Verifiable Management of Private Data under Byzantine Failures

Eleftherios Kokoris-Kogias
EPFL

Nicolas Gailly
Pegasys R&D, Consensys

Ewa Syta
Trinity College

Abstract

In this paper, we present CALYPsO, an auditable data-management
framework that lends itself to decentralize the sharing and life-cycle
management of private data as well as to enforce fair, atomic dis-
closure of data protecting against front-running attacks. To achieve
these goals, CaLYPso deploys on-chain secrets, a novel abstraction
that enforces the deposition of an auditable trace whenever users
access confidential data. On-chain secrets combine verifiable se-
cret sharing and blockchains to ensure accountability, fairness, and
liveness of the data-sharing process without centralized interme-
diaries. By employing skipchains for identities and access-control
rules, CALYPso provides dynamically changing access control while
enabling users to keep control over their identities.

Our benchmarks show that the latency of processing transactions
scales linearly with the number of involved nodes (trustees) and is in
the range of 0.2 to 8 seconds for 16 to 128 trustees. We also evaluated
CALYPsO in two contexts using simulated and real workloads. First,
a document sharing application, where, depending on the load,
the latency overhead ranges from 0.2X to 5x compared to a semi-
centralized system. Second, a zero-collateral lottery that, unlike the
current state-of-the-art solutions, always terminates in one round
independently of the number of participants.

1 Introduction

New data privacy legislation, such as the European Union General
Data Protection Regulation (GDPR) [17] or the EFF’s call for infor-
mation fiduciary rules for businesses [63], has reignited interest in
secure management of private data. The ability to effectively share
and manage data is one of the cornerstones of the digital revolu-
tion that turned many applications and processes to be data-driven
and data-dependent. However, the commonly used centralized data
management approach has repeatedly proven to be problematic
in terms of security and fairness due to single points of failure or
compromise. For example, centralized data-sharing solutions are
exposed to the risk of bribery or coercion from parties request-
ing inspection of certain records for which they have no access
permissions [16, 42]. Another risk is that these systems might not
implement all phases of the data management cycle and, e.g., “for-
get” to delete user data [22]. Finally, well-located servers may have
an unfair advantage in accessing information faster than others,
necessitating additional and often burdensome regulations, e.g., to
guarantee fairness for trading markets [37].

Replacing single points of failure with decentralized alternatives
is an obvious approach to achieve more transparent and fair data

Enis Ceyhun Alp

Linus Gasser
EPFL

Sandra Deepthy Siby
EPFL
Philipp Jovanovic
EPFL
Bryan Ford
EPFL

(1.1) Store secret and
access policy for idron

Access-control cothority

j (1.2) Log \ (2.3) Log

secret access

-0

Blockchain

Wanda

Ron’s identity
skipchain (idron)

4

(3.1) Request
secret re-encryption

P —
(3.2) Deliver
re-encrypted secret

Secret-management cothority,

Ron

(4) Decrypt secret

Figure 1: Auditable data sharing in CaLypso: (1) Wanda encrypts
data under the secret-management cothority’s key, specifying the
intended reader (e.g., Ron) and the access policy, and then sends it
to the access-control cothority which verifies and logs it. (2) Ron
downloads the encrypted secret from the blockchain and then re-
quests access to it by contacting the access-control cothority which
logs the query if valid, effectively authorizing Ron’s access to the
secret. (3) Ron asks the secret-management cothority for the secret
shares of the key needed to decrypt the secret by proving that the
previous authorization by access-control cothority was successful.
(4) Ron decrypts the secret. If a specific application requires fair-
ness, the data can be atomically disclosed on-chain.

sharing and management. Decentralized data-sharing can give rise
to data markets controlled by users [69] and not solely by tech
giants such as Google or Facebook; enable sharing of confidential
data between mutually distrustful parties, such as state institutions
or even different countries; or bring the much needed transparency
to lawful access requests [19]. Decentralized data life-cycle manage-
ment can enable effective and guaranteed data retention (e.g., legal
or corporate data retention policies or enforcement of the “right to
be forgotten”), or an implementation of an information-publication
version of a dead man’s switch [15] that enables journalists to create
a contingency plan to have entrusted data disclosed under specific
circumstances. Finally, if correctly implemented, decentralized data
life-cycle management can also result in fair lotteries [6], games
(e.g., poker [39]), and trading (e.g., exchanges [11]).
Unfortunately, current decentralized data-sharing applications [44,

55] fail to manage private data securely unless they forfeit the full
life-cycle management [23] and publish encrypted data on Bitcoin;

or rely on semi-centralized solutions [7, 77]. Furthermore, decen-
tralized applications that rely on the timing of data disclosure to
enforce fairness are susceptible to front-running attacks where
the adversary gets early access to information and unfairly adapts
their strategies. For example, the winner of the Fomo3D [64] event
(gaining a prize of 10.5k Ether (USD $2.2 M at the time)) enforced
an early termination of the lottery by submitting a sequence of
high-fee transactions, which significantly increased his winning
probability. Due to the lack of fairness guarantees, decentralized
exchanges remain vulnerable [11, 71] or resort to centralized order-
book matching (e.g., 0x Project [10]), and decentralized lotteries re-
quire collateral [6] or run in a non-constant number of rounds [50].

In this paper we introduce CALYPSO, a new secure data-manage-
ment framework that addresses the challenge of providing fair and
verifiable access to private information without relying on a trusted
party. To achieve this goal Carypso faces three key challenges.
First, CALYPso has to provide accountability for all accesses to
confidential data to ensure that secrets are not improperly disclosed
and to enforce proper recording of data accesses. Second, CALYPsO
has to prevent front-running attacks and guarantee fair access to
information. Third, CaLYpso has to enable data owners to maintain
control over the data they share, and data consumers to maintain
access even when their identities (public keys) are updated. In
particular, CaLypso should allow for flexible updates to access-
control rules and user identities, e.g., to add or revoke access rights
or public keys. Figure 1 provides an overview of a typical data-
sharing application using CALYPso that builds on top of a novel
abstraction called on-chain secrets (OCS) and provides dynamic
access-control and identity management.

On-chain secrets addresses the first two challenges by combin-
ing threshold cryptography [62, 66, 67] and blockchain technol-
ogy [35, 74] to enable users to share their encrypted data with
collective authorities (cothorities) that are responsible for enforc-
ing access-control and atomically disclosing data to authorized
parties. Furthermore, CALYPSO combines on-chain secrets with
skipchains [34, 53] in order to enable dynamic access-control and
identity management. We present two concrete instantiations of
on-chain secrets, namely one-time secrets and long-term secrets, that
have different trade-offs in terms of functionality and computational
and storage overheads.

To evaluate CALYPSO, we implemented a prototype in Go and ran
experiments on commodity servers. We implemented both versions
of on-chain secrets and show that they scale linearly in the number
of trustees exhibiting a moderate overhead of 0.2 to 8 seconds
for cothorities with 16 to 128 trustees. Furthermore, in addition
to evaluations on simulated data, we tested two deployments of
CALypso using real data traces. First, we deployed a document-
sharing application and tested it under different loads. CarLypso
takes 10-20 (10-150) seconds to execute a write (read) request, and
has a 0.2X to 5% latency overhead compared to a semi-centralized
solution that stores data in the cloud. Furthermore, we show that
CaLrypso-based zero-collateral lotteries significantly outperform
the state-of-the-art as they require 1 and logn rounds to finish,
respectively, with n denoting the number of participants.

In summary, this paper makes the following contributions.

e We introduce CALYPSO, a decentralized framework for au-
ditable management of private data while maintaining fair-
ness and confidentiality (see Section 3). CALYPSO enables
dynamic updates to access-control rules without compromis-
ing security.

e We present on-chain secrets and its two implementations,
one-time and long-term secrets, that enable transparent and
efficient management of data without requiring a trusted
third party (see Section 4).

e We demonstrate the feasibility of using CAaLypso to address
the data sharing needs of actual organizations by present-
ing three classes of realistic, decentralized deployments: au-
ditable data sharing, data life-cycle management, and atomic
data publication (see Section 5). To evaluate our system and
conduct these feasibility studies, we created an implementa-
tion of CaLypso which was independently audited and will
be released as open-source (see Sections 6 and 7).

2 Motivating Applications and Background

In this section, we first motivate CALYPSO by describing how it can
enable security and fairness in three different classes of applications:
auditable data sharing, data life-cycle management, and atomic
data publication. (See Section 5 for real-worlds deployments using
CALYPso). We then summarize the main cryptographic building
blocks that we rely on in the rest of the paper.

2.1 Motivating Examples

Auditable Data Sharing. Current cloud-based data-sharing sys-
tems (e.g., Dropbox or Google Drive) provide a convenient way
to store and share data, however, their main focus is on integrity
whereas ensuring data confidentiality and access accountability are
often secondary, if provided at all. Further, clients must trust the
individual companies that these properties are indeed achieved in
practice as clients, for variety of reasons, are typically not able to
verify these security guarantees themselves. Furthermore, many
systems often provide only retroactive and network-dependent
detection mechanisms for data integrity failures [43, 48]. Conse-
quently, any secure data-sharing system should be decentralized to
avoid the need to rely on trusted third parties, and it should provide
integrity, confidentiality, and accountability and ensure that any
violations can be detected proactively.

Current decentralized data-sharing applications [44, 55, 70, 75]
that focus on shared access to private data often fail to manage
these private data in a secure and accountable manner, especially
when it comes to sharing data between independent and mutually-
distrustful parties. They either ignore these issues altogether [31,
76], fall back on naive solutions [23], or use semi-centralized ap-
proaches [7, 27, 77], where access information and hashes of the
data are put on-chain but the secret data is stored and managed
off-chain, hence violating the accountability requirement.

To address the above challenges and enable secure decentralized
data-sharing applications, CALYPsO uses threshold cryptography
and distributed-ledger technology to protect the integrity and con-
fidentiality of shared data and to ensure data-access accountability
by generating a third-party verifiable audit trail for data accesses.
Designers of decentralized applications can further use CALYPSO to

Verifiable Management of Private Data under Byzantine Failures

achieve additional functionalities such as monetizing data accesses
or providing proofs to aid investigations of data leaks or breaches.

Data Life-Cycle Management. Custodian systems can provide
policy-based data deletion and publication mechanisms unlocking
a variety of useful data life-cycle management applications.

Users have currently little to no control over how their data is
stored, maintained, and processed at cloud-based service providers
like Google or Facebook, making it particularly challenging for EU
citizens to enact their right to be forgotten as mandated by the EU
GDPR legislature [17]. Policy-based data deletion mechanisms of
custodian systems could provide a way out of this dilemma.

Provable data publication based on user-specified policies would
further permit automatic publication of documents, such as legal
wills or estate plans, when certain conditions are met. This func-
tionality would also enable to implement digital life insurances for
whistleblowers where files are published automatically unless the
custodian receives a digitally signed “heartbeat” message from the
insured person on a regular basis [15, 59].

However, designing such custodian systems is a challenging
task as straightforward centralized solutions provide little to no
protection against single points of failure or compromise, bribery
or coercion. This results in a high amount of risk for users who
might rely on such (centralized) custodians. Previous projects have
attempted to design such systems but they all exhibit shortcomings,
e.g., in terms of failure resilience or guaranteed erasure of data [22].

Moving to fully decentralized custodian, however, bears new
challenges in terms of how to specify and implement data deletion,
publication, and policy mechanisms in this deployment model and
how to integrate these concepts with each other in a secure way.

CaLypso solves these challenges with on-chain secrets and an
expressive policy-mechanism that enables the revocation of access
rights for everyone, effectively preventing any access to the secrets
stored on-chain. Furthermore, the policy mechanism can express
not only time-based but also event-based public decryption (e.g.,
reveal data in the absence of a heartbeat message).

