [64] a definition of approximate Nash equi-
librium is described, denoted by“ρ-coalition-safe ǫ-Nash equilibrium” that guarantees protocol
conformity with overwhelming probability. Our EVP definition is both more general and more
explicit in the sense that: (i) It includes a formal description of the properties of the protocol’s
executions that give rise to the random variables that should be compared. (ii) It includes a
formal definition of reward and utility functions. (iii) It takes into account in a rigorous way
the fact that local views of honest participants may diverge and it is well defined even when the
underlying protocol view of participants are inconsistent.

Some other works that investigate the interplay between Cryptography and Game theory
in different settings are [3, 4, 34, 43, 62]. Some proof-of-stake blockchain protocols (protocols
that do not rely on proof of work to achieve consensus) that can be proved to be incentive
compatible using some notion of equilibrium are [15, 47]. A framework for identifying attacks
against the incentive schemes of the blockchain protocols is proposed in [40]. In [17], proof
of work blockchain protocols are modeled as stochastic games while in [56] a survey of game
theoretic applications in the blockchain setting is presented.

Previous works on the general topic of rational multi-party protocols include [5,24,29,58,71]
while a related line of research explored cheap talk [4,32,51,70]. For example cheap talk [23,27]
was used in [4] for simulating an honest mediator given (i) secure private channels between
agents that incur no cost, (ii) a punishment strategy such as having the participants stop the
protocol if misbehaviour is detected.

A game theoretic notion that can be used to handle protocols operating in asynchronous
networks is the “ex post Nash equilibrium” and was used in this context in [6, 38]. The way
this was used in our context, was to include also adversarial nodes in addition to rational nodes
and in [6] the adversarial nodes would determine some specific choices in the protocol execution
(such as the initial signal the agents get and the order in which agents are scheduled). The
equilibrium condition is required to hold regardless of the choices of the adversarial nodes and
even if the rational participants know these choices.

Another property (apart from these we have already referred to) related to “fairness” is “t-
immunity” in [4]. This property also considers utility as an expectation. Note that the notion
of fairness has also been used in [53]. A notion of weak fairness has also been used in [55] for a
different purpose. Specifically in [55] fairness refers to exchanges between participants; both or
neither of the participants receive the intended output.

Finally we note that coalition-safety has been examined also in the context of cheap talk [52]
and in computational games with mediator [62].

2 Our Model

Our definition of coalition-safe equilibria with virtual payoffs is built on a model of protocol
execution that extends the model described in [31], and is based on [19–21, 44]. This model
constitutes the basis for analyzing incentives in an arbitrary blockchain protocol Π (but is not
necessarily restricted to blockchain protocols). The main components of the model are: a system
of interactive Turing machines ITMs (Z,C), a strategic coalition of participants that abstractly
are referred to as the “adversary”, A which is also an ITM, and the ITM instances (ITIs)
P1, P2, ..., Pn that represent the participants of our protocol that run the blockchain protocol Π.
C is the control program that controls the interactions between the ITIs. Z is the “environment”
or in other words the initial Turing machine that represents the external world to the protocol.
It gives inputs to the participants and the adversary and it receives outputs from them. The
adversary is static and controls a set of t′ participants T ≡ {Pi1 , ..., Pit′ } ⊆ {P1, ..., Pn} ≡ S in
the beginning of the execution. In the definition of equilibrium we will put forth, we consider
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executions where adversary follows an arbitrary strategy while the remaining participants follow
Π.

The execution is synchronous and is progressing in rounds as in [31], which means that at
the end of each round all the honest participants receive all the messages sent from all the other
honest participants. However, compared to [31], instead of just a random oracle on which a
cryptographic hash function is modeled, we allow for many oracles where each oracle represents
a cryptographic task, such as issuing a digital signature. We denote those by O1, . . . , Ol. The
environment Z is forced by the control program C to activate all the participants in sequence
performing a “round-robin” participant execution. Each participant can ask each oracle Ok an
upper bounded number of queries qk during each round and each query has a cost ck. The
limitation in access is controlled by the control program C. The participants produce messages
delivered via a “Diffuse Functionality” as in [31].

The Diffuse functionality adjusts the protocol execution in rounds and determines the com-
munication between the honest participants and the adversary. Specifically it allows the adver-
sary to see the messages produced by the honest participants and delay them until the end of
the round. So the adversary can deliver first its messages. However at the end of each round, the
Diffuse functionality delivers to all the honest participants all the messages sent from the other
honest participants. Note that the Diffuse functionality gives the opportunity to the adversary
to deliver first its own messages to the honest participants. We provide this capability to the
adversary “for free”, i.e., robustness will be defined even in settings where the adversary has an
inexpensive way of influencing message delivery to its advantage.

In order to model our notion of equilibrium we need to compare between two possible
executions across arbitrary environments. Given this, it is important to fix the number of
rounds the environment runs the protocol. To accomodate this, we will define as r-admissible
an environment which performs the protocol a number of rounds r = p(κ) 6= 0, where p a
polynomial, after which it will terminate the execution. Note also that in line with [20,21] the
input of the environment will be 1p

′(κ), where p′ a polynomial.

2.1 The Reward and Cost Functions

We associate with a protocol Π, a reward function that determines the virtual rewards of each
set of participants given a local view of a participant that does not belong to the coalition after
the last complete round r of the execution. Each participant may have a different local view
and as a result different conclusion regarding the rewards of other participants. Note that in a
blockchain protocol this local view is reflected in the blockchain maintained by the participant.
Formally: E is the set of all the executions of the protocol Π with respect to any adversary
and environment. Note that an execution E is completely determined by the adversary A,
the environment Z, the control program C and the randomness of these processes, as all the
honest participants follow the protocol Π. The randomness determines the private coins of the
participants, the environment, the adversary, and the oracles like the random oracle if they
exist as e.g., in [31]. We use EZ,A to denote this random variable, where we have specified the
environment and the adversary but not the randomness.1

The function Rj
T : E −→ R is called the reward function and maps an execution E ∈ E

to the virtual rewards of a set T of participants according to the local view of a participant
Pj ∈ S \ T after the last complete round r of the execution. As an example, in the Bitcoin
blockchain protocol we can consider that the rewards for each participant to be the block rewards
from the blocks that it has produced plus the transaction fees of the transactions included
in these blocks. We define also Rmin

T (EZ,A) ≡ min{Rj
T (EZ,A)}j:Pj∈S\T , and Rmax

T (EZ,A) ≡

max{Rj
T (EZ,A)}j:Pj∈S\T .

1For simplicity we omit reference to the control program because it is the same in all the executions.
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The function Ci : E −→ R is called the cost function and maps an execution E ∈ E to the
cost of a participant Pi until the end of the last complete round r of the execution E . Specifically
Ci(E) =

∑l
k=1 ck · qi,k(E), where qi,k(E) is the number of the queries that Pi asked the oracle

Ok until the end of the last complete round r of the execution E . Note that qi,k(E) ≤ qk · r.
2

Remark 1. We assume that rewards and costs are directly comparable and any exchange rate
between virtual rewards and cost tokens is constant and is applied directly. Extending our results
to a setting where a fluctuating exchange rate in the course of the execution exists between virtual
rewards and cost tokens is an interesting direction for future work.

2.2 Utility with Virtual Payoffs

We next define the (virtual) utility of a coalition of participants that are controlled by a single
rational entity, the adversary. The utility may take various forms and we will consider settings
where the adversary cares about its absolute rewards, its relative rewards or its absolute rewards
minus its absolute cost. Other types of utility may also be defined, e.g., the adversary may want
to minimize the rewards of a specific participant. We will describe the utility of a coalition
controlled by a static adversary that includes the set of participants T ≡ {Pi1 , ..., Pit′ } ⊆
{P1, ..., Pn} ≡ S.

Definition 1. We define the utility function of a T -coalition in the view of the j-th participant
as a function U j

T : E −→ R that maps an execution of E to a real value.

Based on the above, we define also Umax
T (EZ,A) ≡ maxj∈S\T {U

j
T (EZ,A)} and Umin

T (EZ,A) ≡

minj∈S\T{U
j
T (EZ,A)}. Using the reward and cost functions from the previous sections, we define

below a few types of utilities that will be relevant in our analysis:

Definition 2. Different types of utility of a coalition T defined over an arbitrary E ∈ E:

• Absolute Rewards. U j
T (E) = Rj

T (E),

• Absolute Rewards minus Absolute Cost. U j
T (E) = Rj

T (E)−
∑

l:Pl∈T
Cl(E),

• Relative Rewards. U j
T (E) =

Rj
T (E)

Rj
S(E)

, if Rj
S(E) 6= 0 and 0 otherwise.

• Relative Rewards minus Relative Cost. U j
T (E) =

Rj
T (E)

Rj
S(E)

−

∑
l:Pl∈T

Cl(E)∑
l:Pl∈S

Cl(E)
,

if Rj
S(E),

∑
l:Pl∈S

Cl(E) 6= 0 and 0 otherwise.

Note that the total rewards of an execution may be equal to zero. So when we define relative
rewards or relative cost we should take care that the denominator will never be zero.

2.3 Coalition Safe Equilibria with Virtual Payoffs

We will examine two executions of a protocol with the same environment, but with different
adversary and randomness: In the first execution EZ,HT

the adversary runs the HT program
which controls a set T with cardinality less or equal t and follows the protocol Π, i.e., plays
“honestly.” In the second execution E ′

Z,A the adversary is denoted by A and is an arbitrary
PPT static adversary that controls the set of users T which includes at most t participants and
might deviate in some arbitrary way from the Π. For example, in a proof of work blockchain
protocol a possible deviation would be to perform selfish mining [26].