Atomic Data Publication. Security and fairness requirements sig-
nificantly change when an application is deployed in a Byzantine,
decentralized environment as opposed to a traditional, centralized
setting. For example, an adversary can easily gain an unfair advan-
tage over honest participants through front-running [11, 64, 71] if
decentralized applications, such as lotteries [6], poker games [39],
or exchanges [11], are not designed with such attacks in mind. To
protect users against front-running, these applications often fall
back to trusted intermediaries giving up decentralization, or they
implement naive commit-and-reveal schemes exposing themselves
to liveness risks where adversaries can DoS the application or force
it to restart by refusing to reveal their inputs. To provide failure
resilience and protect against such late aborts, many applications in-
troduce complex incentive mechanisms whose security guarantees
are usually difficult to analyze [6, 39].

In CALYPsO, all inputs committed by the participants (e.g., lottery
randomness, trading bids, game moves) remain confidential up
to a barrier point that is expressed through specific rules defined
in a policy. All of the decommitted values are taken into account
to compute and atomically disclose the results of the protocol to
every interested party. Consequently, CALYPsO resolves the tension

between decentralization, fairness, and availability, providing a
secure foundation for decentralized applications.

2.2 Blockchains and Skipchains

Blockchain is a distributed, append-only and tamper-evident log
that is composed of blocks that are connected to each other via
cryptographic hashes and are used in many decentralized applica-
tions [5, 14, 52]. CALYPsO can be deployed on top of any blockchain
that supports programmability (i.e., smart contracts [4, 72, 74])
thereby enabling custom validation of transactions.

Skipchains [53] track configuration changes of a decentralized
authority (cothority) by using each block as a representation of all
public keys of the cothority that are necessary to authenticate the
next block. When a cothority wants to alter its configuration, it
creates a new block that includes the new set of public keys and
signs it with the old set of public keys delegating trust to the new
set. This signature is a forward link [34] that clients follow to get
up-to-date with the current authoritative group. In Section 4.5, we
use identity and policy skipchains. Our construction is a simple
extension of the skipchains in order to support federated groups
and enable expressive access-control (see Appendix D).

2.3 Threshold Cryptosystems

A (t,n)-secret sharing scheme [8, 66] enables a dealer to share a
secret s among n trustees such that any subset of ¢ trustees can
reconstruct s, whereas smaller subsets cannot. Hence, the sharing
scheme can withstand up to ¢ — 1 malicious participants. The down-
side of simple secret-sharing schemes is that they assume an honest
dealer, an issue that verifiable secret sharing (VSS) [20] solves by
enabling the trustees to verify that the distributed shares are con-
sistent. VSS is used for threshold signing and threshold encryption.
Publicly verifiable secret sharing (PVSS) [62] is a variation of VSS
that enables external third-parties to verify the shares.

Once we are able to securely share and hold a collective secret,
we can construct more complex systems out of it. A distributed key
generation (DKG) [24, 32] protocol allows to create a collective key
pair without a trusted dealer. The DKG produces a private-public
key pair (sk, g°X) such that the public key pk = ¢° is known to
everyone whereas the private key sk is not known to any single
trustee and can only be used when a threshold of trustees collabo-
rates. Afterwards, anyone can encrypt data under this public key.
For CaLypso, we use the threshold ElGamal cryptosystem with non-
interactive zero knowledge (NIZK) proofs [46, 67] (see Appendix B)
to protect against replay attacks.

3 Caryprso Overview

This section provides an overview of CarLypso. We start with a
strawman solution to motivate the challenges that any secure, de-
centralized data-sharing and management system should address.
From our observations we then derive the system goals and finally
present the system design (see Figure 1).

3.1 Strawman Data Management Solution

We assume that the strawman consists of a tamper-resistant public
log, such as the Bitcoin blockchain, and that participants register
their identities on-chain, e.g., as PGP keys. Now consider an applica-
tion on top of the strawman system where Wanda is the operator of

a paid service providing asynchronous access to some information
and Ron is a customer. Once Ron has paid the fee, Wanda can sim-
ply encrypt the data under Ron’s key, post the ciphertext on-chain
which Ron can then retrieve and decrypt at his discretion.
This strawman approach provides the intended functionality
but has several drawbacks. (1) There is no data access auditability
because Ron’s payment record does not prove that he actually
accessed the data, and such a proof might be needed if the provided
information is misused, for example. (2) If Wanda ever wants to
change the access rights, e.g., because Ron cancelled his access
subscription, she cannot do so because the ciphertext is on-chain
and Ron controls the decryption key. (3) If Ron ever needs to change
his public key, he would lose access to all data encrypted under
that key, unless Wanda re-publishes that data using Ron’s new key.
(4) Since the exchange of payment and data is not atomic, having
submitted a payment successfully does not guarantee that Ron
access to the data. (5) If Wanda makes the data available on a first-
come-first-serve basis, then customers with better connectivity are
able to make payments faster and thereby mount front-running
attacks.
To address these issues, we introduce two new components and
transform the strawman into CALypso.
(1) To enable auditability of data accesses and ensure atomic data
delivery, we introduce on-chain secrets (OCS) in Sections 4.1
and 4.3.

(2) To enable decentralized, dynamic, user-sovereign identities
and access policies, we extend skipchains and integrate them
with CALYPso in Section 4.5.

3.2 System Goals

CaLypso has the following primary goals.

o Confidentiality. Secrets stored on-chain can only be de-
crypted by authorized clients.

o Auditability. All access transactions are third-party verifi-
able and recorded in a tamper-resistant log.

e Fair access. Clients are guaranteed to get access on a secret
they are authorized for if any only if they posted an access re-
quest on-chain. If a barrier point exists, authorized clients get
concurrent access after it (protecting against front-running
attacks).

e Dynamic sovereign identities. Users (or organizations)
fully control their identities (public keys) and can update
them in a third-party verifiable way.

e Decentralization. There are no single points of compro-
mise or failure.

3.3 System Model

There are four main entities in CALYPSO: writers who put secrets
on-chain, readers who retrieve secrets, an access-control collective
authority that is responsible for logging write and read transactions
on-chain and enforcing access control for secrets, and a secret-
management collective authority that is responsible for managing
and delivering secrets. In the rest of the paper, we use Wanda and
Ron to refer to a (generic) writer and reader, respectively.

A collective authority or cothority is an abstract decentralized
entity that is responsible for some authoritative action. We call
the nodes of a cothority trustees. For example, the set of Bitcoin

miners can be considered a cothority that maintain the consistency
of Bitcoin’s state. The access-control cothority requires a Byzantine
fault-tolerant consensus [35, 36, 40, 52]. There are various ways to
implement an access-control cothority, e.g., as a set of permissioned
servers that maintains a blockchain using BFT consensus or as an
access-control enforcing smart contract on top of a permissionless
cryptocurrency such as Ethereum. The secret-management cothori-
ty membership is fixed; it may be set up on a per-secret basis or in
a more persistent setting, the differences of which are discussed in
Section 4. The secret-management trustees maintain their private
keys and may need to maintain additional secret state, such as
private-key shares. They do not run consensus.

We denote private and public key pairs of Wanda and Ron by
(skw, pkyy) and (skg, pkg). Analogously, we write (sk;, pk;) to
refer to the key pair of trustee i. To denote a list of elements we use
angle brackets, e.g., we write (pk;) to refer to a list of public keys
pky, ..., pk,. We assume that there is a registration mechanism
through which writers have to register their public keys pky,, on
the blockchain before they can start any secret-sharing processes.
We denote an access-control label by policy, where policy = pkp
is the simplest case with Ron being the only reader.

3.4 Threat Model

We assume that the adversary is computationally bounded, secure
cryptographic hash functions exist, and there is a cyclic group G
(with generator g) in which the decisional Diffie-Hellman assump-
tion holds. We assume that participants, including trustees, verify
the signatures of the messages they receive and process only those
that are correctly signed.

For the respective cothorities, we denote the total number of
trustees by n and those that are malicious by f. Depending on the
consensus mechanism that is for the access-control cothority, we
either require an honest majority n = 2f + 1 for Nakamoto-style
consensus [52] or n = 3f + 1 for classic BFT consensus [35]. In
the secret-management cothority, we require n = 2f + 1 and set
the threshold to recover a secretto t = f + 1.

We assume that readers and writers do not trust each other. We
further assume that writers encrypt the correct data and share the
correct symmetric key with the secret-management cothority, as
readers can release a protocol transcript and prove the misbehavior
of writers. Conversely, readers might try to get access to a secret
and claim later that they have never received it. Additionally, writ-
ers might try to frame readers by claiming that they shared a secret
although they have never done so. Finally, the writer can define
a barrier point, an event before which no one can access the se-
cret guaranteeing fair access. We guarantee data confidentiality
up to the point where an authorized reader gains access. To main-
tain confidentiality after this point, writers may rely on additional
privacy-preserving technologies such as differential privacy [12]
or homomorphic encryption [18].

3.5 Architecture Overview

On a high level CaLypso enables Wanda, the writer, to share a secret
with Ron, the reader, under a specific access-control policy. When
Wanda wants to put a secret on-chain (see Figure 1), she encrypts

!We assume the associated network model is strong enough to guarantee the security
of the blockchain used.

Verifiable Management of Private Data under Byzantine Failures

Secret-management

Access-control
Writer Reader 3
cothority

cothority
Werite transaction tx., :
Verify
d
(O] ACK /:NACK an
AR log
—— Read transaction tx,
Verify
@ ACK / NACK and
IR log

i Share request req ..

®3)

Recover
@ and [
decrypt

\ v v

. / Error

] Verify

Share reply rép,

Figure 2: On-chain secrets protocol steps: (1) Write transaction, (2)
Read transaction, (3) Share retrieval, (4) Secret reconstruction.

the secret and then sends a write transaction txy, to the access-
control cothority. The access-control cothority verifies and logs
txw, making the secret available for retrieval by Ron, the authorized
reader. To request access to a secret, Ron downloads the secret
from the blockchain and sends to the access-control cothority a
read transaction tx,; which carries a valid authorization from Ron’s
identity skipchain with respect to the current policy.

If Ron is authorized to access the requested secret, the access-
control cothority logs tx;. Subsequently, Ron contacts the secret-
management cothority to recover the secret. The secret-manage-
ment trustees verify Ron’s request using the blockchain and check
that the barrier point (if any) has occurred. Afterwards, the trustees
deliver the secret shares of the key needed to decrypt Wanda’s
secret as shared in txy.

4 CavLypso Design

In this section we introduce CALYPSO’s components. First, we in-
troduce two on-chain secrets protocols, one-time secrets and long-
terms secrets, that provide auditable access control and fair data
access. Both protocols can be enhanced for post-quantum security
(see Appendix C). Second, we describe the skipchain-based iden-
tity and access management that adds dynamic access-control and
self-sovereign identity management.

4.1 One-Time Secrets

In one-time secrets, Wanda, the writer, first prepares a secret she
wants to share along with a policy that lists the public key of
the intended reader. She then generates a symmetric encryption
key, shares it via PVSS [62] for the secret-management cothority
members, encrypts the secret with the key and stores the resulting
ciphertext either on-chain or off-chain. It is important that Wanda
binds the shared secret to the policy by deriving the base point of
the PVSS consistency proofs from the policy. Finally, Wanda sends
a write transaction txy to the access-control cothority to log the
information for the verification and retrieval of her secret.

After some period of time, Ron, the reader, creates and sends
to the access-control cothority a read transaction tx, for Wanda’s
specific secret. The trustees check tx, against the secret’s policy and,
if Ron is authorized to access the secret, they log the transaction
creating a publicly-verifiable authorization proof. Ron sends this

proof together with the encrypted secret shares from tx to each
secret-management trustee and after txy is verified, he retrieves
the secret key shares. Once Ron has received a threshold of valid
shares, he can recover the symmetric key and decrypt the data. We
describe the protocols next.

4.1.1 One-Time Secrets Protocols

Write Transaction Protocol. Wanda, the writer and each trustee
of the access-control cothority perform the following protocol to
log the write transaction txy on the blockchain. Wanda initiates
the protocol as follows.

(1) Compute h = H(policy) to map the access-control policy to

a group element h to be used as the base point for the PVSS
polynomial commitments. This prevents replay attacks as
described later.