2 Note that the rewards function is defined for a set of participants, but the cost function is defined for a
specific participant. In addition we use “≡” to denote equality of sets, random variables and functions.
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In more details, HT is a static adversary that controls a set T of participants and follows
the protocol but it takes advantage of its network presence. Note that in our case “taking
advantage of its network presence” means that the adversary delivers its messages first, when
multiple competing solutions/messages (such as proof of work instances) are produced during
a round.3

Definition 3. Let ǫ, ǫ′ be small positive constants near (or equal to) zero and r a polynomial in κ,
the security parameter. The protocol is (t, ǫ, ǫ′)-equilibrium with virtual payoffs (EVP) according
to a utility {U j

T }j∈S\T when for every PPT static adversary A that controls an arbitrary set T
including at most t participants and for every r-admissible environment Z, it holds that

Umax
T (E ′

Z,A) ≤ Umin
T (EZ,HT

) + ǫ· | Umin
T (EZ,HT

) | +ǫ′

with overwhelming probability in κ. EZ,HT
, E ′

Z,A are two independent random variables that
represent two independent executions with the same environment Z and adversary HT and A
respectively.

Remark 2. Note that we need absolute value on the right side of the inequality because Umin
T (EZ,HT

)
can be negative when for example it is equal to the profit of a participant. We use two parame-
ters, ǫ and ǫ′, to explicitly account for multiplicative and additive deviations in the utility of the
diverging adversarial coalition of participants.

Remark 3. When the adversary selects the strategy that the participants controlled by the
adversay do not ask any query and do not participate at all, then its utility is zero for all possible
choices of utility from Definition 2. As a result if a protocol is an EVP then this implies that the
utility of HT will be not significantly smaller than 0. This parallels the participation constraint
that is encountered in optimization problems in economics [39].

The definition is generic and includes all probabilistic polynomial time (PPT) static ad-
versaries but in our results we will consider for simplicity a static PPT adversary with fixed
cost who decides in the beginning how many queries the participants that it controls will ask
(and thus how much cost will incur). Recall that this type of cost model in the setting of
proof-of-work blockchains is consistent with cloud mining [1]. Formally, we have the following.

Definition 4. A static adversary with fixed cost is an adversary that chooses in the beginning
of the execution to control a set T ≡ {Pi1 , ..., Pit′ } ⊆ {P1, ..., Pn} ≡ S of t′ participants and it
commits to the number of queries (of the available qk) each participant Pim , (m = 1, . . . , t′) that
it controls will ask each oracle Ok during each round of the execution. This number is denoted
by qk − xm,k. This type of adversary can choose any strategy, but it is committed to paying
during each round the cost that it chose in the beginning of the execution.

3 Incentives in Bitcoin

As in [31] we will consider that there is only one oracle: the random oracle that models a
cryptographic hash function. There are n participants that are activated by the environment
in a “round-robin” sequence. When each participant is activated by the environment, it asks
at most q queries this oracle. Each query to this random oracle has probability p to give a
solution which is a valid block that extends the chain. The messages/solutions are delivered

3We do not consider in this present treatment the cost of having a high presence in the network. Moreover, it
is relatively easy to see that if network dominance is given at no cost, it is a rational choice for an adversary to
opt for it in the Bitcoin setting since it will guarantee that more rewards will be accrued over time. We note that
a similar type of reasoning was adopted also in [12] and the corresponding adversary was referred to as “front
running.”
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via the Diffuse Functionality. The expected number of solutions per round by all participants
is denoted by s. Note that our model is synchronous and s is assumed to be close to zero.

Regarding Bitcoin with fixed target in a synchronous setting we prove the following results
under a PPT static adversary with fixed cost. We will consider that each query to the random
oracle has a cost c. We suppose that each block gives a fixed flat reward w to its creator.
Recall t′ is the number of the participants controlled by the adversary, S is the set of all the
participants and T the set controlled by the adversary.

The results are as follows (the proofs of all the theorems are given in appendix C):

Absolute rewards: When the utility is based on absolute rewards (cf. Def.2), then Bitcoin
with fixed target is EVP against a coalition that includes even up to all but one of the partici-
pants. This is in agreement with the result of [41]. The intuition behind this result is that if the
adversary cares only about how many blocks it produces then it has no incentives to deviate
from the protocol for example by creating forks or by keeping its blocks private. The reason is
that if it deviates from the protocol then it increases the possibility that its blocks will not be
included in the public ledger compared to following the protocol. Moreover, the number of the
blocks the adversary produces during a round depends only on p, q, t′ and not on which chain
the adversary extends.

Theorem 1. For any δ1 ∈ (0, 0.25) such that 4 ·δ1 · (1+s)+s < 1, where s the expected number
of solutions per round, Bitcoin with fixed target in a synchronous setting where the reward of
each block is a constant, is (n − 1, 4 · δ1 · (1 + s) + s, 0)-EVP according to the utility function
absolute rewards (Def. 2).

Note that the better synchronicity we have (the fewer expected number of solutions per round
s) then the better EVP4 we have (the lower 4 · δ1 +(1+4 · δ1) · s is). Recall 4 · δ1+(1+4 · δ1) · s
is related to how much the adversary can gain if it deviates.

Note that in the theorem we allow the adversary to control all but one of the participants
(and not all) because we want at least one honest local chain according to which we can deter-
mine the rewards of the adversary.

We extend the above result also in the setting where the block reward changes every at least
l · κ rounds where l a positive constant and κ the security parameter during the execution.

Theorem 2. Supposing that (i) the block reward changes every at least l · κ rounds where l a
positive constant and κ the security parameter and (ii) the environment terminates the execution
at least l · κ rounds after the last change of the block reward then it holds: for any δ1 ∈ (0, 0.25)
such that 4 · δ1 · (1 + s) + s < 1, where s the expected number of solutions per round, Bitcoin
with fixed target in a synchronous setting is (n − 1, 4 · δ1 · (1 + s) + s, 0)-EVP according to the
utility function absolute rewards (def.2).

For the proof see Appendix C.3.
Note that in the analysis above, we assume throughout that the target used in the proof

of work function remains fixed as in [31]. It is easy to see that if this does not hold then the
adversary using selfish mining [26] can cause the protocol to adopt a target that becomes greater
than what is supposed to be and thus the difficulty in mining a block will decrease as the total
computational power would appear smaller than it really is. In this case, the adversary can
produce blocks faster and as such it can magnify its rewards resulting in a negative result in
terms of EVP (see also [36]). It is an easy corollary that the protocol will not be an EVP in
this case.

4By “better EVP” we mean that the actual values of ǫ, ǫ′ are smaller.
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Absolute rewards minus absolute cost: When the utility is based on absolute rewards
minus absolute cost then the Bitcoin protocol with fixed target is EVP against a coalition that
controls even up to all but one of the participants, assuming the cost of each query c is small
enough compared to the block reward w. This is in agreement with the result of [12]. Again
the better synchronicity we have, the better EVP we have.

Theorem 3. Suppose that there exists φ ∈ (0, 1− s) such that c < p ·w · φ/(1 + p · q · (n− 1)).
Then, supposing that the reward of each block is a constant w, it holds: for any δ1 ∈ (0, 0.25),
such that c ≤ p · w · (1 − δ1) · φ/(1 + p · q · (n − 1)) and 4 · δ1 · (1 + s) + s < 1 − φ, where s
the expected number of solutions per round, Bitcoin with fixed target in a synchronous setting
is (n− 1, (4 · δ1 · (1 + s) + s)/(1− φ), 0)-EVP according to the utility function absolute rewards
minus absolute cost (Def. 2).

Remark 4. The assumption that there exists φ ∈ (0, 1−s) such that c < p·w ·φ/(1+p·q ·(n−1))
means that the reward of each block is high enough to compensate the miners for the cost of the
mining. When the cost is high compared to the rewards and the difficulty of mining not fixed
then unexpected behaviours appear as proved in [28].

Note that the smaller the cost of each query is, the better EVP we have (because we can
select smaller φ such that (4 · δ1 + (1 + 4 · δ1) · s)/(1− φ) is smaller).

We extend the above result also to the case when the block reward changes every at least
l · κ rounds where l a positive constant and κ the security parameter.

Theorem 4. Assume that (i) the block reward changes every at least l · κ rounds where l a
positive constant and κ the security parameter and (ii) the environment terminates the execution
at least l · κ rounds after the last change of the block reward. Let wj for j ∈ {0, ...,m} be all the
block rewards respectively for each player. Assuming that there exists φ ∈ (0, 1 − s) such that
c < p ·wj · φ/(1 + p · q · (n− 1)) for all j ∈ {0, ...,m}, then it holds: for any δ1 ∈ (0, 0.25), such
that c ≤ p ·wj · (1− δ1) ·φ/(1+ p · q · (n− 1)) for all j ∈ {0, ...,m} and 4 · δ1 · (1+ s)+ s < 1−φ,
where s the expected number of solutions per round, Bitcoin with fixed target in a synchronous
setting is (n − 1, (4 · δ1 · (1 + s) + s)/(1 − φ), 0)-EVP according to the utility function absolute
rewards minus absolute cost (Def. 2).

For the proof see Appendix C.5.

Relative rewards: When the utility is based on relative rewards, i.e., the ratio of rewards
of the strategic coalition of the adversary over the total rewards of all the participants, Bitcoin
with fixed target cannot be an EVP with small ǫ, ǫ′. This result is in agreement with [13, 26].
The core idea is to use the selfish mining strategy [22,26,33,61,67] to construct an attack that
invalidates the equilibrium property. This kind of attack was used also in [31] as argument
for the tightness of “chain quality” (chain quality refers to the percentage of the blocks in the
public ledger that belong to the adversary). Without loss of generality, we will assume that
the reward of each block is the same and equal to w (the negative result carries trivially to
the general case). The result is in agreement with [26] and an argument regarding incentive
compatibility of Bitcoin presented in [64]. However it seems to contradict the result from [46],
which shows that in a “strategic-release game” that describes Bitcoin, honest strategy is Nash
equilibrium when the adversary controls a small coalition. This difference arises because that
model assumes that all honest miners act as a single miner which implies that when an honest
participant produces a block, all the other honest participants adopt this block, something that
does not happen in our setting where the adversary is assumed to have network dominance.
Note that in [31,64] and in our case the adversary has the advantage that it can always deliver
its block first and the honest participants adopt the first block they receive. As a result, the
blocks of the adversary never become dropped in a case when both the adversary and an honest
participant produce a block during a round.
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Notation

p probability with which a query to the random oracle gives a block
pf probability with which a query to the random oracle gives a fruit
q number of queries each participant can ask the random oracle during each round
t′ number of participants controlled by the adversary
t upper bound of t′

r round after which an execution terminates
n number of participants
w flat reward per block (Bitcoin)
wf flat reward per fruit (Fruitchain [64])
s expected number of solutions per round
x the number of the queries the coalition does not ask during each round
S the set of all the participants
T the set of the participants controlled by the adversary

Theorem 5. Let t ∈ {1, ..., n− 1} and t′ < min{n/2, t+1}. Then for any ǫ+ ǫ′ <
t′

n− t′
· (1−

δ′)−
t′

n
· (1 + δ′′) · (1 + s), for some δ′, δ′′, where s the expected number of solutions per round,

following Bitcoin with fixed target in a synchronous setting is not a (t, ǫ, ǫ′)-EVP according to
the utility function relative rewards (Def. 2).

When Transactions Contribute to the Rewards. Until now we have supposed that only
the flat block reward contributes to the rewards. We next examine what happens when the
rewards come also from the transactions included in the mined blocks.

In the description of our model we did not specify the inputs that the environment gives to
each participant because these inputs did not contribute to the rewards. We can consider that
the inputs are transactions as in [12, 31] and give transactions fees to the participant that will
include them in the block that it will produce. The transactions have a sender and a recipient
(who can be honest or adversarial participants) and constitute the way in which a participant
can pay another participant. So in this setting a participant gains rewards if it produces a block
and this block is included in the public ledger (the rewards of each block are the flat reward
and the transaction fees) and/or if it is the recipient of a transaction that is included in a block
of the public ledger. In this setting the attacks described in [18, 54] arise. For example the
environment can collaborate with the adversary and send Bitcoin to the participants via the
transactions that it gives to them as inputs. Specifically the environment can incentivize the
recipients to support an adversarial fork by making these transactions valid only if they are
included in this adversarial fork.

In addition we can consider that the environment gives the same transactions to all the
participants during each round and a transaction cannot be included in more than one block.
So if a participant creates an adversarial fork by producing a block that does not include the
transactions with high transaction fees then the other participants have incentives to extend
it even if they should deviate from the protocol. This happens because in this way they have
the opportunity to include the remaining transactions in their blocks and receive the high fees.
This attack was described in [22] and will be more effective when the flat block reward becomes
zero and the rewards will come only from the transactions. These observations are in agreement
with Theorem 7 in [12] according to which there are some distributions of inputs that make
Bitcoin not incentive compatible. It is an easy corollary to prove that the protocol is not an
EVP in this setting.
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4 Incentives in a Fair Blockchain Protocol

In this section we will describe a property, called “(t, δ)-weak fairness”, which is sufficient for
proving that a protocol is EVP when the utility is based on relative rewards (cf. Def.2). This
property can aid in the design of EVP protocols.

A protocol will satisfy “(t, δ)-weak fairness” property when with overwhelming probability
the following hold: firstly when the adversary (which controls at most t participants) deviates,
then the fraction of the rewards that the set of all the honest participants gets is at least (1− δ)
multiplied by its relative cost and secondly when the adversary is HT , which means that it
follows the protocol, any set of participants gets at least (1− δ) multiplied by its relative cost.

Definition 5. A blockchain protocol satisfies (t, δ)-weak fairness if for any r-admissible envi-
ronment Z, for any PPT adversary A which controls a set T with at most t participants and for
any j : Pj ∈ S \T , where S the set of all the participants, we have with overwhelming probability
in the security parameter κ:

• Rj
S\T (E

′
Z,A) ≥ (1− δ) ·

∑
l:Pl∈S\T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)

· Rj
S(E

′
Z,A)

• for any subset SH ⊆ S it holds Rj
SH

(EZ,HT
) ≥ (1 − δ) ·

∑
l:Pl∈SH

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)

· Rj
S(EZ,HT

)

where δ ∈ [0, 1).

Note that
∑

l:Pl∈SH
Cl(EZ,HT

)/
∑

l:Pl∈S
Cl(EZ,HT

) represents the computational power of

SH
5, because honest participants and HT ask all the queries during each round. In addi-

tion
∑

l:Pl∈S
Cl(EZ,HT

) 6= 0 as the execution lasts at least one round. We do not divide with

Rj
S(EZ,HT

) as we do not exclude the case that is equal to zero.
According to the following theorem when a protocol satisfies the (t, δ)-weak fairness property

and the total rewards are greater than zero with overwhelming probability then following the
protocol is EVP under an adversary that controls at most t participants. This theorem will be
also used in order to prove that the Fruitchain protocol [64] is EVP when the utility is based
on relative rewards.

Theorem 6. When a protocol satisfies (t, δ)-weak fairness and in addition for any j : Pj ∈ S\T ,
for any PPT adversary A which controls a set T with at most t participants and for any r-
admissible environment Z it holds Rj

S(E
′
Z,A) > 0 with overwhelming probability in the security

parameter κ, then following the protocol is (t, 0, δ)-EVP according to the utility function relative
rewards (def.2).

For the proof see Appendix D.1.

Comparison between (t, δ)-weak fairness and other notions: Our property is weaker
than (T, δ)-approximate fairness w.r.t. ρ attackers defined in [64] and ideal chain quality defined
in [31].

The property (T, δ)-approximate fairness w.r.t. ρ attackers defined in [64] says that in
any sufficient long window of the chain with T blocks, any set of honest participants with
computational power φ will get with overwhelming probability at least (1− δ) ·φ fraction of the
blocks regardless what the adversary with a fraction of computational power at most ρ does.

Ideal chain quality defined in [31] says that any coalition of participants (regardless the
mining strategy they follow) will get a percentage of blocks in the blockchain that is proportional
to their collective hashing power.

5
∑

l:Pl∈SH
Cl(EZ,HT

)/
∑

l:Pl∈S
Cl(EZ,HT

) = (c · q · r · tH)/(c · q · r · n) where tH the number of participants of
SH
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Our property is weaker than (T0, δ)-approximate fairness w.r.t. t/n attackers (n is the
number of all the participants)6 defined in [64] and ideal chain quality in [31] in the sense that
when the adversary deviates from the protocol we demand that only the whole set of the honest
participants gets a fraction of rewards at least (1− δ) multiplied by its relative cost, not all the
subsets of the honest participants. In the same way our definition is also weaker than race-free
property defined in [14]7.

5 Incentives in the Fruitchain Protocol

In this section, we analyze incentives of [64]. As before we assume the participants use a hash
function which is modeled as a random oracle. The number of the queries to the random oracle
by each participant during a round is bounded by q. Let the total number of the participants
be n. Each query to the random oracle can give with probability p a block and with probability
pf a fruit, where pf is assumed to be greater than p. This is achieved via the 2-for-1 POW
technique of [31]. At the beginning of each round, when the honest participants are activated,
they “receive” the fruits and the blocks from the Diffuse Functionality, they choose the chain
that they will try to extend and they include in the block they try to produce “a fingerprint”
of all the “recent” fruits (as defined in [64]) that have not been included in the blockchain yet.
Then they ask the random oracle q queries. When an honest participant finds a fruit or a block,
it gives it to the Diffuse Functionality and it continues asking the remaining queries. Even if
it finds more than one fruit during a round, it gives all the fruits to the Diffuse Functionality.
The adversary is activated at the end and it can ask t′ · q queries, where t′ is the number of
the participants that it controls. We consider that the rewards come only from the fruit8 and
the difficulty in mining a block is fixed. In our case each query to the random oracle has a cost
c. In the proofs we will assume that the adversary is static, the model is synchronous and the
Diffuse Functionality works as [31], and each fruit gives reward equal to wf .

Relative rewards: According to the following theorem if the adversary controls fewer than
half of the participants and wants to maximize its relative rewards which means that its utility
is based on relative rewards (Def. 2), then following the Fruitchain protocol is EVP. This
theorem allows us to understand in a formal way how mining simultaneously fruits and blocks
can eliminate the impact of selfish mining [26] on the incentive compatibility of the protocol.
We note that the core advantage stems from the 2-for-1 POW technique used for simultaneous
mining which was initially proposed for the mitigation of selfish mining in [31] in the context of
achieving Byzantine agreement for honest majority and later was adapted in [64] for a similar
purpose in the context of fair blockchains.

Theorem 7. Let δ ∈ (0, 1) and T0 such that the Fruitchain protocol satisfies (T0, δ)-approximate
fairness property. Then the Fruitchain protocol is (n/2 − 1, 0, δ)-EVP according to the utility
function relative rewards (Def. 2), under an r-admissible environment where r ≥ T0/(pf · (

n
2 +

1) · (1− δ) · q).

6 To be precise it is weaker than fairness under the restriction that the environment performs the protocol so
many rounds that with overwhelming probability any honest participant has a local chain of length at least T0.
Note that this happens because in our definition we have not used T0 as parameter.

7Note that when a cryptocurrency is pseudonymous and not anonymous then it is difficult to secure that
every subset of honest participants will take the appropriate percentage of the blocks, because maybe it is the
case where the adversary cannot decrease much the percentage of the blocks that belongs to the whole set of
the honest participants, but it can act against a specific participant with some characteristics revealed from the
graph of the transactions. For example there are some works that analyze the statistical properties of the Bitcoin
transaction graph and describe identification attacks in Bitcoin, [59,66]

8Note that in the Fruitchain protocol [64] the fainess property holds for the fruits; actual blocks are possibly
still vulnerable to selfish mining attacks [26]. So if we consider that also the blocks give a flat reward then we
cannot use the fairness property proved in [64].
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For the proof see Appendix D.2. It uses Chernoff bound and Theorem 6.
Note that for any δ ∈ (0, 1) and appropriate T0 the Fruitchain protocol satisfies (T0, δ)-

approximate fairness property (Subsection 4.2 in [64])9.