(2) Choose a secret sharing polynomial s(x) = 25;3 ajxj of

degree t — 1. The secret to be shared is s = ¢5(©).

(3) For each secret-management trustee i, compute the encrypted

share §; = pkf(l) of the secret s and create the corresponding
NIZK proof rg; that each share is correctly encrypted (see
Appendix A). Create the polynomial commitments b; = h%/,
foro0<j<t-1.

(4) Set k = H(s) as the symmetric key, encrypt the secret mes-

sage m to be shared as ¢ = ency (m), and compute H, = H(c).
Set policy = pkpy to designate Ron as the intended reader of
the secret message m.

(5) Finally, prepare and sign the write transaction

tew = [Gi), (b)) (), He, (k) policy g,

and send it to the access-control cothority.

The access-control cothority then logs the write transaction on

the blockchain as follows.

(1) Derive the PVSS base point h = H(policy).

(2) Verify each encrypted share §; against 75, using (b;) and h
(see Appendix A). This step guarantees that Wanda correctly
shared the encryption key.

(3) If all shares are valid, log txy in block bs,.

Read Transaction Protocol. After the write transaction has been
recorded, Ron needs to log the read transaction tx; through the
access-control cothority before he can request the secret. To do so,
Ron performs the following steps.

(1) Retrieve the ciphertext ¢ and block b,,, which stores txy,

from the access-control cothority.

(2) Check that H(c) is equal to H. in txy to ensure that the
ciphertext ¢ of Wanda’s secret has not been altered.

(3) Compute Hy, = H(txy) as the unique identifier for the secret
that Ron requests access to and determine the proof iy
showing that txy has been logged on-chain.

(4) Prepare and sign the transaction

txy = [Hw, ”txw]sigskR

and send it to the access-control cothority.
The access-control cothority then logs the read transaction on
the blockchain as follows.
(1) Retrieve txw using Hy, and use pkp, as recorded in policy,
to verify the signature on tx;.

(2) If the signature is valid and Ron is authorized to access the
secret, log tx; in block b,

Share Retrieval Protocol. After the read transaction has been
logged, Ron can recover the secret message m by running the share
retrieval protocol with the secret-management cothority to obtain
shares of the encryption key used to secure m. To do so, Ron initiates
the protocol as follows.

(1) Create and sign a secret-sharing request

reqghare = [tXw, tXr, ”tx,]sigSkR

where iy, proves that tx; has been logged on-chain.

(2) Send reqgpare to each secret-management trustee to obtain
the decrypted shares.

Each trustee i of the secret-management cothority responds to

Ron’s request as follows.

(1) Use pkp in txy to verify the signature of reqgpaye and 7, to
check that tx; has been logged on-chain.

(2) Compute the decrypted share s; = (E)Skzl, create a NIZK
proof rs; that the share was decrypted correctly (see Appen-
dix A), and derive ¢; = encpk , (si) to ensure that only Ron
can access it.

(3) Create and sign the secret-sharing reply

I€Pshare = [ci’ﬂsi]SigSki
and send it back to Ron.

Secret Reconstruction Protocol. To recover the secret key k and
decrypt the secret m, Ron performs the following steps.
(1) Decrypt each s; = decy, (c;) and verify it against 7s,.
(2) If there are at least ¢ valid shares, use Lagrange interpolation
to recover s.
(3) Recover the encryption key as k = H(s) and use it to decrypt
the ciphertext c to obtain the message m.

4.2 One-Time Secrets and System Goals

4.2.1 Achieving System Goals. The one-time secrets protocol achieves
all goals except for dynamic sovereign identities.

Confidentiality. The secret message m is encrypted under a sym-
metric key k which is securely secret-shared using PVSS among
the secret-management trustees such that t = f + 1 shares are
required to reconstruct it. The access-control trustees verify and
log on the blockchain the encrypted secret shares which, based on
the properties of PVSS, do not leak any information about k. After
the secret-management trustees receive a valid request reqgpare,
they respond with their secret shares encrypted under the public
key listed in the policy from the respective txy,. Further, a dishonest
reader cannot obtain access to someone else’s secret through a new
write transaction that uses a policy that lists him as the reader but
copies secret shares from another txy in hopes of having them
decrypted by the secret-management cothority (replay attack). This
is because each transaction is bound to a specific policy which is
used to derive the base point for the PVSS NIZK consistency proofs.
Without the knowledge of the decrypted secret shares (and the
key k), the malicious reader cannot generate correct proofs and all
transactions without valid proofs are rejected. This means that only
the intended reader obtains a threshold of secret shares necessary
to recover k and then access m.

Auditability. Under the assumption that the access-control cotho-
rity provides Byzantine consensus guarantees, all properly created
read and write transactions are logged by the access-control cotho-
rity on the blockchain. Once a transaction is logged, anyone can
obtain a third-party verifiable transaction inclusion proof.

Fair Access. Once a read transaction tx; is logged by the access-
control cothority and the barrier point has passed, the reader can
run the share retrieval protocol with the secret-management cotho-
rity. Under the assumption that n = 2f + 1, the reader receives at
least t = f + 1 shares of the symmetric encryption key k from the
honest trustees. This guarantees that the reader has enough shares
to reconstruct k and access the secret message m.

Decentralization. The protocols do not assume a trusted third
party and they tolerate up to f =t — 1 failures.

4.2.2 Advantages and Shortcomings. The one-time secrets protocol
uses existing and proven to be secure building blocks and its design
is simple to implement and analyze. Further, it does not require
a setup phase among the secret-management members, e.g., to
generate a shared private-public key pair. It also enables the use of
a different secret-management cothority for each secret, without
requiring the servers to maintain any protocol state.

However, one-time secrets has a few shortcomings too. First, it
incurs a relatively high PVSS setup and share reconstruction costs
as Wanda needs to evaluate the secret sharing polynomial at n
points, create n encrypted shares and NIZK proofs, along with ¢
polynomial commitments. Second, the transaction size increases
linearly with the secret-management cothority size, as the secret-
management trustees do not store any per-secret protocol. This
means that the txy must contain the encrypted shares, NIZK proofs
and the polynomial commitments. Lastly, one-time secrets shares
are bound the initial set of trustees, preventing the possibility of
updating the secret-management cothority.

4.3 Long-Term Secrets

Long-term secrets addresses the limitations of one-time secrets
through a dedicated secret-management cothority that persists over
a long period of time and that maintains a shared private-public key
pair used to secure access to the secrets. After a one-time distributed
key generation (DKG) phase performed by the secret-management
cothority, Wanda, the writer, prepares her secret message, encrypts
it with a symmetric key and then encrypts that key with the thresh-
old (DKG) key. As a result, the overhead of encrypting secrets is
constant as each txy, contains a single ciphertext instead of individ-
ual shares. Ron, the reader, recovers the symmetric key by obtaining
a threshold of securely blinded shares of the shared private key
and reconstructing the symmetric key himself or with the help of a
trustee he selects.

4.3.1 Long-Term Secrets Protocols

Setup Protocol. Initially, the secret-management cothority needs
to run a DKG protocol to generate a shared private-public key pair.
There exist a number of DKG protocols that are synchronous [24]
or asynchronous [32]. Given the rarity of the setup phase we run
the DKG by Gennaro et al. [24] using the blockchain as a bulletin
board which emulates synchronous communication.

Verifiable Management of Private Data under Byzantine Failures

The output of the setup phase is a shared public key pk, . =
g%Ksme, where skg,. is the unknown private key. Each server i holds
a share of the secret key denoted as sk; and all servers know the
public counterpart pk; = g% The secret key can be reconstructed
by combining a threshold ¢ = f + 1 of the individual shares. We

assume that pkg, . is registered on the blockchain.

Write Transaction Protocol. Wanda and the access-control cotho-
rity perform the following protocol to log the txy, on the blockchain.
Wanda initiates the protocol through the following steps.

(1) Retrieve the threshold public key pk, . of the secret-man-

agement cothority.

(2) Choose a symmetric key k and encrypt the secret message m
to be shared as ¢, = ency(m) and compute He,, = H(cm).
Set policy = pkp, to designate Ron as the intended reader of
the secret message m.

(3) Encrypt k towards pkg . using a threshold variant of the
ElGamal encryption scheme [67]. To do so, embed k as a
point k” € G, pick a value r uniformly at random, compute
¢k = (pkimck’, g") and create the NIZK proof 7, to guaran-
tee that the ciphertext is correctly formed and resistant to
replay attacks (see Appendix B).

(4) Finally, prepare and sign the write transaction

txw = [ck, Tes Hepy s POliCY]SigSkW

and send it to the access-control cothority.

The access-control cothority then logs the txy.

(1) Verify the correctness of the ciphertext c; using the NIZK
proof ¢, .

(2) If the check succeeds, log txy in block b,,.

Read Transaction Protocol. After txy, has been recorded, Ron
needs to log on-chain a tx; before he can request the decryption
key shares. To do so, Ron performs the following steps.

(1) Retrieve the ciphertext ¢, and the block b,,, which stores

txw, from the access-control cothority.

(2) Check that H(cp,) is equal to He,, in txy to ensure that the
ciphertext c;, of Wanda’s secret has not been altered.

(3) Compute Hy, = H(txy) as the unique identifier for the secret
that Ron requests access to and determine the proof iy,
showing that txy has been logged on-chain.

(4) Prepare and sign the read transaction

txr = [HWa ”txw]sigSkR

and send it to the access-control cothority.

The access-control cothority then logs tx; as follows.

(1) Retrieve txy using Hy, and use pkp, as recorded in policy,
to verify the signature on tx;.

(2) If the signature is valid and Ron is authorized to access the
secret, log tx; in block b,

Share Retrieval Protocol. Ron can recover the secret data by run-
ning the share retrieval protocol with the secret-management co-
thority. To do so Ron initiates the protocol as follows.

(1) Create and sign a secret-sharing request

reqghare = [tXw, txr, ”txr]sigskR

where 7y, proves that tx, has been logged on-chain.

(2) Send reqgpare to each secret-management trustee to request
the blinded shares.
Each trustee i of the secret-management cothority responds to
Ron’s request as follows.
(1) Get g" and pkp from txy and prepare a blinded share u; =
(9" ka)Ski with a NIZK correctness proof my; .
(2) Create and sign the secret-sharing reply

I'€Pshare = [uiv ﬂui]sigski
and send it back to Ron.

Secret Reconstruction Protocol. Ron retrieves the key k and recov-
ers the secret m as follows.

(1) Wait to receive at least t valid shares u; = g(”SkR)Ski =
gr'Ski and then use Lagrange interpolation to recover the
blinded decryption key

t
PKoe = [[)%,
k=0

where 1; is the i‘" Lagrange element.
(2) Unblind pk’,

smc

4 KR \— k Kkr\—
(Pklme) (PksnR) ™" = (Pklne) (Pkemc) (Pkanie) ™

(3) Retrieve the encoded symmetric key k’ from ¢ via

(€x)(Pkfine) " = (Pkfmck) (Pkfine) 7",

decode it to k, and finally recover m = decg (cy).

Ron may delegate the costly verification and combination of
shares to a trustee, i.e., the first step of the above protocol. The
trustee is assumed to be honest-but-curious and to not DoS Ron.
The trustee cannot access the secret, as he does not know skg and
hence cannot unblind pkg;nc. Ron can detect if the trustee carries
out the recovery incorrectly.

to get the decryption key pk[. for ¢ via

4.3.2 Evolution of the Secret-Management Cothority. The secret-
management cothority is expected to persist over a long period of
time while remaining secure and available. However, a number of
issues can arise over its lifetime. First, trustees can join and leave
resulting in churn. Second, even if the secret-management cothority
membership remains static, the private shares of the servers should
be refreshed regularly (e.g., every month) to provide backward
secrecy. Lastly, the shared private key of the secret-management
cothority should be rotated periodically (e.g., once every year).

We address the first two problems by periodically re-sharing [73]
the existing threshold public key when a server joins or leaves the
secret-management cothority, or when servers wants to refresh
their private key shares. Lastly, when the secret-management co-
thority wants to rotate the threshold public/private key pair (pkg,,..,
skgmc), CALYPSO needs to collectively re-encrypt each individual
secret under the new shared public key. To achieve this, we generate
and use translation certificates [30] such that the secrets can be
re-encrypted without the involvement of their writers and without
exposing the underlying secrets.