Remark 5. The above theorem holds also when we take into account also the transaction fees
from each fruit and at the end of the execution we distribute evenly the total rewards among the
miners of the fruits (as assumed in [64]10).

Absolute rewards minus absolute cost: We will prove that the Fruitchain [64] protocol
in a synchronous setting is EVP according to utility based on absolute rewards minus absolute
cost (Def. 2) if the adversary controls all but one participants, when the cost of each query c is
small enough compared to the reward of each fruit wf . Note that the smaller the cost of each
query is, the better EVP we have.11

The intuition behind the proof is that (i) the rewards come from the fruits that are produced
by mining and (ii) the total number of the fruits the adversary can produce is bounded (with
overwhelming probability) whatever strategy it follows. So if the adversary can have this number
of fruits even if it follows the protocol, it has no reason to deviate.

Theorem 8. Assume that each fruit gives a constant reward and there exists φ ∈ (0, 1) such
that c < pf ·wf ·φ. Then for any δ1 ∈ (0, 0.25), such that c ≤ pf ·wf ·(1−δ1) ·φ and 4 ·δ1 < 1−φ
the Fruitchain protocol in a synchronous setting is (n − 1, 4 · δ1/(1 − φ), 0)-EVP according to
the utility function absolute rewards minus absolute cost (Def. 2) .

For the proof see Appendix D.3.

Remark 6. The assumption that there exists φ ∈ (0, 1) such that c < pf · wf · φ means that
the reward of each block is high enough to compensate the miners for the cost of the mining.
Finally note that trivially if we consider that c = 0 then the assumption of the above theorem
holds for φ close to zero and the utility is just absolute rewards (Def. 2).
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A Game Theoretic Notions

• A strategy profile, which indicates how each participant behaves in the game, is an ǫ-
Nash equilibrium when the following holds: if all but one of the participants follow their
strategy indicated by the strategy profile, the remaining participant has no incentives to
deviate from its indicated strategy as well, as its utility can only be increased by a small
insignificant amount bounded by ǫ, see e.g., [45]. Extended notions of equilibria capture
strategic coalitions as well, cf. [9, 16], giving rise to “Strong” Nash Equilibria. Note that
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if we show that a blockchain protocol is an ǫ-Nash equilibrium, we know that nobody has
the incentive to deviate from the protocol, if everybody else follows the protocol.

• The concept of Incentive compatibility appears in a few different forms in the literature.
“Dominant-strategy incentive-compatibility” is satisfied when there is not a strictly bet-
ter strategy than telling the truth or following the protocol respectively whatever the
other participants do. “Bayesian-Nash incentive-compatibility” is a weaker notion and a
protocol satisfies it when there is a type of Nash equilibrium called “Bayesian Nash equi-
librium”, where all the participants tell the truth supposing that all the other participants
do the same [2]. In cryptocurrency literature some times the incentive compatibility no-
tion is used as equivalent to the Nash equilibrium notion [50]. More broadly, maximizing
the profits or maximizing the utility can be seen as an optimization problem that includes
at least two constraints. The first constraint is incentive compatibility and the second con-
straint is the participation constraint which suggests that when a participant participates
in the game, this does not result in lower utility compared to not participating [39].

B Chernoff Bounds

Let Xi : i ∈ {1, ..., n} are mutually independent Boolean random variables and ∀iPr(Xi = 1) =
p. Let X =

∑n
i=1Xi and µ = pn. Then we have for any δ ∈ (0, 1]

Pr(X ≤ (1− δ)µ) ≤ e−δ2µ/2

and
Pr(X ≥ (1 + δ)µ) ≤ e−δ2µ/3

C The Theorems and Proofs Regarding Incentives in Bitcoin

In this section we will use our definition to examine if the Bitcoin with fixed target in a syn-
chronous setting is EVP according to different utilities under a PPT static adversary with fixed
cost, when each query to the random oracle has a cost and the difficulty in mining blocks (or
in other words the target of each block) is fixed. The block reward will be fixed or will change
every at least l · κ rounds, where l a positive constant and κ the security parameter, as we do
not take into account transaction fees (we consider only the flat reward).

In more detail, as in [31]12 we will consider that there is only one oracle: the random oracle.
The difficulty in mining each block is fixed. Each honest participant asks during each round q
queries the random oracle. In our case each query to the random oracle has cost c and not zero.
The probability with which a query is successful is p and n is the number of the participants.
Let s be the expected number of solutions per round and as the model is synchronous, it is near
zero. The security parameter is κ which is the domain of the hash function.

The adversary is static and it controls an arbitrary set T ≡ {Pi1 , ..., Pit′ } with t′ partici-
pants. Let xm be the queries the participants controlled by the adversary Pim will not ask the

random oracle during each round. x =
∑t′

m=1 xm is the total number of the queries that all the
participants controlled by the adversary collectively do not ask during each round. Note that x
is a constant not a random variable as it is determined in the beginning by the static adversary
with fixed cost. It holds 0 ≤ x ≤ q · t′.

Let Rj
T (E) be the rewards of the blocks that are produced by T and are included in the local

chain of Pj after the last complete round r of the execution E .
Some clarifications regarding [31] that are useful for our proofs are described in the following

subsection.

12We will use some notation and some proof techniques from [31].
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C.1 Clarifications about Proofs in Bitcoin

The honest participants ask during each round all the available q queries even if they find a
block in the middle of the round. If the honest participants find more than one block during a
round they give to the Diffuse functionality only the first block. In addition even if an honest
participant receives from the Diffuse Functionality in the middle of a round a block produced
by another participant, it will not change the block that it tries to extend. As a result, although
forks with two or more honest blocks are permitted, a chain cannot be extended by two honest
blocks in a round. On the other hand, these restrictions do not hold for the participants
controlled by the adversary because if a participant controlled by the adversary finds more than
block during a round it can give all the blocks to the Diffuse functionality. In addition, the
honest participants choose the first block they receive in the case of a tie, which means that the
adversarial blocks are always preferred by the honest participants, as the adversary can deliver
its block first.

Successful round (defined in [31]) for a subset of participants is a round where at least one
of the participants included in this subset has found a solution. The following lemma is an
extension of “Chain-Growth” Lemma 7 of [31].

Lemma 1. For every r-admissible environment Z with input 1p
′(κ), at the end of each round

of an execution EZ,HT
, the local chains of all the honest participants have the same number of

blocks that is equal to the successful rounds for all the participants.

Proof. This can be proved by induction on the round r using the clarifications above regarding
the honest participants and using the fact that every participant controlled by HT follows the
protocol.

Let an arbitrary execution EZ,HT
. For the basis r = 1 : if the first round is not a successful

round then all the participants have a local chain with length zero equal to the number of the
successful rounds which is also zero. If the first round is successful then all the participants
have a local chain of length 1. This holds because:

• the participants cannot have at the end of the first round a local chain with length zero as
all the participants at the end of the first round will receive from the Diffuse Functionality
all the blocks produced during the first round. Note that HT follows the protocol and
always sends its blocks to the Diffuse functionality.

• the participants cannot have at the end of the first round a local chain with more than
one block given that even if more than one block have been produced during the first
round, these blocks can extend the length of the local chains only by one. This holds
because (i) if the participants (also the participants that are controlled by HT ) find more
than one block they give to the Diffuse functionality only the first block and (ii) even
if a participant receives from the Diffuse Functionality in the middle of a round a block
produced by another participant, it will not change the block that it tries to extend.

For the induction step we suppose that at the end of the round r all the participants have local
chains with length equal to the successful rounds and we can prove with the same arguments
that at the end of round r + 1, if the round r + 1 is successful, all the participants will extend
their chain by one block.

Note that at the end of each round although the local chains of participants will have the
same length, they may contain different blocks in the last part, because forks with two or more
honest blocks are permitted.

Lemma 2. For every r-admissible environment Z with input 1p
′(κ), at the end of each round of

an execution EZ,HT
, the number of the blocks that are produced by the set T of the participants
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controlled by the adversary and are included in a local chain of an arbitrary honest participant
are equal to the number of the successful rounds for T .

Proof. This can be proved also by induction on the round r taking into account the fact that HT

delivers always its blocks first and the participants adopt the first block they receive. Specifically
when both a participant controlled by the adversary and an honest participant have produced a
block during a round then all the participants will adopt the block produced by the participant
controlled by the adversary.

Note that HT will give to the Diffuse Functionality at most one block per round for each
participant controlled by the adversary and even if there are more than one block produced by
HT during a round they extend the length of the chains by one. So the local chains of the honest
participants at the end of each round may contain different blocks produced by the adversary,
but all will have the same number of blocks produced by the adversary.

Let an arbitrary execution EZ,HT
. This can be proved by induction on the round r. For

the basis r = 1 : if the first round is not a successful round for T then all the participants
have a local chain with zero blocks produced by the participants controlled by the adversary
which is equal to the number of the successful rounds for T that is also zero. If the first round
is successful for T then all the participants have a local chain that includes exactly one block
produced by the adversary HT . This holds because:

• the participants cannot have at the end of the first round a local chain with no block
produced by T , because:

– HT follows the protocol and always sends its blocks to the Diffuse functionality which
means that all participants receive its blocks.

– the participants will adopt a block produced by T at the end of the first round even
if another participant has also produced a block during the first round because HT

delivers its blocks first.

• the participants cannot have at the end of the first round a local chain with more than
one block produced by T because even if more than one block have been produced by HT

during the first round these blocks can extend the length of the local chains only by one
given that HT follows the protocol.

For the induction step we suppose that at the end of the round r all the honest participants
have local chains that include blocks produced by T whose number is equal to the successful
rounds for T . Then:

• If round r+1 is not a successful round for HT then the number of the blocks produced by
T that are included in the local chain of an arbitrary honest participant does not change.

• If round r+1 is successful for T then all the honest participants include exactly one more
block produced by T , not necessary the same, because of the arguments described above.

C.2 Absolute Rewards

In this subsection we examine if Bitcoin is EVP when utility is equivalent to absolute rewards,
which means U j

T ≡ Rj
T .