4.4 Long-Term Secrets and System Goals

4.4.1 Achieving System Goals. Long-term secrets achieves its goals
similarly to one-time secrets with the following differences.

id: idpaper T 7T T T 777 > id: idpaper
admin: idRon admin: idgon V idana
access: idRron < access: idiap

hash
Resource policy skipchain
Sigg,
TR b id: idiap

S admin: id

in: id : idRon
g !ORon members: idRron, idg

members: idRren, idgve , rony THEve
idana
hash
Federated identity skipchain
Sigsky Ask . .
id: idRepn [T 777 A idsidgon
carla: ok 1 e ol
ice: pk K * PXiab» PKdoc
service: PKj,p, PKyoc p
hash ssh

Personal identity skipchain

Figure 3: First, Ron updates his personal skipchain idgen to include
pkgp,- He then uses ski,p, to extend the federated skipchain idj,p, to
add idana as a member. Finally, he adds idana as an admin and idj,p,
as authorized readers to the policy skipchain idpaper by using skqoc-

Confidentiality. In long-term secrets, the secret message m is
encrypted under a symmetric key k that is subsequently encrypted
under a threshold public key of the secret-management cothority
such that at least t = f + 1 trustees must cooperate to decrypt it.
The ciphertext is bound to a specific policy through the use of NIZK
proofs [67] so it cannot be reposted in a new write transaction with
a malicious reader listed in its policy. The access-control trustees
log the write transaction txy, that includes the encrypted key, which,
based on the properties of the encryption scheme, does not leak any
information about k. After the secret-management trustees receive
a valid request reqgpare, they respond with the blinded shares of
the shared private key encrypted under the public key in the policy
of the respective txy. Based on the properties of the DKG protocol,
the shared private key is never known to any single entity and can
only be used if ¢ trustees cooperate. This means, only the intended
reader gets a threshold of secret shares.

4.5 Skipchain-Based Identity and Access
Management

The CaLyPso protocols described so far do not provide dynamic
access control or sovereign identities. They only support static
identities (public keys) and access policies as they provide no mech-
anisms to update these objects. However, these assumptions are
rather unrealistic, as the participants might need to change or add
new public keys to revoke a compromised private key or to extend
access rights to a new device. Similarly, it should be possible to
change access polices so that access to resources can be extended,
updated or revoked; and to define access-control rules for individ-
ual identities and groups of users for greater flexibility. Finally, any
access-control system that supports the above properties should
prevent freeze attacks [60] and race conditions.

In order to achieve dynamic sovereign-identities, we introduce
the skipchain-based identity and access management (SIAM) subsys-
tem for CaLypso that provides the following properties: (1) Supports
identities for both individual users and groups. (2) Enables users to
specify and announce updates to resource access keys and policies.

(3) Enforces atomicity of accessing resources and updating resource
access rights to prevent race conditions.

We achieve the first two goals of SIAM by deploying skipchains
for groups and individuals. More specifically, we deploy three types
of skipchains in CALYPso (see Figure 3). Personal identity skipchains
store the public keys that individual users control [34]. A user can
maintain a number of public keys that may be used for access to
resources by different devices, for example. Federated identity skip-
chains specify identities and public keys of a collective identity that
encompasses users that belong to some group, such as employees
of a company, members of a research lab, etc. They are recursive in
order to provide scaling and ease of use. Resource policy skipchains
track access rights of identities, personal or federated, to certain
resources and enable dynamic access control. In addition to listing
federated identities and their public keys, policy skipchains include
access-control rules to enforce fine-grained update conditions.

When SIAM is used, Ron is able to evolve the idg skipchain
arbitrarily, e.g., rotate existing access keys or add new devices,
and still retain access to the encrypted resource. Similarly, Wanda
can set up a resource policy skipchain idp she is in charge of and
include idgp as non-administrative members. Then, Wanda would
use policy = idp in txyw seamlessly authorizing Ron to access the
respective resource. Later Wanda can decide to revoke that resource
for anyone, who has not yet accessed it, by setting policy = @.

Ensuring Atomicity. One key idea on CALYPsO’s design is using
the blockchain to timestamp the latest versions of the skipchains.
This guarantees atomicity of events such as changing an identity
(e.g., to exclude someone) and later granting it more access rights.
For example, administrator Wanda of the sales group, decides that
Ron should be fired because he is performing industrial espionage,
hence she removed the identity skipchain of Ron from the federated
skipchain of the sales group. Afterwards Wanda grants the rest of
her employees access to the new corporate strategy plan. In a naive
asynchronous access control system in which policy changes can
take varying amounts of time to propagate and take effect (e.g.,
OAuth2 [26]), there is significant accidental time window in which
Ron can still convince someone that he is part of the sales group,
as he might be able to still prove membership to the controller of
the the sensitive object (i.e., to a threshold of trustees).

In CALYPSO, all the changes of the skipchains are serialized to-
gether with the tx; and txy on-chain. Hence the exclusion of Ron
will be strictly after the granting of access. This means that Ron
will be unable to provide a correctly timestamped proof to the
secret-management cothority and as a result be unable to read the
sensitive document. Due to lack of space we describe how SIAM is
integrated with on-chain secrets in Appendix E.

4.6 Further Security Considerations

Our contributions are mainly pragmatic rather than theoretical as
we employ only existing, well-studied cryptographic algorithms.
While we have already discussed how CaLypso achieves its security
goals in the previous sections, we discuss now the influence of
malicious parties on CALYPSO.

Malicious Readers and Writers. CALYPSO’s functionality resem-
bles a fair-exchange protocol [54] in which a malicious reader may
try to access a secret without paying for it and a malicious writer

Verifiable Management of Private Data under Byzantine Failures

may try to get paid without revealing the secret. CALYPSO protects
against such attacks by employing the access-control and secret-
management cothorities as decentralized equivalents of trusted
third parties that mediate interactions between readers and writers.
The access-control cothority logs a write transaction on the
blockchain only after it verifies the encrypted data against the cor-
responding consistency proof. This ensures that a malicious writer
cannot post a transaction for a secret that cannot be recovered.
Further, as each txy binds to its policy, it protects against attacks
where malicious writers naively extract contents of already posted
transactions and submit them with a different policy listing them-
selves as the authorized readers. Similarly, before logging a read
transaction, the access-control cothority verifies that it refers to
a valid txy and it is sent by an authorized reader as defined in
the policy of txy. A logged tx; serves as an access approval. The
secret-management cothority releases the decryption shares to the
authorized reader only after seeing a valid tx, logging proof.

Malicious Trustees. Our threat model permits a fraction of the
access-control and secret-management cothority trustees to be
dishonest. The thresholds (¢ = f + 1) used in on-chain secrets,
however, prevent the malicious trustees from being able to pool
their secret shares and access writers’ secrets or to prevent an an
authorized reader from accessing their secret by withholding the
secret shares. Further, even if some individual malicious trustees
refuse to accept requests from the clients or to participate in the
protocols altogether, the remaining honest trustees are be able
to carry out all protocols by themselves thereby ensuring service
availability.

Malicious Storage Providers. Wanda may choose to store the ac-
tual encrypted data either on-chain or off-chain by choosing to
outsource the storage to external providers. Because the data is
encrypted, it can be shared with any number of possibly untrusted
providers. Before Ron creates a tx; he needs to retrieve and verify
the encrypted data against the hash posted in txy. If Ron cannot
obtain the encrypted data from the provider, he can contact Wanda
to expose the provider as dishonest and receive the encrypted data
directly from Wanda or an alternative storage provider.

5 Case Studies Using CALYPSO

Below we describe two real-world deployments, one completed and
one in-progress, of CALYPso that resulted from collaborations with
companies that needed a flexible, secure, and decentralized solution
to manage data. We also describe a zero-collateral, constant-round
decentralized lottery and compare it with existing solutions.

5.1 Clearance-enforcing Document Sharing

We have used CaLyPso to deploy a decentralized, clearance-enfor-
cing document-sharing system than enables two organizations, A
and B, to share a document D, such that a policy of confidentiality
can be enforced on D. We have realized this system with a con-
tractor of the Ministry of Defense of a European country using a
permissioned BFT blockchain and long-term secrets. The evaluation
of this application is discussed in Section 7.2.

Problem Definition. Organization A wants to share with organi-
zation B a document D whose entirety or certain parts are classified
as confidential and should only be accessible by people with proper

clearance. Clearance is granted to (or revoked from) employees
individually as needed or automatically when they join (or leave)
a specific department so the set of authorized employees continu-
ously changes. The goal is to enable the mutually distrustful A and
B to share D while dynamically enforcing the specific clearance
requirements and securely tracking accesses to D for auditing.

Solution with CALypso. First, A and B agree on a mutually-trusted
blockchain system to implement the access-control cothority whose
trustees include servers controlled by both organizations. Then,
each organization establishes federated identity skipchains with all
the identities that have clearance, id4 and idp, respectively which
include references to (a) federated skipchains for departments that
have top-secret classification (e.g., senior management), (b) feder-
ated skipchains for attributes that have top-secret classification
(e.g., ranked as captain) and (c) personal skipchains of employees
that need exceptional clearance.

Organization A creates a document D, labels each paragraph
as confidential or unclassified and, encrypts it using a different
symmetric key. A shares the ciphertext with B and generates txy,
which contains the symmetric keys of the classified paragraphs and
policy = idg. Any employee of B whose public key is included in the
set of classified employees as defined in the most current skipblock
of idp can retrieve the symmetric keys by creating read transactions.
CaLypso logs the tx;, creates a proof of access and delivers the key.
Both organizations can update their identity skipchains as needed
to ensure that at any given moment only authorized employees can
access.

5.2 Patient-centric Medical Data Sharing

CArypso lends itself well for applications that require secure data-
sharing for research purposes. We are in the process of working
with hospitals and research institutions from a European country
to build a patient-centric system to share medical data based on
long-term secrets. We do not provide evaluation of this application
as it is similar to the previous one.

Problem Definition. Researchers face difficulties in gathering
medical data from hospitals as patients increasingly refuse to ap-
prove access to their data for research purposes amidst rapidly-
growing privacy concerns [28]. Patients dislike consenting once
and completely losing control over their data and are more likely
to consent to sharing their data with specific institutions [33]. The
goal of this collaboration is to enable patients to remain sover-
eign over their data; hospitals to verifiably obtain patients’ consent
for specific purposes; and researchers to obtain access to valuable
patient data. In the case that a patient is unable to grant access (un-
conscious), the medical doctor can request an exception (specified
in the policy) and access the data while leaving an auditable proof.

Solution with CALypso. We have designed a preliminary architec-
ture for a data-sharing application that enables a patient P to share
her data with multiple potential readers over time. This deployment
is different from the previously-described one in that the data gener-
ator (hospital) and the data owner (P) are different. For this reason,
we use a resource policy skipchain idp such that the hospital can
represent P’s wishes with respect to her data. Policy skipchains can
dynamically evolve by adding and removing authorized readers,
and can include rich access-control rules.

100

T ; ;
B Write transaction (Client) 3 Share retrieval (SM)

[Write transaction (AC) B Secret reconstruction (Client)
[Read transaction (AC)

g 10
2
]
£
!
(9}
e
e
g 01

0.01

16 32 64 128
Size of SM and AC

Figure 4: Latency of one-time secrets protocol for varying sizes of
secret-management and access-control cothorities.

CaALyPso enables P to initialize idp when she first registers with
the medical system, Initially, idp is empty, indicating that P’s data
cannot be shared. If a new research organization or another hos-
pital requests to access some of P’s data, then P can update idp
by adding a federated identity of the research organization and
specific rules. When new data is available for sharing, the hospital
generates a new write transaction that consists of the encrypted
and possibly obfuscated, or anonymized medical data and idp as
policy. As before, users whose identities are included in idp can
post read transactions to obtain access. Hence, P remains in control
of her data and can unilaterally update or revoke access.