Our theorem assumes that the block reward is fixed and equal to w. However it holds also
when we assume that (i) the block reward changes every at least l · κ rounds where l a positive
constant and κ the security parameter and (ii) the environment terminates the execution at
least l · κ rounds after the last change of the block reward. The exact theorems and proofs of
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this case are given in the next subsection. The intuition is that the number of the successful
rounds of a period is independent of the number of the successful rounds of a following period
with different block reward. The same it holds for the number of blocks produced by a set of
participants.

By Lemma 2 we can conclude that

Lemma 3. For every r-admissible environment Z with input 1p
′(κ), where κ the security pa-

rameter it holds
Rmax

T (EZ,HT
) ≡ Rmin

T (EZ,HT
) ≡ XT

r (EZ,HT
) · w

where XT
r (EZ,HT

) are the successful rounds for T until the last complete round r of execution
EZ,HT

.

Proof. The rewards of T according to the local chain of an honest participant Pj come from
the flat reward of each block included in this local chain that is produced by a participant of
T . Moreover the flat reward of all the blocks gives the same amount of Bitcoin equal to w.

By Lemma 2, at the end of the last complete round r of execution EZ,HT
all the honest

participants have local chains whose number of blocks produced by T is equal to the successful
rounds for HT at the end of the round r. So the maximum reward of T is equal to the minimum
reward, as all the local chains of all the honest participants contain the same number of blocks
produced by T , and it is equal to the successful rounds for T at the end of round r multiplied
by w.

Theorem. For any δ1 ∈ (0, 0.25) such that 4 · δ1 · (1 + s) + s < 1, where s the expected number
of solutions per round, the Bitcoin with fixed target in a synchronous setting where the reward
of each block is a constant, is (n− 1, 4 · δ1 · (1 + s) + s, 0)-EVP according to the utility function
absolute rewards (def.2) .

Note that our model is synchronous and as a result the expected number of solutions per
round s are close to zero.

Proof. Let arbitrary δ1 ∈ (0, 0.25) such that 4 · δ1 + (1 + 4 · δ1) · s < 1. We choose also an
arbitrary r-admissible environment Z with input 1p

′(κ), where κ the security parameter and an
arbitrary adversary A static with fixed cost that is PPT and it controls an arbitrary set T with
t′ participants where t′ ∈ {1, ..., n − 1}. Note that when the adversary controls 0 participants
then the theorem is proved trivially as the utility of the adversary is zero regardless its strategy.

We will examine two executions of the Bitcoin with the same environment, but with different
adversary : In the first execution EZ,HT

the adversary is HT and in the second execution E ′
Z,A

the adversary is A. Note that the environment is the same in the two executions, which means
that it gives the same inputs to the participants and it sends the same messages to the adversary,
although it will receive different responses from the adversary and specifically it will receive no
response from HT . In addition the environment will decide before the start of the execution
the round r = p(κ) 6= 0 after which it will terminate the protocol. So the two executions will
last the same number of rounds as they have the same environment.

In more detail, HT follows protocol and ignores the messages that receives from the envi-
ronment Z. So in the execution EZ,HT

the environment can do only the following:

• It gives transactions as input to all the participants.

• It can send messages to HT , but HT will ignore it.

• It has decided when EZ,HT
ended.

• It receives outputs from the participants.
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Firstly by Lemma 3 and by Chernoff bound we have that:

Umin
T (EZ,HT

) ≡ Rmin
T (EZ,HT

) ≡ XT
r (EZ,HT

) · w >
p · q · t′

1 + p · q · t′
· r · (1− δ1) · w > 0 (1)

with overwhelming probability in r and as r = p(κ) also in κ. In more detail this can be proved
as follows :

• XT,m(EZ,HT
) is a Boolean random variable, where XT,m(EZ,HT

) = 1 when round m was
successful for HT . The variables {XT,m(EZ,HT

)}m=1,...,r are independent Bernoulli trials.

• XT
r (EZ,HT

) ≡
∑r

m=1 X
T,m(EZ,HT

) is the number of the successful rounds for HT until the
last complete round r of EZ,HT

.

• ∀m E[XT,m(EZ,HT
)] = 1− (1 − p)qt

′

, where p is the probability with which one query to
the random oracle is successful and q is the number of the queries that each participant
can ask the oracle during each round. We consider E[XT,mEZ,HT

)] as constant. Note that
HT asks all the available queries.

By Lemma 3 we have that:

Rmin
T (EZ,HT

) ≡ Rmax
T (EZ,HT

) ≡ XT
r (EZ,HT

) · w (2)

By Chernoff bound we have that for any δ2 ∈ (0, 1) and as a result also for δ1:

Pr[XT
r (EZ,HT

) > (1− δ1) · (1− (1− p)qt
′

) · r] ≥ 1− e
−
(δ1)

2 · (1− (1− p)qt
′

) · r

2 (3)

In addition with probability 1 we will prove the following that is stated in [31]:

(1− δ1) · (1− (1− p)qt
′

) · r ≥
p · q · t′

1 + p · q · t′
· r · (1− δ1) (4)

Specifically, it holds 1− p ≤ e−p and as a result 1− (1− p)q·t
′

≥ 1− e−p·q·t′ .
Moreover, we have that 1− e−x ≥ x/(1 + x) for x ≥ 0 (here x = p · q · t′). and as a result :

1− (1− p)qt
′

≥ 1− e−p·q·t′ ≥
p · q · t′

1 + p · q · t′

The above inequalities can be proved taking the functions f(x) = (1 − e−x) · (1 + x) − x and
g(x) = e−x − 1 + x for x ≥ 0 and studying their minimum value using their monotony.

So by the above inequality (4), by Lemma 3 and by equation (3) we conclude equation (1) .
In addition for any δ ∈ (0, 1) and as a result also for δ1 it holds with overwhelming probability

in r and also in κ that:

Umax
T (E ′

Z,A) ≤ Zr(E
′
Z,A) · w < p · q · t′ · r · (1 + δ1) · w (5)

where Zr(E
′
Z,A) is the number of the blocks the adversary has produced until the last complete

round r of E ′
Z,A.

This can be proved with Chernoff bound taking into account the fact that the adversary
cannot gain rewards from more blocks than these it has produced. In more detail,

• Zi,j,k(E
′
Z,A) is a boolean random variable and Zi,j,k(E

′
Z,A) = 1 when at round i of E ′

Z,A

the j-th query to the random oracle of the k-th participant controlled by the adversary is
successful. Zi,j,k(E

′
Z,A) are independent Bernoulli trials.
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• Zr(E
′
Z,A) ≡

∑r
i=1

∑t′

k=1

∑q−xk

j=1 Zi,j,k(E
′
Z,A).

Rmax
T (E ′

Z,A) ≤ Zr(E
′
Z,A) · w

as the adversary cannot gain rewards for more blocks than these it has produced.

• E[Zi,j,k] = p

By Chernoff bound we have that for any δ ∈ (0, 1) thus also for δ1

Pr[Zr(E
′
Z,A) < p · (q · t′ − x) · r · (1 + δ1)] ≥ 1− e

−
(δ1)

2 · p · (q · t′ − x) · r

3 (6)

In addition with probability 1 it holds:

p · (q · t′ − x) · r · (1 + δ1) ≤ p · q · t′ · r · (1 + δ1)

By the above equation we can conclude (5).
Finally by equations (1),(5) we have that

Umax
T (E ′

Z,A) ≤ Umin
T (EZ,HT

) · (1 + 4 · δ1 + (1 + 4 · δ1) · s) (7)

with overwhelming probability in r and also in κ.
In more detail this can be proved as follows:

• Let F be the final event where it holds

Umax
T (E ′

Z,A) ≤ Umin
T (EZ,HT

) · (1 + 4 · δ1 + (1 + 4 · δ1) · s)

We want to prove that Pr[F ] ≥ 1− negl(r).

• Let A be the event where

Umin
T (EZ,HT

) >
p · q · t′

1 + p · q · t′
· r · (1− δ1) · w

By (1) we have Pr[A] ≥ 1− negl(r).

• Let B be the event where

Umax
T (E ′

Z,A) < p · q · t′ · r · (1 + δ1) · w

By (5) we have that Pr[B] ≥ 1− negl(r).

• Using the above statements we have that

Pr[A ∩B] = Pr[A]− Pr[A ∩ ¬B] ≥ 1− negl(r)

At this point in order to prove (7) we only have to prove that

Pr[A ∩B] ≤ Pr[F ]

In order to prove the above statement we will suppose that the event A∩B holds and we
will prove that the event F holds.

So we have that when A ∩B holds then:
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Umax
T (E ′

Z,A) ≤ p · q · t′ · r · (1 + δ1) · w

≤
p · q · t′

1 + p · q · t′
· r · (1− δ1) · w · (1 + 4 · δ1 + (1 + 4 · δ1) · s)

< Umin
T (EZ,HT

) · (1 + 4 · δ1 + (1 + 4 · δ1) · s)

This means that when A ∩B holds then also F holds that is what we want to prove.
Note that

1 + δ1
1− δ1

≤ 1 + 4 · δ1

as δ1 ∈ (0, 0.25). This can be proved if we find the minimum of the function

f(x) = −(1 + x)/(1 − x) + 1 + 4x

by its monotony.
Moreover p·q ·t′ ≤ p·q ·n = s, where s the expected number of solutions of all the participants

per round. Note that when the system is synchronized s is close to 0.

C.3 Utility Equivalent to Absolute Rewards-Block Reward Changes

We will prove that the previous result holds also in the case when (i) the block reward changes
every at least l · κ rounds where l a positive constant and κ the security parameter and (ii) the
environment terminates the execution at least l · κ rounds after the last change of the block
reward.

By Lemma 2 we have the following lemma.

Lemma 4. For every r-admissible environment Z with input 1p
′(κ), where κ the security pa-

rameter it holds

Rmax
T (EZ,HT

) ≡ Rmin
T (EZ,HT

) ≡

m+2∑

j=1

XT
rj (EZ,HT

) · wj−1

where r1, ..., rm are the rounds when the block reward changes, r0 is the first round, rm+1 the
last complete round of execution EZ,HT

, rm+2 = rm+1 + 1, w0, w1, ..., wm = wm+1 are the block
rewards respectively and XT

rj(EZ,HT
) are the successful rounds for T between the rounds rj−1

and rj − 1 included rj−1 and rj − 1.

Note that XT
rj (EZ,HT

) is a sum of independent Boolean random variables that are Bernoulli
trials. In addition

Lemma 5.

Rmax
T (E ′

Z,A) ≤

m+2∑

j=1

Zrj(E
′
Z,A) · wj−1,

where r1, ..., rm are the rounds when the block reward changes, r0 is the first round, rm+1 the
last complete round of execution EZ,HT

, rm+2 = rm+1 + 1, w0, w1, ..., wm = wm+1 are the block
rewards respectively, Zrj(E

′
Z,A) is the number of blocks produced by the adversary between the

rounds rj−1 and rj − 1 included rj−1 and rj − 1.

Theorem. Supposing that (i) the block reward changes every at least l · κ rounds where l a
positive constant and κ the security parameter and (ii) the environment terminates the execution
at least l · κ rounds after the last change of the block reward then it holds: for any δ1 ∈ (0, 0.25)
such that 4 · δ1 · (1+ s)+ s < 1, where s the expected number of solutions per round, the Bitcoin
with fixed target in a synchronous setting is (n − 1, 4 · δ1 · (1 + s) + s, 0)-EVP according to the
utility function absolute rewards (def.2).
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Proof. We have for j ∈ {1, ...,m} for any δ2 ∈ (0, 1)

XT
rj (EZ,HT

) · wj >
p · q · t′

1 + p · q · t′
· (rj − rj−1) · (1− δ2) · wj > 0

with overwhelming probability in rj − rj−1 and as rj − rj−1 ≥ l · κ also in κ.
In addition

(XT
rm+1

(EZ,HT
) +XT

rm+2
(EZ,HT

)) · wm >
p · q · t′

1 + p · q · t′
· (rm+1 − rm + 1) · (1− δ2) · wm

with overwhelming probability in rm+1 − rm + 1 ≥ l · κ.
Moreover for j ∈ {1, ...,m} for any δ1 ∈ (0, 1) it holds

Zrj (E
′
Z,A) < p · q · t′ · (rj − rj−1) · (1 + δ1)

with overwhelming probability in rj − rj−1 and as rj − rj−1 ≥ l · κ also in κ.
Also

Zrm+1
(E ′

Z,A) + Zrm+2
(E ′

Z,A) < p · q · t′ · (rm+1 − rm + 1) · (1 + δ1)

with overwhelming probability in rm+1 − rm + 1 ≥ l · κ.
So for j ∈ {1, ...,m} it holds for any δ1 ∈ (0, 0.25)

Zrj(E
′
Z,A) · wj < XT

rj (EZ,HT
) · wj · (1 + 4 · δ1 + (1 + 4 · δ1) · s)

with overwhelming probability in κ.
In addition

(Zrm+1
(E ′

Z,A) + Zrm+2
(E ′

Z,A)) · wm < (XT
rm+1

(EZ,HT
) +XT

rm+2
(EZ,HT

)) · wm · l

with overwhelming probability in κ, where l = (1 + 4 · δ1 + (1 + 4 · δ1) · s).
As a result with overwhelming probability in κ it holds for any δ1 ∈ (0, 0.25)

Rmax
T (E ′

Z,A)

≤
m∑

j=1

[Zrj (E
′
Z,A) · wj−1] + (Zrm+1

(E ′
Z,A) + Zrm+2

(E ′
Z,A)) · wm

<

m∑

j=1

[XT
rj (EZ,HT

) · wj−1 · (1 + 4 · δ1 + (1 + 4 · δ1) · s)]

+ (XT
rm+1

(EZ,HT
) +XT

rm+2
(EZ,HT

)) · wm · (1 + 4 · δ1 + (1 + 4 · δ1) · s)

wm=wm+1

≤ (
m+2∑

j=1

XT
rj (EZ,HT

) · wj−1) · (1 + 4 · δ1 + (1 + 4 · δ1) · s)

≡ Rmin
T (EZ,HT

) · (1 + 4 · δ1 + (1 + 4 · δ1) · s)

C.4 Absolute Rewards Minus Absolute Cost

In this subsection we prove that if a static adversary with fixed cost wants to maximize its profit
and the cost of each query to the random oracle is small enough compared to the block reward,
then the adversary has no incentives to deviate from the Bitcoin protocol even if it controls
n− 1 participants.
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When we say profit we mean absolute rewards minus absolute cost or in other words the flat
reward the adversary gets from the blocks that it has produced and are included in the public
ledger minus the cost that it has paid due to the queries to the random oracle.

Note that the smaller the cost of each query is, the better EVP we have. We suppose in this
subsection for simplicity that the reward of each block is fixed and equal to w. However the
theorem also holds when we assume that (i) the block reward changes every at least l ·κ rounds
where l a positive constant and κ the security parameter and (ii) the environment terminates
the execution at least l ·κ rounds after the last change of the block reward. The exact theorems
and proofs of this case are given in the next subsection.

Theorem. Suppose that there exists φ ∈ (0, 1 − s) such that c < p · w · φ/(1 + p · q · (n − 1)).
Then, supposing that the reward of each block is a constant w, it holds: for any δ1 ∈ (0, 0.25),
such that c ≤ p · w · (1 − δ1) · φ/(1 + p · q · (n − 1)) and 4 · δ1 · (1 + s) + s < 1− φ, where s the
expected number of solutions per round, the Bitcoin with fixed target in a synchronous setting
is (n− 1, (4 · δ1 · (1 + s) + s)/(1− φ), 0)-EVP according to the utility function absolute rewards
minus absolute cost (def.2).

Proof. We choose an arbitrary r-admissible environment Z with input 1p
′(κ), where κ the secu-

rity parameter and an arbitrary adversary A static with fixed cost that is PPT and it controls
an arbitrary set T with t′ participants where t′ ∈ {1, ..., n − 1}. The adversary as described
above has chosen the number of the queries that each participant controlled by the adversary
will not ask during each round. Let x the total number of the queries that all the participants
controlled by the adversary will not ask during each round.

We will have two executions of the Bitcoin protocol with the same environment, but with
different adversary : In the first execution EZ,HT

the adversary isHT and in the second execution
E ′

Z,A the adversary is A.
Let φ ∈ (0, 1 − s) such that c < p · w · φ/(1 + p · q · (n − 1)) ≤ p · w · φ/(1 + p · q · t′).

We choose an arbitrary δ1 ∈ (0, 0.25) such that c ≤ p · w · (1 − δ1) · φ/(1 + p · q · (n − 1)) and
4 · δ1 +(1+4 · δ1) · s < 1−φ . Then by hypothesis and by the fact that HT follows the protocol
and asks all the queries that are available to the participants controlled by the adversary during
each round we have that :

Umin
T (EZ,HT

) >
p · q · t′

1 + p · q · t′
· r · (1− δ1) · w − c · q · t′ · r (8)

≥
p · q · t′

1 + p · q · t′
· r · (1− δ1) · w −

q · t′ · r · p · w · (1− δ1) · φ

(1 + p · q · t′)
(9)

=
p · q · t′

1 + p · q · t′
· r · (1− δ1) · w · (1− φ) (10)

> 0 (11)

with overwhelming probability in r and also in κ.
Regarding E ′

Z,A, given that during each round the adversary asks all the available queries
except for the x queries that it has specified in the beginning of the execution, the following
holds with overwhelming probability in κ:

Umax
T (E ′

Z,A) < p · (q · t′ − x) · r · (1 + δ1) · w − c · (q · t′ − x) · r (12)

By our assumption that c ≤ p · w · (1 − δ1) · φ/(1 + p · q · t′) for φ ∈ (0, 1 − s) we have that
f(x) = p · (q · t′ − x) · r · (1 + δ1) · w − c · (q · t′ − x) · r for x ∈ [0,∞) is decreasing.

So it holds with overwhelming probability in κ that:

Umax
T (E ′

Z,A) < p · q · t′ · r · (1 + δ1) · w − c · q · t′ · r (13)
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As a result it holds with overwhelming probability in r and in κ

Umax
T (E ′

Z,A)− Umin
T (EZ,HT

)

(13),(8)
< p · q · t′ · r · (1 + δ1) · w −

p · q · t′

1 + p · q · t′
· r · (1− δ1) · w

=
p · q · t′

1 + p · q · t′
· r · (1− δ1) · w · (1− φ) · (

(1 + δ1) · (1 + p · q · t′)

(1− δ1) · (1− φ)
−

1

1− φ
)

10
< Umin

T (EZ,HT
) ·

4 · δ1 + (1 + 4 · δ1) · s

1− φ

C.5 Utility Equivalent to Absolute Rewards Minus Absolute Cost-Block Re-

ward Changes

We will show that the result of the previous subsection holds also when we assume that (i) the
block reward changes every at least l · κ rounds where l a positive constant and κ the security
parameter and (ii) the environment terminates the execution at least l · κ rounds after the last
change of the block reward. By Lemmas 4,5 and by the fact that the adversary is static with
fixed cost we have the following lemmas

Lemma 6. For every r-admissible environment Z with input 1p
′(κ), where κ the security pa-

rameter it holds

Umax
T (EZ,HT

) ≡ Umin
T (EZ,HT

) ≡
m+2∑

j=1

XT
rj (EZ,HT

) · wj−1 −
m+2∑

j=1

∑

l:Pl∈T

Cl,rj(EZ,HT
)

where r1, ..., rm are the rounds when the block reward changes, r0 is the first round, rm+1 the
last complete round of execution EZ,HT

, rm+2 = rm+1 +1 , w0, w1, ..., wm = wm+1 are the block
rewards respectively, XT

rj (EZ,HT
) are the successful rounds for T and

∑
l:Pl∈T

Cl,rj(EZ,HT
) the

cost for T respectively between the rounds rj−1 and rj − 1 included rj−1 and rj − 1.

Recall that the cost of each round is fixed and determined in the beginning of the execution.