5.3 Decentralized Lottery

Problem Definition. We assume there is a set of n participants
who want to run a decentralized zero-collateral lottery selecting
one winner. The lottery is managed by a smart contract that collects
the bids and waits for the final randomness to decide on the winner.
The evaluation of this application is in Section 7.3.

Solution with Carypso. Each participant creates a txy where the
secret is their contribution to the randomness calculation and shares
it using long-term secrets. After a predefined number of blocks (the
barrier point) the input phase of the lottery closes. Afterwards
the smart contract creates a tx; to retrieve all inputs submitted
before the barrier point and posts the reconstructed values and the
corresponding proofs.

Once the final randomness has been computed as an XOR of all
inputs, the smart contracts uses it to select the winner.

Comparison to Existing Solutions. Prior proposals for decentral-
ized lotteries either need collateral (e.g., Ethereum’s Randao [57])
or run in a non-constant number of rounds [50]. CALYPSO enables
a simpler decentralized lottery design, as the lottery executes in
one round and needs no collateral because the participants cannot
predict the final randomness or abort prematurely.

6 Implementation

We implemented all components of CALYPSO, on-chain secrets and
SIAM, in Go [25]. For cryptographic operations we relied on Ky-
ber [41], an advanced cryptographic library for Go. In particular,

100

100 i (ﬁ_a-a %E

o—e DKG setup (SM)
0.1 fHH -1 =z cpu s wal]
[Write transaction (AC)
[Read transaction (AC)
[Secret reconstruction (SM)

0.01 16 32 IIA6I4TVI ||]|-é/|8|,1

Size of SM and AC

Figure 5: Latency of long-term secrets protocol for varying sizes of
secret-management and access-control cothorities.

Time (sec)

we used its implementation of the Edwards25519 elliptic curve that
provides a 128-bit security level. For the consensus mechanism
required for the access-control cothority, we used a available imple-
mentation of ByzCoin [35], a scalable Byzantine consensus protocol.
We implemented both on-chain secrets protocols, one-time and
long-term secrets, run by the secret-management cothority. All our
implementations are available as open source on GitHub and have
gone through an independent security audit.

7 Evaluation

To evaluate CALYPSO, we use micro-benchmarks to compare on-
chain secrets against a semi-centralized solution using simulated
workloads. We further evaluate CALYPSO using simulated and real
data traces in the context of clearance-enforcing document shar-
ing (see Section 5.1) and a decentralized lottery (see Section 5.3).
The synthetic workloads we generated were significantly heavier
than those from the real data traces. For the experimental evalua-
tion of SIAM, see Appendix F. We ran all our experiments on four
Mininet [51] servers, each equipped with 256 GB of memory and
24 cores running at 2.5 GHz. To simulate a realistic network, we
configured Mininet with a 100 ms point-to-point latency between
the nodes and a per-node bandwidth of 100 Mbps.

We remark that we implemented and evaluated a centralized (a
single server) solution and it trivially outperforms both, the state-
of-the-art semi-centralized access control system and CALYPSO,
which is fully decentralized. For this reason, we chose to focus our
evaluation section on comparing CALYPSO to the aforementioned
semi-centralized solution.

7.1 Mirco-benchmarks

The two primary questions we want to answer for on-chain secrets
are whether the latency of read and write transactions is accept-
able when deployed on top of blockchain systems and whether
it can scale to hundreds of trustees to emulate a high degree of
decentralization. We compare CALYPSO against a semi-centralized
set-up (secrets stored off-chain and access policies enforced by
the access-control cothority). We measure the overall latency of
both on-chain secrets protocols, where we separately analyze the
cost of the write, read, share retrieval and share reconstruction

Verifiable Management of Private Data under Byzantine Failures

100 T T
¢ < Semi-centralized
¥ -v Calypso
o
Q
2
>
1)
C
9]
=
©
- &
©
°
2 PR b4
S 2
L FEEEEEPRE e
10 4 16 64 256

Number of write transactions
Figure 6: Write transaction latency for different loads in clearance-
enforcing document sharing,.

sub-protocols. We vary the number of trustees in the secret-man-
agement and access-control cothorities, where all trustees belong
to both.

One-time Secrets. Figure 4 shows the latency results. We observe
that the client-side creation of the tx is a costly operation, which
takes almost one second for 64 trustees. This is expected as prepar-
ing the txy involves picking a polynomial, evaluating it at n points,
and setting up the PVSS shares and commitments. Our experiments
also show that verifying the NIZK decryption proofs and recovering
the shared secret is substantially faster than creating the txy, and
differ by an order of magnitude for large numbers of shares because
verifying the NIZK proofs and reconstructing the shared secret re-
quire less ECC operations than the setup of the PVSS shares. Finally,
the overhead for the secret recovery on the secret-management
cothority is an order of magnitude higher than on the client side
since the client has to send a request to each trustee.

Long-term Secrets. Figure 5 presents the overall latency costs of
the cothority setup (DKG), write, read, share retrieval and share
reconstruction sub-protocols. Except for the DKG setup, all steps
scale linearly in the size of the cothority. Even for a cothority of 128
servers, it takes less than 8 seconds to process a txy,. The CPU-time
is significantly lower than the wall-clock time due to the network
overhead included in the wall-clock measurements. While the DKG
setup is quite costly, it is a one-time event per epoch. The overhead
of the share retrieval is linear in the size of secret-management
cothority as it depends on sharing threshold .

7.2 Clearance-Enforcing Document Sharing

We compare the clearance-enforcing document sharing deploy-
ment of CALYPSO with a state-of-the-art semi-centralized access-
control system, where accesses and policies are logged on-chain
but the data is managed in the cloud. We do not compare CALYPsO
against fully-centralized solutions because they do not provide
any decentralization, which is one of our main goals. However, we
acknowledge that a fully-centralized solution would significantly
outperform CaLyprso. We vary the simulated workload per block
from 4 to 256 concurrent read and write transactions and report
the time it takes to execute all transactions. These experiments
use a blockchain with a blocktime of 7 seconds. Figure 6 shows

1000 T T

< < Semi-centralized
¥ -v Calypso
o)
Q
v
g b4
> -
2 -
o 100t i i P
Bl ’
o e
© 4
o -
= -7
S &
-7 &
23 @
10 H H i H
4 16 64 256

Number of read transactions

Figure 7: Read transaction latency for different loads in clearance-
enforcing document sharing,.

20
I Semi-centralized
I Calypso
O 15f
Q
2
>
[}
o)
E 10}
[
=
o
g
x5
0

Write

Read

Transaction type
Figure 8: Average write and read transaction latencies replaying
real-world data traces from clearance-enforcing document sharing.

that CaLypso and the semi-centralized solution have comparable
latency overhead for executing the write transactions. This is due
to the fact that in both solutions, latency is dominated by the time
it takes to store the write transactions on the blockchain. Figure 7
shows that CALyPso takes 0.2X to 5X more time to execute the read
transactions compared to the semi-centralized solution. The higher
overhead of CaLyPso is due to the share reconstruction protocol.

Next, we evaluate the clearance-enforcing document sharing
deployment of CALYPsO using real-world data traces from our gov-
ernmental contractor partner mentioned in Section 5.1. Data traces
are collected from the company’s testbed over a period of 15 days.
There are 1821 txy and 1470 tx;, and the minimum, maximum and
average number of transactions per block are 1, 7 and 2.62, respec-
tively. We replayed the traces on CaLypso and semi-centralized
access-control system implementations. We use a blocktime of 10
seconds as it is in the original data traces. Figure 8 shows the aver-
age latency for the write and read transactions. The results show
that CaLypso and the semi-centralized system have comparable
performance as latency is dominated by the blocktime.

We would like to remark that in both of our experiments, our
blocktimes are significantly smaller than those of the current block-
chains, such as Bitcoin. However, the goal of our experiments is

to show the additional performance overhead of moving from a
semi-centralized system to CALYPsO, a fully-decentralized system.
Since both systems incur the same blocktime cost, it does not affect
our comparative analysis. We point out that using a blockchain
with larger blocktimes would clearly increase the latency values for
both CAryPso and the semi-centralized implementation. However,
in this case CALYPSO’s overhead compared to the semi-centralized
system becomes negligible, as the blocktime dominates the total
latency.

7.3 Decentralized Lottery

We compared our CaLypPso-based zero-collateral lottery with the
corresponding lottery by Miller et al. [50] (tournament) simulated
and real workloads. Figure 9 shows that CALyPso-based lottery
performs better both in terms of the overall execution time and
necessary bandwidth. Specifically, our lottery runs in one round (it
always takes two blocks to finish the lottery) while the tournament
runs in a logarithmic number of rounds due to its design consisting
of multiple two-party lotteries.

Next, we evaluate both lottery implementations using the trans-
actions from Fire Lotto [1], an Ethereum-based lottery, see Figure 10
for overall time comparisons. We considered transactions sent to
the Fire Lotto smart contract over a period of 30 days and each
data point in the graph corresponds to a single lottery run. As be-
fore, CaLypso-based lottery performs better because it completes
in one round whereas the tournament lottery requires a logarith-
mic number of interactions with the blockchain and consequently
has a larger overhead. More specifically, while the blocktime of
15 seconds makes up 14 — 20% of the total latency in Carypso, it
contributes most of the per-round latency to the tournament lottery.
We remark that our results only include the latency of the reveal
phase since the commit phase happens asynchronously over a full
day.

8 Related Work

The decentralized data management platform Enigma [77, 78] pro-
vides comparable functionality to Carypso. Users own and con-
trol their data and a blockchain enforces access control by log-
ging valid requests (as per the on-chain policy). However, Enigma
stores the confidential data at a non-decentralized storage provider
that can read and/or decrypt the data or refuse to serve the data
even if there is a valid on-chain proof. The storage provider in
Enigma is therefore a single point of compromise/failure. Other
projects [7, 13, 29, 65, 78] rely on centralized key-management
and/or storage systems as well and hence suffer from similar issues
with respect to atomicity and robustness against malicious service
providers. Other privacy-focused blockchains [49, 61] do not ad-
dress the issue of data sharing and access control but instead focus
on hiding identity and transaction data via zero-knowledge proofs.

Existing decentralized identity-management systems, such as
UIA [21] or SDSI/SPKI [58] enable users to control their identi-
ties but they lack authenticated updates via trust-delegating for-
ward links of skipchains, which enable CALYPSO to support secure
long-term relationships between user identities and secure access-
control over shared data. OAuth2 [26] is an access-control frame-
work where an authorization server can issue access tokens to

authenticated clients, which the latter can use to retrieve the re-
quested data from a resource server. CALYPSO can emulate OAuth2
without any single points of compromise/failure where the access-
control blockchain and the secret-management cothority act as
decentralized versions of the authorization and resource servers,
respectively. Further, thanks to CALYPSO’s serialization of access
requests and SIAM updates, it is not vulnerable to attacks exploiting
race conditions when revoking access rights or access keys as in
OAuth2 [45]. Finally, ClaimChain [38] is a decentralized PKI where
users maintain repositories of claims about themselves and their
contacts’ public keys. However, it permits transfer of access-control
tokens, which can result in unauthorized access to the claims. Fi-
nally, Blockstack [2] uses Bitcoin to provide naming and identity
functionality, but it does not support private-data sharing with
access control. CALYPso can work along a Blockstack-like system if
implemented on top of an expressive enough blockchain [74] and
include Blockstack identities as part of SIAM.

A concurrent work to CaLypso is Coconut [68] that uses thresh-
old encryption to enable the issuance of privacy preserving cre-
dentials, which can also be an application of CaLyPso where the
secret-management cothority manages the credentials of users and
selectively reveals them when asked. Finally, CHURP [47] is also
a concurrent work for efficient re-sharing of secrets that can also
improve the performance of our long-term secrets implementation.

Acknowledgments

We would like to thank Vincent Graf, Jean-Pierre Hubaux, Wouter
Lueks, Massimo Marelli, Carmela Troncoso, Juan-Ramén Troncoso-
Pastoriza, and Frédéric Pont, for their comments and feedback.
This project was supported in part by the grant #2017 — 201 of the
Strategic Focal Area “Personalized Health and Related Technologies
(PHRT)” of the ETH Domain and by grants from the AXA Research
Fund, Byzgen, DFINITY, and the Swiss Data Science Center (SDSC).
Eleftherios Kokoris-Kogias is supported in part by the IBM PhD
Fellowship. Philipp Jovanovic and Ewa Syta are supported in part
by the Research Institute.

References

[1] 2018. Fire Lotto blockchain lottery.

[2] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freedman. 2016. Blockstack:
A Global Naming and Storage System Secured by Blockchains. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16). USENIX Association, Denver, CO,
181-194.

[3] Ali Nakhaei Amroudi, Ali Zaghain, and Mahdi Sajadieh. 2017. A Verifiable (k,

n, m)-Threshold Multi-secret Sharing Scheme Based on NTRU Cryptosystem.

Wireless Personal Communications 96, 1 (2017), 1393-1405.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed op-

erating system for permissioned blockchains. In Proceedings of the Thirteenth

EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018. 30:1-30:15.

https://doi.org/10.1145/3190508.3190538

Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-

Kogias. 2018. Channels: Horizontal Scaling and Confidentiality on Permissioned

Blockchains. In European Symposium on Research in Computer Security. Springer,

111-131.

[6] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. 2014. Secure multiparty computations on bitcoin. In Security and
Privacy (SP), 2014 IEEE Symposium on. IEEE, 443-458.

[7] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. 2016. Medrec:

Using blockchain for medical data access and permission management. In Open

and Big Data (OBD), International Conference on. IEEE, 25-30.

George Robert Blakley. 1979. Safeguarding cryptographic keys. In Proceedings of

the national computer conference, Vol. 48. 313-317.

—_
=t

[5

—_
o)

https://firelotto.io/
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://link.springer.com/article/10.1007/s11277-017-4245-9
https://link.springer.com/article/10.1007/s11277-017-4245-9
https://arxiv.org/pdf/1801.10228v1.pdf
https://arxiv.org/pdf/1801.10228v1.pdf
https://doi.org/10.1145/3190508.3190538
https://link.springer.com/chapter/10.1007/978-3-319-99073-6_6
https://link.springer.com/chapter/10.1007/978-3-319-99073-6_6
https://ieeexplore.ieee.org/abstract/document/6956580
https://ieeexplore.ieee.org/abstract/document/7573685/
https://ieeexplore.ieee.org/abstract/document/7573685/
https://www.computer.org/csdl/proceedings/afips/1979/5087/00/50870313.pdf

Verifiable Management of Private Data under Byzantine Failures

B8 Tournament
0’ @@ Calypso

1400

Time (sec)

200+
9 .4 .4 L4

8 16 32 64

160———

r
140+ B Tournament
@@ Calypso

o
sle

o
o N
S o
T

Bandwidth (KB)
o
2

»
o
T

1}

N
o o
T

I I
48 16 32 64 128

Number of participants

Figure 9: Lottery evaluation using simulated workloads.

[9] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. 2015. Post-

[10]

[11
[

=
2=

[13]

[14

[15]

[16

[17]

[18

]

[19]

[20

[21

[22

[23
[24

[25
[26
[27
[28

[29

[30
[31

[32

]

]

]
]

]

quantum key exchange for the TLS protocol from the ring learning with errors
problem. In Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 553-570.
CoinDesk. 2018. Decentralized Exchanges ArenaAZt Living Up to Their Name -
And Data Proves It.

Matt Czernik. 2018. On Blockchain Frontrunning .

Irit Dinur and Kobbi Nissim. 2003. Revealing information while preserving
privacy. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems. ACM, 202-210.

Alevtina Dubovitskaya, Zhigang Xu, Samuel Ryu, Michael Schumacher, and
Fusheng Wang. 2017. Secure and Trustable Electronic Medical Records Sharing
using Blockchain. arXiv preprint arXiv:1709.06528 (2017).

Vincent Durham. 2011. Namecoin.

Justin Ellis. 2014. The Guardian introduces SecureDrop for document leaks.
Nieman Journalism Lab (2014).

Tom Embury-Dennis and Simon Calder. 2018 (accessed on Oct 27, 2018). British
Airways website theft: Customers urged to contact banks as airline launches
investigation over stolen data.

European Parliament and Council of the European Union. 2016. General Data
Protection Regulation (GDPR). Official Journal of the European Union (OF) L119
(2016), 1-88.

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-
morphic Encryption. IACR Cryptology ePrint Archive 2012 (2012), 144.

Joan Feigenbaum. 2017. Multiple Objectives of Lawful-Surveillance Protocols
(Transcript of Discussion). In Cambridge International Workshop on Security
Protocols. Springer, 9-17.

Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret
sharing. In Foundations of Computer Science, 1987., 28th Annual Symposium on.
IEEE, 427-438.

Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek,
and Robert Morris. 2006. Persistent Personal Names for Globally Connected
Mobile Devices. In 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

Roxana Geambasu, Tadayoshi Kohno, Amit A Levy, and Henry M Levy. 2009.
Vanish: Increasing Data Privacy with Self-Destructing Data.. In USENIX Security
Symposium. 299-316.

Genecoin. 2018. Make a Backup of Yourself Using Bitcoin.

Rosario Gennaro, Stanistaw Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure
distributed key generation for discrete-log based cryptosystems. In Eurocrypt,
Vol. 99. Springer, 295-310.

golang 2018. The Go Programming Language.

Ed Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749.

HIPAA Journal. 2017. The Benefits of Using Blockchain for Medical Records.
Kate Fultz Hollis. 2016. To Share or Not to Share: Ethical Acquisition and Use of
Medical Data. AMIA Summits on Translational Science Proceedings 2016 (2016),
420.

Longxia Huang, Gongxuan Zhang, Shui Yu, Anmin Fu, and John Yearwood. [n.d.].
SeShare: Secure cloud data sharing based on blockchain and public auditing.
Concurrency and Computation: Practice and Experience ([n. d.]).

Markus Jakobsson. 1999. On quorum controlled asymmetric proxy re-encryption.
In Public key cryptography. Springer, 632-632.

IBM Blockchain Juan Delacruz. 2018. Blockchain is tackling the challenge of data
sharing in government.

Aniket Kate and Tan Goldberg. 2009. Distributed Key Generation for the Internet.
In 29th International Conference on Distributed Computing Systems (ICDCS). IEEE,

[33

[34

[35

[36

[37

[38

[45
[46

[47

[48

[49

[50

[51

[52

]

]

120

100}

80} i '} =)

60} H Q. le. e ...0 | o o

Time (sec)
Q@

20f 4
= - Tournament

© @ Calypso

20

o ‘ ‘ 25 30

10

15
Day
Figure 10: Lottery evaluation using Fire Lotto workloads.

119-128.

Katherine K Kim, Pamela Sankar, Machelle D Wilson, and Sarah C Haynes. 2017.
Factors affecting willingness to share electronic health data among California
consumers. BMC medical ethics 18, 1 (2017), 25.

Eleftherios Kokoris-Kogias, Linus Gasser, Ismail Khoffi, Philipp Jovanovic, Nico-
las Gailly, and Bryan Ford. 2016. Managing Identities Using Blockchains and
CoSi. Technical Report. 9th Workshop on Hot Topics in Privacy Enhancing
Technologies (HotPETs 2016).

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance with
Strong Consistency via Collective Signing. In Proceedings of the 25th USENIX
Conference on Security Symposium.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding. In 39th IEEE Symposium on Security and Privacy (SP). IEEE,
19-34.

Charles R Korsmo. 2013. High-Frequency Trading: A Regulatory Strategy. U.
Rich. L. Rev. 48 (2013), 523.

Bogdan Kulynych, Wouter Lueks, Marios Isaakidis, George Danezis, and Carmela
Troncoso. 2018. ClaimChain: Improving the Security and Privacy of In-band Key
Distribution for Messaging. In Proceedings of the 2018 Workshop on Privacy in the
Electronic Society. ACM, 86-103.

Ranjit Kumaresan, Tal Moran, and Iddo Bentov. 2015. How to use bitcoin to
play decentralized poker. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 195-206.

Jae Kwon. 2014. TenderMint: Consensus without Mining. (2014).

kyber 2010 - 2018. The Kyber Cryptography Library.

Timothy B. Lee. 2018 (accessed on Jul 27, 2018). FacebookiAZs Cambridge
Analytica Scandal, Explained [Updated].

Jinyuan Li, Maxwell Krohn, David Maziéres, and Dennis Shasha. 2004. Secure
Untrusted Data Repository (SUNDR). In 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI).

Laure A Linn and Martha B Koo. 2016. Blockchain for health data and its potential
use in health it and health care related research. In ONC/NIST Use of Blockchain
for Healthcare and Research Workshop. Gaithersburg, Maryland, United States:
ONC/NIST.

T. Loddersted, S. Dronia, and M. Scurtescu. 2013. OAuth 2.0 Token Revocation.
RFC 7009.

W Lueks. 2017. Security and Privacy via Cryptography Having your cake and
eating it too. Ph.D. Dissertation. [SI: sn].

Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang,
Ari Juels, and Dawn Song. 2019. Dynamic-Committee Proactive Secret Sharing.
(2019).

David Mazieres and Dennis Shasha. 2002. Building secure file systems out
of Byzantine storage. In Proceedings of the twenty-first annual symposium on
Principles of distributed computing. ACM, 108-117.

Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. 2013. Zerocoin:
Anonymous Distributed E-Cash from Bitcoin. In 34th [EEE Symposium on Security
and Privacy (S&P).

Andrew Miller and Iddo Bentov. 2017. Zero-collateral lotteries in Bitcoin and
Ethereum. In Security and Privacy Workshops (EuroS&PW), 2017 IEEE European
Symposium on. IEEE, 4-13.

mininet 2018. Mininet — An Instant Virtual Network on your Laptop (or other
PC).

Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.