Lemma 7.

Umax
T (E ′

Z,A) ≤
m+2∑

j=1

Zrj(E
′
Z,A) · wj−1 −

m+2∑

j=1

∑

l:Pl∈T

Cl,rj(E
′
Z,A) (14)

where r1, ..., rm are the rounds when the block reward changes, r0 is the first round, rm+1 the
last complete round of execution E ′

Z,A, rm+2 = rm+1 + 1 , w0, w1, ..., wm = wm+1 are the block
rewards respectively, Zrj(E

′
Z,A) is the number of blocks produced by the adversary between the

rounds rj−1 and rj − 1 included rj−1 and rj − 1.

Theorem. We assume that (i) the block reward changes every at least l · κ rounds where l a
positive constant and κ the security parameter and (ii) the environment terminates the execution
at least l · κ rounds after the last change of the block reward. Let wj for j ∈ {0, ...,m} be
all the block rewards respectively. Assuming that there exists φ ∈ (0, 1 − s) such that c <
p ·wj · φ/(1 + p · q · (n− 1)) for all j ∈ {0, ...,m}, then it holds: for any δ1 ∈ (0, 0.25), such that
c ≤ p ·wj · (1− δ1) ·φ/(1+p ·q · (n−1)) for all j ∈ {0, ...,m} and 4 ·δ1 · (1+s)+s < 1−φ, where
s the expected number of solutions per round, the Bitcoin with fixed target in a synchronous
setting is (n − 1, (4 · δ1 · (1 + s) + s)/(1 − φ), 0)-EVP according to the utility function absolute
rewards minus absolute cost (def.2).
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Proof. Let t′ ∈ {1, ..., n−1}, φ ∈ (0, 1−s) such that c < p·wj ·φ/(1+p·q·(n−1)) ≤ p·wj ·φ/(1+p·q·
t′) for all j ∈ {0, ...,m} and arbitrary δ1 ∈ (0, 0.25) such that c ≤ p·wj ·(1−δ1)·φ/(1+p·q·(n−1))
for all j ∈ {0, ...,m} and 4 · δ1 + (1 + 4 · δ1) · s < 1− φ.

By the previous lemmas, by the assumption that for any j ∈ {0, ...,m}, c ≤ p ·wj · (1− δ1) ·
φ/(1 + p · q · t′) and by Chernoff bound we have with overwhelming probability in κ :

Umin
T (EZ,HT

) ≡

m∑

j=1

[XT
rj (EZ,HT

) · wj−1] + (XT
rm+1

(EZ,HT
) +XT

rm+2
(EZ,HT

)) · wm−

m+2∑

j=1

[
∑

l:Pl∈T

Cl,rj(E
′
Z,A)]

>
m∑

j=1

[
p · q · t′

1 + p · q · t′
· (rj − rj−1) · (1− δ1) · wj−1 · (1− φ)]+

p · q · t′

1 + p · q · t′
· (rm+1 − rm + 1) · (1− δ1) · wm · (1− φ)

> 0

and

Umax
T (E ′

Z,A) ≤
m∑

j=1

[Zrj (E
′
Z,A) · wj−1] + (Zrm+1

(E ′
Z,A) + Zrm+2

(E ′
Z,A)) · wm−

m+2∑

j=1

∑

l:Pl∈T

Cl,rj(E
′
Z,A)

<

m∑

j=1

[p · (q · t′) · (rj − rj−1) · (1 + δ1) · wj−1 − c · (q · t′) · (rj − rj−1)]+

p · (q · t′) · (rm+1 − rm + 1) · (1 + δ1) · wm − c · (q · t′) · (rm+1 − rm + 1)

As a result, we can prove in the same way as the previous subsection that it holds with over-
whelming probability in r and in κ the following :

Umax
T (E ′

Z,A)− Umin
T (EZ,HT

) ≤ Umin
T (EZ,HT

) ·
4 · δ1 + (1 + 4 · δ1) · s

1− φ

C.6 Negative Results: Relative Rewards

In this subsection we prove that when the utility is based on relative rewards, i.e., the ratio of
rewards of the strategic coalition of the adversary over the total rewards of all the participants,
the Bitcoin with fixed target in asynchronous setting is not EVP. In this way we show how
our model can be used to prove negative results. The core idea is to use the selfish mining
strategy [22,26,33,61,67] to construct an attack that invalidates the equilibrium property. This
kind of attack was used also in [31] as argument for the tightness of “chain quality”. Without
loss of generality, we will assume that the reward of each block is the same and equal to w (the
negative result carries trivially to the general case).

In more detail, for an arbitrary t ∈ {1, ..., n − 1} and t′ < min{n/2, t+ 1} we show that the

protocol is not a (t, ǫ, ǫ′)-EVP for ǫ+ ǫ′ <
t′

n− t′
· (1− δ′)−

t′

n
· (1+ δ′′) · (1+ s), for δ′, δ′′ small.

Recall that s = p · q · n are the expected number of solutions per round.

31



Theorem. Let t ∈ {1, ..., n − 1} and t′ < min{n/2, t + 1}. Then for any ǫ+ ǫ′ <
t′

n− t′
· (1 −

δ′)−
t′

n
· (1 + δ′′) · (1 + s), where s the expected number of solutions per round, for some δ′, δ′′,

following the Bitcoin with fixed target in asynchronous setting is not (t, ǫ, ǫ′)-EVP according to
the utility function relative rewards (def.2).

Proof. Let t ∈ {1, ..., n − 1}. We consider an arbitrary r-admissible environment Z with input
1p

′(κ) and we will describe a PPT static adversary A0 with fixed cost (who controls a set T with
t′ < min{n/2, t+ 1} participants) such that it holds with high probability :

Umax
T (E ′

Z,A0
)− Umin

T (EZ,HT
) (15)

≥
t′ · (1− δ1) · (1− ǫ′′′)

(n− t′) · (1 + δ4)
−

t′ · (1 + p · q · n)

n
·
(1 + δ2)

(1− δ3)
(16)

= B (17)

for any δ1, δ2, δ3, δ4 ∈ (0, 1) and a small ǫ′′′ > 0.
After that we prove our theorem by contradiction. In more detail, we suppose that there

exist ǫ, ǫ′ such that ǫ+ ǫ′ < B so that the Bitcoin with fixed target in asynchronous setting is
(t, ǫ, ǫ′)-EVP and we will end up in contradiction . In other words we suppose that there exist
ǫ, ǫ′ such that ǫ+ ǫ′ < B so that

Umax
T (E ′

Z,A)− Umin
T (EZ,HT

) ≤| Umin
T (EZ,HT

) | ·ǫ+ ǫ′ (18)

with overwhelming probability, where A an arbitrary PPT static adversary with fixed cost that
controls a set T with at most t participants and Z an arbitrary r-admissible environment with
input 1p

′(κ).
Then we have

Umax
T (E ′

Z,A)− Umin
T (EZ,HT

) (19)

≤| Umin
T (EZ,HT

) | ·ǫ+ ǫ′ (20)

≤ ǫ+ ǫ′ (21)

< B (22)

with overwhelming probability.
However this does not hold because there exists A0 that satisfies (16).
In order to prove equation (16): firstly we find an upper bound for Umin

T (EZ,HT
) that holds

with overwhelming probability in the security parameter κ.
Recall that T is an arbitrary set with t′ < min{n/2, t + 1} participants that adversary A0,

whom we will describe later, controls.
By Lemma 2

Rmin
T (EZ,HT

) ≡ Rmax
T (EZ,HT

) ≡ XT
r (EZ,HT

) · w

As a result by Chernoff bound it holds for any δ2 ∈ (0, 1) with overwhelming probability in r
and also in κ :

0 < Rmax
T (EZ,HT

) < p · q · t′ · (1 + δ2) · w · r. (23)

By Lemma 1

Rmin
S (EZ,HT

) ≡ Rmax
S (EZ,HT

) ≡ XS
r (EZ,HT

) · w (24)

As a result for any δ3 ∈ (0, 1) with overwhelming probability in r and also in κ :

Rmin
S (EZ,HT

) ≡ Rmax
S (EZ,HT

) >
p · q · n

1 + p · q · n
· r · (1− δ3) · w > 0 (25)
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Recall that the executions last at least one round. So we know that with overwhelming proba-
bility in κ for any j such that Pj honest

U j
T (EZ,HT

) ≡
Rj

T (EZ,HT
)

Rj
S(EZ,HT

)

as Rj
S(EZ,HT

) 6= 0.
As a result we have that for any δ2, δ3 ∈ (0, 1) it holds with overwhelming probability in r

and also in κ that:

Umin
T (EZ,HT

) ≤ Umax
T (EZ,HT

) (26)

≤
Rmax

T (EZ,HT
)

Rmin
S (EZ,HT

)
(27)

(23),(25)
≤

p · q · t′ · (1 + δ2) · w · r
p · q · n

1 + p · q · n
· r · (1− δ3) · w

(28)

=
t′ · (1 + p · q · n)

n
·
(1 + δ2)

(1− δ3)
(29)

Now we will describe the adversary A0 who does a type of selfish mining, [22,26,33,61,67],
which was described also in [31] and we will find a lower bound for Umax

T (EZ,A0
) with high

probability (not negligible).
A0 chooses to ask all the queries. Initially extends the chain coming from an honest partic-

ipant, but when it finds a block it does not send it to the Diffuse Functionality. It continues
working on its private chain until another participant announces a block. Then the adversary
reveals one of its blocks to all the honest participants. When this happens all the honest partici-
pants adopt its block instead of the block coming from the honest participant. If the adversarial
private chain becomes smaller than the chain coming from an honest participant then the ad-
versary adopts the honest participant’s chain. Note that when one of the participants controlled
by the adversary finds a block during a round, the adversary uses the rest available queries for
finding a block that extends this block.

• X
S\T
r (E ′

Z,A0
) ≡

∑r
m=1 X

S\T,m(E ′
Z,A0

) is the number of the successful rounds for S \ T
until the last complete round r of E ′

Z,A0
.