https://ieeexplore.ieee.org/abstract/document/7163047
https://ieeexplore.ieee.org/abstract/document/7163047
https://ieeexplore.ieee.org/abstract/document/7163047
https://www.coindesk.com/decentralized-exchange-crypto-dex
https://www.coindesk.com/decentralized-exchange-crypto-dex
https://medium.com/@matt.czernik/on-blockchain-frontrunning-part-i-cut-the-line-or-make-a-new-one-b33850663b55
https://dl.acm.org/citation.cfm?id=773173
https://dl.acm.org/citation.cfm?id=773173
https://arxiv.org/pdf/1709.06528.pdf
https://arxiv.org/pdf/1709.06528.pdf
https://namecoin.info/
https://www.theguardian.com/technology/2014/jun/05/guardian-launches-securedrop-whistleblowers-documents
https://www.independent.co.uk/travel/british-airways-website-theft-customer-data-stolen-flights-credit-card-a8526376.html
https://www.independent.co.uk/travel/british-airways-website-theft-customer-data-stolen-flights-credit-card-a8526376.html
https://www.independent.co.uk/travel/british-airways-website-theft-customer-data-stolen-flights-credit-card-a8526376.html
https://www.eugdpr.org/
https://www.eugdpr.org/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://eprint.iacr.org/2012/144.pdf
https://eprint.iacr.org/2012/144.pdf
https://link.springer.com/chapter/10.1007/978-3-319-71075-4_2
https://link.springer.com/chapter/10.1007/978-3-319-71075-4_2
https://ieeexplore.ieee.org/abstract/document/4568297/
https://ieeexplore.ieee.org/abstract/document/4568297/
https://pdos.csail.mit.edu/papers/uia:osdi06.pdf
https://pdos.csail.mit.edu/papers/uia:osdi06.pdf
https://www.usenix.org/legacy/events/sec09/tech/full_papers/sec09_crypto.pdf
http://genecoin.me/
https://link.springer.com/chapter/10.1007/3-540-48910-X_21
https://link.springer.com/chapter/10.1007/3-540-48910-X_21
http://golang.org/
https://tools.ietf.org/html/rfc7009
https://www.hipaajournal.com/blockchain-medical-records/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001759/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001759/
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4359
https://link.springer.com/chapter/10.1007/3-540-49162-7_9
https://www.ibm.com/blogs/blockchain/2018/02/blockchain-is-tackling-the-challenge-of-data-sharing-in-government/
https://www.ibm.com/blogs/blockchain/2018/02/blockchain-is-tackling-the-challenge-of-data-sharing-in-government/
https://ieeexplore.ieee.org/abstract/document/5158416/
https://bmcmedethics.biomedcentral.com/articles/10.1186/s12910-017-0185-x
https://bmcmedethics.biomedcentral.com/articles/10.1186/s12910-017-0185-x
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/1_Managing_identities_bryan_ford_etc.pdf
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/1_Managing_identities_bryan_ford_etc.pdf
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/406.pdf
https://lawreview.richmond.edu/files/2014/03/Korsmo-482-AC.pdf
https://dl.acm.org/citation.cfm?id=3268947
https://dl.acm.org/citation.cfm?id=3268947
https://people.csail.mit.edu/ranjit/papers/poker.pdf
https://people.csail.mit.edu/ranjit/papers/poker.pdf
http://tendermint.com/docs/tendermint.pdf
https://github.com/dedis/kyber
https://arstechnica.com/tech-policy/2018/03/facebooks-cambridge-analytica-scandal-explained/
https://arstechnica.com/tech-policy/2018/03/facebooks-cambridge-analytica-scandal-explained/
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/li_j/li_j.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/li_j/li_j.pdf
https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
https://tools.ietf.org/html/rfc7009
http://repository.ubn.ru.nl/bitstream/handle/2066/176475/176475.pdf?sequence=1
http://repository.ubn.ru.nl/bitstream/handle/2066/176475/176475.pdf?sequence=1
https://dl.acm.org/citation.cfm?id=571840
https://dl.acm.org/citation.cfm?id=571840
https://ieeexplore.ieee.org/abstract/document/6547123/
https://ieeexplore.ieee.org/abstract/document/6547123/
https://ieeexplore.ieee.org/document/7966964
https://ieeexplore.ieee.org/document/7966964
http://mininet.org/
http://mininet.org/
https://bitcoin.org/bitcoin.pdf

[53] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Li-
nus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. 2017. CHAINIAC:
Proactive Software-Update Transparency via Collectively Signed Skipchains and

Verified Builds. In 26th USENIX Security Symposium (USENIX Security 17). USENIX

Association, 1271-1287.

Henning Pagnia and Felix C Gartner. 1999. On the impossibility of fair exchange

without a trusted third party. Technical Report. Technical Report TUD-BS-1999-02,

Darmstadt University of Technology, Department of Computer Science, Darm-

stadt, Germany.

Marc Pilkington. 2015. Blockchain Technology: Principles and Applications.

Research Handbook on Digital Transformation (2015).

[56] Bahman Rajabi and Ziba Eslami. 2018. A Verifiable Threshold Secret Sharing

Scheme Based On Lattices. Information Sciences (2018).

randao.org. 2018. Randao: Blockchain Based Verifiable Random Number Genera-

tor.

[58] R.L.Rivest and B. Lampson. 1996. SDSI: A Simple Distributed Security Infras-

tructure.

Ronald L Rivest, Adi Shamir, and David A Wagner. 1996. Time-lock puzzles and

timed-release crypto. (1996).

[60] Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine. 2010.
Survivable Key Compromise in Software Update Systems. In 17th ACM Conference
on Computer and Communications security (CCS).

[61] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, lan Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous

payments from bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on.

IEEE, 459-474.

Berry Schoenmakers. 1999. A simple publicly verifiable secret sharing scheme and

its application to electronic voting. In IACR International Cryptology Conference

(CRYPTO). 784-784.

[63] Adam Schwartz and Cindy Cohn. 2018 (accessed October 27, 2018). 4AIjInforma-
tion FiduciariesAAl Must Protect Your Data Privacy.

[64] SECBIT. 2018. How the winner got Fomo3D prize - A Detailed Explanation.

[65] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy.

2017. Towards Blockchain-based Auditable Storage and Sharing of IoT Data. In

Proceedings of the 2017 on Cloud Computing Security Workshop. ACM, 45-50.

Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612-613.

Victor Shoup and Rosario Gennaro. 1998. Securing threshold cryptosystems

against chosen ciphertext attack. Advances in Cryptology — EUROCRYPT 98

(1998), 1-16.

Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, and George Danezis. 2018.

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications

to Distributed Ledgers. arXiv preprint arXiv:1802.07344 (2018).

[69] Hemang Subramanian. 2017. Decentralized blockchain-based electronic market-

places. Commun. ACM 61, 1 (2017), 78-84.

Melanie Swan. 2015. Blockchain: Blueprint for a new economy. O’Reilly Media,

Inc.

[71] Martin Holst Swende. 2017. Blockchain Frontrunning .

[72] Nick Szabo. 1994. Smart contracts. Unpublished manuscript (1994).

[73] Theodore M Wong, Chenxi Wang, and Jeannette M Wing. 2002. Verifiable
secret redistribution for archive systems. In Security in Storage Workshop, 2002.
Proceedings. First International IEEE. IEEE, 94-105.

[74] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Ethereum Project Yellow Paper (2014).

[75] David Yermack. 2017. Corporate governance and blockchains. Review of Finance
21, 1 (2017), 7-31.

[76] Ernst & Young. 2018. Blockchain in health.

[77] Guy Zyskind, Oz Nathan, et al. 2015. Decentralizing privacy: Using blockchain to
protect personal data. In Security and Privacy Workshops (SPW), 2015 IEEE. IEEE,
180-184.

[78] Guy Zyskind, Oz Nathan, and Alex Pentland. 2015. Enigma: Decentralized
computation platform with guaranteed privacy. arXiv preprint arXiv:1506.03471
(2015).

A Publicly Verifiable Secret Sharing

We follow the protocol in [62] where a dealer wants to distribute
shares of a secret value among a set of trustees. Let G be a cyclic
group of prime order g where the decisional Diffie-Hellman as-
sumption holds. Let g and h denote two distinct generators of G.
We use N = {1,...,n} to denote the set of trustees, where each
trustee i has a private key sk; and a corresponding public key pk;

[54

[55

[57

[59

o
L

(66
l67

[68

[70

= gSki. The protocol runs as follows:

Dealing the shares The dealer initiates the PVSS protocol as fol-
lows.

(1) Choose a secret sharing polynomial s(x) = Z}t.;é ajxj of
degree ¢ — 1. The secret to be shared is s = ¢5(%).

(2) For each trustee i € {1,...,n}, compute the encrypted share
5i= pkls.(l) of the shared secret s and create the correspond-
ing NIZK encryption consistency proof rg;. Create the poly-
nomial commitments b; = h%, for 0 < j < t.

(3) Publish all 53, 75, and bj.

75, proves that the corresponding encrypted share §j is consis-

tent. More specifically, it is a proof of knowledge of the unique s(i)
that satisfies:

A= 0,5 = pl®

where A; = H}t.;é bjij. In order to generate rg;, the dealer picks
at random w; € Zgq and computes:

. W
a1; = b, az; = pk;”’,
Ci = H(A;, 5, a1i, azi),ri = wi —s(i)Ci

where H is a cryptographic hash function, C; is the challenge,
and r; is the response. Each proof 75, consists of C; and r;, and it
shows that logy, A; = log §i.

Verification of the shares Each trustee i verifies their encrypted
share §; against the corresponding NIZK encryption consistency
proof 7g; to ensure the validity of the encrypted share. To do so,
each trustee performs the following steps.

(1) Compute A; =]_[Jt.;é cjij using the polynomial commit-
ments ¢j, 0 < j <.

(2) Compute aj; = h’iAl.Ci and a}; = pk;ié}ci

(3) Check that H(A;, 5;, aj;, a;;) matches the challenge C;.

Decryption of the shares If their share is valid, each trustee i
creates their decrypted share as follows.

(1) Compute the decrypted share s; = (5;)Slel and the corre-
sponding NIZK decryption consistency proof rs,, which
proves that s; is the correct decryption of 5;. The proof shows
the knowledge of the unique value that satisfies logg pk; =
log,, s;.

(2) Publish s; and ;.

Reconstructing the shared secret If there are at least t correctly
decrypted shares, then the Lagrange interpolation can be used to
recover the shared secret s.

B Full Encryption/Decryption Protocol for
Long-term secrets

We follow the extension of the TDH2 protocol of Shoup [67] de-
scribed by Lueks [46]. Let G be a cyclic group of prime order g with
generators g and g. We assume the existence of two hash functions:
H;:G%x{0,1}) - GandH; : G* - Z,.

Encryption A client encrypts a message under the threshold pub-
lic key pk, . such that it can be decrypted by anyone that is in-

cluded in policy? L € {0,1}. The client performs the following
steps.

2This policy is the identifier (hash of genesis block) of an identity skipchain

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://pdfs.semanticscholar.org/208b/22c7a094ada20736593afcc8c759c7d1b79c.pdf
https://pdfs.semanticscholar.org/208b/22c7a094ada20736593afcc8c759c7d1b79c.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2662660
https://www.sciencedirect.com/science/article/pii/S0020025516316152
https://www.sciencedirect.com/science/article/pii/S0020025516316152
https://www.randao.org
https://www.randao.org
http://theory.lcs.mit.edu/~cis/sdsi.html
http://theory.lcs.mit.edu/~cis/sdsi.html
https://dl.acm.org/citation.cfm?id=888615
https://dl.acm.org/citation.cfm?id=888615
http://justinsamuel.com/papers/survivable-key-compromise-ccs2010.pdf
https://ieeexplore.ieee.org/abstract/document/6956581/
https://ieeexplore.ieee.org/abstract/document/6956581/
https://link.springer.com/chapter/10.1007/3-540-48405-1_10
https://link.springer.com/chapter/10.1007/3-540-48405-1_10
https://www.eff.org/deeplinks/2018/10/information-fiduciaries-must-protect-your-data-privacy?fbclid=IwAR2Hd6n4o0hhG0GspGeTRtKx5ghHu0nz6EPBBsjJVLHFmvHS844pKn1C0_o
https://www.eff.org/deeplinks/2018/10/information-fiduciaries-must-protect-your-data-privacy?fbclid=IwAR2Hd6n4o0hhG0GspGeTRtKx5ghHu0nz6EPBBsjJVLHFmvHS844pKn1C0_o
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://dl.acm.org/citation.cfm?id=3140656
https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf
https://link.springer.com/chapter/10.1007/BFb0054113
https://link.springer.com/chapter/10.1007/BFb0054113
https://arxiv.org/abs/1802.07344
https://arxiv.org/abs/1802.07344
https://dl.acm.org/citation.cfm?id=3158333
https://dl.acm.org/citation.cfm?id=3158333
http://shop.oreilly.com/product/0636920037040.do
http://swende.se/blog/Frontrunning.html
https://dl.acm.org/citation.cfm?id=830217
https://dl.acm.org/citation.cfm?id=830217
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://academic.oup.com/rof/article/21/1/7/2888422
https://www.hyperledger.org/wp-content/uploads/2016/10/ey-blockchain-in-health.pdf
https://ieeexplore.ieee.org/abstract/document/7163223/
https://ieeexplore.ieee.org/abstract/document/7163223/
https://arxiv.org/pdf/1506.03471.pdf
https://arxiv.org/pdf/1506.03471.pdf

Verifiable Management of Private Data under Byzantine Failures

(1) Choose a symmetric key k to symmetrically encrypt the
message and then embed k as a point k’ € G.
(2) Choose at random r,s € Zg. Compute:

¢ =pkinck' u=g",w=4g°

smc

The ciphertext is (c, L, u, @, e, f).

Decryption of the shares Given a ciphertext (c, L, u,, e, f) and
a matching authorization to L, each trustee i performs the following
steps.

S
(1) Check if e = Hj (c, u, @ w, , L) by computing w = %z and

g/
w= g—e, which is a NIZK proof that logg u= logg— .
(2) If the share is valid, choose s; € Zg at random and compute:

up = sy = us by = g,

e; = Hz (ui,lii,hi) , fi = si +skie;

(3) Publish (i, u;, e;, fi), where u; is the corresponding share.

Note that if the policy L has changed, then e cannot be computed
correctly. Given that an adversary will not know r, he cannot change
the e to match his new policy.

Secret reconstruction A client can reconstruct the secret and
obtain the decryption key k both on the client side or at an untrusted
server. We describe both schemes below.

Secret reconstruction at the client

(1) Run the decryption share check to make sure that the trustees
are not misbehaving.

(2) If the check passes then verify that (u, u;, h;) is a DH triple
by checking that e; = Hy (ui,zi,-, i{,-), where u; = 11‘1—2, and
I’; i= W .

(3) If there are at least t valid shares, (i, 4;), the recovery algo-
rithm is doing Lagrange interpolation of the shares:

t
pk;mc = l_[ui/li
k=0

where 1; is the i* Lagrange element.
(4) Compute the inverse of pkl . and find k" = —%—. From k’

¢
sme kamC

derive the decryption key k and recover the original message.

Secret reconstruction at the trusted server The client authen-
ticates themselves using their public key g*¢. One of the trustees is
assigned to do the reconstruction for the client.

(1) Each trustee that created their decryption share as g
u;, ElGamal encrypts the share for the client using x; as
the blinding factor instead of a random r’. The new share
becomes g"¥ig¥eXi = glr+xe)Xi = gr'xi = y/xi = u]. Then

rx; —

the trustee computes }{i, as before and 12: = u’5. Finally
e/ =Hp (ulf,ul’.,h,-) and f] = s; + xje;
(2) Any trustee can pool the shares and reconstruct the secret

with Lagrange interpolation as shown above. The end result
is gr’x —_ g(r+xc)x

(3) The client gets g("**<)* and as they know g* and x, they can
find —x, and compute g¥ ' = g~**c_Finally they compute
g = g{r+Xe=Xe)X and decrypt as mentioned above.

C Post-Quantum One-Time Secrets

The one-time secrets implementation can be converted to a post-
quantum secure version by using Shamir’s secret sharing [66]. We
need the following assumptions to provide confidentiality. First, we
assume that Wanda has post-quantum confidential and authenti-
cated point-to-point communication channels [9] with the trustees.
Second, we assume that the cryptographic protocols (for access con-
trol, authentication and blockchain security) are upgraded gradually
over time to achieve post-quantum security. To protect CALYPSO
from confidentiality violations by quantum attackers, we need to
ensure that the on-chain secrets generated now are post-quantum
secure.

Unlike the publicly-verifiable scheme we previously used, Shamir’s
secret sharing does not prevent a malicious writer from distributing
bad secret shares. To mitigate this problem, we provide accountabil-
ity of the secret sharing phase by (1) requiring the writer to commit
to the secret shares she wishes to distribute and (2) requesting that
each secret-management trustee verifies and acknowledges the con-
sistency of their secret share against the writer’s commitment. As a
result, assuming n = 3f + 1 and secret sharing threshold t = f + 1,
the reader can hold the writer accountable for a bad transaction
should he fail to correctly decrypt the secret message.

We sketch the protocol for one-time secrets below. We remark
that long-term secrets can also achieve post-quantum security
through verifiable secret sharing that relies on lattices [56] or
NTRU [3].

Write Transaction Protocol Wanda prepares her write transac-
tion txy, with the help of the secret-management and access-control
cothorities, where each individual trustee carries out the respective
steps. Wanda initiates the protocol by preparing a write transaction:
(1) Choose a secret sharing polynomial s(x) = Z]t.;é ajxj of
degree t — 1. The secret to be shared is s = s(0).
(2) Use k = H(s) as the symmetric key for encrypting the secret
message m. ¢ = encg(m) and set H, = H(c).
(3) For each trustee i, generate a commitment q; = H(v; || s(i)),
where v; is a random salt value.
(4) Specify the access policy and prepare and sign txy.
txw = [(qi), He, (pk;) , policylsig,,
(5) Send the share s(i), salt v;, and txy, to each secret-manage-
ment trustee using a secure channel.
The secret-management cothority verifies txy, as follows.

o Check that (s(i), v;) corresponds to the commitment g;. If
yes, sign txy, and send it back to Wanda as a confirmation
that the share is valid.

The access-control cothority finally logs Wanda’s txy.

e Wait to receive txy signed by Wanda and the secret-man-
agement trustees. Verify that at least 2f + 1 trustees signed
the transaction. If yes, log txy.

Read Transaction, Share Request, and Reconstruction The
other protocols remain unchanged except that the secret-manage-
ment trustees are already in possession of their secret shares and
the shares need not be included in tx;. Once Ron receives the shares

PK4 AND PK1?

Report X Policy BRI
ID 1234 AN
Version 1 \ *
Rules [0, 1, 2] -\ Rule 2)
.
Action Read L7 ‘
/- Subjects [Bob, Amy] N}~ .
/ Expression "{'AND' : [0, 1]}" \
Bob Policy Amy Policy
ID 6783 1D 3503
Version 5 Version 2
Rules [0, 1] Rules [0, 1]

Rule 1 Rule 1
Action User Action User
Subjects [PK4] Subjects [PK1]
Expression " Expression "

Figure 11: Verifier’s path checking for multi-signature requests.

from the trustees, he recovers the symmetric key k as before and
decrypts c. If the decryption fails, then the information shared
by Wanda (the key, the ciphertext, or both) was incorrect. Such
an outcome would indicate that Wanda is malicious and did not
correctly execute the txy protocol (e.g., provided bad shares or
used a higher-order polynomial). In response, Ron can release the
transcript of the tx; protocol in order to hold Wanda accountable.

D Access Requests and Verification

In this section, we outline how we create and verify access re-
quests. A request consists of the policy and the rule invoked that
permits the requester to perform the action requested. There is
also a message field where extra information can be provided e.g.,
a set of documents is governed by the same policy but the re-
quester accesses one specific document.. A request req is of the
form: req = [idpyjicy. indexgpyje, M], where idpyjjcy is the ID of
the target policy outlining the access rules; indexg,, ;. is the index
of the rule invoked by the requester; and M is a message describing
extra information.

To have accountability and verify that the requester is permitted
to access, we use signatures. The requester signs the request and
creates a signature consisting of the signed request (sig,.q) and the
public key used (pk). On receiving an access request, the verifier
checks that the sig,, is correct. The verifier then checks that there
is a valid path from the target policy, idpoicy. to the requester’s
public key, pk. This could involve multiple levels of checks, if the
requester’s key is not present directly in the list of subjects but
included transitively in some federated SIAM that is a subject. The
verifier searches along all paths (looking at the last version times-
tamped by the access-control cothority) until the requester’s key is
found.

Sometimes, an access request requires multiple parties to sign.
Conditions for multi-signature approval can be described using the
expression field in the rules. An access request in this case would be
of the form (req, [sigreq]) where [sigreq] is a list of signatures from
the required-for-access parties. The verification process is similar
to the single signature case.

Figure 11 shows an example of the path verification performed by
the verifier. Report X has a policy with a Rule granting read access

to Bob and Amy. There is an expression stating that both Bob’s
and Amy’s signatures are required to obtain access. Hence, if Bob
wants access, he sends a request (req, [$igreq, pk, > Si8req, pk,])> Where
req = [1234, 2, “ReportX’’] The verifier checks the paths from the
policy to Bob’s pk, and Amy’s to pk; are valid. Paths are shown in
red and blue respectively. Then the expression AAYANDAAZ : [0,1]
is checked against the signatures. If all checks pass, the request is
considered to be verified.

JSON Access-Control Language A sample policy for a document,
expressed in the JSON based language, is shown in Figure 12. The
policy states that it has one Admin rule. The admins are S1 and S2
and they are allowed to make changes to the policy. The Expression
field indicates that any changes to the policy require both S1 and
S2’s signatures.

{
"ID" 2345
"Version" : 1,
"Rules"
[
{
"Action" "Admin",
"Subjects" : [S1, S2],
"Expression" : "{'AND' : [S1, S2]}"
}
]
}

Figure 12: Sample Policy in JSON access-control language.

E Integration of SIAM and CaLyPso

To integrate STAM with CaLypso, the long-term secrets protocols
described in Section 4.3 are adapted as follows. Assume that Ron has
logged the unique identifier idg of his personal identity skipchain
on the access-control blockchain. If Wanda wants to give Ron access
to a resource, she simply sets policy = idg instead of policy = pkp
in tXy.

This means that instead of defining access rights in terms of
Ron’s static public pkg, she does so in terms of Ron’s skipchain
and consequently, any public key(s) specified in the most current
most current block of idg. Then, the resource is encrypted under
the shared public key of the secret-management cothority as before.
To request access, Ron creates the read transaction

txr = [Hw, Tltxy > ka/]sigskR/
where H,, = H(txy) is the unique identifier for the secret that
Ron requests access to, 7ix,, is the blockchain inclusion proof for
txw, and pkg/ is one of Ron’s public keys that he wishes to use
from the latest block of the idg skipchain. After receiving tx;, the

Verifiable Management of Private Data under Byzantine Failures

100
n L
2
[}
€ 100t--A4--H--|H--||-- -
-+
C
ke
©
O 10k--AH--AH- - - - -
L=
o
>
L o
o I Path verification
aa [Signature verification

0.1

1 2 5
Depth of the requester

Figure 13: Single-signature request verification.

10 20 50 100 200

access-control cothority follows the idr skipchain to retrieve the
latest skipblock and verifies pkp, against it. Then, the access-control
cothority checks the signature on tx, using pkp, and, if valid, logs
tx;. Once tx; is logged, the rest of the protocol works as described

in Section 4.3, where the secret-management cothority uses pkp,
for re-encryption to enable Ron to retrieve the resource.

F SIAM Evaluation

For SIAM, we benchmark the cost of validating the signature on
a read transaction which is the most resource and time intensive
operation. We distinguish single and multi-signature requests. The
single signature case represents simple requests where one iden-
tity is requesting access while multi-signature requests occur for
complex access-control rules.

For single-signature requests, the verification time is the sum of
the signature verification and the time to validate the identity of
the reader requesting access by checking it against the identity of
the target reader as defined in the policy. The validation is done
by finding the path from the target’s skipchain to the requester’s
skipchain. We vary the depth of the requester, which refers to the
distance between the two skipchains. Figure 13 shows the variation
in request verification time depending on the requester’s depth.
We observe that most of the request verification time is required
for signature verification which takes ~ 385 ps and accounts for
92.04 — 99.94% of the total time. We observe that even at a depth
of 200, a relatively extreme scenario, path finding takes only about
35ps.

	Abstract
	1 Introduction
	2 Motivating Applications and Background
	2.1 Motivating Examples
	2.2 Blockchains and Skipchains
	2.3 Threshold Cryptosystems

	3 Calypso Overview
	3.1 Strawman Data Management Solution
	3.2 System Goals
	3.3 System Model
	3.4 Threat Model
	3.5 Architecture Overview

	4 Calypso Design
	4.1 One-Time Secrets
	4.2 One-Time Secrets and System Goals
	4.3 Long-Term Secrets
	4.4 Long-Term Secrets and System Goals
	4.5 Skipchain-Based Identity and Access Management
	4.6 Further Security Considerations

	5 Case Studies Using Calypso
	5.1 Clearance-enforcing Document Sharing
	5.2 Patient-centric Medical Data Sharing
	5.3 Decentralized Lottery

	6 Implementation
	7 Evaluation
	7.1 Mirco-benchmarks
	7.2 Clearance-Enforcing Document Sharing
	7.3 Decentralized Lottery

	8 Related Work
	Acknowledgments
	References
	A Publicly Verifiable Secret Sharing
	B Full Encryption/Decryption Protocol for Long-term secrets
	C Post-Quantum One-Time Secrets
	D Access Requests and Verification
	E Integration of SIAM and Calypso
	F SIAM Evaluation