• Zr(E
′
Z,A0

) ≡
∑r

i=1

∑t′

k=1

∑q−xk

j=1 Zi,j,k(E
′
Z,A0

). Zr(E
′
Z,A0

) is the number of the blocks the
adversary A0 has produced until the last complete round r of E ′

Z,A0
.

We have that

Rmax
S (E ′

Z,A0
) ≡ Rmin

S (E ′
Z,A0

) ≡ XS\T
r (E ′

Z,A0
) · w (30)

This holds because of Lemma 1 and due to the fact that the adversary A0 does not contribute
to the extension of the public ledger as it only replaces blocks. In addition it announces its
blocks to all honest participants.

In addition with overwhelming probability in κ by Chernoff bound

Rmin
S (E ′

Z,A0
) ≡ Rmax

S (E ′
Z,A0

) > 0

and as a result with overwhelming probability in κ

U j
T (EZ,A0

) =
Rj

T (EZ,A0
)

Rj
S(EZ,A0

)
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Regarding Rmin
T (E ′

Z,A0
): the adversary A0 announces its block only if an honest participant

finds a block and when this happens, it announces it to all the honest participants. The honest
participants always adopt its blocks . So Rmax

T (E ′
Z,A0

) ≡ Rmin
T (E ′

Z,A0
) with probability 1. The

number of the adversarial blocks B(E ′
Z,A0

) in the local chain of an arbitrary honest at the end
of the last complete round r of the execution E ′

Z,A0
are, as stated in [31], with high probability

equal to the number of the blocks Zr(E
′
Z,A0

) produced by the adversary minus a quantity
bounded by ǫ′′ · p · q · r · t′, for small ǫ′′ > 0.

This happens because when the adversary A0 has found more than one block during each
round it means that all these blocks form a chain and extend the length of the local chains
of all the honest participants. Note that when the execution ends, the adversary may have a
small quantity of blocks that are unused in the case the honest participants did not have enough
successful rounds.

Recall that contrary to the adversary, when the honest participants have found more than
one block during a round, these blocks do not form a chain, because (i) an honest participant
never sends more than one block to the Diffuse Functionality, and (ii) when an honest participant
receives a block from another participant, it does not extend this new block until the end of the
round.

By Chernoff bound we have with high probability for any δ1 ∈ (0, 1) and a small ǫ′′′ > 0

Rmin
T (E ′

Z,A0
) ≥ p · q · t′ · r · (1− δ1) · w · (1− ǫ′′′) (31)

Moreover by Chernoff bound it holds with overwhelming probability in κ for any δ4 ∈ (0, 1)

Rmax
S (E ′

Z,A0
) ≤ p · q · (n− t′) · r · w · (1 + δ4) (32)

So we have with high probability for any δ4, δ1 ∈ (0, 1) and small ǫ′′′ > 0

Umax
T (E ′

Z,A0
) ≥ Umin

T (E ′
Z,A0

) (33)

≥
Rmin

T (E ′
Z,A0

)

Rmax
S (E ′

Z,A0
)

(34)

≥
p · q · t′ · r · (1− δ1) · (1− ǫ′′′) · w

p · q · (n− t′) · r · w · (1 + δ4)
(35)

=
t′ · (1− δ1) · (1− ǫ′′′)

(n− t′) · (1 + δ4)
(36)

Finally by the above and by equality (26) for any δ1, δ2, δ4, δ3 ∈ (0, 1) and small ǫ′′′ > 0 it
holds with high probability :

Umax
T (E ′

Z,A0
)− Umin

T (EZ,HT
) (37)

≥
t′ · (1− δ1) · (1− ǫ′′′)

(n− t′) · (1 + δ4)
−

t′ · (1 + p · q · n)

n
·
(1 + δ2)

(1− δ3)
(38)

= B (39)

D Our Proofs Regarding Incentives in a Fair Blockchain Pro-

tocol and the Fruitchain Protocol

D.1 Proof of Theorem 6

Proof. We choose an arbitrary r-admissible environment Z with input 1p
′(κ), where κ the se-

curity parameter and an arbitrary adversary A static that is PPT and it controls a set T that
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it includes t′ ≤ t participants . We will examine two executions of the blockchain protocol
with the same environment Z, but with different adversary : In the first execution EZ,HT

the
adversary is HT and in the second execution E ′

Z,A the adversary is A.
We will prove that with overwhelming probability in the security parameter for any j :

Pj honest we have:

U j
T (E

′
Z,A) ≡

Rj
T (E

′
Z,A)

Rj
S(E

′
Z,A)

≤

∑
l:Pl∈T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)
+ δ ·

∑
l:Pl∈S\T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)

(40)

By (t, δ)-weak fairness and by the fact that for any j : Pj honest it holds with overwhelming

probability Rj
S(E

′
Z,A) > 0 we have the following result:

for any j : Pj honest it holds with overwhelming probability in the security parameter

Rj
S\T (E

′
Z,A) ≥ (1− δ) ·

∑
l:Pl∈S\T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)

·Rj
S(E

′
Z,A) ⇒

Rj
T (E

′
Z,A) ≤ Rj

S(E
′
Z,A) · (1− (1− δ) ·

∑
l:Pl∈S\T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)
) ⇒

Rj
T (E

′
Z,A) ≤ Rj

S(E
′
Z,A) · (

∑
l:Pl∈S

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)
− (1− δ) ·

∑
l:Pl∈S\T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)
) ⇒

Rj
T (E

′
Z,A)

Rj
S(E

′
Z,A)

≤

∑
l:Pl∈T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)
+ δ ·

∑
l:Pl∈S\T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)

Note that with overwhelming probability Rj
S(E

′
Z,A) > 0 and as a result

U j
T (E

′
Z,A) ≡

Rj
T (E

′
Z,A)

Rj
S(E

′
Z,A)

(41)

By weak fairness and by the fact that it holds with overwhelming probability Rmin
S (EZ,HT

) >
0 we have the following result:

Umin
T (EZ,HT

) ≥ (1− δ) ·

∑
l:Pl∈T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)

(42)

By equations (40), (42) we have that with overwhelming probability in the security parameter

Umax
T (E ′

Z,A)− Umin
T (EZ,HT

) ≤

∑
l:Pl∈T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)
+

δ ·

∑
l:Pl∈S\T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)

− (1− δ) ·

∑
l:Pl∈T

Cl(EZ,HT
)

∑
l:Pl∈S

Cl(EZ,HT
)

≤ δ

D.2 Proof of Theorem 7

Proof. Given that the Fruitchain protocol satisfies (T0, δ)-approximate fairness property when
the adversary controls at most n/2−1 participants, then it satisfies also (n/2−1, δ)-weak fairness
property under the restriction that the environment performs the protocol so many rounds that
with overwhelming probability (in the security parameter) any honest participant has a chain
of at least T0 fruits. Note that by chain growth rate proved in [64] when r ≥ T0

pf ·(
n
2
+1)·(1−δ)·q and

the adversary controls at most n/2−1 participants, then indeed it holds that with overwhelming
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probability any honest participant has a chain of at least T0 fruits. In addition, by Chernoff
bound and by the fact that the execution lasts at least one round, it holds with overwhelming
probability in κ the following: for any j : Pj honest, for any PPT static adversary A that
controls at most n/2− 1 participants and for any r-admissible environment Z with input 1p

′(κ)

Rj
S(E

′
Z,A) > 0. So by Theorem 6 we have that the Fruitchain protocol is (n/2 − 1, 0, δ)-EVP

under an r-admissible environment where r ≥ T0

pf ·(
n
2
+1)·(1−δ)·q .

D.3 Proof of Theorem 8

In this setting the adversary again is PPT, static with fixed cost, it controls a set of participants
T = {Pi1 , ..., Pit′ } ⊆ {P1, ..., Pn} = S and chooses in the beginning the number xm of the
questions that each participant controlled by the adversary Pim will not ask during each round
of the execution.

Proof. Let an arbitrary δ1 ∈ (0, 0.25) such that c ≤ pf · wf · (1 − δ1) · φ and 4 · δ1 < 1 − φ.
We choose also an arbitrary r-admissible environment Z with input 1p

′(κ), where κ the security
parameter and an arbitrary adversary A static with fixed cost that is PPT and it has corrupted
a set T with t′ participants, where t′ ∈ {1, ..., n − 1}. Note that if the adversary controls zero

participants then the proof is trivial because adversary’s utility is always zero. Let x =
∑t′

m=1 xm
be the total number of the queries that all the corrupted participants collectively do not ask
during each round. Note that x is a constant, not a random variable, as it is determined in the
beginning by the static adversary. It holds 0 ≤ x ≤ q · t′.

We will examine two executions of the Fruitchain protocol with the same environment, but
with different adversary: in the first execution EZ,HT

the adversary is HT and in the second
execution E ′

Z,A the adversary is A. Note that the last complete round of the executions is r.
Firstly we have:

Umin
T (EZ,HT

) ≥ q · t′ · pf · r · (1− δ1) ·wf − c · q · t′ · r ≥ q · t′ · pf · r · (1− δ1) ·wf · (1−φ) > 0 (43)

with overwhelming probability in κ.
The above equation is proved by Chernoff bound and taking into account that all the fruits

produced by T will be included in the local chain of all the honest participants at the end of
the round r.

In addition, the adversary cannot earn rewards for more fruits than that it has produced.
Moreover c ≤ pf · wf · (1− δ1) · φ . As a result by Chernoff bound

Umax
T (E ′

Z,A) ≤ (q ·t′−x)·pf ·r ·(1+δ1)·wf−c·(q ·t′−x)·r ≤ q ·t′ ·pf ·r ·(1+δ1)·wf−c·q ·t′ ·r (44)

with overwhelming probability in κ.
As a result

Umax
T (E ′

Z,A)− Umin
T (EZ,HT

) ≤ (
1 + δ1
1− δ1

− 1) ·
1

1− φ
· Umin

T (EZ,HT
) (45)

≤ 4 · δ1 ·
1

1− φ
· Umin

T (EZ,HT
) (46)

with overwhelming probability in κ.
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